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Foreword 
Application domains that entail planning and scheduling (P&S) 
problems present a set of compelling challenges to the AI planning and 
scheduling community that from modeling to technological to 
institutional issues. New real-world domains and problems are becoming 
more and more frequently affordable challenges for AI. The 
international Scheduling and Planning Applications woRKshop 
(SPARK) was established to foster the practical application of advances 
made in the AI P&S community. Building on antecedent events, 
SPARK'17 is the eleventh edition of a workshop series designed to 
provide a stable, long-term forum where researchers and practitioners 
can discuss the applications of planning and scheduling techniques to 
real-world problems. The series webpage is at 
http://decsai.ugr.es/~lcv/SPARK/ We are once more very pleased to 
continue the tradition of representing more applied aspects of the 
planning and scheduling community and to perhaps present a pipeline 
that will enable increased representation of applied papers in the main 
ICAPS conference. We thank the Program Committee for their 
commitment in reviewing. We thank the ICAPS'17 workshop and 
publication chairs for their support.  
The SPARK’17 Organizers 
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Abstract 
We present an approach to planning rover traverses in a 
domain that includes temporal-spatial constraints. We are 
using the NASA Resource Prospector mission as a reference 
mission in our research. The primary objective of this mis-
sion is to assess the feasibility of in-situ resource utilization 
(ISRU) on the lunar surface. One of the mission operations 
constraints is that the rover is generally required to avoid 
being in shadow, because it is solar-powered. This require-
ment depends on where the rover is located and when it is at 
that location. Such a temporal-spatial constraint makes trav-
erse planning more challenging for both humans and ma-
chines. We present a mixed-initiative traverse planner which 
helps address this challenge. 

This traverse planner is part of the Exploration Ground 
Data Systems (xGDS), which we have enhanced with new 
visualization features, new analysis tools, and new automa-
tion for path planning, in order to be applicable to the Re-
source Prospector mission. The key concept that is the basis 
of the analysis tools and that supports the automated path 
planning is reachability in this dynamic environment due to 
the temporal-spatial constraints. 

 Introduction 
We address the problem of mission planning for a robotic 
mission that includes temporal-spatial constraints. We are 
investigating this problem within the context of the NASA 
Resource Prospector (RP) mission. Within this problem 
domain, there are two important mission requirements that 
define temporal-spatial constraints on rover operations: (1) 
avoiding spending time in shadows, because the rover is 
solar-powered and (2) maintaining direct-to-earth commu-
nications with the operations center (unless the rover is 
idle), because mission operations requires tight interaction 
with the ground. Both of these constraints depend on where 
the rover is located and when it is at that location. 
 These dynamic constraints make traverse planning more 
challenging. We have enhanced an existing traverse plan-
ner to address these challenges. The traverse planner is part 
of the Exploration Ground Data Systems (xGDS), devel-
oped at NASA Ames Research Center. We have enhanced 
the xGDS traverse planner by adding new reachability 

analyses and automated path planning, and we have devel-
oped a variety of new visualizations to present the geo-
graphical and temporal data. In the following sections, we 
first present background on the Resource Prospector mis-
sion and xGDS and then describe these new enhancements 
and how they can be employed to manage domains with 
temporal-spatial constraints. 

Resource Prospector Mission 
Resource Prospector (RP) is a robotic mission currently in 
formulation by NASA's Advanced Exploration Systems 
Division within the Human Exploration and Operations 
Mission Directorate. The mission’s primary objective is to 
demonstrate the feasibility of in-situ resource utilization 
(ISRU) on the lunar surface (Andrews, et al., 2014, 
Colaprete, et al., 2014). In service of this objective, the 
mission will characterize the distribution of water and oth-
er volatiles at the lunar poles, with the goal to map the dis-
tribution of surface and subsurface hydrogen-rich materi-
als. The areas of interest fall into one of four categories, 
defined by their thermal character and ice stability depth: 

• Dry: Temperatures in the top meter expected to be 
too warm for ice to be stable 

• Deep: Ice expected to be stable between 50-100 
cm of the surface 

• Shallow: Ice expected to be stable within 50cm of 
surface 

• Surface: Ice expected to be stable at the surface; 
i.e., within a Permanently Shadowed Region, 
(PSR) 

The ISRU processing demonstration will use a hydrogen 
reduction process to extract oxygen from lunar regolith, 
demonstrating hardware in the lunar environment and cap-
turing, quantifying, and displaying water generated from 
ISRU processing. 

To keep costs low, the mission will use a solar-powered 
rover and will use direct-to-earth (DTE) communications 
to uplink commands and downlink telemetry and science 
data. Solar power will require landing and traversing in 
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sunlit areas to maintain power levels, and periodically op-
erating on battery power to collect measurements of vola-
tiles in permanently shadowed regions. DTE communica-
tions are required because there are no plans for a concur-
rent orbital mission and adding an orbiting communication 
relay is cost prohibitive. Staying in sunlight and in line-of-
site of the Earth are temporal-spatial constraints. A third 
operations constraint is that the rover must avoid slopes 
that are over fifteen degrees.  This is a spatial constraint, 
with no temporal aspect. 

