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Foreword 

Automated planning and scheduling technologies are employed in applications ranging from robotics 
to factory organization to travel design.  The utility of automated planning and scheduling systems is 
often constrained by the design of the user interfaces. While many of these applications have been 
designed by members of the ICAPS community, as a whole we have noted that the real world is 
overlooking automated planning and scheduling technologies in domains where it should be used.  A 
lack of good user interfaces may be one reason for this, prompting this workshop as a way to investigate 
better ways to apply our tools. 

In parallel with this thread is the desire to explore how automated planning and scheduling can help 
design user interfaces. Workflows for many different user interface tools can be constructed using 
planning systems as well as other automated reasoning technologies. Historically, there have been a 
small number of investigations of this type; this workshop presents a new set of challenges to, as well 
as revives interest in past research initiatives of, the ICAPS community to help design better user 
interfaces. 

The time is also right for the ICAPS community to investigate novel user interface modalities such as 
natural language processing and augmented reality as ways to facilitate human-planner interaction. 
While natural language processing systems have been developed over at least the past 20 years, the 
advent of commodity spoken language systems (e.g. Siri) and natural language processing systems on 
a chip provides exciting opportunities for integration with automated planning and scheduling. 
Augmented reality is a ‘rising’ technology; when coupled with computer vision systems, augmented 
reality provides new, potentially disruptive methods for supporting plan execution, if not planning, and 
augmented reality systems may benefit from automated planning and scheduling technology as a form 
of user interfacing. 

The goals of the UISP workshop are: 
1) To emphasize how automated planning and scheduling and user interfaces can support each other;  
2) To explore how user interfaces can assist various companies and everyday users in better      
    understanding automated planning and scheduling for their own applications; and  
3) To discuss how automated planning and scheduling can be used to improve user interfaces for  
     everyday interaction.  

The papers included in this proceedings illustrate a diversity of research, approaches, applications, and 
challenges related to these goals. We hope they will inspire others to further investigate UISP-related 
work and contribute to bridging the gap between user interfaces and planning and scheduling. As the 
future of artificial intelligence becomes more focused on the average user than the experienced 
scientist, such technologies will become more necessary and ubiquitous in daily lives. 

 
Jeremy D. Frank, Richard G. Freedman, Amedeo Cesta, Subbarao Kambhampati, David Kortenkamp, 
Ronald P. A. Petrick, Kartik Talamadupula, and Shlomo Zilberstein 
UISP 2017 Organizers 
June 2017  
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CHAP-E: A Plan Execution Assistant for Pilots

J. Benton and David Smith and John Kaneshige and Leslie Keely

NASA Ames Research Center
Moffet Field, California 94035-1000

{j.benton,david.smith,john.t.kaneshige,leslie.keely}@nasa.gov

Abstract

Pilots have benefited from ever-increasing and evolving au-
tomation techniques for many decades. This automation has
allowed pilots to handle increasingly complex aircraft with
greater safety, precision, and reduced workload. Unfortu-
nately, it can also lead to misunderstandings and loss of situ-
ational awareness. In the face of malfunctions or unexpected
events, pilots sometimes have an unclear picture of the sit-
uation and what to do next, or must find and follow writ-
ten procedures that do not take into account all the details
of the particular situation. Pilots may also incorrectly as-
sume the mode or state of an automated system and fail to
perform certain necessary actions that they assumed an auto-
mated system would handle. To help alleviate these issues,
we introduce the Cockpit Hierarchical Activity Planning and
Execution (CHAP-E) system. CHAP-E provides pilots with
guidance toward executing procedures based on the aircraft
and automation system’s state and assists pilots through both
nominal and off-nominal flight situations.

Introduction
Piloting aircraft requires handling input from a variety of
systems, including instruments that inform a pilot of the
aircraft’s state (e.g., airspeed, vertical speed, altitude, atti-
tude, and heading). While automation has a long history of
assisting pilots with handling this information, when mal-
functions occur, sometimes multiple messages come from
distinct systems, confusing a pilot and making it difficult
to understand the next best course of action. A sad exam-
ple of this occurred during the Air France 447 flight, which
crashed, killing all passengers and crew. Coming from Rio
de Janeiro, Brazil and going to Paris, France, the flight en-
tered a large area of thunderstorm activity that resulted in
both turbulence and ice crystals forming in the pitot tubes,
which measure airspeed. Though the anti-ice system came
on and a warning sounded, the pitot tubes iced over and no
longer provided correct airspeed, causing the autopilot and
auto-thrust systems to disengage. The aircraft began to roll
from the turbulence, and the pilot overcompensated because
the aircraft was now in a control mode that was more sensi-
tive to roll input. Through a series of often disparate warn-
ings and incorrect assumptions that followed (including stall
warnings and presumed assumptions that the aircraft’s au-

topilot would not allow a high angle of attack)1, the aircraft
stalled at 38000 feet, plunging into the ocean three and a half
minutes later.

This tragic incident serves as an illustrative example of
how messages from disparate systems, unclear procedures,
and lack of basic data regarding the aircraft’s automation
state can cause serious issues for pilots and their flights. Nu-
merous other examples exist, including American Airlines
268 and Turkish Airways 1951. Indeed, 55% of all major in-
cidents are due to system malfunctions, and a primary reason
those contributed to bad outcomes related to pilots’ inabil-
ity to accurately assess the nature of the failure (FAA 2013).
Our objective is to help flight crews by providing a global
picture of expected procedures given the aircraft state. To-
ward these ends, we seek to provide pilots with procedural
guidance during flight, keeping track of the aircraft state and
providing suggested procedures for pilots to follow.

More specifically, we are interested in the problem of real-
time monitoring of all phases of airliner flight, and providing
feedback to the pilots when actions are overlooked or are in-
appropriate, or when the conditions of flight are no longer
in accordance with the objectives or clearance.2 Tradition-
ally, pilots have made use of written or electronic checklists
to verify that appropriate actions have been performed and
that the aircraft reached the proper state for each particu-
lar phase of flight. While these have served to standardize
procedures and ensure that critical items have not been over-
looked, checklists are both static and passive. For example,
the pre-landing checklist confirms that the flaps are at the
landing setting, the landing gear is down, the airspeed is in
an appropriate range for the landing weight, the approach is
stabilized, and the autobrakes are armed. It does not tell the
pilots when to lower flaps, when to lower landing gear, what
modes and settings to select for the autopilot, or whether
the selected landing speed and flap settings are even appro-
priate for the runway length, wind conditions, and current
runway braking action. In other words, the checklist helps
confirm the state of the aircraft, but provides no guidance
about when or how to achieve that state. This information is

1The angle of attack is the angle between the wing and airflow.
2This includes things like speed, altitude, descent/climb rate,

autopilot mode and settings, route compliance, flap settings, fuel
state, etc.
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all buried in the pilot’s training and expertise, and in proce-
dures in the Pilot’s Operating Handbook (POH). However,
details can get overlooked when the crew is fatigued, the
crew is overworked (e.g., due to weather conditions), or in
the event of system failures.

To tackle this problem, we introduce the Cockpit Hierar-
chical Activity Planning and Execution (CHAP-E) system,
a decision support and procedure display system. CHAP-E
can display pre-defined plans (procedures) or interface with
a situation-aware automated planner to generate and display
appropriate procedures. In this way, it can be viewed as a
planning, monitoring and execution assistant for the aircraft
flight.

This paper focuses on the CHAP-E display and its use
during flight. We designed the CHAP-E display to account
for the constant movement that occurs during flight. Unlike
some domains, during flight the state of the world changes
continuously but predictably over time, depending upon ac-
tion execution. This enables CHAP-E to determine how to
safely execute a plan. The state information includes events
such as reaching waypoints, instrument data (e.g., altitude
and air speed) and aircraft configuration (e.g., flaps and land-
ing gear positions). To predict these, CHAP-E uses an
external simulator called the Trajectory Prediction System
(TPS) (Kaneshige et al. 2014). It can use these predictions
to determine the earliest time when a pilot may begin actions
in the plan and the latest time an action can be executed for
the plan to remain successful.

We begin by discussing work related to automation during
flight and plan execution displays. We then follow with an
overview of the CHAP-E system. Finally, we end with a
discussion on future work.

Related Work
Automation systems have a long history in aviation. As
(Billings 1996) points out, making flight more resistant and
tolerant to error stands as the primary purpose of automa-
tion assistance in aviation. Despite this, little work has
been done in assisting pilots by displaying procedures to
them, ensuring their applicability during flight, and moni-
toring the execution of those procedures. Perhaps the clos-
est match to CHAP-E is MITRE’s Digital Copilot, which
is designed for smaller single-pilot aircraft and informs the
pilot of common mistakes and constraint violations during
flight (MITRE 2016).

Other work on procedure displays has been implemented
within the context of space missions. The NASA Au-
tonomous Mission Operations (AMO) project used a user
interface to track a spacecraft’s life support system activ-
ity (Frank et al. 2015). It offered recommended activities
based on the state of the spacecraft and current operating
constraints. Personnel on the spacecraft forwarded the rec-
ommendation to flight controllers, and if approved by the
flight controllers, the activity would be scheduled and dis-
played. It also used a system that helped the crew track the
progress of plan execution. That system, called WebPD, was
integrated with spacecraft systems to provide information
about the spacecraft’s state. The system then displayed serial
procedures along with important relevant state information

related to each step in the procedure (Stetson et al. 2015;
Frank et al. 2013). A similar system, called the Procedure
Integrated Development Environment (PRIDE), was imple-
mented to assist in the development of procedures. The
procedures are stored using the Procedure Representation
Language (PRL). The procedure view component, PRIDE
View, allows a user to follow a procedure step-by-step (Ko-
rtenkamp et al. 2008).

Another comparable system is RADAR (Vadlamudi et al.
2016), which assists in producing plans by generating land-
marks and offering action suggestions based upon them. Un-
like the other systems listed, RADAR uses PDDL (Fox and
Long 2003).

Plan Execution Assistant
The design of CHAP-E centers around reducing human er-
ror and its potentially negative effects by providing decision
support to human pilots. We define human error as action
or lack of action taken by a human with unintended effects.
Without knowing the intentions of a human actor, we can-
not determine whether an error has taken place. A human
must share the intention of their actions to identify an error.
This makes detecting human error a difficult, complex prob-
lem. In our current version of CHAP-E we do not expect
to identify all human errors. Instead, we assume a human
pilot never intends to cause goal failure or violate important
safety and operational constraints, which ties human intent
to pilots maintaining safe flight. Fortunately, we can focus
on negative effects assuming that a human will want to avoid
making errors that would cause potential hazards or cause
failure to achieve a given goal.

In this section, we present an overview of the CHAP-E
system currently in development, with a particular focus on
the approach and landing phases of flight. First, we discuss
the CHAP-E plan representation, then how we can deter-
mine whether a plan may succeed without violating con-
straints. Finally, we discuss the CHAP-E display and its
operation.

Plan Representation
CHAP-E uses hierarchical plans with causal links. The
primitive actions in the plan can be simulated to ensure they
do not violate important constraints. As seen in Figure 1,
in the plan hierarchy, the highest level task is a flight from
the departure airport to the destination airport, flight(from,
to). This expands into a serial (via causal links) set of sub-
tasks: 〈FileFlightPlan(from, to), ObtainClearance(from, to),
Taxi(rnwy) Fly(from, to), Taxi(gate), Shutdown〉.3 We can
further break down the Fly(from, to) action into the phases
of flight: 〈Takeoff(from, rnwy), Climb, Cruise, Descend,
Approach, Land(rnwy)〉. Expanding the Approach phase,
we have a set of primitive actions taken by the pilot. These
individual actions have enabling safety conditions associ-
ated with them, such as a particular segment on the ap-
proach, an airspeed range, or an altitude range.

3We simplify the example by removing some parameters and
tasks.
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Figure 1: CHAP-E hierarchical plan with the approach phase expanded down to primitive actions

The hierarchical structure provides several advantages.
First, much of the expansion cannot take place initially, be-
cause some of the parameters and constraints are not yet
known. For example, we cannot always initially expand
Taxi(rnwy), because the taxi route and the runway may have
not been assigned yet. Before this expansion can take place,
the initial part of the plan must be executed – we must file
the flight plan, and obtain the taxi clearance. Similarly, the
Departure, Cruise and Descent activities of the Fly subtask
cannot be expanded until the aircraft obtains a route clear-
ance. The Approach and Landing activities usually cannot
be expanded until later in the flight when the approach and
runway are assigned by Air Traffic Control (ATC) and ac-
cepted by the pilots. This will often depend on the traffic and
weather conditions at the time of arrival. For example, the
current wind conditions usually dictate which runways are
viable, and ceiling and visibility constrain the approaches
that are possible. This necessitates interleaving the hierar-
chical expansion of the plan and the plan’s execution.

One of the challenges of representing these plans is that
many of the actions are keyed off of particular events, rather
than times. For example, a standard practice is to lower
flaps to 20 degrees and lower the landing gear just before
intercepting the glideslope (the vertical guidance for the air-
craft) on an approach. Typically, this happens just outside of
the Final Approach Fix, a designated waypoint about 5nm
(nautical miles) from the end of the runway. The trouble
is, there is some uncertainty about the exact time at which
this event will occur, since it depends on the aircraft’s exact
speed and altitude, and on the wind conditions; if the aircraft
is a bit faster than expected or a bit high, this event will occur
sooner, if the headwinds are higher than expected, this event
will occur a bit later. As a result, many of the actions in a
CHAP-E plan are triggered off of events, rather than times
or the completion of preceding actions. Frequently, these
events involve reaching a particular waypoint or distance
from a waypoint, reaching a particular altitude, or reaching

a particular airspeed.
Figure 2 shows the plan and profile views for the ILS 28R

approach into San Francisco.4 The plan view gives a map-
like picture of the approach as seen from above, with a tran-
sition to the approach starting at the waypoint ARCHI, inter-
cepting the final approach course at the waypoint DUMBA,
and continuing through the Final Approach Fix, the way-
point AXMUL, to the runway. The profile view shows a
vertical slice of the altitude profile for the final segments of
the approach.

Figure 3 shows a small fragment of a detailed plan for in-
tercepting and flying this approach, for an aircraft beginning
just east of the ARCHI waypoint. The plan contains three
types of statements: Events that are expected to occur, Ac-
tions that the pilots must perform, and Monitors, which in-
dicate conditions that must be maintained throughout some
interval. Each event is characterized by a label, followed by
the event. For example, the first event is that of crossing
the waypoint ARCHI on the transition to the approach. The
events ZILED, GIRRR, DUMBA, CEPIN, AXMUL, and
RW28R also refer to the crossing of waypoints. The next
five events are prefaced by before! conditions, which in-
dicate a hard constraint that the event must occur before an-
other event (otherwise the plan becomes invalid). The first
of these is that we must have the clearance for the approach
from ATC before crossing the ARCHI waypoint. The next
three refer to the airspeed dropping below the maximum al-
lowed value for a particular flap setting. The final two re-
fer to the autopilot capturing the localizer and glideslope –
the lateral and vertical guidance for the approach. Finally,
A1500 and A1000 refer to the events when the altitude be-
comes less than 1500 ft and 1000 ft above the runway.

Actions are much like events, but these are things the pi-
lots must do. These usually contain both hard and soft con-

4Note that waypoints follow a standard naming convention of
five all-capitalized letters.
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Figure 2: Plan and profile views for the ILS 28R approach
into San Francisco

straints (preferences). For example, the first action says that
after the clearance event, and before the GIRRR waypoint
the pilots must arm the localizer in the autopilot, which al-
lows the autopilot to follow the lateral guidance. This is
a hard constraint, as indicated by the exclamation point (!)
an the end of between!. There is also a soft constraint
(preference) that this happen between ARCHI and ZILED
(no exclamation point). The second action is similar, with a
hard constraint window, and a soft constraint that the action
happen before CEPIN. The third action is also prefaced by
both hard and soft constraints and specifies a sequence of
two events: setting the flaps to 20, and setting the autopi-
lot speed window to the value Vref20. Like events, actions
can have names, and the first of this sequence is named F20,
which the subsequent action is conditioned on. The fourth
action, lowering the landing gear, has a hard constraint that it
must be performed before altitude 1500 and a soft constraint
to do it after setting the flaps to 20, and before AXMUL.
The final action sequence has a hard constraint and two soft
constraints. This is needed in this case because we do not
know, a priori, which of the events, Gear or AXMUL, will
occur first, and we prefer that the action be done after both
events have occurred.

Monitors are conditions that must hold over some period
of time. For example, the first monitor states that the air-
speed must always remain between the reference speed and
the maximum speed for the particular flap setting being used
at the time. The second and third monitors state that the lo-
calizer and glideslope must remain captured, and the final
monitor states that the flaps must remain in the landing con-
figuration. If any of these conditions are violated, the plan
becomes invalid and must be revised.

There are a couple things worth noting about this plan:
• Most actions are conditioned on events, rather than on

Events {

ARCHI: cross(ARCHI) ;

ZILED: cross(ZILED) ;

GIRRR: cross(GIRRR) ;

DUMBA: cross(DUMBA) ;

CEPIN: cross(CEPIN) ;

AXMUL: cross(AXMUL) ;

RW28R: cross(RW28R) ;

before![ARCHI] {CLR: start(Clearance = ILS28R.ARCHI)} ;

before![ARCHI] { F5max: start(IAS <= Vmax5)} ;

before![CEPIN] {F20max: start(IAS <= Vmax20)} ;

before![AXMUL] {F30max: start(IAS <= Vmax30)} ;

before![DUMBA] {LocCap: start(FMA-Lateral = LOC)} ;

before![AXMUL] {GSCap: start(FMA-Vertical = GS)} ;

A1500: start[Alt <= 1500AGL) ;

A1000: start[Alt <= 1000AGL) ;

... }

Actions {

between![CLR,GRRR] & between[ARCHI,ZILED] <<ArmLocalizer>> ;

between![LocCap,AXMUL] & before[CEPIN] <<ArmGlideslope>> ;

between![F20max,AXMUL] & between[CEPIN,GSCap]

<<F20: SetFlaps(20),SetMCPSpeed(Vref20)>> ;

before![A1500] & between[F20,AXMUL] <<Gear: SetGear(Down)>> ;

between![F30max,A1000] & after[Gear] & between[AXMUL,A1000]

<<SetFlaps(30), SetMCPSpeed(Vref30+5)>> ;

... }

Monitors {

throughout[CEDES, RW28R] {IAS in [Vref,Vmax]} ;

throughout[LocCap, RW28R] {FMA-Lateral = LOC} ;

throughout[GSCap, RW28R] {FMA-Vertical = GS} ;

throughout[F30, RW28R] {Flaps = 30} ;

... }

Figure 3: Fragment of a detailed CHAP-E plan for the ILS
28R approach into San Francisco

other actions. In many cases actions indirectly control
when these events will occur, but there is some uncer-
tainty, and it is the events that serve as constraints on when
to perform the actions.

• Traditionally, “flexible” plans have been used to help deal
with duration and time uncertainty. In a flexible plan, ac-
tions are partially ordered, and may be restricted to desig-
nated time windows. That is true here also, but the flex-
ibility is expressed in terms of events that will manifest
in terms of time windows. So, for example, the first ac-
tion specifies that the localizer should be armed after the
event where the clearance is obtained, and between the
events of crossing ARCHI and GIRRR. These events will
ultimately prescribe a time window for the action at exe-
cution time.

• Monitors are like overall conditions or durative goal con-
ditions. They specify conditions that must hold between
particular events. However, these monitors often span
several low level actions. As a result, they are associated
with (and come from) higher level tasks in the hierarchy.
In the example above, they are associated with the Ap-
proach task instantiated with the San Francisco ILS 28R.

• The inclusion of both hard and soft constraint windows
(discussed later) on actions is particularly important for
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Figure 4: The CHAP-E display

monitoring pilots. Sometimes actions like lowering the
landing gear could be performed much earlier, but it
would be inefficient and noisy to do so. Standard pro-
cedure is to do it just before the final approach fix. The
preferences therefore provide a more restrictive window
where the actions should be performed, and allow us to
warn the pilots when this does not happen by the end of
the preference window. This allows for reasonable alert-
ing, without becoming annoying for the pilots.