Mission planning for RP involves constructing a tour 
from a lunar landing site and landing time to a number of 
sites, or stations, at which activities are performed (e.g., 
payload operations), such that the rover is kept safe and the 
mission objectives are met.  

A landing ellipse is considered safe if it satisfies the 
slope constraint and satisfies the sunlight and comm con-
straints with a temporal margin of forty-eight hours; that is, 
the two constraints are satisfied at the time of landing and 
remain satisfied throughout the next forty-eight hours. A 
station is considered safe if its location satisfies the slope 
constraint and from the arrival time until the departure time 
(i.e., throughout the station dwell time), the location satis-
fies the sunlight and comm constraints. A traverse between 
two stations is considered safe if each location on the path 
satisfies the slope constraint and satisfies the sunlight and 
comm constraints at the time the rover is expected to be at 
that location. 

xGDS Overview  
The Exploration Ground Data Systems (xGDS), synthesiz-
es real world data from sensors, robots, ROVs, mobile de-

vices, etc., and from human observations into rich, digital 
maps and displays for planning, analysis, and decision 
making. xGDS is a highly collaborative, interactive suite of 
web software. xGDS has been employed in rover field tests 
and analog missions, e.g.,  the Mojave Volatiles Prospec-
tor, MVP (Heldmann, et al., 2016).  

The map server is a repository for organizing multiple 
layers of map data. xGDS users can manage a tree of map 
layers, including simple markup, kml imports, and com-
plex tiled geoTIFF data layers.  Figure 1 shows an image 
of the map server displaying slope data for an area of the 
lunar north pole. 

The traverse planner is a map based tool for manually 
composing traverse plans that involve a sequence of sta-
tions or places where specific science tasks should be per-
formed. Figure 2 shows an image of a traverse plan with 
six stations. At each station the user can specify the se-
quence of activities to be executed at that location. In this 
case, the sum of the activity durations determines the sta-
tion dwell time. The resulting traverse plans may be passed 
to a rover for automated execution, or may be printed for 
use by an astronaut, ROV, or submersible pilot. 

With the unenhanced version of this system (e.g., the 
version used for the MVP field test), constructing traverse 
plans for the RP mission, that satisfy the sunlight and 
comm temporal-spatial constraints, is a manually intensive, 
tedious, and error-prone process. In order to validate a 
traverse between two stations, the user has to examine each 
time frame of the sunlight and comm data and check that 
the rover’s location on the traverse path (given the speci-
fied speed) is safe at that time.  Similarly, in order to vali-
date the activity sequence at a station, the user has to man-
ually determine that the station’s location is safe at each 
time frame within the station’s dwell time.   

Figure 1: Map of the degree of slope in xGDS map server; the 
key on the left indicates blue: 0-5, green: 5-10, yellow: 10-15, 
and red: 15-20. 

Figure 2: Six-station traverse plan in xGDS traverse planner. 
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In the following sections we describe the key capabili-
ties we have added to xGDS to make the planning process 
easier and safer via new visualization capabilities and new 
automation in terms of reachability analyses and path gen-
eration.  The new automation capabilities reduces the bur-
den on the user and makes the xGDS traverse planner an 
effective mixed-initiative system. 

Visualization Enhancements 
For this project, we have adapted xGDS’ map server and 
traverse planner to meet the needs of the RP mission. For 
planning lunar traverses, we have configured the map serv-
er to render lunar maps in polar stereographic projection, 
using base map data synthesized at Arizona State Universi-
ty from LROC imagery (http://lroc.sese.asu.edu/).  

In order to help address the difficulties of manually 
evaluating the temporal-spatial constraints, we have added 
the capability to display time varying interactive map lay-
ers; for example, to show the sunlight and comm coverage 
maps over time. As a user composes and edits a traverse 
plan, the sunlight and comm coverage maps automatically 
update to display the conditions at the currently selected 
time. Figures 3a and 3b show the sunlight maps at the arri-
val time of station 2 and 3, respectively; locations are 
white if the visible area of the Sun’s disc is over the 80% 
threshold. All the layers can be toggled to appear or not. In 
addition, the degree of transparency of each layer can be 
controlled in order to allow users to  simultaneously view 
geographic features and other map data. 

We have also added plots of scalar data along the trav-
erse plan against time (see Figure 9). We have incorporated 
several relevant data layers representing ice stability depth, 
slope, elevation, and water equivalent hydrogen, in order to 
help the user evaluate the suitability of a site for meeting 
the science objectives. As users compose and edit traverse 
plans, they can see detailed specific values over time in the 
plots and correlate them with positions in the map.  

These new visualization capabilities increase the user’s 
situation awareness of the dynamic lunar environment, and 

enable a richer, more informed interaction with the mixed-
imitative system. 

Mixed-Initiative Enhancements 
In this section, we describe xGDS enhancements involving 
tools that facilitate the mixed-initiative construction of a 
mission plan in the face of temporal-spatial constraints. 
The three new tools we discuss are: (1) reachability from a 
station within N hours, (2) temporal bounds on station arri-
vals and departures, and (3) automated generation of de-
tailed paths between stations. These tools are user-invoked 
within the xGDS traverse planner interface.  The response 
time of each tool varies depending on the specific inputs, 
but xGDS imposes a maximum of ten seconds.  If this limit 
is exceeded, computation is halted and an error message is 
reported to the user. 

A landing location and time can be chosen such that 
several areas of scientific interest will be reachable within 
the duration of the mission. Once that has been determined, 
a finer grained analysis of the reachability information will 
show temporal intervals when a location of scientific inter-
est can be visited. Generally, there may be a disjunction of 
such intervals depending on the movement of shadows 
across the moonscape. We use the earliest interval to pro-
vide an earliest and latest arrival time. By repeating the 
reachability analysis, station to station, we can assemble a 
tour of science sites of interest.  

Mission Planning Example 
For the purpose of this example, we assume that the land-
ing site (Start station) and landing time has been deter-
mined.  Furthermore, we assume that the checkout activi-
ties at the Start station take four hours.  
 Our initial task is to choose a location for the next sta-
tion.  The first enhancement involves a tool that supports 
station selection by computing a reachability map.  The 
inputs to this tool include the current station’s location and 
departure time, and the maximum number (N) of hours to 
compute reachability. The tool determines all the locations 

Figure 3a: Sunlight at arrival time of station 2 (blue circle). Figure 3b: Sunlight at arrival time of station 3 (blue circle). 
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that can be reached from the current station in N hours or 
less, taking into account the dynamic and static constraints. 
This is depicted in the xGDS traverse planner as shown in 
Figure 4, where N is 96.   

In addition to the reachability map, Figure 4 also shows 
an ice stability depth map layer, which helps identify re-
gions of scientific interest. The colors in this layer indicate 
the following depth ranges in meters: green is 0-0.3, yel-
low is 0.3-0.7, red is 0.7-1.0, black is greater than 1.0. This 
ability to overlay different maps in xGDS allows the user 
to take into account both reachability and scientific value 
when selecting candidates for the next station. 
 Station 1 is chosen and activities are added in order to 
acquire and analyze a subsurface sample; these activities 

take a total of four hours. The reachability computation is 
repeated, based on the departure time from station 1, to 
help choose the End station, as depicted in Figure 5. 
Though the shapes of the two reachability maps look simi-
lar, they cover a different region of the terrain, as indicated 
by the differences in the ice stability depth map layer. Fig-
ure 6 shows the resulting three-station traverse plan, along 
with the ice stability depth layer, which is rendered partial-
ly transparent to let the terrain layer be seen as well. This 
provides a small candidate tour.   

Based on the reachability analyses, we are ensured that 
this tour is safe; that is, the dynamic and static constraints 
are never violated.  However, given the temporal uncer-
tainties of execution, we would like to know how robust 
the tour is.  One important measure of robustness is how 
much temporal margin does the traverse plan have, that is, 
how much flexibility does the tour have in terms of arrival 
and departure times?   

Our next xGDS enhancement provides a tool for compu-
ting earliest arrival and latest departure time bounds that 
must be adhered to in order to satisfy the dynamic con-
straints. There are two variants of these bounds.  One in-
volves the interval of the earliest and latest times one can 
be at a station without directly violating a shadow con-
straint.  These are called the local bounds; they are im-
portant for ensuring the safety of the rover.  The second 
variant involves the  earliest arrival and latest departure 
times needed in order to ensure the  completion of the tour.  
Essentially, this involves propagating the local bounds 
from each station to the other stations in the tour, taking 
into account the traverse constraints.  We call these the 
global bounds.  These help to determine the feasibility of 
the tour. As an example usage of this tool, Figure 7 shows 
the computation of both the local and global bounds for 
station 1.  

 In the display of the traverse plan in xGDS, the straight-
line traverse segments between two stations denote the 
existence of safe paths between the station pairs, based on 
the reachability analysis. At some stages of mission plan-

Figure 4: Reachability within 96 hours from the first station. 

Figure 5: Reachability within 96 hours from the second station. 

Station	1: 
Local	Earliest	Arrival:										2020-09-22T14:00:00.000Z 
Local	Latest	Departure:							2020-09-24T18:00:00.000Z 
Global	Earliest	Arrival:								2020-09-23T20:00:00.000Z 
Global	Latest	Departure:					2020-09-24T16:00:00.000Z 

Figure 7: Local and global temporal bounds for station 1. 

Figure 6: Three station traverse plan. 
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ning, this level of abstraction may be sufficient. However, 
when more detailed evaluation of the traverse plan is need-
ed, then a specific detailed path between every pair of sta-
tions must be generated. This is the case, for example, if 
the power generated by the solar panels and the power con-
sumed by the rover must be computed in order to ensure 
that the battery state of charge adheres to mission flight 
rules throughout the tour. 