The plan fragment in Figure 3 contains approximately 1/4
of the events, actions and monitors necessary for this par-
ticular example approach. The PLEXIL executive has been
able to use the complete version of this plan to successfully
approach and land a 777 at San Francisco in simulation, as
well as to monitor pilot actions and warn when actions are
not taken within the preference windows.

CHAP-E Display
The purpose of the CHAP-E display is to provide suggested
flight procedures to a pilot for maintaining safe flight (see
Figure 4). It consists primarily of a vertical profile and way-
point display, showing the expected vertical profile of the
aircraft. Below that are the actions to be executed. Each ac-
tion has an associated time window, representing when the
pilot should perform it. The display moves horizontally as
time passes.

Vertical Profile and Waypoints The CHAP-E vertical
profile display includes waypoint information from the flight
plan to provide a reference for the pilots. The profile shows
the reference altitude of the aircraft given the current route.
The aircraft is depicted as a small triangle at the upper left of
this profile. Labels above the vertical profile show waypoint
locations that the aircraft will reach when following the cur-
rent flight plan. These provide a reference for the pilots;

the labels will match instructions for airport-specific flight
procedures, and may be referenced by air traffic control re-
quests. They also help give scale for when a pilot should
execute each action.

Actions and Time Windows Generally, a pilot should be
allowed flexibility on when to execute actions in the plan.
This means we depend on the pilots’ training and habits so
they may determine risk and action priority. To accommo-
date this aim, we display actions to the pilot in a gantt chart-
like style indicating time windows for when the pilot should
execute them. An example of an execution window is shown
in Figure 5. Each window consists of five time points: an
earliest start time (EST), preferred earliest start time (PEST),
preferred start time (PST), preferred latest start time (PLST),
and latest start time (LST). The display shows the preferred
earliest start time, preferred latest start time and latest start
time. The two end points, the earliest start time and latest
start time, represent the interval in which the action may ex-
ecute and the plan will still be valid. If executed outside of
these times, the plan will likely fail. The preferred earliest
and latest start times show when we prefer the pilot perform
the action. The preferred start time is when we would ide-
ally perform the action in a fully automated system. The
execution times are given in terms of time relative to reach-
ing waypoints during the flight plan and displayed in a gantt
chart style.

To obtain the earliest and latest start times, CHAP-E
can simulate the execution of the plan across varying start
times for each action using an advanced simulation capa-
ble of capturing the physics and expected autopilot modes
of the aircraft (see Figure 6 for a visual depiction of sim-
ulation) (Kaneshige et al. 2014). The simulation takes a
series of commands and the time at which we expect the
pilot to execute the commands, where each command cor-
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responds to a pilot action in the plan. From this, it returns
a per-second discretized profile of the state of the aircraft
over the course of the displayed period. Using operational
constraints, CHAP-E can determine whether the execution
schedule would result in a safe flight and achievement of the
goal (i.e., landing safely on a specified runway).

As indicated above, the display only shows the preferred
earliest start time, the preferred latest start time and the latest
start time. As discussed earlier, many actions, such as low-
ering the landing gear, can be performed very early without
causing a plan to become invalid. Displaying the earliest
start time may clutter the display with many long overlap-
ping action boxes. To avoid that, we instead rely on pre-
ferred start times inferred from standard operating proce-
dures, which usually suggest particular times for action ex-
ecution. We use these to infer the preferred time points, and
display the preferred earliest start time. The latest start time
is more critical, so we display it. The preferred latest start
time represents when we warn the pilot if an action has not
yet been performed. For finding the preferred time points,
we rely on domain knowledge for now, though we may ex-
plore other options to determine them automatically.

To show these time points, we use standard coloring of-
ten seen on flight displays. CHAP-E draws a green window
between the preferred earliest start time and the preferred
latest start time and an amber window between the preferred
latest start time and the latest start time. If the preferred lat-
est start time passes, a warning is spoken by CHAP-E with
the action name (e.g., “gear down”) and a status message is
displayed at the bottom of the CHAP-E display. If the lat-
est start time point passes, then a new plan will be displayed
to recover.5 When an action is executed by the pilot, it will
be removed from the display, and the displayed action time
windows below it will adjust their positions by moving up.

For the earliest and latest start times, we currently are
using hard-coded time windows, but are implementing an
initial technique for using the simulation to find them au-
tomatically. Our initial approach is a hill-climbing method,
where we will first begin with a working schedule. Then,
for each action, CHAP-E will simulate executing that ac-
tion an arbitrary ε amount later. If the simulated trajectory
continues to remain within specified operational limits and
reach the goal, then the process repeats with another ε in-
crease. Once a non-compliant simulated execution is found,
the process begins with that action again simulating execu-
tion ε sooner than the original time point, and again repeat-
ing this process until a non-compliant simulated execution is
found. The process then moves to the next action until all ac-
tions in the displayed plan can be simulated. In the case that
not all actions are known due to lack of plan expansion, we
will simulate as much into the future as possible. Note that
this process is deterministic in nature and does not take into
account potential exogenous events. It also treats the actions
as being independent for purposes of computing the earliest
and latest start times. In general this assumption is not valid.
Performing an action like lowering flaps increases drag and

5Note that at the time of this writing, we are developing the
planning mechanism for this step.

EST PEST PLST LSTPST

Displayed

Gear	  Down

Figure 5: Time windows of an example “gear down” action,
showing the earliest start time (EST), preferred earliest start

time (PEST), preferred start time (PST), preferred latest
start time (PLST), and latest start time (LST)

causes the aircraft to slow down, which may change the time
windows for subsequent actions and events triggered off of
aircraft speed. As a result, when such an action is performed,
subsequent windows may expand, shrink, or shift.

When an action is performed, CHAP-E must recognize
this and remove the action from the display. This is more
complex than it might first appear. For example, if the rec-
ommended action is to set the MCP-Speed to 163 knots,
but the crew instead sets the speed to 165 knots, CHAP-E
must determine whether this “unexpected” action still satis-
fies the necessary conditions for future actions that were to
be achieved by the “recommended” action. If so, CHAP-E
can remove the recommended action from the display. If not,
CHAP-E will leave the recommended action(s), but must
determine whether the unexpected action interferes with any
conditions that need to be preserved in order for the plan to
remain valid.

Challenges exist in continuously determining execution
windows. The state of the flight continuously changes as
the aircraft progresses. This means the time windows can
change as unpredicted adjustments or pilot action (or inac-
tion) occur. Though the simulation is relatively fast (approx-
imately 60 milliseconds for a 5 minute projection), it may
be impractical to rediscover time windows continuously.
We’re exploring several possibilities to mitigate this issue,
including using courser-grained hill-climbing until impor-
tant events occur (e.g., unexpected or missed pilot actions).

Discussion and Future Work
On commercial airliners, two pilots work in tandem during
flight. One pilot, the pilot flying (PF), performs most of the
direct piloting operations, including interacting with the air-
craft controls. The other pilot, the pilot monitoring (PM),
handles communication, runs checklists, and monitors the
aircraft state, occasionally taking requests from the PF to
perform certain actions on the aircraft. When the PF misses
performing an action or fails to notice a significant change
to the aircraft state, the PM notifies the PF.

Though CHAP-E initially has focused on assisting hu-
man pilots with plan execution via a display, we also have
been exploring adding stronger automation characteristics to
the system so it can handle both PF and PM tasks given a
current plan. We plan to explore methods for the system to
switch between PM and PF tasks. Currently, we can auto-
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Figure 6: Visual depiction of plan execution simulation

mate flight completely by using the preferred start time as
the time to execute actions. However, we require a mecha-
nism for transferring flight control to CHAP-E for particu-
lar actions. This may happen automatically (for example, if
the pilots appear to have missed performing a critical action)
or upon request (for example, if the pilots become occupied
and wish CHAP-E to perform specific actions). Our goal
is to make the process intuitive to a pilot. We have begun
considering using a touch-screen interface on CHAP-E to
tap on actions that the pilots hope CHAP-E will perform, as
well as methods of automatically determining safety-critical
actions that may require CHAP-E’s intervention when a pi-
lot fails to perform them.
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Abstract 
Procedures are a mechanism by which NASA crewmembers 
execute plans. Alternate reality systems can help replace 
some of the guidance that ground controllers offer to crew-
members during procedure execution. As space exploration 
missions take crews further away from Earth, new forms of 
procedure assistance will be necessary. This paper describes 
an early development of an alternate reality (AR) system 
called PRIDE-AVR. PRIDE-AVR is an integration of the 
PRIDE electronic procedure development and execution 
system with augmented, virtual and hybrid reality technolo-
gies. We describe the system architecture and three proofs 
of concept demonstrations that use these AR technologies. 

 Motivation 
Standard operating procedures are the mechanism by 
which plans are executed during typical spacecraft opera-
tions. Execution of procedures on the International Space 
Station (ISS) is currently heavily dependent upon ground 
controllers assisting crewmembers in performing planned 
operations and maintenance as well as with responses to 
off-nominal situations. This close collaboration becomes 
more difficult in exploration missions that take human 
crews beyond the easy reach of Mission Control, so crew-
members will need to have more autonomy from ground 
controllers. Alternate realities – augmented, virtual or hy-
brid – can help replace some of the guidance that ground 
controllers offer to crewmembers during procedure execu-
tion (Tang et al., 2003).  
 The context of the current work is authoring and execut-
ing NASA procedures that are then used for plan execu-
tion. The on-board short-term plans (OSTPs) for the Inter-
national Space Station (ISS) are carried out by executing 
pre-written procedures. We have developed a procedure 
authoring and executing system called PRIDE (Izygon et 
al., 2008) that is currently used by NASA to produce ma-
chine-readable procedures.  
 In support of NASA, TRACLabs and Georgia Tech’s 
Augmented Environmental Lab are working to integrate 
our PRIDE procedure development system (Izygon et al., 
2008) with augmented, virtual and hybrid reality technolo-

gies in a system called PRIDE Augmented and Virtual 
Reality (PRIDE-AVR). 

 PRIDE-AVR 
Augmented reality is a live direct or indirect view of a 
physical, real-world environment whose elements are sup-
plemented by computer-generated sensory input such as 
sound, video, graphics or geospatial data. Virtual Reality is 
a realistic and immersive simulation of a three-dimensional 
environment, created using interactive software and hard-
ware, and experienced or controlled by movement of the 
body1. Hybrid reality, sometimes known as mixed reality 
(de Souza e Silva, 2009), is the merging of real and virtual 

worlds to produce new environments and visualizations 
where physical and digital objects co-exist and interact in 
real time. With PRIDE-AVR we are investigating all three 
alternate realities in support of NASA procedure execution. 

                                                
1 http://www.dictionary.com/browse/virtual--reality 

 
Figure 1 The architecture of the PRIDE-AVR system.  
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 Our PRIDE-AVR design is shown in Figure 1. It builds 
on several existing components, including the PRIDE elec-
tronic procedure platform and a system ontology.  The 
former includes a procedure authoring tool (PRIDE Au-
thor) and a server (PRIDE View Server) that shows proce-
dures as web pages and supports crew member execution 
of procedures. The latter includes an ontology editor called 
PRONTOE (Bell et al., 2013) and an ontology server. Re-
cently developed components are an alternate reality (AR) 

Server and new PRIDE View clients for the different alter-
nate reality systems shown on the right of the figure.   
 The PRIDE viewer maintains the state of the executing 
procedure, that is, the current instruction and the success or 
failure of an instruction and/or of the procedure as a whole.  
As the user executes a procedure, the AR server accesses 
that information, tracks the progress and looks in the cur-
rent instruction’s PRL for references to objects in the do-
main ontology. The AR server queries the ontology server 
for any alternate reality attributes of those objects then 
sends the information to the AR system involved in the 
procedure execution. 

 NASA procedures can have conditional branching, in-
structions that are coordinated across multiple procedures, 
and instructions that invoke other procedures. For this pre-
liminary work, we have used only linear procedures.  
 This paper describes the development of three proof-of-
concept demonstrations using PRIDE-AVR in support of 
NASA missions. 

Preparing the Procedures for AR Support 
      Figure 2 shows the PRIDE Author interface.  Users drag 
instruction types from the palette and drops them onto the 
center canvas, where they can edit the details. Users can 
also drag and drop entities from a domain ontology 
(Bonasso et al., 2013)(the System Representation pane in 
the figure) into an instruction where their URIs are embed-
ded in the resulting Procedure Representation Language 
(PRL) XML file (Kortenkamp et al., 2008). Any of these 

 
      Figure 2 A screenshot of an EVA procedure being developed in the PRIDE Author application.  
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entities can be AR objects, that is, they have properties 
germane to viewing in an AR system (e.g., see Figure 3). 
   

Integrating Procedure Execution with Alter-
nate Realities 

As a procedure is executed, the AR server monitors its 
progress via a REpresentational State Transform (REST) 
interface (Fielding, 2000) to the PRIDE View server. If it 
detects the URI of any entity in the ontology, it queries 
the ontology server for that entity’s properties, and if 
there are AR properties, it communicates them along with 
the instruction text to the AR system being used. For ex-
ample, Figure 3 shows coordinate offsets for a valve 
switch on a control panel. Figure 4 shows that offset being 
used to draw a rectangle around the appropriate switch on 
the control panel. 

Three Demonstrations2 
The critical function of the AR server is to decide on an 
appropriate AR cue to send to the AR viewers. We devel-

                                                
2 Go to https://traclabs.com/projects/alternate-realities/ to see videos of 
these demonstrations. 

oped three demonstrations that make use of the following 
AR cues: 

 
Figure 3 A screenshot of PRONTOE showing a valve with its AR display offsets.  

 
Figure 4 An iPad view of a control panel with the oxygen valve 
connected to EMU (spacesuit) 1.  
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• Show: highlight an object (outline, glow, flash, etc.), or 
provide additional details (e.g., wiring diagrams) as insets 
or overlays 
• Instruct: Place a text instruction in a specific place in the 
field of view or when the user looks at a specific location 
• Locate/Find: Show an object’s location, for example, by 
displaying an arrow pointing to the object if it is in the 
field of view or pointing in the object’s direction if it is not 
• Data: show (live) data related to an object near that object 
or near an instruction referencing that object, for example, 
when a piece of telemetry needs to be verified in a proce-
dure. 
 Each of these demonstrations uses the same PRIDE-
AVR architecture as shown in Figure 1. The only changes 
are to the individual procedures, the ontology, and the 
hardware output device. It is important to remember that 
the procedure author does not need to do anything special 
to create augmented and virtual reality procedures. They 
simply drag objects from the ontology into the procedure 
and the AR server automatically turns them into AR cues. 
Moreover, PRONTOE ensures that the ontology can also 
be maintained by subject matter experts who need no pro-
gramming experience. Thus, PRIDE-AVR allows flight 
controllers and other experts to create and change alternate 
reality systems with no coding or knowledge of those sys-
tems. 

Augmented Reality Browser 
We used PRIDE Author to create a portion of the Extrave-
hicular Mobility Unit (EMU), or spacesuit, checkout pro-
cedure. This procedure has a significant number of instruc-
tions that refer to different components of the EMU and of 

the Umbilical Interface Assembly (UIA) to which it is 
connected. These components were modeled in the ontolo-
gy (Figure 3). We printed a 2x3 foot image of the UIA and 
used it to create a Vuforia1 Image Target3. We then used 
the Argon browser (MacIntyre et al., 2011) and JavaScript 
framework developed at Georgia Tech’s Augmented Envi-
ronments Lab to create a web server that combined the 

Vuforia image tracking technology with the data coming 
from the AR server to provide an augmented reality view 
of the EMU checkout procedure in a browser running on 
an iPad (Figure 4). 

                                                
3 www.vuforia.com 

 
Figure 5 View from HTC Vive headset alongside an external view of the executing procedure.  

 
Figure 6 View of the Real-world Fluid Transfer System (FTS) 
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 PTC's Vuforia image tracking software 
(http://www.ptc.com/en/about/history/vuforia), embedded 
in the Argon4 browser, has a 2D coordinate system for the 
photograph.  The position and size of the instruments on 
the panel, in the coordinate system of the image used for 

tracking, were stored in our ontology and passed by the AR 
server to the Argon4 web application as parameters to the 
augmentation http command. These values are entirely 
dependent on the system used for tracking the position and 
orientation of the display device relative to the control 
panel.  The next version of our implementation will be to 
express these locations relative to the parent component 
(e.g., Umbilical Interface Assembly (UIA)), so that when 
we are tracking the location of the component relative to 
the display, we can render the augmentations appropriately 
in 3D, just as we are doing in the VR system. 
 If the UIA (or a portion of it) is in the camera field of 
view as reported by Vuforia, then the current procedure 
instruction is displayed at the bottom of the live camera 
image and any UIA component that is referenced in that 
instruction is outlined. A Done button is also displayed. 
When the Done button is displayed and clicked on by the 
user, a step-completed message is passed to the AR server, 
which instructs the PRIDE View server to automatically 
advance to the next instruction and the process repeats. 
 
 

Virtual/Hybrid Reality Demonstration 
Our VR demo test bed consists of an HTC Vive connected 
to a computer in an open area of our facility. The Vive is a 
stereoscopic immersion platform that provides both visual 
and auditory information to the user, with hand controllers 

for interacting with the virtual environment. Multiple illu-
minators positioned around the open area paint patterned 
light on the user’s headset and hand controllers, which then 
interpret those light patterns to extract location and orienta-
tion. That information updates the virtual environment, 
allowing free exploration of the virtual world within the 
confines of the Vive system’s real-world arena. 
 Our VR proof of concept demonstration illustrates many 
of the concepts necessary to integrate electronic procedures 
into a VR display system. As before, the AR server tracks 
the executing procedure and queries the ontology server for 
AR properties of objects contained in the instruction. This 
information is presented to the VR system through a JSON 
RESTful interface, supplying current instruction infor-
mation and accepting “instruction complete” commands 
for advancing to the next instruction. The VR rendering 
system parses current instruction information and renders 
guidance cues to the user in the form of textual instruc-
tions, visual guidance indicators, and spatial audio cues as 
directed by the AR server. 
 We implemented a procedure that walks the user 
through a set of manual tasks such as approaching and 

 
Figure 7 View of the Virtual World Fluid Transfer System and the attendant procedure. 
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touching various 3D virtual objects in the virtual environ-
ment (see Figure 5). 
 The TRACLabs Vive test bed also includes real-world 
devices with which the user can interact, thus implement-
ing a form of hybrid reality. The second half of the demo 
has the user interacting with a real-world fluid transfer 
system (FTS) consisting of two cylindrical glass tanks with 
fluid level sensors, two fluid pumps, and a controller (see 
Figure 6). The FTS monitors fluid levels and accepts com-
mands to move water from one tank to the other. The FTS 
provides a JSON RESTful interface for querying and 
commanding tank levels for both tanks. In the virtual envi-

ronment, the tanks are modeled to mimic their physical 
characteristics in both appearance and location (see Figure 
7). Fluid levels are reproduced in the virtual environment 
and the user can command new fluid levels by interacting 
with the virtual model. 

AR-DOUG 
In the third demonstration, the PRIDE-AVR system was 
used to drive NASA’s Dynamic On-board Ubiquitous 
Graphics (DOUG) system4, which is used to train astro-
nauts for Extravehicular Activities (EVAs). Again, the AR 
server monitors a procedure executing in PRIDE View and 
parses the current instruction for references to objects in 

                                                
4 https://vrlab.jsc.nasa.gov/ 

the ontology. For any references found, it queries the on-
tology to obtain DOUG info, such as the ISS location and 
the DOUG name. If it finds such information it commands 
DOUG to “fly to” the referenced object, and flashes the 
object (see Figure 8). We also added crew translation paths 
to the ontology, so, if the instruction being executed de-
scribes a translation action and references a translation 
path, the AR server will instruct DOUG to highlight the 
handrails and other hand holds as DOUG flies the view 
camera along the path. 