In the unenhanced xGDS, it was the user’s responsibility 
to manually construct the detailed paths, using the multiple 
layers of visual data in order to satisfy safety constraints, 
e.g., slope. In a domain like RP, this task becomes quite 
difficult and error-prone.  Hence, our final enhancement 
involves a path planning tool that automatically generates a 
detailed path between two given stations. The xGDS user 
invokes the automated path planner on a subsequence of 
the traverse plan by specifying the start and end stations. 
The returned best paths found are then displayed in the 
xGDS traverse planner (Figure 8). 

All these tools make use of a more basic analysis of 
reachability from one or more specified locations at a start 
time to one or more specified locations at an end time.   In 
effect, this computes a compressed representation of all of 
the valid paths from any of the locations at the start time to 
any of the locations at the end time.  More precisely, for 
each of the intermediate location/time pairs, it determines 
whether any such valid path passes through that location 
and time. This analysis directly  supports the reachability 
map tool.  In this case, the initial set of locations consists 
of a single location: the starting point. 
 For the temporal global bounds, we apply the analysis to 
each successive pair of locations, for example, from the 
Start station to station 1, and from station 1 to the End sta-
tion.  In both cases, we have a single start location/time 
and can search forward in time to find the earliest time that 
the end location is reached.  This gives the lower global 
bound for the destination. We then take the latest local 
bound for the last station and do successive backwards 
reachability analyses to provide the global upper bounds. 
 For path planning, the reachability data from a single 
starting point provides, in effect, a perfect minimum-time 
heuristic for path planning backwards from the destination 
location at its earliest reached time, since all backward 
paths from there lead to the start location in the same 
amount of time.  These candidate paths can be searched to 
select the best solution based on additional criteria. 

The next two subsections go into further detail about 
how the reachability maps are computed and how the de-
tailed paths are automatically generated. 

Computing Reachability 
The majority of the RP mission involves traverse plans that 
are restricted to sunlit areas. There may be short sorties to 

shadowed areas but for our calculations we are requiring 
traverse plans to be in sunlight. The input data includes a 
set of images, or frames, covering the entire period of in-
terest taken at 2-hour intervals with each pixel representing 
a 20 by 20 meter area. The individual pixels in the frames 
have boolean values representing a threshold level of suffi-
cient sunlight. There is also a threshold on slopes that are 
considered traversable but this restriction can be effective-
ly combined with the boolean sunlight frames. 
 Traverse plans are also constrained by communication 
(comm) availability. This restriction differs from sunlight 
in that the rover is permitted to be at a sunlit location with 
no comm, but may not move until comm is restored. The 
absence of comm requires the rover to be idle. 

Consider a particular frame Fi and the next frame Fi+1. A 
location in Fi+1 is reachable from a location in Fi if there is 
a path between the locations that is entirely in sunlight in 
both frames. The path cannot be longer than is feasible 
given the top speed of the rover. Furthermore, the path 
must be continuously in comm. Conservatively, the sun 
conditions need to be satisfied in both Fi and Fi+1 to deter-
mine a valid path; thus, we intersect them to get a com-
bined frame Gi that restricts the paths. Similarly, we inter-
sect the comm conditions. 
 The no-comm path between frames is straightforward 
since it involves the rover staying at the same location. 
Otherwise we require both sun and comm for the entire 
path between frames. We form an intersected sun/comm 
frame to enforce this requirement. Rather than directly 
computing valid paths between successive frames, we con-
struct intermediate subframes where the time slice between 
subframes is just long enough to permit possible movement 
to an adjacent pixel. For example, since the pixels are 20 
meters apart and assuming a top speed of 80 meters per 
hour, then the subframes are 15 minutes apart and there are 
8 subframes between the original 2 hour frames. The 
sun/comm frames provide gate conditions for the transition 
between subframes. The criterion for movement between 
subframes is that only paths of length 0 or 1 in pixel length 
are allowed. For simplicity, we exclude diagonal moves; 
thus, the rover can move up, down, left or right, or stay in 
the same location, depending on the values of the bits in 
the combined sun/comm frame. 

In our current examples, each frame constitutes a 2176 x 
2176 boolean array with 108 successive frames covering 

Figure 8: Results of automatic generation of two paths. 
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the time period of interest. With such a large space of val-
ues, it is useful to take advantage of bit-array compression 
and significant parallelism. When the initial set of loca-
tions is represented by a bit-array, the movements can be 
simulated by up-shift, down-shift, left-shift, and right-shift 
operations. The shifted and original location bit-arrays can 
then be ORed together and the resulting bit-array ANDed 
with the sun/frame condition bit-array to get a bit-array of 
the reached locations. 
 In our implementation, we represent the bit-arrays as 
C++ Standard Template Library (STL) bitsets in row-
major order. Then a 2-D up-shift operation can be simulat-
ed by a 1-D shift of 2176 bit locations in the bitset, and 
similarly for a down-shift. The 2-D left-shift operation is 
essentially the same as a single 1-D shift. However, it has 
to be modified to ensure that zeros are shifted into the 
rightmost bit-positions in each row. This approach takes 
advantage of the low-level parallelism in the standard im-
plement of STL bitsets. For example, the boolean and shift 
operations can be performed on 64-bit word chunks as sin-
gle CPU operations. In the future, we would like to inves-
tigate adding high-level parallelism by using some form of 
GPU acceleration. 