Next Steps 
Our work thus far shows that our PRIDE_AVR system 
architecture is feasible enough to support all three kinds of 
alternate reality viewers.  Our next steps are to extend and 
enhance various components of the system to be able to 
address a larger set of requirements. For example, we will 
extend the AR server to reason over additional cues, such 
as audio cues, the use of countdown timers, and using addi-
tional media such as short movies or animations.  
 Our current system had a viewer plug-in for the HTC 
Vive using the Unreal engine and development environ-
ment. We will continue to expand that viewer plug-in with 
a goal of deploying it in the NASA Hybrid Reality Labora-

 
Figure 8 View of an executing EVA procedure and the resulting DOUG display with the referenced ISS object 
highlighted in blue. 
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tory (HRL) HTC Vive environment. Used for inexpensive 
training of astronauts, the HRL has 3D models of the ISS 
(both interior and exterior) and allows users to move 
through the ISS and interact with objects in it.  We are de-
veloping a tutorial procedure that guides the user through 
the various types of interactions in the HRL. 
 We will also extend our plug-in suite to include the Mi-
crosoft HoloLens augmented reality system. 
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Abstract

Engineering plans and the domain models that underly
them is a significant challenge. Research on knowledge
engineering for planning has developed many ways to
produce both plans and domain models, but most work
treats these as separate tasks. We propose that it is
more natural to combine plan synthesis with domain
modeling. We describe a new planning and modeling
tool, called Conductor, that is based upon represent-
ing plan steps and fact routes. Conductor uses a vi-
sualization metaphor derived from metro maps to dis-
play facts as transit routes and step preconditions as
stations. The visualization helps quickly convey how
a plan modifies the state and appeals to the metro
metaphor to support user engagement in modeling.

Introduction
Developing plan authoring tools is a challenge. Provid-
ing support beyond the level of a text-editor requires
some form of domain model that describes the seman-
tics of steps. However, acquiring and maintaining the
domain model often requires an expert. Users may
not have access to such modeling experts, but typically
have a suitable understanding of the task, the steps to
achieve it, and the relevant state variables. Users need
tools that can easily accept their knowledge and provide
planning support based upon that knowledge.

We present Conductor, a visual planning tool that
enables users to add, remove, and rearrange steps, as
well as annotate the plan with their knowledge about
the state of the world. We propose a new form of do-
main model knowledge called a fact route that specifies
a fact’s life cycle. Conductor uses the visual metaphor
of a metro map (Figure 1) to treat state facts as tran-
sit routes, and how facts interact with steps as sta-
tions. Fact routes are conceptually simple and they
provide useful, but incomplete, information about the
domain model. For example, a fact route of the form

ai
p:(ak,...,al)−−−−−−−→ aj states that the fact p is true between

steps ai and aj , and is used by ak, . . . , al as a precon-
dition. The fact route reveals that ai adds p, aj deletes

∗This work was conducted under NASA contract
NNX15CA19c.

p, no step between ai and aj deletes p, and that p is a
precondition of ak, . . . , al. The fact route fails to state
whether any other step between ai and aj also adds p.
It also allows the user to omit steps that use p as a pre-
condition. In this way, a fact route is a bundle of causal
links (but it is not clear which causal links). Explicitly
stating the causal links or the precondition, adds, and
deletes would be more informative, but at the cost of
usability and the peril of user error.

Conductor uses the Marshal model maintenance sys-
tem (Bryce, Benton, and Boldt 2016) to reason about
the incompletely specified domain model. Marshal
treats the fact routes as observations of the incom-
plete model, and develops possible interpretations of
the model that are consistent with them. Conductor
presents Marshal’s interpretations so that the user can
optionally dispel incompleteness and correct errors.

Modeling fact routes appeals to a user’s intuition
about how facts persist over time without necessarily
requiring that they encode how the fact is related to
each step. Presenting only the impactful model omis-
sions and errors helps keep the user on task without re-
quiring a complete and correct model. Conductor and
Marshal help ensure that the plan is internally consis-
tent given the information provided by the user.

Conductor is different than contemporary planning
tools because it focusses on acquiring the aspects of
the domain model that are most natural for users to
express. Conductor does not require a complete and
correct domain model, but is able to structure interac-
tions with a user so that it can acquire one. In contrast
with prior works that treat modeling and planning as
distinct activities, Conductor takes a least-commitment
approach to modeling that is more accessible to non-
experts.

In the following, we discuss background on incom-
plete models, describe fact routes and how they inform
the planning model, and present Conductor’s interface
and interaction modalities. We then explain how Mar-
shal provides Conductor the interpretations of an in-
complete model and how Conductor elicits model re-
finements. We end with a discussion of related work
and a conclusion.
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Figure 1: Manhattan Metro Map

Figure 2: Conductor Fact Routes

Example Plan

We illustrate Conductor with an example plan to brew
a cup of coffee using the AeropressTMbrewer (Figure 3).
Figure 2 illustrates the plan in Conductor, where each
step aside from the “Initial State” and “Goal” steps
are provided with the instructions for the brewer. The
figure also illustrates the fact routes added by a Con-
ductor user. The plan involves placing the brewer on a
cup, adding coffee and water, waiting for the coffee to
brew, stirring the coffee, and then plunging to extract
the coffee (as shown in Figure 3).

Figure 3: Aeropress Coffee Brewer

Background

As a user creates a plan and annotates it with fact
routes in Conductor, Marshal is able to develop inter-
pretations of the domain model and critiques of the
plan. In the following, we define plans, domain models,
fact routes, and open conditions.

Plans: A plan π is a sequence of actions (a1, . . . , an).
For convenience, we assume that the initial state and
goal are represented by actions a0 and an+1.

Domain Model: We represent the domain model with
a grounded (propositional) STRIPS model M . The
grounded STRIPS planning model M defines the tuple
(P,A), where P is a set of state propositions (facts), and
A is a set of actions. Each action a ∈ A defines the tuple
(pre(a), add(a), del(a)), where each element of the tuple
is a subset of P . Marshal (and Conductor, by proxy)
may never fully represent the domain model. Marshal
maintains knowledge about the model, and each inter-
pretation of this knowledge corresponds to a different
model M .

Fact Route: A fact route ai
p:(ak,...,al)−−−−−−−→ aj , corre-

sponds to the case where p originates in ai, terminates
in aj , and visits steps ak, . . . , al (also called stations).
Originating in a step corresponds to the step adding
the fact. Terminating in a step either corresponds to
the step deleting the fact, or that the step is the goal
step. Visiting a step corresponds to the step requiring
the fact as a precondition. A fact route is legal for a
plan π if in the plan: ai precedes aj , and each ak, . . . , al
succeeds ai and either precedes aj or is aj . Conductor
enforces that the user creates only legal fact routes.

Open Condition: An open condition (ai, p) denotes
that p is a precondition of a, p ∈ pre(a), and p is not
true prior to executing ai. An open condition occurs
if no prior action adds p, or some action at before ai
deletes p and no third action between at and ai adds p.
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Figure 4: Conductor displays how each fact originates,
is used as a precondition, and terminates.

Conductor
Conductor allows the user to perform several modifica-
tions to a plan, including adding and removing steps or
fact routes. These modifications inform Marshal about
the domain model and help it develop its interpreta-
tions. Marshal then develops a set of open conditions
affecting the plan and notifies the user via Conductor.
In this section, we describe how a user can interact with
Conductor.
Overview: Conductor displays a plan as a sequence of
steps (white boxes) that start at the top and proceed to
the bottom. Figure 4 illustrates an optional view that
provides the details of each fact route. For example, it
illustrates the following fact routes (among others):

Add Coffee
Grounds in Place:(Wait)−−−−−−−−−−−−−−−→Wait

Add Water
Water in Place:(Wait)−−−−−−−−−−−−−−→Wait

Wait
Brewed:(Plunge)−−−−−−−−−−→ Plunge

The plan view on the left of the figure illustrates the
fact routes by the vertical colored lines. Each fact route
flows from the bottom of the originating step to the top
of the destination step. Each step visited by the fact
route includes a blue semi-circle station on the top of
the step that is overlaid on the route. For example, the
“Grounds in Place” fact route is shown as the second
fact route from the left in orange-red.

Figure 5: Users add steps to Conductor and can edit
their details. The details panel allows users to change
the step name, and the fact routes impacting or im-
pacted by the step.

The side panel also shows a list of fact routes for
facts, including the step where they originate (dot with
line at bottom), visit a station (blue text), do not visit
a station (grey text), and where they terminate (dot
with line at top). We use the terminology “terminate”
to capture both the case where a fact becomes false (is
deleted) or reaches the goal.

Adding and Editing a Step: Figure 5 illustrates
a procedure after the user has elected to add a step,
initially titled “New Step”, between “Add Coffee” and
“Add Water”. The edit step panel to the right allows
the user to modify the details of the step, such as the
step name, and facts relevant to it. Because the facts
“Brewer in Place” and “Grounds in Place” correspond
to fact routes crossing the new step, they are listed as
relevant facts. We discuss modifying the fact routes
below. When the user adds a step to a plan π (trans-
forming it to π′, Conductor generates an observation
(π, π′) for Marshal.

Removing a Step: Figure 6 illustrates a plan before
and after removing the “Place Brewer on Cup” step.
There was previously a fact route from this step to the
Goal, that visited several intermediate steps. When
the user removes a step in plan π (transforming it to
π′, Conductor generates an observation (π, π′) for Mar-
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Figure 6: Users can remove steps in Conductor, which can disrupt the fact routes. The left illustrates the procedure
before removing the “Place Brewer on Cup” step and the right illustrates after. Marshal computes the impact on
the fact routes and marks any open conditions in red.

shal. In response, Marshal recomputes the fact routes
and open conditions. Each of the steps with a red sta-
tion denoting that it requires the fact as a precondition,
now has an open condition. The image on the right il-
lustrates each open condition as a red semi-circle on the
corresponding step.
Adding, Editing, and Removing an Fact Route:
Figure 7 illustrates adding a fact route to a procedure.
For example, the user adds the fact route:

Add Water
Water in Place:(Wait)−−−−−−−−−−−−−−→Wait

The left-most image illustrates the plan prior to adding
the fact route, and after the user clicks the edit (pencil
icon) on the “Add Water” step and adding a new fact
(clicking the blue “+” icon, and entering the name of
the fact). By default, facts added to a step in this
fashion originate in the step (as denoted by the circle
with a line at the bottom next to the “Water in Place”
fact) and terminate at the specified endpoint. Next, the
user must edit the “Wait” step (right-side of the figure),
where the “Water in Place” fact has been automatically
populated in the fact list as an end point (denoted by
the circle with a line at the top). The user clicks the
precondition checkbox to state that its a precondition
of the step. The user can optionally remove a fact route
as well by clicking the trash can in the fact view. When

the user adds a fact route of the form ai
p:(ak,...,al)−−−−−−−→

aj , Conductor generates an observation (ai
p:(ak,...,al)−−−−−−−→

aj , true) for Marshal. Similarly, removing a fact route

results in an observation (ai
p:(ak,...,al)−−−−−−−→ aj , false) for

Marshal. Fact route edits are described by a pair of
observations that correspond to removing the prior fact
route and adding the new fact route.

Labeling an Open Condition: Figure 8 illustrates a
case where a user addresses open conditions. The user
may either dismiss the open condition (clicking the red
“?” button and selecting ignore), meaning that it is not
a precondition of the step, or establish a fact route that
satisfies the open condition. When user dismisses the
open condition it results in an observation to Marshal
of the form ((ai, p), false). Otherwise, modifying a fact
route results in the fact route observations described
above.

Possible Model Features: Figure 9 illustrates pos-
sible modifications to the domain model identified by
Marshal. The left-most image illustrates a case where
Marshal has identified several possible open conditions,
denoted by the blue striped pattern over the possible
stations and the blue “?” in the step details panel.
Clicking the “?” will allow the user to confirm or deny
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Figure 7: Users can add fact routes of the form ai
p:(ak,...,al)−−−−−−−→ aj in Conductor by adding a fact to a step (left, before,

and center, after), and then terminating the route and adding stations (right).

the existence of the stations and it will result in ei-
ther an open condition (red station) or removal of the
station. The center image illustrates that Marshal has
identified a possible add effect for the initial state step,
along with the stations (as before). The possible add ef-
fect means that there is a possible fact route originating
in the initial state, and the striped fill on the route high-
lights that it is hypothesized by Marshal. The right-
most image illustrates how Conductor communicates
that Marshal hypothesizes that “Add Coffee” deletes
(is the terminus) of the “Brewer In Place” fact route
originating at the initial state. The fact route is first
solid and then has a striped fill to indicate that it may
continue or not, depending on the hypothesized delete
effect.

Marshal
Marshal observes modifications to the plan and fact
routes, updates its interpretations of the domain model,
and then notifies Conductor of any new fact routes and
plan flaws. The observations are as follows:

• (π, π′): a plan π and its modification π′.

• (ai
p:(ak,...,al)−−−−−−−→ aj , `): a fact route with truth label

` ∈ {true, false}.
• ((ai, p), `): an open condition for fact p at action ai

with truth label `.

Marshal processes these observations to update its in-
terpretations of the domain model. For each plan mod-
ification (π, π′), where π′ adds an action to, or removes
an action from π, Marshal develops explanations of the
change. For example, adding an action ai to π can be
explained by ai adding a fact p, which is an open con-
dition in the plan. This translates into modifying the
model interpretations to capture that ai adds p.

Similarly, observing a fact route (ai
p:(ak,...,al)−−−−−−−→

aj , true) will cause Marshal to explain the fact route
and modify its interpretations of the model. One pos-
sible explanation is that action ai adds fact p, actions
ak, . . . , al use p as a precondition, and action aj deletes
p.

Observing a label for an open condition is handled
in a similar fashion. Explanations for open conditions
relate to how the condition is established or is not a
precondition.

After updating its interpretations, Marshal notifies
Conductor of fact routes, open conditions, and threats
that it identifies given its knowledge of the domain
model. With respect to a plan π and its knowledge
about the domain model, Marshal provides the follow-
ing forms of feedback to Conductor:

• ai
p:(ak,...,al)−−−−−−−→ aj a fact route exists for fact p from

action ai to aj .

• (ai, p) an open condition exists for fact p at action
ai.

Marshal generates this feedback by simulating execu-
tion of the plan under its domain model interpretations.
From each possible execution, Marshal estimates the
probability and entropy of each fact route, open condi-
tion, and threat. Marshal applies a user defined mini-
mum threshold to determine which it reports. Marshal
reports those exceeding the threshold for probability as
“known” and those for entropy as “possible”. Conduc-
tor displays both forms of knowledge, as described in
the previous section.

EVA 22 Scenario
We also developed a procedure in Conductor for an
NASA Extravehicular Activity (EVA) procedure. The
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Figure 8: Users can address open conditions identified
by Marshal in two ways. The user either establishes the
conditions by adding fact routes, or clicks the red “!”
button next to the fact to acknowledge or dismiss the
open condition.

procedure, called EVA 22, involves two astronaut roles
EV1 and EV2, and we illustrate a portion of the pro-
cedure for EV1 in Conductor. Figure 10 illustrates a
portion of the procedure in PRIDE View with fully de-
tailed instructions for each step. Figure 11 illustrates
the annotated steps for EV1 in Conductor. The figure
shows the first and last halves of the procedure side-by-
side. There are a number of fact routes in the proce-
dure. For example, the fact routes in Table 1 appear in
Figure 11.

The procedure involves replacing a failed space to
ground transmitter/receiver controller (SGTRC). The
fact spare-SGTRC-installed-at-worksite is true between
steps SGTRC R&R / MISSE 8 Retrieval and Cleanup,
and is required as a precondition of the Goal step (i.e.,
it is a goal of the procedure). The fact ev1-has-PGT is
true throughout the whole procedure, and is a precon-
dition of the Setup and SGTRC R&R / MISSE 8 Re-
trieval steps. Noting such invariants is useful in devel-
oping libraries of procedures because the requirements
that must be satisfied to run the procedure are explicit.

The preliminary user feedback we received from
NASA EVA procedure authors was that Conductor and
the concept of a fact route are intuitive. They believed

that Conductor would be useful for developing libraries
of annotated procedure elements that can later be inte-
grated semi-automatically into a larger procedure. At
their suggestion, we are investigating enhancements to
accelerate procedure annotation by using existing do-
main ontologies for facts and steps.

Related Work

itSimple (Vaquero et al. 2013) is a knowledge engineer-
ing tool for planning that allows both domain model
creation and plan authoring. itSimple focusses primar-
ily on complete and correct domain modeling so that it
can then task an automated planner to generate a plan.
Conductor and Marshal focus more on semi-automated
plan authoring with semi-automated domain author-
ing. Conductor aims at a more novice user audience,
whereas itSimple at improving the productivity of ex-
perts.

NASA has a long history of developing plan author-
ing tools, which includes tools such as Mapgen (Ai-
Chang et al. 2004) and, more recently, OpenSPIFe
(Aghevli, Bencomo, and McCurdy ). Both Mapgen and
OpenSPIFe support automated planning and constraint
checking, but require a complete domain model. They
allow a restricted form of integrated authoring and do-
main modeling wherein users may relax constraints.
Conductor also allows users to relax the domain model
(e.g., remove open conditions), but goes further by help-
ing them add to the model. While Conductor deals with
a much simpler class of domain models, it can, in prin-
ciple, support richer domain models (e.g., temporal and
resource constraints).

ReACT! (Dogmus, Erdem, and Patoglu 2015) is sim-
ilar to Conductor, in that it helps users encode the
semantics of operators. It differs in that it focusses
on complete specification of preconditions and effects,
where Conductor allows some ambiguity in favor of
simplicity. ReACT! also handles more expressive hy-
brid models, where Conductor and Marshal focus upon
STRIPS.

Conductor and Marshal address a problem similar to
that of KEWI (Wickler, Chrpa, and McCluskey 2014).
User-friendly environments for encoding model knowl-
edge by domain experts can help make planning acces-
sible. KEWI differs from our work in that it requires
users to be more formal in the knowledge that they en-
code, structuring it around an ontology. We see this as
a trade-off in user skill and knowledge engineering tool
support. Conductor and Marshal require comparatively
little structure.

The Procedure Integrated Development Environment
(PRIDE) (Kortenkamp et al. 2008) permits users to
develop procedures in a palette-based drag-and-drop
interface. While PRIDE allows much more detailed
procedures than the types of plans developed in Con-
ductor, it does not provide the same type of user sup-
port. PRIDE automates aspects of the procedure de-
velopment by using PDDL models (Bonasso and Boddy
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Figure 9: Users can address possible domain model features identified by Marshal similar to addressing open condi-
tions. Users can modify fact routes to match Marshal’s suggested updates, or dismiss them.

Initial State
failed-SGTRC-installed-at-worksite:(SGTRC R&R / MISSE 8 Retrieval,Remove failed SGTRC)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Remove failed

SGTRC
SGTRC R&R /
MISSE 8 Retrieval

spare-SGTRC-installed-at-worksite:( Goal)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Goal

Initial State
ev1-has-PGT:( Setup,SGTRC R&R / MISSE 8 Retrieval)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Goal

Table 1: Fact routes for EV1 procedure in Figure 11.

2010), but like many of the aforementioned tools it sep-
arates domain modeling and procedure authoring. We
are developing Conductor as tool within the PRIDE
suite that can help users design consistent procedures
at a high-level, and then use PRIDE to fill in the details
necessary for execution.

Conclusion & Future Work

We present a new plan authoring tool called Conductor.
Conductor enables novice users to author plans and an-
notate them with a new form of knowledge called a fact
route. Fact routes are easy to specify and are very infor-
mative, yet incomplete. Conductor helps overcome the
incompleteness by interacting with the Marshal model
maintenance system to develop possible interpretations
of the model. Using these interpretations, Conductor is
able to elicit refinements to the model that could impact
the plan. By seamlessly integrating plan authoring and
domain modeling, Conductor and Marshal allow novice
users to quickly begin authoring plans without a steep
learning curve.