Generating Detailed Paths 
Our approach to automatically generating traverse paths 
uses a sampling approach, called Heuristic-Biased Sto-
chastic Sampling (HBSS). The sampling is performed with-
in a space of minimum-time paths, which is determined via 
the reachability analysis. This method was chosen for two 
reasons: (1) it is space-efficient, compared to algorithms 
that guarantee an optimal solution (e.g., A*), and (2) it is 
well-suited to problems that have a large, not well charac-
terized search space, such that an effective greedy heuristic 
is difficult to determine. 

Heuristic-Biased Stochastic Sampling was first intro-
duced in (Bresina, 1996), and it encompasses a family of 
search techniques that combine some degree of heuristic 
guidance and some degree of stochastic search, with 
greedy search and unbiased random search being extreme 
members. Within HBSS, the desired balance between heu-
ristic adherence and exploration in the search space is de-
termined by specifying a bias function and a ranking func-
tion. The ranking function partitions the heuristic's range 
into equivalence classes and determines the magnitude of 
the quality differences between classes. The bias function 
is applied to each choice’s rank to determine its weight. A 
stronger bias tends to follow the heuristic's advice more 
often and a weaker bias tends to explore farther off the 
greedy trajectory in the search tree. The accuracy of the 
search heuristic is an important factor in choosing the bias 
function to use; typically, the less accurate the heuristic, 
the weaker the bias should be. Another important factor is 

the amount of solution generation time available; if there is 
not much time available, then exploration must be limited. 

For our path planning approach, we use a version of 
HBSS called Multi-Bias HBSS. Instead of using the same 
bias function on each sample, a set of bias functions are 
given and used alternatively. This method makes the re-
sults less dependent on guessing the best bias to use. 

 The inputs to the path generation tool are the following. 
• The start time for the plan. 
• The rover maximum speed. 
• A sequence of stations, each associated with 

the dwell time at the station. 
• The end time of the mission. 

The solution is a sequence of position and time pairs (pj, tj), 
that satisfies the constraints, starts at the traverse plan start 
time, dwells at each station as specified in the traverse 
plan, and the traverses do not exceed the maximum speed.  

Another solution requirement is “survivability until the 
end of the mission”. After reaching the end station and 
dwelling there as specified, the rover must be able to sur-
vive (i.e., satisfy all the constraints) until the mission end 
time. This survival might be achievable by staying at the 
end station until the end time, but typically will involve 
moving to avoid shadows. Where the rover ends up at mis-
sion end time is not constrained. 

From a position, we restrict the rover movements to the 
four adjacent positions: up, down, left, or right; or the rov-
er can stay in the same position. Since the pixels (or posi-
tion cells) are 20 meters apart, the time delta between tj and 
tj+1 is 20 / maximum speed. However, not all of these next 
pairs are valid. Hence we want to restrict the sampling 
space to only valid moves, which is exactly what the 
reachability analysis determines. 

 The following is how we use reachability to restrict the 
sampling space to the solution space. We first perform the 
reachability forward-sweep from the start station at the 
plan start time, through all the stations, respecting the 
dwell times, then forward in time until the mission end 
time. This determines the earliest arrival time at each sta-
tion and determines all the valid intermediate position-time 
pairs. For each sample, we then start at the end station and 
work backwards to the start station. For each consecutive 
pair of stations, we find a valid path between (pj+1, tj+1) and 
(pj, tj) where the times represent the station’s earliest arri-
val time. The search finds earliest time paths; that is, it 
does not consider paths where the rover stays in the same 
position longer than necessary. 

At each step in this process, we select from the valid 
neighbors determined by the reachability forward-sweep. 
Thus, by using the reachability analysis to restrict the sam-
pling space, we ensure that every path generated is valid. 
The next section describes how this sampling search is 
guided and how the solutions are evaluated in order to re-
turn the best solution found among the samples. 
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In order to instantiate HBSS for a specific problem do-
main, we define the following: a heuristic function, a rank-
ing function, a bias function (or multiple bias functions in 
this case), and a solution evaluation method. Our path 
planning heuristic is Manhattan distance. The ranking 
function groups choices in the same equivalence class only 
if they have the same heuristic score, where better score 
means lower rank. As mentioned, we use multiple bias 
functions; they are all polynomial functions, of the rank, 
with exponents of -1 through -10. 