While it is possible to extend Marshal to more expres-
sive planning formalisms, such as temporal or hybrid
planning, it is not immediately obvious how to extend
Conductor. The metro map metaphor should accomo-
date temporal actions, and will more closely resemble a
Gantt chart. Fact routes may extend to hybrid models

if they are reinterpreted as resource envelopes, but we
may lose some of the clarity inherent to boolean vari-
ables.
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Abstract

Ambiguity and noise in natural language instructions create a
significant barrier towards adopting autonomous systems into
safety critical workflows involving humans and machines. In
this paper, we build on recent advances in electrophysiologi-
cal monitoring methods and augmented reality technologies,
to develop alternative modes of communication between hu-
mans and robots involved in large-scale proximal collabo-
rative tasks. We will first introduce augmented reality tech-
niques for projecting a robot’s intentions to its human team-
mate, who can interact with these cues to engage in real-time
collaborative plan execution with the robot. We will then look
at how electroencephalographic (EEG) feedback can be used
to monitor human response to both discrete events, as well as
longer term affective states while execution of a plan. These
signals can be used by a learning agent, a.k.a an affective
robot, to modify its policy. We will present an end-to-end sys-
tem capable of demonstrating these modalities of interaction.
We hope that the proposed system will inspire research in
augmenting human-robot interactions with alternative forms
of communications in the interests of safety, productivity, and
fluency of teaming, particularly in engineered settings such as
the factory floor or the assembly line in the manufacturing in-
dustry where use of such wearables can be enforced.

Introduction
Effective planning for human robot teams not only involve
the capacity to be “human-aware” during the plan generation
process, but also require the ability to interact with the hu-
man during the plan execution phase, as well as collect data
during it so as to inform the decision making process, either
immediately or over time, of a learning agent. Prior work has
underlined this need (Karpas et al. 2015) as well as explored
ways to exchange (Tellex et al. 2014) information in natu-
ral language during interaction with the human in the loop.
However, the state of the art in natural language consider-
ably limits the scope of such interactions, especially where
precise instructions are required. Moreover, prior work in
learning appropriate models for human awareness largely
rely on labeling phases (Zhang et al. 2017) that are quite
unrealistic for large scale data collection. In this paper, we

∗The work is part of Project Cloudy with a Chance of Synergy,
from team ÆRobotics which appeared in the US Finals of the Mi-
crosoft Imagine Cup 2017. http://www.ae-robots.com/

Figure 1: Alternative forms of communication to combat
impedance mismatch in human robot interactions in settings
where wearables can be integrated for closed loop feedback
from EEG signals and augmented reality.

will show how natural language and labeling techniques can
be replaced, especially in settings such as the manufacturing
industry, with the help of wearable technologies (such as the
HoloLens and the Emotiv Epoc+ EEG headset) for effective
interaction during human-in-the-loop operation of robots.

Indeed, the last decade has seen a massive increase in
robots deployed on the factory floor (Robotenomics 2017).
This has led to fears of massive loss of jobs for humans in
the manufacturing industry, as well concerns of safety for
the jobs that do remain. The latter is not an emerging con-
cern, though. Automation of the manufacturing industry has
gone hand in hand with incidents of misaligned intentions
between the robots and their humans co-workers, leading to
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at least four instances of fatality (Weiss 2015). This dates
back to as early as 1979 when a robot arm crushed a worker
to death while gathering supplies in the Michigan Ford Mo-
tor Factory, to as recent as 2015 in a very similar and much
publicized accident in the Volkswagen factory in Baunatal,
Germany. With 1.3 million new robots predicted to enter the
workspace by next year (PRNewswire 2016), such concerns
are only expected to escalate.

A closer look at the dynamics of employment in the man-
ufacturing industry also reveals that the introduction of au-
tomation has in fact increased productivity (Muro and An-
des 2015) as well as, surprisingly, contributed to a steady
increase in the number of jobs for human workers (Look
2016) in Germany (which so far dominates in terms of de-
ployed robots in the industry). We posit then either a semi-
autonomous workspace in future with increased hazards due
to misaligned interests of robots in the shared environment,
or a future where the interests of the human workers will be
compromised in favor of automation. In light of this, it is es-
sential that the next-generation factory floor is able to cope
with the needs of these new technologies.

At the core of this problem is the impedance mismatch
between humans and robots in how they represent and com-
municate information, as illustrated in Figure 1. Despite
the progress made in natural language processing, natural
language understanding is still a largely unsolved problem,
and as such robots find it difficult to (1) express their own
goals and intentions effectively; as well as (2) understand
human expressions and emotions. Thus there exists a signifi-
cant communication barrier to be overcome from either side,
and robots are essentially still “autistic” (Kaminka 2013) in
many aspects. While this may not always be a serious con-
cern for deploying completely autonomous agents in iso-
lated environments such as for space or underwater explo-
ration, the priorities change considerably when humans and
robots are involved in collaborative tasks, especially for con-
cerns of safety, if not to just improve the effectiveness of
collaboration. This is emphasized in the Roadmap for U.S.
Robotics (Christensen et al. 2009) which outlines that “hu-
mans must be able to read and recognize robot activities in
order to interpret the robot’s understanding”. Recent work
has focused on generation of legible motion plans (Dragan
et al. 2015) and explicable task plans (Zhang et al. 2017),
and verbalization of intentions in natural language (Tellex et
al. 2014; Perera et al. 2016).

The Manufacturing Environment Our primary focus
here is on structured settings like the manufacturing environ-
ment where wearables can be a viable solution for improv-
ing the workspace. Indeed, a reboot of the safety helmet and
goggles as illustrated in Figure 1 only requires retro-fitting
existing wearables with sensors that can enable these new
technologies. Imagine, then, a human and robot engaged in
an assembly task, where they are constructing a structure
collaboratively. Further suppose that the human now needs a
tool from the shared workspace. At this time, neither agent
is sure what tools and objects the other is going to access in
the immediate future - this calls for seamless transfer of rel-
evant information without loss of workflow. Existing (gen-

eral purpose) solutions will suggest intention recognition
(Hayes and Scassellati 2016) or natural language (Tellex et
al. 2014) communication as a means to respond to this situa-
tion. With regards to naturalistic modes of interaction among
agents, while natural language and intent or gesture recog-
nition techniques remain the ideal choice in most cases, and
perhaps the only choice in some (such as robots that would
interact with people in their daily lives), we note that these
are inherently noisy and ambiguous, and not necessary in
controlled environments such as on the factory floor or by
the assembly line where the workspace can be engineered
to enforce protocols in the interests of safety and productiv-
ity, in the form of safety helmets integrated with wearable
technology (Ruffaldi et al. 2016).

Instead, in our system, the robot projects its intentions as
holograms thus making it directly accessible to the human
in the loop, e.g. by projecting a pickup symbol on a tool it
might use in future. Further, unlike in traditional mixed real-
ity projection systems, the human can directly interact with
these holograms to make his own intentions known to the
robot, e.g. by gazing at and selecting the desired tool thus
forcing the robot to replan. To this end, we develop, with
the power of the HoloLens1, an alternative communication
paradigm that is based on the projection of explicit visual
cues pertaining to the plan under execution via holograms
such that they can be intuitively understood and directly
read by the human partner. The “real” shared human-robot
workspace is now thus augmented with the virtual space
where the physical environment is used as a medium to con-
vey information about the intended actions of the robot, the
safety of the work space, or task-related instructions. We call
this the Augmented Workspace. Recent development of aug-
mented reality techniques (Sean O’Kane 2015) has opened
up endless possibilities in such modes of communication.

This, by itself, however, provides little indication of the
mental state of the human, i.e. how he is actually responding
to the interactions - something that human teammates nat-
urally keep track of during a collaborative exercise. In our
system, we propose to use real-time EEG feedback using
the Emotiv EPOC+ headset2this purpose. This has several
advantages - specific signals in the brain are understood to
have known semantics (more on this later), and are detected
immediately and with high accuracy, thus short circuiting
the need for the relatively highly inaccurate and slower sig-
nal processing stage in rivaling techniques such as emotion
and gesture recognition. Going back to our previous use
case, if the robot now makes an attempt to pick up the same
tool again, the error can fire an event related EEG response
- which may readily be used as in a closed loop feedback
to control or stop the robot. Further, if the robot is making
the same mistake again and again, causing the human to be
stressed and/or irritated, it can listen to the human’s affective
states to learn better, and more human-aware, policies over
time. We demonstrate these capabilities as part of the Con-
sciousness Cloud which provides the robots real-time shared
access to the mental state of all the humans in the workspace.
The agents are thus able to query the cloud about particu-
lars (e.g. stress levels) of the current mental state, or receive
specific alerts related to the human’s response to events (e.g.
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oddball incidents like safety hazards and corresponding ERP
spikes) in the environment.

Finally, instead of the single human and robot collaborat-
ing over an assembly task, imagine now an entire workspace
shared by many such agents, as is the case of most manufac-
turing environments. Traditional notions of communication
become intractable in such settings. With this in mind, we
make the entire system cloud based - all the agents log their
respective states on to a central serve, and can also access
the state of their co-workers from it. As opposed to peer-to-
peer information sharing, this approach provides a distinct
advantage towards making the system scalable to multiple
agents, both humans and robots, sharing and collaborating
in the same workspace, as envisioned in Figure 3.

Contributions Thus, in this paper, we propose approaches
to tear down the communication barrier between human and
robot team members (1) by means of holograms/projections
as part of a shared alternative vocabulary for communication
in the Augmented Workspace, and (2) by using direct feed-
back from physiological signals to model the human mental
state in the shared Consciousness Cloud. The former al-
lows for real-time interactive plan monitoring and execution
of the robot with a human-in-the-loop, while the latter, in
addition to passive plan monitoring, also allows a planning
agent to learn preferences of its human co-worker and up-
date its policies accordingly. We will demonstrate how this
can be achieved on an end-to-end cloud-based platform built
specifically to scale up to the demands of the next-generation
semi-autonomous workspace envisioned in Figure 3.

Related Work
Intention Projection and Mixed Reality The concept of
intention projection for autonomous systems have been ex-
plored before. An early attempt was made by (Sato and
Sakane 2000) in their prototype Interactive Hand Pointer
(IHP) to control a robot in the human’s workspace. Simi-
lar systems have since been developed to visualize trajecto-
ries of mobile wheelchairs and robots (Watanabe et al. 2015;
Chadalavada et al. 2015), which suggest that humans pre-
fer to interact with a robot when it presents its intentions
directly as visual cues. The last few years have seen ac-
tive research (Omidshafiei et al. 2015; 2016; Shen, Jin, and
Gans 2013; Ishii et al. 2009; Mistry et al. 2010; Leutert,
Herrmann, and Schilling 2013; Turk and Fragoso 2015;
Maurtua et al. 2016) in this area, but most of these sys-
tems were passive, non-interactive and quite limited in their
scope, and did not consider the state of the objects or the
context of the plan pertaining to the action while projecting
information. As such, the scope of intention projection has
remained largely limited. Instead, in this paper, we demon-
strate a system that is able to provide much richer informa-
tion to the human-in-the-loop during collaborative plan exe-
cution, in terms of the current state information, action being
performed as well as future parts of the plan under execu-
tion. We also demonstrate how recent advances in the field of

1https://www.microsoft.com/microsoft-hololens/en-us
2https://www.emotiv.com/epoc/

Figure 2: The Dashboard - displaying elements of the Con-
sciousness Cloud and the Augmented Workspace - monitors
the state of the shared workspace.

augmented reality make this form of online interactive plan
execution particularly compelling. In Table 1 we provide the
relative merits of augmented reality with the state-of-the-art
in mixed reality projections.

EEG Feedback and Robotics Electroencephalography
(EEG) is an electrophysiological monitoring method to mea-
sure voltage fluctuations resulting from ionic currents within
the brain. The use of EEG signals in the design of BCI has
been of considerable interest in recent times. The aim of our
project is to integrate EEG-based feedback in human-robot
interaction or HRI. Of particular interest to us are Event Re-
lated Potentials or ERPs which are measured due the re-
sponse to specific sensory, cognitive, or motor events, and
may be especially useful in gauging the human reaction to
specific actions during the execution of a robot’s plan (Hoff-
mann et al. 2008; Acqualagna et al. 2010; Guger et al. 2012;
Ramli et al. 2015). Recently, researchers have tried to im-
prove performance in robotics tasks by applying error-
related potentials or ErrPs (Rao 2013; Ferrez and Millán
2008) to a reinforcement learning process (Iturrate, Mon-
tesano, and Minguez 2010; Iturrate et al. 2012). These are
error signals produced due to undesired or unexpected ef-
fects after performing an action. The existence of ErrPs and
the possibility of classifying them in online settings has been
studied in driving tasks (Zhang et al. 2015), as well as to
change the robots immediate behavior (Salazar-Gomez et al.
2017). However, almost all of the focus has remained on the
control of robots rather than as a means of learning behavior
(Bi, Fan, and Liu 2013), and very little has been made of the
effect of such signals on the task level interactions between
agents. This remains the primary focus of our system.
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System Overview
There are two major components of the system (refer to Fig-
ure 3) - (1) the Augmented Workspace which allows the
robots to communicate with their human co-workers in the
virtual space; and (2) the Consciousness Cloud which pro-
vides the robots real-time shared access to the mental state
of all the humans in the workspace. This is visible in the
centralized Dashboard that provides a real-time snapshot of
the entire workspace, as seen in Figure 2. The Augmented
Workspace Panel shows real-time stream from the robot’s
point of view, the augmented reality stream from the hu-
man’s point of view and information about the current state
of plan execution. The Consciousness Cloud Panel displays
the real-time affective states (engagement, stress, relaxation,
excitement and interest), raw EEG signals from the four
channels (AF3, F3, AF4 and F4) used to detect response to
discrete events, as well as alerts signifying abnormal condi-
tions (p300, control blink, high stress, etc.). The Dashboard
allows the humans to communicate or visualize the collab-
orative planning process between themselves. It can be es-
pecially useful in factory settings to the floor manager who
can use it to effectively monitor the shared workspace.

The Augmented Workspace
In the augmented workspace (refer to Figure 4). the
HoloLens communicates with the user endpoints through the
REST API server. The API server is implemented in
python using the Flaskweb server framework. All external
traffic to the server is handled by an Apache2 server that
communicates with the python application through a WSGI
middle layer. The Apache2 server ensures that the server
can easily support a large number of concurrent requests.

The REST service exposes both GET and POST end-
points. The GET links provides the HoloLens application
with a way of accessing information from the robot, while
the POST link provides the HoloLens application control
over the robots operation. Currently, we are using the API
to expose information like the robotic planning state, robot
joint values and transforms to special markers in the environ-
ment. Most API GET calls will first try to fetch the requested
information from the memcached layer, and would only try
a direct query to the MySQL database if the cache entry is
older than a specified limit. Each query to the database also
causes the corresponding cache entry to be updated. The
MySQL server is updated by a daemon that runs on Azure
and keeps consuming messages sent from the robot through
various queues implemented using the rabbitMQ service.

Modalities of Interaction
We will now demonstrate different ways augmented reality
can improve the human-robot workspace, either by provid-
ing a platform for interactive plan execution for online col-
laboration, or as a means of providing assistive cues to guide
the plan execution process. A video demonstrating all these
capabilities is available at https://goo.gl/pWWzJb.

Interactive Plan Execution Perhaps the biggest use of
AR techniques in the context of planning is for human-in-
the-loop plan execution. For example, a robot involved in

an assembly task can project the objects it is intending to
manipulate into the human’s point of view, and annotate
them with holograms that correspond to intentions to use
or pickup. The human can, in turn, access or claim a partic-
ular object in the virtual space and force the robot to re-plan,
without there ever being any conflict of intentions in the real
space. The humans in the loop can thus not only infer the
robot’s intent immediately from these holographic projec-
tions, but can also interact with them to communicate their
own intentions directly and thereby modify the robot’s be-
havior online. The robot can also then ask for help from the
human, using these holograms. Figure 6 shows, in detail, one
such use case in our favorite BlocksWorld domain.

The human can go into finer control of the robot by ac-
cessing the Holographic Control Panel, as seen in Figure
7(a). The panel provides the human controls to start and stop
execution of the robot’s plan, as well as achieve fine grained
motion control of both the base and the arm by making it
mimic he user’s arm motion gestures on the MoveArm and
MoveBase holograms attached to the robot.

Assistive Cues The use of AR is, of course, not just re-
stricted to procedural execution of plans. It can also be used
to annotate the workspace with artifacts derived from the
current plan under execution in order to improve the fluency
of collaboration. For example, Figure 7(b-e) shows the robot
projecting its area of influence in its workspace either as a
3D sphere around it, or as a 2D circle on the area it is going
to interact with. This is rendered dynamically in real-time
based on the distance of the end effector to its center, and to
the object to be manipulated. This can be very useful in de-
termining safety zones around a robot in operation. As seen
in Figure 7(f-i), the robot can also render hidden objects or
partially observable state variables relevant to a plan, as well
as indicators to improve peripheral vision of the human, to
improve his/her situational awareness.

The Consciousness Cloud
The Consciousness Cloud has two components - the affec-
tive state monitor and the discrete event monitor (as shown
in Figure 5). In the affective state monitoring system, met-
rics corresponding to affective signals recorded by the Emo-
tiv EPOC+ headset are directly fed into a rabbitMQ queue,
as before, called Raw Affective Queue to be used for visual-
ization, and a reward signal (calculated from the metrics) is
fed into the Reward Queue. The robot directly consumes the
Reward Queue and the signals that appear during an action
execution is considered as the action reward or environment
feedback for the AI agent (implementing a reinforcement
learning agent). For the discrete event monitoring system,
the raw EEG signals from the brain are sampled and writ-
ten to a rabbitMQ queue called EEG queue. This queue is
being consumed by our Machine learning or classifier mod-
ule, which is a python daemon running on a azure server.
When this python daemon is spawned it trains an SVM clas-
sifier using a set of previously labelled EEG signals. The
signals consumed from the queue are first passed through
a feature extractor and then the extracted features are used
by the SVM to detect specific events (e.g. blinks). For each
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Figure 3: A conceptual impression of the next generation workshop floor involving multiple humans and robots sharing the
workspace and collaborating either singly or in groups across different tasks. The humans are wearing safety helmets integrated
with electrodes to capture EEG feedback, as well as HoloLens style safety goggles that provide access to augmented reality
based communication through a shared-access cloud platform. This means that all the robots now have access to a real-time
mental model of all their human co-workers on the cloud which they can use to inform or modulate their own behavior. The
robots can also project their goals and intentions, as well as their private regions of interest, into their immediate environment,
thereby the improving situational awareness of their human teammates. These two components - called the Consciousness
Cloud and the Augmented Workspace - forms a sophisticated plan execution and plan monitoring system that can adapt while
taking real-time feedback from humans-in-the-loop.
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Property AR MR Comments

Interaction 3 7
One of the key features of AR is that it provides the humans with the ability to interact directly, and
effectively, with the holograms. This becomes particularly difficult in MR, especially due to difficulties
in accurate gaze and gesture estimation.

Occlusion ? 7
Unlike MR, AR is not particularly disadvantaged by occlusions due to objects or agents in the
workspace. However, it does reduce the field of view significantly (though this is expected to improve
with future iterations of the HoloLens).

Ergonomics 7 3

At present the size, weight and the occlusion of the peripheral view due to the HoloLens makes it
somewhat unsuitable for longer operations, while the MR approach does not require any wearables and
leaves the human mostly uninhibited. However, this is again expected to improve in later iterations of
the HoloLens, as well as if they are custom made and optimized for a setting such as this.

Scalability 3 ?
MR will find it difficult to scale up to beyond peer-to-peer interactions or a confined space, given the
requirement of viable projectors for every interaction. This is hardly an issue for the HoloLens which
provides unrestricted mobility and portability of solutions.

Scope 3 7
MR is limited by a 2D canvas (environment), whereas AR can not only provide 3D projections that can
be interacted with but also can express information that 2D projections cannot - e.g. a 3D volume of
safety around the robot rather than just the projected area on the floor.

Table 1: Relative merits of Augmented Reality (AR) and Existing Mixed Reality (MR) approaches for intention projection.

Figure 4: Architecture diagram of Augmented Workspace.

Figure 5: Architecture diagram of Consciousness Cloud.

event a corresponding command is sent to the Robot Com-
mand queue, which is consumed by the robot. For example,
if a STOP command is sent for the blink event, it would
cause the robot to halt its current operation.

Modalities of Interaction
Figure 8 demonstrates different ways in which EEG signals
can be used to provide closed loop feedback to control the
behavior of robots. This can be useful in two ways - either
as a means of plan monitoring, i.e. controlling the plan ex-
ecution process using immediate feedback, or as a reward
signal for shaping and refining the policies of a learning
agent. A video demonstrating these capabilities is available
at https://goo.gl/6LhKNZ.

Discrete Events Discrete events refer to close to instanta-
neous events, producing certain typical (easy to classify) sig-
nals. We identify three modalities of EEG-based feedback -
(1) Event Related Potentials or ERPs (e.g. p300) that can
provide insight into the human’s responses like surprise; (2)
Affective States like stress, valence, anger, etc. that can pro-
vide longer term feedback on how the human evaluates in-
teractions with the robot; and finally (3) Alpha Rhythm that
can relate to factors such as task engagement and focus of
the human teammate. This type of feedback is useful in the
online monitoring of the plan execution process by provid-
ing immediate feedback on errors or mistakes made by the
robot. The video demonstration shows a particular example
when the human avoids coming into the harm’s way by stops
the robot’s arm by blinking. Figure 8 shows another such use
case where the robot is building words (chosen by the hu-
man) out of lettered blocks and makes a wrong choice of a
letter at some stage - the mistake may be measured as a pres-
ence of ERP signal here. The latter has so far gotten mixed
results leading us to shift to different EEG helmets (Emotiv
Epoc+ lacks electrodes in the central area of the brain where
p300s are known to be elicited) for better accuracy.
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Figure 6: Interactive execution of a plan in the augmented workspace - (a) First person view of the workspace. The robot wants
to build a tower of height three with blocks blue, red and green. (b) Block are annotated with intuitive holograms, e.g. an upward
arrow on the block the robot is going to pick up immediately and a red cross mark on the ones it is planning to use later. The
human can also gaze on an object for more information (in the rendered text). (c) & (d) The human pinches on the green block
and claims it for himself. The robot now projects a faded out green block and re-plans online to use the orange block instead
(as evident by pickup arrow that has shifted on the latter at this time). (e) Real-time update and rendering of the current state
showing status of the plan and objects in the environment. (f) The robot completes its new plan using the orange block.

Figure 7: Interactive plan execution using the (a) Holographic Control Panel. Safety cues showing dynamic real-time rendering
of volume of influence (b) - (c) or area of influence (d) - (e), as well as (i) indicators for peripheral awareness. Interactive
rendering of hidden objects (f) - (h) to improve observability and situational awareness in complex workspaces.

Affective States Here, our aim is to train a learning agent
to model the preferences of its human teammate by lis-
tening to his/her emotions or affective states. We refer to
this as affective robotics (analogous to the field of affec-
tive computing). As we mentioned before, the Emotiv SDK
currently provides five performance metrics, namely va-
lence/excitement, stress/frustration, engagement, attention,
and meditation. At this time, we have limited ourselves to
excitement and stress as our positive (RH+) and negative
reward signals (RH−). We use a linear combination of these
two metrics to create a feedback signal that captures the
humans emotional response to a robots action. It is impor-
tant to note that these signals do not capture the entire re-
ward signal but only capture soft goals or preferences that
the robot should satisfy, which means the total reward for
the agent is given by R = RT + RH , where RT is the
reward for the original task. However, learning this from
scratch becomes a hard (as well as somewhat unnecessary
if the domain physics is already known) problem given the
number of episodes this will require. Keeping this in mind,
we adopt a two staged approach where the learning agent
is first trained on the task in isolation without the human in
the loop (i.e Q-learning with only RT ) so that it can learn a

policy that solves the problem (πT ). Then we use this plan
as the initial policy for a new Q-learning agent that consid-
ers the full rewards (R) with the human in the loop. This
“bootstrapping” approach should reduce the training time.

The scenario, as seen in Figure 8, involves a workspace
that is shared by a robot and a human. The workspace con-
sists of a table with six multicolored blocks. The robot is
expected to form a three-block tower from these blocks. As
far as the robot is concerned all the blocks are identical and
thus the tower can be formed from any of the blocks. The
human has a goal of using one of those specific blocks for
his/her own purpose. This means whenever the robot uses
that specific block it would produce high levels of frustra-
tion within the human. The goal of the robot is thus to use
this negative reward to update its policy to make sure that it
doesnt use one of the blocks that the human requires.

For the first phase of training, we trained the agent using a
simulated model of the task. For the state representation, we
used a modified form of the IPC BlocksWorld pddl domain.
We used a factored representation of the state with 36 predi-
cates and one additional predicate tower3 formed to de-
tect task completion. At every step, the agent has access to
50 actions to manipulate the blocks on the table and 80 ad-
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Figure 8: Different modes of EEG feedback - the robot can observe response to discrete events (left - listening for p300s) and
listen to longer term affective states of the human (right - a reinforcement learner using stress values as negative feedback), and
use this information to refine its policies.

ditional actions form3tower to check for the goal. As for
the task rewards, each action is associated with a small neg-
ative reward and if the agent achieves the goal it receives a
large positive reward. We also introduced an additional re-
ward for every time the number of ontable predicates re-
duces (which means the agent is forming larger towers) to
improve the convergence rate. We found that the agent con-
verged to the optimal policy (the agent achieves the goal in
5 steps) at around 800 iterations. Figure 8 shows the length
of the episodes produced after each iteration and the distri-
bution of Q values across the table. Once the initial boot-
strapping process was completed, we used the resultant Q-
value table as our input for the second phase of the learning,
as seen in the video demonstration. While there are some
issues with convergence that are yet to be resolved, initial
results showing the robot exploring new policies using the
stress signals are quite exciting.

Conclusions & Future Work
In conclusion, we presented two approaches to improve col-
laboration among humans and robots from the perspective
of task planning, either in terms of an interactive plan execu-
tion process or in gathering feedback to inform the human-
aware decision making process. To this end, we discussed
the use of holograms as a shared vocabulary for effective
communication in an augmented workspace. We also dis-
cussed the use of EEG signals for immediate monitoring, as
well as long term feedback on the human response to the
robot, which can be used by a learning agent to shape its
policies towards increased human-awareness. Such modes
of interaction opens up several exciting avenues of research.
We mention a few of these below.

Closing the planning-execution loop The ability to
project intentions and interact via those projections may be
considered in the plan generation process itself - e.g. the
robot can prefer a plan that is easier to project to the hu-
man for the sake of smoother collaboration. This notion of
projection-aware task or motion planning adds a new dimen-
sion to the area of human-aware planning.

A holographic vocabulary also calls for the development
of representations - PDDL3.x - that can capture complex in-
teraction constraints modeling not just the planning ability
of the agent but also its interactions with the human. Further,
such representations can be learned to generalize to methods
that can, given a finite set of symbols or vocabulary, compute
domain independent projection policies that decide what and
when to project to reduce cognitive overload on the human.

ERP and timed events Perhaps the biggest challenge to-
wards adopting ERP feedback over a wide variety of tasks
is the reliance of detecting these signals on the exact time
of occurrence of the event. Recent advancements in ma-
chine learning techniques can potentially allow windowed
approaches to detect such signals from raw data streams.

Evaluations While preliminary studies with fellow grad-
uate student subjects have been promising, we are currently
working towards systematic evaluation of our system un-
der controlled conditions, complying with the ISO 9241-
11:1998 standards, targeted at professionals who are en-
gaged in similar activities repeatedly over prolonged peri-
ods. This is essential in evaluating such systems since the
value of information in projections is likely to reduce signif-
icantly with expertise and experience.
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Abstract

Automated planning tools are complex pieces of software that
take declarative domain descriptions and generate plans for
complex domains. New users often find it challenging to un-
derstand the plan generation process, while experienced users
often find it difficult to track semantic errors and efficiency
issues. To simplify this process, in this paper, we develop a
cloud-based planning tool with code editing and state-space
visualization capabilities. The code editor focuses on visual-
izing the domain, problem, and resulting sample plan, helping
the user to see how such descriptions are connected without
changing context. The visualization tool explores two alter-
native visualizations aimed at illustrating the operation of the
planning process and how the domain dynamics evolve dur-
ing plan execution.

1 Introduction
Classical planning algorithms typically require a declara-
tive domain specification (often in PDDL (McDermott et al.
1998; Gerevini and Long 2005)) describing action schemata,
which, in turn, define the dynamics of the underlying do-
main. Given the declarative nature of the formalism, plan-
ning algorithm implementations are often opaque regarding
the intermediate steps between reading the formalism and
generating a plan. Thus, writing such specifications may be
a challenging task for new users even for simple domains,
while detecting semantic mistakes in complex domains is
always non-trivial. Practical applications of classical plan-
ners require not only a formalization of the domain in PDDL
that is correct, but also takes advantage of the search mecha-
nisms employed by the underlying planners to find solutions
efficiently.

Most modern classical planning solvers (Hoffmann and
Nebel 2001; Helmert 2006; Richter and Westphal 2010;
Hoffmann 2011) use heuristic functions to estimate which
states are likely to be closer to the goal state and save time
and memory during the planning process. Different planning
domains may require different heuristic functions to focus
the search on promising branches and be solved within a
reasonable time with little memory footprint. Thus, key to
understanding the efficiency of a domain formalization is its
impact on the heuristic function used by the underlying plan-
ner.

Even when the user successfully compiles and executes
a planning instance with the chosen heuristic function the
planner may fail to find a correct plan for the intended do-
main. In these cases, virtually no planning algorithm offers
extra information, and the user only knows that the domain
or problem are described in a way that makes it impossible to
find a valid plan. Finally, since most planners are academic
projects made to execute under very specific environments
they lack a clear documentation to guide new users in the
compilation process, while a web-based planner offers plan-
ning algorithms with no setup time.

This paper describes a tool to address the challenges of
helping a domain expert to tune a formalization to any plan-
ning heuristics and spotting semantic errors in planning do-
mains. Our tool, which we describe in Section 3, includes a
PDDL code editor with syntax highlight and auto-complete
aimed at helping users to efficiently develop PDDL domains
in a similar workflow to many popular integrated develop-
ment environments (IDEs). Importantly we integrate the ed-
itor to two visualization tools, described in Section 2, devel-
oped to help users cope with the declarative nature of PDDL
and explore the effects of changes to the domain in solv-
ing concrete problems. First, we use a visual metaphor from
the literature to see how a plan execution achieves (or does
not) a goal state from an initial state (Magnaguagno, Pereira,
and Meneguzzi 2016). Second, we develop a new state-space
search visualization that uses tree drawing (in both cartesian
and radial layouts) in conjunction with heatmaps to repre-
sent how the distance (e.g., how colder or warmer) to the
goal state changes during search. We use a case study in
Section 4 to illustrate how our approach works and validate
our approach from user tests, which we describe in Section 5
showing the results we obtained from employing the tool in
a planning course. In Section 6, we survey related work on
planning tools and data visualization, and conclude the pa-
per in Section 7 discussing our conclusions and future work.

2 Background
2.1 Planning
Planning is the problem of finding a sequence of actions
(i.e., plan) that achieves a particular goal from an initial
state (Ghallab, Nau, and Traverso 2004). A state is a finite
set of facts that represent logical values according to some
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interpretation. Facts are divided into two types: positive and
negated facts. Predicates are denoted by an n-ary predicate
symbol applied to a sequence of zero or more terms. An op-
erator is represented by: a name that represents the descrip-
tion or signature of an action; a set of preconditions, i.e., a
set of facts or predicates that must be true in the current state
to be executed; a set of effects, which has an add-list of pos-
itive facts or predicates, and a delete-list of negative facts
or predicates. An action is an instantiated operator over free
variables. A planning instance is represented by: a domain
definition, which consists of a finite set of facts and a finite
set of actions; and a problem definition, which consists of
an initial state and a goal state. The solution of a planning
problem is a plan, which is a sequence of actions that modi-
fies the initial state into one in which the goal state holds by
the successive execution of actions in a plan. To formalize
planning instances, we use the STRIPS (Fikes and Nilsson
1971) fragment of PDDL (McDermott et al. 1998), which
contains domain and problem definition in different files.

Heuristic functions are used to estimate the cost of achiev-
ing a particular goal (Ghallab, Nau, and Traverso 2004). In
classical planning, this estimate is often the number of ac-
tions to achieve the goal state from a particular state by ex-
ploring only promising states. Estimating the number of ac-
tions is a NP-hard problem (Bylander 1994). In automated
planning, heuristics can be domain-dependent or domain-
independent, and a well-tuned heuristic can result in a sub-
stantial reduction in search time by pruning a vast part of the
state-space.

2.2 Data Visualization

Visualization techniques aim to convey some kind of infor-
mation using graphical representation (Ward, Grinstein, and
Keim 2015). The use of data visualization techniques is of-
ten associated to a set of data with the aim of communicating
a particular information clearly and efficiently via graphical
representation.

Data visualization techniques are concerned with what is
the best way to display a dataset, for instance, how to display
relation information. Relation information can be displayed
efficiently by using hierarchies that convey relation infor-
mation. Edges in a hierarchical tree represent a relation be-
tween nodes. A Cartesian tree visualization is a way to dis-
play hierarchical trees as a coordinate system. A radial tree
visualization is a way to display a hierarchical tree struc-
ture in which such tree expands outwards and radially. In
Subsection 3.2 we explore such tree visualizations. Besides
hierarchical visualization, we highlight other visualization
methods that are closely related to the ones we develop in
this work, such as Gantt charts (Wilson 2003), which are
used to show how tasks are correlated and how much time
is expected to complete them, Waveforms (Ha 2010, Chap-
ter 1 – page 2) are used to express the behavior of analog or
digital data through time, and Heatmap visualization (Ward,
Grinstein, and Keim 2015), which uses a color scheme to il-
lustrate values in a graphic in which each color in the scheme
represents one limit value and the many values in the interval
are represented by the mix of such colors.

3 WEB PLANNER Architecture
We designed our tool envisioning a development process
centered around two tasks by the domain developer. In the
first task, the user aims to describe both domain and problem
correctly. In the second task, the user tries to identify details
of the description (in terms of predicate use) that impact per-
formance and how these predicates appear during the plan-
ning process. The domain designer is free to move between
these tasks and repeat until satisfied with the results. Once a
planning instance is described it is possible to visualize the
explored state-space, even when the planning process fails.
When the planning process returns a plan the user is able
to visualize how predicates were added or deleted by each
action in the plan. Such interface could also help planning
system developers to explore how planners in development
behave.

To avoid the considerable setup time of some planner
implementations and maintain a consistent interface across
platforms, we use a web interface. The planner is executed
in the server, while the editor, output and visualizations are
displayed and executed in the browser. The communication
between the two sides uses JSON1. Figure 1 shows the ar-
chitecture of the WEB PLANNER.

Figure 1: Overview of the WEB PLANNER Architecture.

3.1 Domain Development Interface
To better describe planning domains and problems, we iden-
tified some requirements to improve the process of editing
such descriptions, as follows:

• PDDL syntax highlight and auto-complete to alleviate
user learning curve. For example, to define a new action,
our PDDL editor provides an action-template (an auto-
complete function of our editor, pressing CTRL+Space
after typing the word action) that shows how an action
is defined in PDDL, as shown in Figure 2. Our editor also
provides templates for domain and problem description,
just pressing CTRL+Space after typing the word domain
or problem, respectively;

• See and edit both domain and problem simultaneously,
avoid going back and forth between descriptions gives a

1JSON (JavaScript Object Notation) is an open-standard format
for structuring data.
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Figure 2: WEB PLANNER editor interface with domain editor (left), problem editor (center) and plan output (right). Action
template is provided by autocomplete.

better idea of them being used together while minimizing
the user effort; and

• Execute the current planning instance without a context
change;

To meet such requirements, we split the editor interface
horizontally in 3 parts: domain, problem, and planner out-
put. The ability to see input alongside output is very impor-
tant for both advanced users, that are modifying or extending
legacy PDDL, and new users, such as students, that are not
used with the domain and problem distinction. Instead of
starting with a blank planning instance we opted for a sim-
ple but complete Towers of Hanoi example to be loaded by
default.

The solve button sends the planning instance to the server
to obtain an output based on the domain and problem de-
scriptions contained in the editor. Our editor uses brace, a
variant of the ace editor, and it is able to highlight most
PDDL elements, some of which are currently not supported
by the back-end planner. The output provided by the planner
contains the plan and execution time when successful, error
messages when the parser fails, or a failure message when
no plan is found. Due to screen space limitations and de-
mand, the visualizations were left to a secondary interface,
as users can only visualize after the initial description step.

3.2 Visualization Interface
We currently support two visualizations, one focusing on the
explored state-space and the other on the execution of the
first plan found.The impact of heuristics in the state-space
is often introduced in AI lectures using images, such as the
ones from Figure 3, to show how the contour of the explored
states grows in all directions on blind search and towards
the goal state in informed search (using heuristics) (Russell
and Norvig 2009, Chapter 3 – page 97). Such images target

an audience new to the concept of using a computed auxil-
iary function to speed-up search. More interesting examples
are possible with animations on a grid, showing the step-by-
step process of search. Since not all domains can be mapped
to a grid, the visualization process is often limited to path-
finding domains. To generate such contours we opted for a
tree-based visualization.

Figure 3: Search contours are defined by search mechanism
and heuristic function, either equally exploring in all direc-
tions (left) or giving priority towards the goal state (right).

Heuristic Visualization: The heuristic visualization we
developed takes advantage of interactive elements to avoid
information overload while providing alternative layouts,
cartesian and radial tree visualizations. The radial layout
matches the abstraction used by heuristic examples while the
cartesian layout generates a visualization more compact. In
practice, we use the Reingold-Tilford algorithm2 to display
both tree layouts. Using tree visualizations we aim to show
how planning heuristics explore the state-space to achieve a
particular goal.

To compare and explore the state-space of a planning in-
stance, we implemented two planning methods. The first
method is based on breadth-first search, and thus uses no

2Reingold-Tilford is an algorithm for an efficient tidy arrange-
ment of layered nodes. We use an implementation based on a D3
example available at: http://bl.ocks.org/mbostock/4063550.

34



heuristic, exploring the state space in the order of distance
from the initial state. The second method implements greedy
best-first search using Hamming distance (Hamming 1950)
as a heuristic. Our visualization tool supports other search
mechanisms and heuristic functions as long as such mecha-
nisms search through the state-space, the selected ones are
used only as examples.

Figure 4: Tooltip that displays the set of instantiated predi-
cates in a state. This figure illustrates state 1 and its predi-
cates for a planning instance of the Hanoi domain.

Figure 5: Tooltip that displays the instantiated action ap-
plied between two states. This figure illustrates state 1 and
its predicates for a planning instance of the Hanoi domain.

With the explored state-space and heuristic information
about each state we use an hierarchical tree to represent the
data obtained from the planning process. In this tree, each
node represents a state (i.e., a set of instantiated predicates),
and an edge represents a state-transition (i.e., the execution
of an action). The root node represents the initial state. Our
visualization displays the state-space of a planning heuris-
tic by coloring the estimated distance between states using
a heatmap. Information such as the content of the state or
the applied action is hidden until the user hovers that posi-
tion with the cursor to display such data in a tooltip, as show
in Figures 4 and 5. Nodes and edges are colored accord-
ing to the estimated distance to the goal state. Red nodes
represent states closer to the goal state, i.e., warmer, while
distant nodes are represent by blue, i.e. colder. The heuristic
gradient is defined in Figure 6. It is important to highlight
that the estimated distance can be different according to the
used heuristic. Therefore, the state-space search can reach
different states in a different order according to the heuris-
tic used, for example, Figures 10 and 11. As more states are
explored the more visible the contours are, as seen in Fig-

ure 7. If planning is successful the edges from initial to goal
node are emphasized. The trees are also generated to failed
planning instances, which can be used for debug purposes.

Figure 6: Color scheme that our visualization tool uses to
represent the estimated distance.

Figure 7: Contours become visible as more states are ex-
plored. This planning instance obtain all goal predicates
at the same time, which makes the heatmap mostly blue
(colder), while the goal state is located at the bottom in red
(warmer).

Dovetail Metaphor Visualization: The second visualiza-
tion we implemented is a visual metaphor called Dove-
tail (Magnaguagno, Pereira, and Meneguzzi 2016), which
is useful to see how predicates change along the plan exe-
cution. Each ground predicate that appear in an action effect
is represented as one line while both initial state, goal state
and actions are represented as columns. Our interface allows
a user to move and zoom to parts of this visualization (illus-
trated in Figure 8), with tooltips providing extra information
as shown in Figure 9 for the domain of the case study of
Section 4. The use of this visual abstraction (Dovetail) aims
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to improve the learning curve for defining and debugging
planning domains and problems.