 Our solution evaluation method uses two criteria. The 
primary criterion is the minimal distance travelled, based 
on the sum of the Manhattan distance between all consecu-
tive pairs of position-times. The secondary criterion is 
based on temporal margin within the reachability space. 
The temporal margin at a position-time is how much long-
er the rover can stay at that position and still be able to 
survive until the mission end time. The metric we are using 
is the minimum of the margin over all position-time pairs 
in the path, where the largest minimum margin is pre-
ferred. This secondary criterion is only used to break ties 
with respect to the distance criterion. To generate each of 
the two paths in Figure 8, 1, 000 samples were used. 

Concluding Remarks 
In this section, we mention some related work, describe 
future directions we are pursuing, and conclude. 

Related Work 
An early system that integrated activity planning, resource 
management, and traverse planning is TEMPEST (Tomp-
kins, Stentz, Wettergreen, 2004). The system employed the 
Incremental Search Engine (ISE), which is a graph-theory 
based, heuristic search algorithm that supports planning in 
high-dimensional spaces.  

There is other ongoing work based on the RP problem 
domain; see, for example, (Cunningham, et al., 2014). To 
cope with the large search space, they perform a temporal 
compression of the dynamic terrain data and use an hierar-
chical planning approach. A low-resolution planner com-
putes feasible paths based on pre-computed results from a 
high-resolution planner. The search is carried out by an A* 
approach. The state space is reduced via the temporal com-
pression and by using state dominance to prune states dur-
ing the search. A similar approach is taken in (Otten, et al., 
2015), which uses a combination of connected components 
analysis to find interconnected regions in space and time, 
and A* to find optimal routes within those components. 

Another effort that addresses similar constraints is that 
of Peng and Hehua (2013). The constraints include sun-
light and earth visibility, as well as constraints on thermal, 
energy, and storage resources. Their approach collapses all 

constraints to temporal ones and solves a time-lining prob-
lem. The approach is applied to a lower latitude site, where 
the lighting constraint can be modeled as temporal where 
the sun elevation is above a threshold elevation angle.  

The Surface Exploration Traverse Analysis and Naviga-
tion Tool (SEXTANT) is a related system, because not only 
does it automatically generate paths using multi-criteria 
optimization, it also has been integrated with xGDS as part 
of the Minerva Architecture (Deans, et al., 2017) employed 
in the Biologic Analog Science Associated with Lava Ter-
rains (BASALT) project at NASA. A unique aspect of 
SEXTANT (Johnson, et al., 2010) is that in addition to 
being applicable to rover traverse planning, it is well-suited 
to human traverse planning as it models human consuma-
ble resources as well as thermal load. This is important for 
BASALT as the explorations are carried out by geologists 
(simulated astronauts). The traverse optimization in SEX-
TANT is accomplished by an A* search algorithm. 

 Fink, et al., (2015) present a related automated path 
planner called Rover Traverse Optimization Planner 
(RTOP), which employs a multivariate stochastic optimiza-
tion framework using Simulated Annealing. The criteria 
they have considered include 3D Euclidian distance, trav-
erse roughness, and slope-change. However, they have not 
dealt with dynamic constraints like shadow avoidance. 

Future Work 
One of the aspects that we would like to improve is the 
solution evaluation within the HBSS path generation. 
There are a number of other solution quality measures that 
could be considered. Currently we are using terrain slope 
as one of the hard constraints, but we could also use slope 
in an “ease of travel” metric in the solution evaluation. 

 Another important solution quality consideration is en-
ergy; the solution path affects both the amount of energy 
generated by the solar panels and the energy consumed by 
the traversal. However, this is a non-trivial metric to mod-
el, and would increase the computational time of HBSS. 

We are pursuing the support of more complex activity 
planning. The xGDS system does support generation of 
simple sequential activity plans at the stations. This facility 
has been sufficient for the many rover field tests and ana-
log mission that employed xGDS; however, some deploy-
ments require more complex forms of activity plans and 
activity planning capabilities. We are still evaluating 
whether the RP mission is one of those domains. 

As a first step towards  achieving this objective, we have 
integrated xGDS with a powerful activity planning system, 
called OpenSPIFe, which is derived from the Ensemble 
system that has been deployed on NASA missions (Phoe-
nix, MSL, LADEE), as well as on the ISS and analogue 
missions. The Scheduling and Planning Interface for Ex-
ploration (SPIFe) provides a rich environment for creating 
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activity plans. OpenSPIFe also includes a back-end, pow-
erful constraint reasoning system, called Dynamic Europa, 
which detects temporal violations and state resource viola-
tions, and provides a mixed-initiative facility for resolving 
these violations. For more details see (Morris, et al., 2011). 

Conclusion 
In this paper, we presented a mixed-initiative traverse 
planning approach applicable to NASA’s Resource Pro-
spector mission. We enhanced the xGDS traverse planner 
with new visualization capabilities, new reachability maps 
from a station, new temporal bounds computations on sta-
tion arrivals and departures, and new automated detail path 
generation between stations (Figure 9). The primary plan-
ning challenge inherent in this mission is dealing with 
temporal-spatial constraints involving maintaining line-of-
sight for communications and shadow avoidance. The tem-
poral-spatial concept of reachability is key in supporting 
both the human user in the mixed-initiative construction of 
traverse plans and in supporting the HBSS algorithm. 