Figure 8: Dovetail plan visualization of Hanoi domain with
3 discs and a plan of size 7.

Figure 9: Tooltip that displays the instantiated action in a
plan on Dovetail.

4 Case Study
To validate our tool, we developed a case study of a plan-
ning instance using different planning heuristics displaying
the state-space.We selected the Hanoi towers domain to il-
lustrate what can be expected from the visualizations. The
Hanoi domain describes the towers of Hanoi problem, where
one must move a stack of discs from one peg to another with-
out stacking a larger disc onto a smaller one, three pegs are
available in total. Problem instances of this domain show
that the goal cannot be accomplished in an incremental way,
requiring the plan to build and destroy partial towers several
times to obtain the complete tower in the final peg. Domains
that present such behavior are not pruned as much as others
by the Hamming distance as a heuristic function and have a
visible color fluctuation between the gradient limits instead
of a clear movement towards red, as seen in the Cartesian
tree of Figure 10. The Cartesian tree is better to represent
and compare such smaller graphs, while the radial tree high-
lights the side to which the heuristic gave priority during
search, as seen in Figure 11, where the top-left branch was
not explored. Other domains may suddenly reach a goal state
from a mostly blue colored graph, in which all states are far
away from the goal, as seen in Figure 7, or incrementally
reaching the goal clearly going from one extreme of the gra-
dient to the other, as in the Logistics domain.

To better understand how the predicates are affected by
the plan we use the Dovetail metaphor. This particular Hanoi

Figure 10: Cartesian tree visualizations of the state-space of
Hanoi with 3 discs.

Figure 11: Radial tree visualizations of the state-space of
Hanoi with 3 discs.

planning instance is solved by a 7-step plan, represented by
the pieces labeled with numbers at the top, Figure 8. Each
piece has preconditions represented on the left side and ef-
fects represented on the right side. In this case we can see
the first action, move(d1 d2 peg3), moving a clear disc d1
that starts on disc d2 to a clear peg peg3, leaving d2 clear
and peg3 not clear. We can see the predicate clear d1 be-
ing tested by each odd-index action, revealing the pattern of
movements related with the disc d1.

5 Survey Results
To evaluate WEB PLANNER, a group of four users from our
automated planning course3 were asked to fill a survey after
using the tool to describe the RPG domain from the Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling 4. The survey contained the following ques-
tions and answers:

• How familiar are you with automated planning languages
and algorithms?

– Only 2 users have used PDDL before.

• Did Web-planner visualizations help you to find any
bugs/errors/interesting points during the course of your
task?

– One user found missing preconditions.

• Mark other planners/tools you used in your experiments:

3
http://github.com/pucrs-automated-planning/syllabus

4
http://ickeps2016.wordpress.com

36



– Fast-Downard (1), JavaFF (1), JavaGP (3), Plan-
ning.domains (3), STRIPS-Fiddle (1)

• Which features you missed the most?

– Support more requirements (2), Auto-complete (1),
Option to clear console (1), Find (common) errors in
PDDL (1).

Results of system reaction show evidence of the utility of
our tool, albeit with many suggested improvements, in Fig-
ure 12 with minimum, maximum and average represented.
The current planning output must be improved in order to
provide more meaningful messages about errors while tak-
ing advantage of the integrated editor to draw attention to
specific lines where parsing errors were detected. Other im-
provements are more related to the editor itself, making it
more flexible to attend different user needs, such as theme,
font size and the ability to re-size each part of the editor.
Users also asked for more planners/requirements to be sup-
ported.

Figure 12: Survey results, users were asked to evaluate the
system between frustrating (0) and satisfying (5).

6 Related work
We now discuss related work and tools that are used to
formalize planning domains, visualize changes on a large
amount of hierarchical data, and visualize state-space search
algorithms.
Planning.Domains5 is a collection of web tools for

automated planning. These web tools provide a web PDDL
editor, an API that contains a wide collection of PDDL
benchmark domain and problem files (most of them used on
the International Planning Competition), and a planner in the
cloud that allows using not only a planning solver, but also
VAL (Howey, Long, and Fox 2004), a plan validation tool.
Similar to our approach, Planning.Domains provides
a PDDL editor, however, our approach provides not only a
web editor with syntax highlighting, but also a set of tools
to develop and visualize planning domains using metaphors
and alternative data visualization methods.

To edit PDDL domains and problems, we highlight two
approaches, myPDDL and PDDL Studio. myPDDL6 (Stro-
bel and Kirsch 2014) is an editor extension for Sublime
Text, which provides PDDL syntax highlighting, snippets,

5
http://planning.domains

6
http://github.com/Pold87/myPDDL

and domain visualization (e.g., diagram types). PDDL Stu-
dio (Plch et al. 2012) is an IDE to edit PDDL domains and
problems. This IDE provides syntax highlighting, code com-
pletion, and context hints specifically designed for PDDL.

Graphical Interface for Planning with Objects
(GIPO) (Simpson, Kitchin, and McCluskey 2007) is a
tool for planning domain knowledge engineering that allows
the specification of domains in PDDL and Hierarchical Task
Network (HTN). Besides domain knowledge engineering,
GIPO provides an animator tool to graphically inspect the
plans produced by the internal planner, given a domain and
problem specification. Unlike our approach, GIPO checks a
set of plans to validate a domain and problem specification,
indicating whether the domain and problem specification
do support the given plans. Similar to Dovetail metaphor
we implemented in WEB PLANNER, GIPO also provides an
animator tool to visualize how a sequence of actions (i.e.,
a plan) connects to form a plan that achieves a goal state
from an initial state. VisPlan (Glinskỳ and Barták 2011) is
an interactive tool to visualize and verify plans’ correctness.
This tool is closely related to Dovetail metaphor in the
sense of helping planning users to better understand how
a sequence of actions achieve a goal from an initial state.
VisPlan identifies possible flaws (i.e., incorrect actions)
in a plan, allowing users to manually modify this plan by
repairing these identified flawed actions.

PDVer (Raimondi, Pecheur, and Brat 2009) is a methodol-
ogy and tool that verifies if a PDDL domain satisfies a set of
requirements (i.e., planning goals). This tool allows an auto-
matic generation of these requirements from a Linear Tem-
poral Logic (LTL) specification into a PDDL description.
This tool is concerned with how the corresponding PDDL
action constraints are translated from an LTL specification.
Whereas PDVer provides a summary of test cases (positive
and negative) indicating why a PDDL domain specification
does not satisfy a set of requirements to achieve a goal.

itSimple (Vaquero et al. 2012) is concerned with do-
main modeling, using steps to guide the user from informal
requirements (UML) to an objective representation (Petri
Nets). The itSimple features provide a visualization and sim-
ulation tool to help understanding planning domains through
diagrams. itSimple uses UML diagrams to model planning
instances and Petri Nets for validating planning instances.

Magnaguagno et al. (2016) developed a visual metaphor
to visualize and learn how the planning process works. We
have applied this visual metaphor in our web tool by using
colors for different instantiated predicates in a state along
a plan execution. Dovetail results suggest that this visual
metaphor can be useful to define and debug the planning
process.

We found two approaches to data visualization suitable
for heuristics. In (Kuwata and Cohen 1993), Kuwata and
Cohen develop visualization methods to understand and ana-
lyze the search-space and behavior of heuristic functions, by
exploring the usefulness of these methods on shaping state-
space search. The heuristic functions they explore are A*
and IDA*. Tu and Shen (2007) propose a set of strategies
to visualize and compare changes in hierarchical data using
treemaps.
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7 Conclusions
In this paper, we report on a cloud-based planning tool we
developed, which consists of a PDDL editor to formalize
planning domains and problems, and visualizations to help
understand the effect of planning heuristics in the domains.
This work aims to simplify the setup process required to ex-
ecute planners while providing visualizations to better un-
derstand how domain differences and heuristics can impact
the performance of the planner. A small-scale survey indi-
cates promising results while asking for improvements that
are already in development.

As future work, we intend to support user-defined heuris-
tics in our planner along with alternative options to the user,
such as selectable color schemes for the visualization and
a side-by-side state-space view for comparison. We believe
that such tool can help new heuristics to be developed and
tested, giving the user a better grasp of the impact of heuris-
tics to the state-space exploration, which is usually an invis-
ible entity. Instead of outputting only a plan and the time to
compute it in the editor interface, we expect to add not only
better parsing error messages but also detection of bad con-
structions, such as unnecessary requirements or effects that
are equal to preconditions. Our WEB PLANNER tool is avail-
able at http://web-planner.herokuapp.com.
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Abstract

This paper presents preliminary results of our work
with a major financial company, where we try to use
methods of plan recognition in order to investigate the
interactions of a costumer with the company’s online
interface. In this paper, we present the first steps of
integrating a plan recognition algorithm in a real-world
application for detecting and analyzing the interactions
of a costumer. It uses a novel approach for plan recog-
nition from bare-bone UI data, which reasons about
the plan library at the lowest recognition level in order
to define the relevancy of actions in our domain, and
then uses it to perform plan recognition.

We present preliminary results of inference on three dif-
ferent use-cases modeled by domain experts from the
company, and show that this approach manages to de-
crease the overload of information required from an an-
alyst to evaluate a costumer’s session — whether this
is a malicious or benign session, whether the intended
tasks were completed, and if not — what actions are
expected next.

1 Introduction

Online websites are often open-ended and flexible inter-
faces, supporting interaction styles by users that include
exogenous actions and high noise rate. Such interfaces
provide a rich framework for users and are becoming
increasingly prevalent in many web and mobile appli-
cations, but challenge conventional plan recognition al-
gorithms for inferring users’ activities with the software.

The open-ended nature of these settings afford a rich
spectrum of interaction for clients: they can perform
the same task in many different ways (such as logging
in through a website or by a mobile application), engage
in exploratory activities involving trial-and-error, they
can repeat activities indefinitely (browsing), and they
can interleave between activities.

This paper focuses on inferring customers’ activities
for an Internet financial company, in which customers
widely engage in exploratory behavior, and present ini-
tial results for plan recognition in such settings that can
be the basis of future work in this direction.

Our data set consists of customer sessions of a large

financial company1. The customer sessions are recorded
as low-level activities of ’click stream’ — web page visits
and user interface actions. This data is a rich source of
information about customer’s behavior, but cannot be
used as-is to describe the intentions or plans of the cus-
tomer: buy product, sell product, manage account, etc.
The underlying model used for the recognition process
is a set of hierarchical task networks (HTNs) called a
“plan library”, that allows hierarchical decomposition
of a task, which can be used both as an explanatory
accessory to an overseer and for prediction of future ac-
tions. Our main goal is to detect frauds, validate trans-
actions and predict future actions — both in terms of
the user’s intents and in terms of the execution of these
intents.

The basic stream of information can be thought of
as a recording of customer’s conversation with the sys-
tem. Understanding the language of conversation would
bring benefits in various areas. For example:

• Predictive verification — by following customer’s ac-
tions in real time, we can have our systems guess next
actions and alert when an agent biases from their pre-
dictive plan.

• Proactive validation — if we can understand the pur-
pose of customer’s visit based on the beginning of
their activity, we can let our systems start validation
of the session even before it takes place, facilitating
faster response and better utilization of resources.

• Computer security — certain types of fraud are per-
formed by malicious software controlling customer
computers. We may be able to distinguish between
malicious and benign actors on the other side of the
wire.

However, as a flexible interface, the system allows the
user to engage in more than one task at a time (making
multiple purchases), make mistakes (pressing a button
twice instead of once), repeat actions (browse between
different parts of the interface) and more. All of these
are features that define an exploratory environment [5].

While these traits make the interface useful and con-
venient to the user, it challenges conventional plan

1All interactions and examples were altered to preserve
privacy
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recognition algorithms for inferring users’ activities
with the software, as they need to reason about all these
factors [1, 17].

2 Related Work

The tasks described in the introduction are tradition-
ally addressed by activity recognition algorithms, which
are used to tokenize the stream of data into detectable
actions [2, 11, 4]. However, these algorithms usually
cannot perform higher levels of inference to describe
the agent’s behavior or predict the future actions of
the agent [8, 18]. Different approaches also used an
HMM representation or data-driven learning to elicit
tasks from low-level activities [14, 12].

Some notable exceptions are works by [15, 3, 16]
which try to combine low level activities and higher level
domain knowledge, or [16] which propose a multi-agent
model for robot collaboration based on plan recogni-
tion. However, the works in these lines of research tend
to use a domain-theory based recognition or other prob-
abilistic representations, which do not capture the hier-
archical nature of task decomposition like Hierarchical
task networks (HTNs) and plan libraries.

In order to address the above tasks, we need to use hi-
erarchical plan recognition, a field of research exploring
algorithms that recognize the plans of the agent based
on a partial sequence of actions, and predict future ac-
tions [10]. Few works [7, 6] did use a plan library as
the underlying domain knowledge for the task, but they
did not provide predictions or used this information to
formalize the output. Other works [9] do output a com-
plete hierarchy, but the plan recognition algorithm used
does not work well in exploratory environments.

In this work, we present a criteria for constructing
the plan library that will then be used by the agent
to perform the plan recognition task. Thus, we do not
need to use an activity recognizer. We integrate instead
the low-level activities directly into the plan recognition
task.

3 Definitions

Plan recognition takes as input a plan library and a
partial sequence of observations, and outputs a set of
possible explanations.

3.1 Plan Library

The plan library can be thought of as the language
of actions, as well as goals we want to be able to
recognize. The library must specify terminals, non-
terminals, goals, and derivation rules.

Definition 1 (Explanation) A plan library is a tuple
PL = 〈T,NT,G,R〉, where T is a set of are low-level,
observable action,NT is a set of complex level actions,
composed from either T s or other NT s, G is a subset
of non-terminals corresponding to the highest level of
actions, representing the goals the agent can achieve
and R is a set of derivation rules which specify how each

complex action can be decomposed into other actions of
the form 〈nt〉 → 〈sequence〉 | 〈order〉, where:

• 〈nt〉 is a non-terminal, a complex action.

• 〈sequence〉 is a sequence of actions which compose
the complex action.

• 〈order〉 is a list of tuples defining the the ordering of
actions — actions must appear in the same order as
in the tuple, but ordering between different tuples is
unspecified. For example, ‘(login, addName)‘ states
that the user must log-in before adding a card.

Consider the following very simple plan library for
our domain.

• T = {login, addName, addCredit, signup,
submit, home, payment, success, transfer, confirm}

• NT = {AddAccount,Buy}
• G = {AddAccount,Buy}
• R =

AddAccount→ login, addName, addCredit
| [(login, addName)(addName, addCredit)]
AddAccount → signup, addName, submit |
[(signup, addName)(addName, submit)]
Buy → home, payment, success |
[(home, payment)(payment, success)]
Buy → home, transfer, confirm |
[(home, transfer)(transfer, confirm)]

3.2 Plans and Explanations

Based on the definitions above, we can apply an algo-
rithm to a sequence of actions to obtain explanations
about ongoing behaviors and anticipated future actions.

A plan is a labeled tree p = (V,E,L), where V and
E are the nodes and edges of the tree, respectively, and
L is a labeling function L : V → NT ∪ T mapping
every node in the tree to either a basic or a complex
action in the plan library. Each inner node is labeled
with a complex action such that its children nodes are a
decomposition of its complex action into constituent ac-
tions according to one of the refinement methods. The
set of all leaves of a plan p is denoted by leaves(p), and
a plan is said to be complete iff all its leaf nodes are
labeled basic actions, i.e., ∀v ∈ leaves(p),L(v) ∈ T .

An observation sequence is an ordered set of basic
actions that represents actions carried out by the ob-
served agent. A plan p describes an observation se-
quence O iff every observation is mapped to a leaf in
the tree. Formally, there exists an injective function
f : O → leaves(p) ∩ T such that f(o) = v. The ob-
served agent is assumed to plan by choosing a subset
of complex actions as intended goals and then carrying
out a separate plan for completing each of these goals.

An agent may pursue several goals at the same time.
Therefore, an explanation can include a set of plans, as
described in the following definition:

Definition 2 (Explanation) An explanation for an ob-
servation sequence is a set of plans such that each plan
describes a mutually exclusive subset of the observation
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Figure 1: An Explanation with Three Plans.

sequence and taken together the plans describe all of
the observations. We then say that the explanation de-
scribes the observation sequence.

For the rest of this paper we will use a running ex-
ample based on the following sequence of processed ob-
servations: [home, login, addName, login, addCredit]
When we submitted the sequence and the plan library
to a plan recognition algorithm, we obtained two expla-
nations. The first one is presented in Figure 1.

This explanation is a set of trees. In each tree the
leaves are either the actions we observed, or actions pre-
dicted to perform in the future. A special tag frontier
specifies the location in the tree from where the ex-
pansion may continue, based on future actions. Leaves
with this tags are colored in green in the figure. Future
actions that still has preceding actions that have not
been executed are colored with blue. If a tree has no
‘frontier‘ leaf (top tree in our example), then the goal
is fully described by actions.

The output above represents the following explana-
tion of the input sequence: (1) The agent performed
one buy transaction and two account additions; (2) The
agent performed the first action in the buy task, but
then stopped – we expect that the next action to com-
plete this task is transfer; (3) Regarding the account
additions, one was completed and the other was not.

For our very basic example, one can think about a
brute-force algorithm for explaining the activity. How-
ever in general, a sophisticated algorithm is required to
provide short and meaningful explanations quickly, in
a manner suitable for online processing. The remaining
of this paper talks about the very beginning of work
in collaboration with analysts and developers from the
financial company.

4 Recognition Components

We now detail the components we use to perform the
plan recognition task from the raw click stream of cos-
tumer sessions.

4.1 Preprocessing

A session is the basic unit of interaction between a cus-
tomer and the system. Efficient analysis and validation

of sessions in real time is crucial for technical realiza-
tion of the company’s business. The raw input in our
domain is a stream of costumer sessions. Each session
is constructed from a list of entries, where each entry
has a specific timestamp, user information and a special
label describing the page on the company’s site the user
is visiting. The average length of a session was 80.49
entries.

As a first step, we needed to reduce this number as
many entries are irrelevant to the costumer’s main tasks
in the system and integrating them into terminals in the
plan library would be both inefficient and less informa-
tive. We defined the following criteria for a session entry
to be considered relevant to us:

Definition 3 (Landmark in PL) A raw entry e in a
complete session S is considered a landmark in relation
to a plan library PL if S \ {e} cannot describe a plan
from PL.

In collaboration with our partners inside the company,
we elicited about 20 types of entries, defined by their
page labels, which are landmarks for executing the rel-
evant tasks. We classified each of the pages into a suit-
able basic action as they appear in our plan library.
Counting only these pages as relevant actions we wish
to observe, we received an average of 9.68 observations
per session (with stdev of 7.26).

However, as an exploratory environment, many en-
tries in a session are redundant even if they can be con-
sidered landmarks, as the user can make mistakes or
perform a landmark action more times than necessary.
To perform an elimination of these entries and to re-
main only with the most relevant observations, we per-
formed another sifting. We discarded all observations
that were a repetition of the earlier observation. Af-
ter this elimination, we reduced the average number of
relevant observations per session to 3.68 (stdev=2.62).

4.2 Recognition

There are many possible strategies that a costumer can
use to perform interactions, and variations within each
due to exploratory activities and mistakes carried out
by the costumer. Even after the preprocessing we en-
forced on the set of actions performed by the costumer,
there are still two types of exploratory behaviors which
can hinder the ability of the recognizer the infer the
costumer’s actions correctly: (1) Exogenous actions:
even after our preprocessing effort, many actions can-
not be combined together when looking at the complete
sequence, thus the plan recognizer cannot output any
explanation the described all of the actions in the ses-
sion. (2) One explanation may relate a given action to
a relevant task, while another may relate this action to
a failed attempt or a mistake. The space of possible
explanations can become very large, even for a small
number of observations.

The CRADLE algorithm [13] proposes solutions for
both of these problems using three components:
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Inference it receives as input a plan library, an obser-
vation sequence, and outputs a set of explanations,
each of which is an explanation of the observation
sequence in the sense of Definition 2.

Filters it filters redundant explanations according to
a set of domain-independent conditions. A filter is
a function taking a candidate explanation e, and re-
turning true or false depending on whether the can-
didate explanation does or does not pass a certain
condition. For our presented domain, we tried sev-
eral values and filter types and finally set 3 filters: (1)
The number of plans in the explanation is less than
or equal to the average; (2) The number of frontier
nodes in the explanation is less than or equal to the
average; (3) The number of different plans in the ex-
planation is less than 4. We discard all explanations
which do not pass these thresholds

Exogenous Actions CRADLE can handle exogenous
actions and mistakes and can omit them from the set
of explanations as needed.

5 Empirical
We used a click stream of selected sessions, labeled by
the company’s analysts as sessions containing the rele-
vant tasks. In total, we tested 3 types of sessions, with
50 instances of each session type: Buy, Add account for
existing user (AAExist) and Add account for new user
(AANew). For each of these sessions, we performed the
process described in Section 4.

Figure 2 presents the average number of different
types of explanations outputted by CRADLE per task:
Total is the total number of explanations; Full Plan is
the number of explanations in which at least on plan
was completed; No Open means the number of expla-
nations in which all plans were completed and had no
open frontier. Notice that even in sessions that were
labeled by analysts as relevant to some task, the plan
recognition process shows that only a small portion of
the sessions contain a completed task. These results
are similar in the PHATT runs, even though it does
not discard explanations, thus might output more ex-
planations with a completed task. We intend to vali-
date these results with other data to evaluate if these
sessions were indeed sessions of incomplete tasks.

In order to evaluate the performance of CRADLE,
we compared the runtime and number of outputted ex-
planation in comparison to the PHATT algorithm, aug-
mented with the exogenous actions handling of CRA-
DLE (without this augmentation, PHATT would not
be able to output any explanation at all that describes
the complete sequence of observations). Table 5 sum-
marizes these runs.

The first and most important thing to notice in the
table, is the difference between the original length of
a session entry, and the outputted set of explanations
by the plan recognizers. An average decrease of 83% in
the number of entities representing the session. Such
a decrease allows a faster analysis of the session, since

Figure 2: Average Number of Explanations by Type.

the number of possible explanations is exponential with
the number of observations [13]. For example, even with
the pruning of CRADLE, the average number of expla-
nations it outputted for the AANew sessions is 146.06
(compared to 1.33 with the preprocessing). Moreover,
the outputted explanations have a structure imposed
by the plan library that the original stream lacked.

The second point to notice it that the values of the
AAExist case are similar in both algorithms. We at-
tribute this to the fact that performing this task is al-
ways performed in the same fashion, without any op-
tions to bias in the interface of the company’s website.

6 Future Work

This a preliminary work for using plan recognition for
exploratory environments on real-world click streams.
It uses a novel approach for plan recognition from bare-
bone UI data, which reasons about the plan library in
the lowest recognition level in order to define the rel-
evancy of actions in our domain, and then uses it to
perform plan recognition.

While we manage to process low level data using
mostly tools intended for higher levels of inference,
there is still much to be done from both ends of the
process: First, we expect that we can use most intelli-
gent tools for the preprocessing stage, either from the
world of activity recognition or natural language pro-
cessing. As we started to show here, we wish to use
the domain knowledge (e.g. the plan library) in our
low-level action detection. Second, we wish to visualize
this information in a coherent manner that will allow

Buy AAExist AANew
Session Entries 147.02 14.13 80.33
Observations 5.64 2.06 3.33

CRADLE Explanations 8.74 1.00 1.33
PHATT Explanations 18.32 1.00 2.00

CRADLE Time (seconds) 0.06 0.01 0.01
PHATT Time (seconds) 0.07 0.01 0.03

Table 1: Runtime and Explanation Set Size for CRA-
DLE and PHATT
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analysts evaluate sessions in real time for fast verifica-
tion and validation, or to be able to counter adversarial
behavior in time.
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Abstract

Proactive Decision Support (PDS) aims at improving the de-
cision making experience of human decision makers by en-
hancing both the quality of the decisions and the ease of mak-
ing them. In this paper, we ask the question what role auto-
mated decision making technologies can play in the deliber-
ative process of the human decision maker. Specifically, we
focus on expert humans in the loop who now share a detailed,
if not complete, model of the domain with the assistant, but
may still be unable to compute plans due to cognitive over-
load. To this end, we propose a PDS framework RADAR based
on research in the automated planning community that aids
the human decision maker in constructing plans. We will sit-
uate our discussion on principles of interface design laid out
in the literature on the degrees of automation and its effect on
the collaborative decision making process. Also, at the heart
of our design is the principle of naturalistic decision mak-
ing which has been shown to be a necessary requirement of
such systems, thus focusing more on providing suggestions
rather than enforcing decisions and executing actions. We will
demonstrate the different properties of such a system through
examples in a fire-fighting domain, where human comman-
ders are involved in building response strategies to mitigate a
fire outbreak. The paper is written to serve both as a position
paper by motivating requirements of an effective proactive
decision support system, and also an emerging application of
these ideas in the context of the role of an automated planner
in human decision making, in a platform that can prove to be
a valuable test bed for research on the same.

Human-in-the-loop planning or HILP (Kambhampati and
Talamadupula 2015) is a necessary requirement today in
many complex decision making or planning environments.
In this paper, we consider the case of HILP where the human
responsible for making the decisions in complex scenar-
ios are supported by an automated planning system. High-
level information fusion that characterizes complex long-
term situations and support planning of effective responses
is considered the greatest need in crisis-response situations
(Laskey, Marques, and da Costa 2016). Indeed, automated
planning based proactive support was shown to be preferred
by humans involved in teaming with robots (Zhang et al.
2015) and the cognitive load of the subjects involved was
observed to have been reduced (Narayanan et al. 2015).

We note that the humans are in the driver’s seat in gener-
ating plans.We investigate the extent to which an automated

Figure 1: Planning for decision support involves iterative
and the need to consider difference of models between the
planner and the human in the loop.

planner can support the humans in planning, despite not hav-
ing access to the complete domain and preference models.
This is appropriate in many cases, where the human in the
loop is ultimately held responsible for the plan under ex-
ecution and its results. This is in contrast to earlier work
on systems such as TRAINS and MAPGEN (Allen 1994;
Ai-Chang et al. 2004), where the planner is in the drivers
seat, with the humans ”advising” the planner. It is also a far
cry from the earlier work on mixed-initiative planning where
humans enter the land of automated planners and manipu-
late their internal search data structures. In our framework,
the planners have to enter the land of humans.

An important complication arises due to the fact that the
planner and the human can have different (possibly comple-
mentary) models of the same domain or knowledge of the
problem at hand, as shown in Figure 1. In particular, hu-
mans might have additional knowledge about the domain as
well as the plan preferences that the automated planner is not
privy to. This means that plan suggestions made by the au-
tomated planner may not always make sense to the human
in the loop, i.e. appear as suboptimal in her domain. This
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Figure 2: Degrees of automation of the various stages of decision support, and the role of RADAR in it.

can occur either when the human or the planner has a faulty
model of the world. This is an ideal opportunity to provide
model updates or explanations and reconcile this model dif-
ference through iterative feedback from the human. This
calls for active participation from the human in the loop
rather than simply adopting a system generated plan.

Though having to deal with an incomplete model is the
usual case in many mixed initiative settings, i.e. an auto-
mated support component, without a full model, cannot ac-
tually generate entire plans from scratch but can sometimes
complete or critique existing ones - the extent to which a
planner can be of help is largely dependent on the nature
of the model that is available. Keeping this in mind, in the
current paper we focus on scenarios which come with more
well-defined protocols or domain models, and illustrate how
off-the-shelf planning techniques may be leveraged to pro-
vide more sophisticated decision support. Examples where
such technologies can be helpful include any complex tasks,
especially disaster response or emergency situations, where
the mental overload of the human (either due to the com-
plexity of the problem at hand or the sheer volume of data
that needs to be considered to make an informed decision)
can affect the quality of successful recovery.

To this end, we propose a proactive decision support
(PDS) system RADAR following some of the design prin-
ciples laid out in the literature in the human-computer inter-
face community, to demonstrate possible roles that existing
automated planning technologies can play in the deliberative
process of the human decision maker in terms of the degree
of automation of the planning process it affords.

Naturalistic Decision Making The proposed proactive
decision support system supports naturalistic decision mak-
ing (NDM), which is a model that aims at formulating how
humans make decisions is complex time-critical scenarios
(Zsambok and Klein 2014; Klein 2008). It is acknowledged
as a necessary element in PDS systems (Morrison et al.
2013). Systems which do not support NDM have been found
to have detrimental impact on work flow causing frustration
to decision makers (Feigh et al. 2007). At the heart of this

concept is, as we discussed before, the requirement of let-
ting the human be in control. This motivates us to build a
proactive decision support system, which focuses on aid-
ing and alerting the human in the loop with his/her deci-
sions rather than generate a static plan that may not work
in the dynamic worlds that the plan has to execute in. In
cases when the human wants the planner to generate com-
plete plans, he still has the authority to ask RADAR to ex-
plain its plan when it finds it to be inexplicable (Chakraborti
et al. 2017). We postulate that such a system must be aug-
mentable, context sensitive, controllable and adaptive to the
humans decisions. Various elements of human-automation
interaction such as, adaptive nature and context sensitivity
are presented in (Sheridan and Parasuraman 2005). (Warm,
Parasuraman, and Matthews 2008) show that vigilance re-
quires hard mental work and is stressful via converging evi-
dence from behavioral, neural and subjective measures. Our
system may be considered as a part of such vigilance support
thereby reducing the stress for the human.

Degrees of Automation One of the seminal works by
(Sheridan and Verplank 1978), builds a model that enumer-
ates ten levels of automation in software systems depending
on the autonomy of the automated component. Later, in the
study of mental workload and situational awareness of hu-
mans performing alongside automation software, (Parasura-
man 2000) separates automation into four parts- Information
Acquisition, Information Analysis, Decision Selection and
Action Implementation (see Figure 2). We use this system
as an objective basis for deciding which functions for our
system should be automated and to what extent so as to re-
duce human’s mental overload while supporting Naturalistic
Decision making. (Parasuraman and Manzey 2010) shows
that human use of automation may result in automation bias
leading to omission and commission errors, which under-
lines the importance of reliability of the automation (Para-
suraman and Riley 1997). Indeed, it is well known (Wickens
et al. 2010), that climbing the automation ladder in Figure
2 might well improve operative performance but drastically
decrease the response to failures or mistakes. Hence, to meet
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Figure 3: RADAR interface showing decision support for the human commander making plans in response to a fire.
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the requirement of naturalistic decision making, we observe
a downward trend in automation levels (in Figure 2) as we
progress from data acquisition and analysis (which machines
are traditionally better at) to decision making and execution.

Interpretation & Steering For the system to collaborate
with the commanders effectively, in the context of a mixed-
initiative setting,1 it must have two broad capabilities - Inter-
pretation and Steering (Manikonda et al. 2014). Interpreta-
tion means understanding the actions done by the comman-
ders, while steering involves helping the commanders to do
their actions. Interpretation involves, for instance, extraction
of sub-goals from the task description, to be addressed in
the situation, or recognizing what specific activities that the
commanders are up to, in order to reason with its own inter-
nal model, or recognizing the plans that the commanders are
intending to execute, to provide automatic explanation and
awareness to the collaborating agents. Steering can involve
suggesting new actions to guide the planning process. This
can be done either by generating a plan based on the avail-
able resources, and outstanding sub-goals and constraints,
or by recognizing the plans of the commanders and help-
ing them fulfill their goals. Steering also involves assessing
the currently executed plan and critiquing parts of it, which
might need further attention due to insufficient resources or
failed execution. For example, the system can throw an alert
that the plan under construction fails due to insufficient beds
available at the chosen hospital, and provide possible alter-
natives to the commander. The current system mainly ad-
dresses the decision making aspect, which requires the abil-
ity to both interpret as well as steer effectively, even as it
situates itself in the level of automation it can provide in the
context of naturalistic decision making.

RADAR
We will now go into details of the RADAR interface and its
integration with planning technologies to enable different
forms of proactive decision support. A video walkthrough
demonstrating the different capabilities of the system is
available at https://goo.gl/YunA21.

The Fire-fighting Domain For the remainder of the dis-
cussion, we will use a fire-fighting scenario to illustrate our
ideas. The domain model used by the system (assumed to
be known and available for a well-defined task such as this)
is represented in PDDL (McDermott et al. 1998) and is as-
sumed to be very close, if not identical, to that of the expert
in the loop. The scenario plays out in a particular location
(we use Tempe as a running example) and involves the local
fire-fighting chief, who along with the local police, medical
and transport authorities, is trying to build a plan in response
to the fire using the given platform augmented with decision
support capabilities. The PDDL domain file and a problem
scenario can be found at https://goo.gl/htrmLQ.

Overview of the Interface The interface consists of four
main components, as shown in Figure 3. This includes -

1Note that traditional notions of mixed-initiative planning rep-
resent systems where the human helps the automated planner. In
our case, it is the opposite where the planner helps the human.

(1) Planning Panel - This is the most critical part of the sys-
tem. It displays the plan under construction, and provides
the human with abilities to reorder / add / delete actions
in the plan, validate a partial plan, fix a broken plan, sug-
gest new better ones, provide explanation on the current
one, etc. by accessing the options at the top of the panel.
This will be the primary focus for our discussion in the
upcoming sections.

(2) Goal Selection Panel - This lets the user set high level
goals or tasks to be accomplished (e.g. “Extinguish fire at
BYENG”). Once a goal is selected, the system sets up the
corresponding planning problem instance given its knowl-
edge of the then state of the world. It also summarizes this
task to the user by displaying the necessary landmarks to
be attained in order to achieve the goal.

(3) Map Panel - This provides visual guidance to the deci-
sion making process, thereby reducing the information
overload and improving the situational awareness of the
human. The map can be used to point of areas of in-
terest, location and availability of resources, routes, etc.
Note that this part of the UI can also be used to display
other relevant information for different domains by sim-
ply changing a template file.

(4) Resource Panel - The human commanders have access
to the resources that they can use to control the fire out-
break (as can be seen from the tables to the right in Fig.
3). For example, the police can deploy police cars and
policemen, and the fire chief can deploy fire engines, lad-
ders, rescuers, etc. if available. They can also acquire or
update the availability of these on the go by clicking on
the red crosses or green tick respectively, if the system’s
data is stale. The system also highlights parts of the table
that are relevant to the plan currently under construction.

These plans are valid, of course, depending on the avail-
ability of the appropriate resources introduced above, and
certain actions can only be executed when the required pre-
conditions are satisfied. For example, in order to dispatch
police cars from a particular police station, the police chief
needs to make sure that the respective police station has
enough police cars and it has been notified of the demand
previously. Given this knowledge, RADAR keeps an eye on
the planning process of the human commanders to make sure
that the partial plan build is likely to succeed in achieving
the goal going forward. In the following sections, we will
see how it can achieve this, using techniques from the auto-
mated planning community, yielding different stages of au-
tomation of the decision support process.

Information Acquisition
For effective decision support, the importance of data cannot
be understated. While on one hand it must support proactive
data retrieval and integration capabilities, it must also have
abilities to generate and recognize plans, and support the
decision-making tasks of the commanders, with the help of
this data. Thus, PDS can be seen to consist of two main ca-
pabilities, data driven decision-making and decision driven
data-gathering. We call this the Data-Decision Loop.
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Figure 4: (1) RADAR knows that in the environment, the commander needs to inform the Fire Station’s Fire chief before
deploying big engines and rescuers. In green, Adminfire’s Fire Chief is alerted to deploy big engines from Admin Fire Station.
In red, Mesa fire stations’ Fire Chief is alerted to deploy rescuers from Mesa Fire Station. (2) The human’s model believes that
there is no need to inform Fire Chiefs and questions RADAR to explain his plan. RADAR finds these differences in the domain
model and reports it to the human. The human acknowledges that before deploying rescuers one might need to alert the Fire
Chief and rejects the update the Fire Chief needs to be alerted before deploying big engines. (3) In the alternative plan suggested
by RADAR, it takes into account the humans knowledge and plans with the updated model. (4) Clicking on ‘Explain This Plan’
generates no explanations as there are none (with respect to the current plan) after the models were updated.

In the current version, we assume that RADAR acquires
relevant information regarding the availability of resources
pertaining to the task at hand. We will also assume that the
system can keep track of drifting models (Bryce, Benton,
and Boldt 2016) in the background. This firmly places it in
Degree 7 of automation. While we cannot expect the human
to gather data for the system (after all, the entire purpose
of the system is to reduce the cognitive load due to an ex-
cess of data), the system can ostensibly choose to acquire
but not display the irrelevant information at all, and climb
up to Degree 10. In the current version of the system, we do
not integrate any data sources yet, but instead only focus on
the decision making aspect in the next upcoming sections.
We discuss briefly about the salient challenges of the infor-
mation acquisition in the section on future works.

Information Analysis
Now, we will present details on how the proposed system
can leverage planning technologies to provide relevant sug-
gestions and alerts to the human decision maker with regards
to the information needed to solve the problem. The plan-
ning problem itself is given by Π = 〈M, I,G〉 where M

is the action model, and I,G are the current and goal states
representing the current context and task description respec-
tively. Finally the plan π = πe ◦πh ◦πs is the solution to the
planning problem, which is represented as concatenation of
three sub-plans - πe is the plan fragment that the comman-
der has already deployed for execution, and πh is the set of
actions being proposed going forward. Of course, these two
parts by themselves might not achieve the goal, and this is
the role of the plan suffix πs that is yet to be decided upon.
We will demonstrate below how planning technology may
be used to shape each of these plan fragments for the better.

Model Updates. As an augmentable system, the system
must support update to the rules that govern its decision sup-
port capabilities, as required by the user, or by itself as it
interacts with the environment. Of course, such models may
also be learned (Zhuo, Nguyen, and Kambhampati 2013) or
updated (Bryce, Benton, and Boldt 2016) on the fly in cases
of failures during execution of πh or actions of the human in
response to excuses generated from the system, or to account
for model divergence due to slowly evolving conditions in
the environment. Further, the system should be, if possible,
act in a fashion that is easily understandable to the human in
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Figure 5: Once a goal is selected, the problem file is gener-
ated and the landmarks are computed to help the commander
be on track to achieve the goal.

the loop (Zhang et al. 2016), or be able to explain the ratio-
nale behind its suggestions if required (Kambhampati 1990;
Sohrabi, Baier, and McIlraith 2011). Finally, such explana-
tions need to conveyed in a fashion that is easily received or
understood by the human user (Perera et al. 2016).

Often a key factor in these settings is the difference in the
planner’s model of the domain, and the human expectation
of it. Thus, a valid or satisfactory explanation may require a
model reconciliation process where the human model needs
to be updated, as shown in Figure 4 in order to explain a
suggestion. Here the system performs model-space search to
come up with minimal explanations that explain the plan be-
ing suggested while at the same time not overloading the hu-
man with information not relevant to the task at hand (refer
to (Chakraborti et al. 2017) for more details). Note that here
the human has the power to veto the model update if (s)he
believes that the planner’s model is the one which is faulty,
by choosing to approve or not approve individual parts of the
explanation provided by the system. Thus, the system here
displays Degree 5 of automation.

Plan Summarization. As we mentioned before, when a
task or high level goal is selected by the human, RADAR au-
tomatically generates the corresponding planning problem
in the background, analyses the possible solution to it, and
highlights resources required for it to give the human an
early heads-up. It can, however, do even more by using land-
mark analysis of the task at hand to find bottlenecks in the
future. Briefly, landmarks (Hoffmann, Porteous, and Sebas-
tia 2004) are (partial) states such that all plans that can ac-
complish the tasks from the current state must go through it
during their execution, or actions that must be executed in
order to reach the goal. These are referred to as state land-
marks and action landmarks respectively. Clearly, this can be
a valuable source of guidance in terms of figuring out what
resources and actions would be required in future, and may
be used to increase the decision maker’s situational aware-
ness by summarizing the task at hand and possible solutions
to it in terms of these landmarks. In the current system, we
use the approach of (Zhu and Givan 2003) for this purpose.
Figure 5 illustrates one such use case, where the system au-
tomatically computes and displays the landmarks after the
human selects the goal, thus exhibiting characteristics of De-
gree 7 automation of information analysis.

Figure 6: RADAR does plan validation of a partial plan made
by the user and shows reasons as to why it is invalid.