The RP mission is still in the early stage of planning and 
design, and the work reported here is part of an ongoing 
research project. We are in frequent communication with 
members of the RP operations team and science team to 
facilitate technology transfer to the mission and to help 
focus our research on area that would most benefit the mis-

sion. We plan to collect feedback from the RP mission 
team, as part of our comparative evaluation of these two 
system architectures, in order to help determine which one 
is the best fit for the mission. 
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Abstract

Cooperative multi-agent planning is an understudied but im-
portant area of AI planning due to the increasing importance
of multi-agent systems. In this paper, we make the case for
using collaborative construction as testbed for cooperative
multi-agent planning. Planning for single agents is already
difficult due to the large number of blocks and long plans.
Planning for multiple agents is even more difficult since it
needs to reason about how to achieve a high degree of par-
allelism without agents obstructing each other even though
many agents operate together in tight spaces. In previous
research, we developed a first (domain-dependent, centralized
and non-optimal) multi-agent planning method for this do-
main. Here, we explain the advantages of using collaborative
construction as multi-agent planning domain, formalize the
planning problem and relate it to existing planning problems
in the hope that other researchers will adopt it as testbed for
cooperative multi-agent planning.

Introduction
Cooperative multi-agent planning is an important area of
AI planning due to the increasing importance of multi-
agent systems. For example, teams of agents are more
fault-tolerant and allow for more parallelism than single
agents. Multi-agent planning promises to coordinate agents
much more efficiently than alternative coordination strate-
gies, such as — for example — behavior-based, stigmergy-
based or market-based methods, which are typically very
myopic. Yet, cooperative multi-agent planning is currently
understudied. For example, only two out of 20 sessions
at the International Conference on Automated Planning

⇤This paper re-uses a small amount of text from our previously
published feasibility studies at ICAPS and AAMAS. We thank
Marcello Cirillo, Tansel Uras and Liron Cohen for their suggestions
and helpful discussions, Tansel Uras and Liron Cohen also for
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paper, her interest in our project and her encouragement. Our
research was supported by NSF under grant numbers IIS- 1319966
and IIS-1409987 and ONR under grant number N00014-09-1-
1031. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the sponsoring
organizations, agencies or the U.S. government.
Copyright c� 2017. All rights reserved.

and Scheduling 2016 were on distributed and multi-agent
planning.

In this paper, we make the case for using collaborative
construction as testbed for cooperative multi-agent plan-
ning. Building on our previous research (Kumar, Jung, and
Koenig 2014; Cai et al. 2016), we suggest to simulate the
Harvard TERMES robots, actual robots that were inspired
by termites. Among many other species of animals, ter-
mites are capable of building mounds that are much larger
than themselves. Inspired by termites and their building
activities, the Harvard TERMES project investigated how
multiple robots can cooperate to build user-specified three-
dimensional structures much larger than themselves (Pe-
tersen, Nagpal, and Werfel 2011). The agents need to build
ramps to reach high places and avoid obstructing each
other. Currently, the TERMES robots coordinate using local
behavior-based and stigmergy-based rules, which make it
impossible for them to construct complex structures. Plan-
ning is required, even for single agents, to build structures
effectively since they need to build ramps to reach high
places, for example when building towers. Ramps consist of
many blocks and are time-consuming to build. Thus, agents
need to plan carefully when and where to build ramps and,
once built, how to utilize them best. Planning for single
agents is already difficult due to the large number of blocks
and long plans. Planning for multiple agents is even more
difficult since it needs to reason about how to achieve a high
degree of parallelism without agents obstructing each other
even though many agents operate together in tight spaces.
Furthermore, single agents no longer have to carry blocks
all the way to their destinations since agents can hand over
blocks to each other. For example, they can form bucket
brigades to transport blocks. Ideally, one would like to plan
for a large number of agents, such as one hundred agents or
more.