Plan Validation Plan failure occurs when the plan frag-
ment πe that has already been dispatched for execution
and/or the sub-plan πh currently under construction are not
valid plans, i.e. δ(I, πe ◦ πh) |= ⊥. From the point of view
of planning, this can occur due to several reasons, ranging
from unsatisfied preconditions to incorrect parameters, to
the model itself being incorrect or incomplete. Errors made
in πh that can be explained by the model can be easily
identified using plan validators like VAL (Fox, Howey, and
Long 2005; Howey, Long, and Fox 2004), while errors in
πe should be used as feedback (context-sensitive) so that the
system, in looking forward, may have to re-plan (adaptive)
from a state s 6= δ(I, πe).

Of course, the goal itself may be unreachable given the
current state (for example, due to insufficient resources).
This can be readily detected via reachability analysis using
planning graph techniques. This is supported by most plan-
ners, including Fast-Downward (Helmert 2006). Once
the system detects a state with no solution to the planning
problem, apart from alerting the human to this situation it-
self, it can choose to suggest an alternative state I∗ where
a solution does exist, i.e. ∃π s.t. δ(I∗, π) |= G. This can
provide guidance to the human in how to fix the problem
in situations beyond the system’s control/knowledge, and
may be achieved using excuse generation techniques stud-
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Figure 7: The lack of big engines at all the fire stations results in an initial state for the planning problem from which no plan is
possible to achieve the goal of Extinguishing Big Fire at BYENG. RADAR reports this as a warning and suggests the minimal
number of resources the commander needs to gather to arrive at a start state from which a plan is actually possible.

ied in (Göbelbecker et al. 2010) and plan revision problems
(Herzig et al. 2014). We achieved this using a slightly modi-
fied version of the model-space search technique introduced
by (Chakraborti et al. 2017) - here the faulty model is re-
placed with a initial state with all resources available, and a
minimum distance to it is computed to guarantee feasibility.

Decision Selection
The decision selection process is perhaps closest to home
for the planning community. Referring back to our discus-
sion on naturalistic decision making, and the need for on-
demand support, we note that the system is mostly restricted
to Degree 3 and 4 of automation with respect to decision
selection. We will go through some salient use cases below.

Plan Correction or Repair In the event πh is invalid and
may be repaired with additional actions, we can leverage the
compilation pr2plan from (Ramı́rez and Geffner 2010)
for a slightly different outcome. The compilation, originally
used for plan recognition, updates the current planning prob-
lem Π to Π∗ = 〈M∗, I∗,G∗〉 using πh as a set of observa-
tions such that ∀a ∈ πh is preserved in order in the (optimal)
solution π of Π∗. The actions that occur in between such ac-
tions in the solution π to the compilation may then be used as
suggestions to the user to fix the currently proposed plan πh.
Figure 8 illustrates one such use case, demonstrating Degree
3 of automation - i.e. the system only complements the deci-
sion process when asked, and provides the human an option
to undo these fixes at all times. Note that since the deployed

actions are required to be preserved (and the suggested ac-
tions preferably so) when looking ahead in the plan genera-
tion process, we will use Π∗ for all purposes going forward.

Action Suggestions The most basic mode of action sug-
gestion would be to solve the current planning problem
Π∗ using an optimal planner such as Fast-Forward
(Helmert 2006) and suggest the plan suffix πs as the best
course of action. Of course, the actions suggested by the
commander in πh may themselves be part of a sub-optimal
plan and may thus be improved upon. Here we again use an
existing compilation from (Ramı́rez and Geffner 2010) for a
slightly different purpose than originally intended. Given a
known goal, we find out if the choice a ∈ πh is sub-optimal
using the difference in cost ∆ = C(π̂) − C(π) where π̂ is
the solution to the planning problem 〈M∗, I∗,G∗ + a〉 as
given by pr2plan. This is again shown in Figure 8.

Monitoring Plan Generation Of course (Ramı́rez and
Geffner 2010) may be used also for its intended purpose. In
cases where there are multiple ways to achieve the goal, and
the system is not aware of the user’s implicit preferences P ,
pr2plan can be used to compile the goal into G∗ ← G∗+P
and check for correctness or likelihood P (G|πe ◦ πh) of the
current hypothesis. This is implicitly used by RADAR in de-
termining the response to suggest or fix any hypothesis, as
described before. The lack of alternative goals or tasks in the
present context somewhat limit the scope of traditional goal,
as opposed to plan, recognition.

50



Figure 8: RADAR’s ‘Fix’ button does plan correction, provid-
ing action suggestions. The ‘Suggest’ provides actions and
plan suggestions to help achieve the goal.

Plan Suggestions One useful way of increasing the sit-
uational awareness of the human decision maker is to
make him/her aware of the different, often diverse, choices
available. Currently, when asked for alternative plans,
RADAR provides an optimal plan as a suggestion. This may
not be always desired. Specifically, with the existence of dis-
junctive landmarks (i.e. landmarks such that presence of any
one of them are sufficient for existence of a valid plan), just
alerting the commander of the landmarks may not be enough
to tell how they contribute to the planning choices. In such
cases, the concept of diverse plans (Srivastava et al. 2007;
Nguyen et al. 2012) and top-K plans (Riabov, Sohrabi, and
Udrea 2014) become useful. We are exploring avenues of
integrating these techniques into our current system.

Action Implementation
Going back to our previous discussion on naturalistic deci-
sion making, we reiterate the need to let the human decision
maker make the final call at execution time. In the case of

current system, the platform does not provide any endpoints
to external facilities and thus lies at Degree 1 of automation
in the Action Implementation phase. Some of these tasks can
however be automated - e.g. in our fire-fighting domain the
human can delegate the tasks for alerting police-stations and
fire-stations to be auto-completed. Thus RADAR can ostensi-
bly range from Degree 1 to a maximum of 6 in the final Ac-
tion Implementation phase. However, given how often such
systems have been known to fail to capture the exact con-
text and complexity of these scenarios, including some of
the mixed initiative schedulers from NASA, the final exe-
cution phase is often times just left to the human operators
completely, or at least firmly at the lower spectrum of the
automation scale. Recent attempts (Gombolay et al. 2015)
at learning such preferences in mixed-initiative schedulers
might provide interesting insights into climbing the automa-
tion levels at the final stage of decision support for planning,
without significant loss of control.

Conclusion and Future Work
In conclusion, we motivated the use of automated planning
techniques in the role of an assistant in the deliberative pro-
cess of an expert human decision maker, and provided a de-
tailed overview of our platform RADAR to demonstrate dif-
ferent ways this can be achieved. We also showed how these
capabilities complement the design principles laid out in the
human computer interface community for such softwares.
We look forward to conducting human studies with domain
experts to evaluate the effectiveness of the system.

For future work, integration of data sources remains one
of the key priorities. Although our system can provide infor-
mation on the resources useful to the plan, it can be more
proactive in providing information that might be needed
in the future, based on the plans it recognizes. We believe
a tight integration of the data-driven decision-making and
decision-driven data-gathering loop will be crucial to the
success of decision support systems such as RADAR.
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Abstract

In this paper, we introduce the problem of denoting
and deriving the complexity of workflows (plans, sched-
ules) in collaborative, planner-assisted settings where
humans and agents are trying to jointly solve a task. The
interactions – and hence the workflows that connect the
human and the agents – may differ according to the do-
main and the kind of agents. We adapt insights from
prior work in human-agent teaming and workflow anal-
ysis to suggest metrics for workflow complexity. The
main motivation behind this work is to highlight met-
rics for human comprehensibility of plans and sched-
ules. The planning community has seen its fair share of
work on the synthesis of plans that take diversity into
account – what value do such plans hold if their gener-
ation is not guided at least in part by metrics that reflect
the ease of engaging with and using those plans?

1 Introduction
The emergence of the Internet and application (app) cen-
tric service-oriented platforms for various kinds of consumer
tasks have resulted in an explosion in the interactions be-
tween humans and automated agents that assist them in
tasks. Given their large number, a formal measurement of
the inherent complexity of these interactions is desirable to
assist in the design of useful and efficient decision-making
algorithms and systems.

We present a usecase that illustrates the kinds of interac-
tions we are discussing – consider a person living in New
York who wants to book a travel itinerary for a short per-
sonal trip to Seattle. The workflow for planning this trip will
consist of a flight reservation, hotel reservation, and reser-
vation for local travel in the source and destination cities.
These bookings could each be made via websites, over a
dialog interface, via IoT interfaces, or manually over the
phone with a travel agency. Each communication modality
introduces its own constraints and complexity. We highlight
the workflow complexity in this specific example using Fig-
ure 1. Here, three action instances are shown for booking
a flight, a hotel, and local travel. The data artifacts are the
booking confirmations, whose variables constrain the other
actions in the workflow. In the workflow fragment that is
shown, local travel at the destination is most constrained as
it depends on the flight’s arrival time, as well as the location

of the hotel at the destination. In general, the flight booking
will result in dates (and times) which create a dependency
for the hotel reservation. Finally, flight and hotel reserva-
tions give the date and locations for which local travel needs
to be booked. The overall complexity of booking this short
leisure trip may differ from a business trip, where meeting
schedules have to be taken into account; and may further dif-
fer from an international trip where the processing of travel
documents has to be taken into account.

In such scenarios, automation faces two main challenges.
The first is the problem of knowledge acquisition and engi-
neering pertaining to the domain of interest – in the travel
scenario above, this knowledge would constitute the various
actions available to the agent to create a successful work-
flow, and the dependencies between those actions. This kind
of problem is the purview of the flourishing Knowledge En-
gineering for Planning & Scheduling (KEPS) community.
The second major problem is that of explaining the plan and
the interactions underlying it to the (human) user/consumer
of the plan. An important sub-problem in this is measuring
the complexity of the said interaction – without such mea-
sures, an automated system that is trying to aid in such in-
teractions will be unable to distinguish between and rank
workflows of vastly differing complexities that all achieve
the same goal. Complexity measures provide the ability to
rank the planner’s mediation in such scenarios, and allow
the planner to produce directed help that will enable easier
achievement of the user’s goals. We highlight this second
problem in this paper.

2 Prior Work
There is a rich body of work on workflow representation,
composition, and execution (van der Aalst and van Hee
2004). Over the past decade, there have been approaches
for semi or fully automated composition of workflows us-
ing planning that look at control and data driven issues (Sri-
vastava and Koehler 2003). However, much of this work is
in the context of single agent decision-making. There is no
prior work, to our knowledge, that characterizes the com-
plexity of workflows in a collaborative setting.

The planning community has also seen advances in the
problems of measuring the distance between plans (Roberts
et al. 2014; Goldman and Kuter 2015), and generating di-
verse plan alternatives (Nguyen et al. 2012). However, very
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Book-Flight <Source> <Destination > <Date> <Time><Price>

Book-Hotel <Location@Destination> 
<Start-Date> <Start-Time> 
<End-Date> <End-Time> 
<Price>

Book-Local-Travel <Location@Source>
<Airport@Source> 
<Travel-Source-Date> 
<Travel-Source-Time-MinusMargin>  
<Price>

Book-Local-Travel <Airport@Destination>
<HotelLocation@Destination>
<Travel-Destination-Date> 
<Travel-Destination-Time-PlusMargin>  
<Price>

Flight 
Reservation

Hotel 
Reservation

HotelLocation

Start-Date,
Start-Time

Destination-Date,
Destination-Time

Source-Date,
Source-Time

Local Travel
Destination

Local Travel 
Source

Figure 1: Actions, data (parameters) and constraint variables in a small travel example.

little research has focused on exactly what the different met-
rics that go into creating diverse plans should be. Such work
has mostly looked at measures (cost, duration, robustness,
etc.) that treat the plan as an artifact disconnected from hu-
mans, who must execute, understand, or participate in that
workflow. Humans typically perceive complexity both from
interaction issues, as well as from the actions in a workflow.
Indeed, there is a long history of prior work from a linguistic
and structural perspective for the former (Liao et al. 2017).
However, there has been no focus on creating a class of met-
rics that attempt to define the complexity of a plan or work-
flow. We intend this paper as a challenge to the community
to do exactly that.

3 Workflow Complexity: Example Usecases
We described the Travel Booking usecase in Section 1; here,
we describe some other collaborative examples to highlight
complexities that an automated decision making system can
help reduce.

Scheduling Meetings A common collaborative task in the
workplace is deciding a meeting time and venue, given a
topic. This mundane task is complicated by the fact that
there are different roles for participants in the meeting, hard
and soft scheduling constraints, and limited access to partic-
ipant information which changes with context. In such sce-
narios, setting up a meeting between colleagues who are at
the same level organizationally may be more complex than
one convened by the head of the organization – in the former
there may be more hard constraints and various alternatives
have to be considered, while in the latter everyone is likely
to mark their (conflicting) constraints as soft. An automated

agent (Cranshaw et al. 2017) can play a crucial role in im-
proving the efficiency of meeting scheduling1. Specifically,
it can verify participants and roles, identify potential con-
flicts from existing schedules, ask (the fewest number of)
people to re-visit their constraints, and explain alternative
time-slots.

Evaluating Hiring Choices Another workplace exam-
ple is the evaluation of a set of candidates by a multi-
disciplinary panel of experts. The experts may evaluate the
candidate’s technical skills, non-technical (soft) skills, orga-
nizational fit, HR concerns, career progression etc. Depend-
ing on the role, the process may involve many interview
rounds, evaluations, and discussion. Further complexity is
added by variations in the evaluation scales, disagreements
among the experts, and relative weights of selection criteria.
An automated agent can make this process more efficient
by formalizing the contributions of the experts, focusing the
team on key decision factors, retrieving relevant candidate
data, eliminating human bias, and providing justifications to
the stakeholders when asked.

Human-Robot Teaming Planning for human-robot team-
ing (HRT) (Talamadupula et al. 2010; Chakraborti et al.
2016b) considers the problem of humans and robots in goal-
oriented environments, and the planner’s mediation through
control of the robotic agent. HRT scenarios usually involve
extensive interaction between the human and the robot. Au-
tomated mediation can make the teaming more efficient in

1This is distinct from the actual scheduling problem, which is
to find a satisfying assignment given everyone’s constraints – our
problem considers the workflow of scheduling the meeting.
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USECASE
METRIC

NT IT AD FO Com EC PC MC

Travel Booking L H H H H H M M
Scheduling Meetings H M M L H L H H
Evaluating Hiring Choices L H H L H M H H
Human-Robot Teaming M H M M L M L L
Medical Treatment H L L L H M H H
Personal Finance M M H L H H H H

Table 1: Workflow complexity metrics and their footprint; H - High, M - Medium, L - Low; Metrics described in Section 4.

a number of ways, including coordination to reduce com-
munication (Talamadupula et al. 2014), and restricting the
number of agents that a human has to deal with.

Deciding a Medical Treatment Plan Another illustrative
collaborative task, from the area of health, is deciding a
medical plan for a person given a health condition (initial
state) and a desirable new condition (goal state). For exam-
ple, if a pregnant person has to be operated on for a planned
child birth, specialists of the concerned medical fields need
to coordinate specific procedures; schedule it with relevant
nursing staff; complete insurance formalities; and reserve re-
sources like the operation room. Some of these processes
follow standardized or regulated workflows, while others are
case-specific depending on patient risk factors, etc. Further-
more, the data in such scenarios must be controlled due to
confidentiality and regulatory reasons (Leyens et al. 2017).
An automated decision maker can help by focusing the at-
tention of the medical team on ensuring compliance, exam-
ining risk factors and medical requirements, and avoiding
costly mistakes that may foreclose future remedial actions.

Personal Finance Increasingly, personal finance has
emerged as an area of great opportunity as well as challenge
for decision making systems and decision assistants. Use-
cases like buying a house, saving for retirement, or filing
one’s taxes are important decisions with long-term life im-
plications. A number of characteristics must be considered
including the various alternatives available, their costs (both
immediate and future), legal and compliance issues, etc. A
specific example of such a decision making scenario is an
automated tax assistant – such an assistant must be aware of
the tax code which prescribes various rules and regulations
that must be followed, and must recommend the best tax
plan while optimizing a number of metrics including mini-
mizing amount paid as tax, minimizing the complexity of the
plan, and maximizing compliance (to minimize the chances
of audits and fines).

4 Metrics
We now list some metrics from prior work that can be
adapted to the problem we consider. Chakraborti et al.

(2016a) provide a framework for studying and evaluating in-
teraction between human and robot team-members in goal-
oriented environments. Some useful metrics that can be
adapted from that work are:

1. Neglect Tolerance (NT): How long the agent is able to
perform well without human intervention.

2. Interaction Time (IT): Time spent in communication.

3. (Robot) Attention Demand (AD): Measures the atten-
tion demanded by the agent.

4. Fan Out (FO): Communication load on the humans; pro-
portional to the number of agents.

5. Compliance (Com): How well the actions of an agent
convey its intention to comply.

Separately, Keller et al. (2007) consider the problem of
workflow complexity relating to configuring Information
Technology (IT) infrastructure, e.g. a web application. They
define configuration complexity as “the complexity of carry-
ing out a configuration procedure as perceived by a human
system manager”; and track information along three dimen-
sions, which are (respectively) analogous to control flow,
data flow, and space complexity in software engineering:

6. Execution Complexity (EC): Number of actions and
context switches.

7. Parameter Complexity (PC): Number of parameters
used by actions, and their usage variations.

8. Memory Complexity (MC): Number of configuration
values which need to be remembered along the workflow,
and over the actions.

These measures are all relevant from a human-agent collab-
oration perspective, as they relate to the effort needed to re-
view a plan and to gain human trust.

5 Discussion
In Table 1, we present the above metrics juxtaposed with
their footprint in the collaborative domains introduced in
Section 3. The footprint itself is quantized into three cate-
gories – High (H), Medium (M), and Low (L). We address
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a number of points in relation to the table. First and fore-
most, the table should be read column-wise, for each metric.
Second, the High/Medium/Low annotations denote the typ-
ical or average-case profile for that metric in the respective
usecase, and may vary depending on the specific problem
instance etc.

Third, these values do not represent any intrinsic good-
ness – high neglect tolerance is good in scenarios like
Human-Robot Teaming, because it shows that the automated
agent is more independent; while low compliance might be a
bad thing if the human wants constant confirmation or reas-
surance from the agent, like in medical treatment scenarios.
However, these can easily switch depending on the domains
and users in question: medical professionals may want a less
independent agent (lower neglect tolerance), while meeting
scheduling agents may not be required to show all the steps
of their work. A general rule-of-thumb is that if the metric
profile of a particular usecase is reflected in the plans that a
planner produces, overall team success is more likely.

We now discuss the metrics from Table 1 in the context of
creating new metrics that define the complexity of plans or
workflows in terms of the interaction issues, as well as the
complexity of the actions that constitute those workflows.
The first set of metrics informally represent interaction is-
sues: Neglect Tolerance (NT), Interaction Time (IT), and
Attention Demand (AD) are related to each other, and are
concerned with the demands that a workflow imposes on the
user/human via the agent’s roles in the workflow. Similarly,
IT and Fan Out (FO) offer a measure of the communica-
tion that is expected from the user, and how many different
agents the user must accommodate (the assumption being
that communication load increases as a function of the num-
ber of such agents). The second set of metrics represents
the complexity of the actions in the workflow itself: while
a scenario that involves scheduling meetings might feature
a number of possible alternative workflows and each action
might consist of multiple parameters, other scenarios like
human-robot teaming might in fact feature relatively fewer
alternatives and action parameters. These are all important to
track in the final plan that is generated for the human-agent
team, since they contribute to the difficulty of explaining the
workflow and its constituent parts (as required).

6 Conclusion & Future Work
We conclude by reiterating that the metrics we discuss in this
paper differ from the traditional metrics used in the planning
community, which apply specifically to actions and goal-
states; the optimal profiles for these metrics are instead at
least partially determined by the usecase in question. We
would like to use these as a starting point in ultimately cre-
ating metrics that explain the complexity of the workflow
cumulatively from the perspective of the agent that must un-
derstand, explain, or execute it. Our hope is that this paper
will spur action in two directions: (1) the post-processing of
plans from existing planners to take cumulative plan com-
plexity metrics into account; and eventually, (2) the creation
of new planners that can handle such complexity metrics di-
rectly in the state-space search and plan synthesis processes.
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