Advantages of Collaborative Construction
Advantages of using collaborative construction as testbed
for cooperative multi-agent planning include: The TERMES
robots are very simple to simulate and allow for determin-
istic and symbolic planning. Robotics domains are often
continuous domains with a substantial amount of sensor
and actuator uncertainty, while AI planning is often studied
in the context of symbolic domains without uncertainty.
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Collaborative construction fits the latter assumptions well.
For example, the TERMES robots move on the blocks and
the environment is thus automatically discretized into square
cells. The TERMES robots use hardware features to achieve
close-to-perfect execution. For example, a white cross on
a black background of each block helps them to track
both their position and orientation. Moreover, a circular
indentation on each block helps them to turn in place without
accumulating drift. Collaborative construction is thus a good
domain for demonstrating the applicability of AI planning
to robot planning, which will help to bridge the current
gap in planning between AI and robotics. Collaborative
construction pushes the state-of-the-art of AI planning but is
not too difficult. There is a potential progression of research
from centralized planning for single agents, via centralized
planning for multiple agents to decentralized planning for
multiple agents. At the same time, collaborative construction
is also rich in structure that can be exploited for efficient
and effective planning. In particular, spatial constraints,
different from temporal constraints, are an understudied but
very important area of AI planning due to the increasing
importance of physical agents, such as robots, that operate in
tight spaces. Collaborative construction subsumes some pre-
viously studied planning problems with spatial constraints.
For example, parallelism comes with the overhead of having
to coordinate multiple agents so that they neither collide
with each other nor block each other. This introduces com-
binatorial problems akin to multi-agent path finding. Multi-
agent path finding is concerned with multiple agents having
to navigate effectively in tight spaces (Sharon et al. 2015;
Wilt and Botea 2014), such as spaces with long narrow
corridors where agents cannot pass each other. Multi-agent
path finding is often studied in the context of automated
warehouse domains, such as the Amazon fulfillment cen-
ters (Wurman, D’Andrea, and Mountz 2008), but is also
relevant for collaborative construction since ramps are time-
consuming to build and thus will typically be so narrow
to not let two agents pass each other. Overall, we expect
research on collaborative construction to yield insights into
spatial multi-agent planning that go well beyond collabora-
tive construction.

Hardware System
Our description of the TERMES hardware system follows
(Petersen, Nagpal, and Werfel 2011; Werfel, Petersen, and
Nagpal 2011; 2014), see Figure 1.1 It consists of small au-
tonomous mobile robots and a reservoir of passive “building
blocks,” simply referred to as “blocks.” The robots gather
blocks from the reservoir to collaboratively build a user-
specified structure. The robots are roughly of the same size
as the blocks. Yet, they can manipulate these blocks to build
structures that are much larger and taller than themselves.
They do so by stacking the blocks onto each other and
building ramps to scale to greater heights.

The robots are equipped with four small whegs that allow
for different kinds of locomotion using the same action

1See www.eecs.harvard.edu/ssr/projects/cons/termes.html for
more information.

of simply driving forward. The whegs allow the robots to
move on level ground, climb up one block (to reach higher
levels) and climb down one block (to reach lower levels)
without any additional hardware or software capabilities,
making this a reliable operation without complicated low-
level control and allowing one to focus on high-level plan-
ning. The robots can navigate on a partially built structure
(or the ground) without losing track of where they are or
falling down. They are equipped with an arm and a gripper
to facilitate picking-up, carrying and dropping-off blocks,
one at a time. Mechanical features of the blocks also help
the robots to perform these operations reliably with the use
of only one actuator. One case where actuation is often not
sufficiently accurate, which we ignore in the formalization
below, is that it is difficult for robots to drop off a block
directly between two other blocks (Petersen, Nagpal, and
Werfel 2011).

Formalization of Collective Construction
We are given a start configuration and a desired goal con-
figuration in form of user-specified 2D matrices of non-
negative integers, referred to as workspace matrices. The
cells of the matrices represent physical locations on a grid
frame of reference, and the non-negative integers represent
the heights of the towers (that is, vertical stacks of blocks)
that need to be constructed by stacking blocks at those cells.
(A height of zero means no tower, represented by a missing
number in our figures.) Thus, the configurations do not have
blocks that rest only partially on top of other blocks nor
completely enclosed spaces, such as rooms in a house. As
an example, consider an empty start configuration and a goal
configuration that represents a castle that consists of a tower
of height three surrounded by a wall of height one, as shown
in Figure 2(d).

At any intermediate stage, the top of a tower is called
reachable if and only if an agent, starting from the ground
level, can reach the top of that tower by repeatedly turning
left, turning right and driving forward. Turning left and
right turns the agent 90 degrees in place. Moving the agent
forward moves it to the neighboring tower in front of it as
long as the agent moves at most one block up or down.
Each agent can carry at most one block. The agent can pick
up a block from the top of a tower if and only if there
is a neighboring tower (in one of the four main compass
directions) of height one less, the top of which is reachable,
because it can then move to this neighboring tower and pick
up the block. The agent can drop off a block on top of a tower
if and only if there is a neighboring tower of equal height,
the top of which is reachable, because the agent can then
move to this neighboring tower and drop off the block. The
problem is to build a user-specified structure with a given
number of agents.

State-of-the-Art of Collective Construction
Currently, the TERMES robots coordinate using local
behavior-based and stigmergy-based rules (Petersen,
Nagpal, and Werfel 2011), which make it impossible
for them to construct complex structures. There has
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Figure 1: The TERMES system consisting of robots, blocks and the reservoir [figure courtesy of (Petersen, Nagpal, and Werfel
2011)].

been a fair amount of theoretical work on collective
construction with different assumptions, including
– but not limited to – (Jones and Mataric 2004;
Grushin and Reggia 2008; Napp and Klavins 2010;
Yun and Rus 2010). Many of these models are abstractions
that do not model real hardware and often also make
additional simplifications to allow either for a theoretical
analysis or the development of simple planning methods.

Existing Planning Problems
The collective construction problem has similarities to the
blocksworld and logistics problems, both of which have
extensively been used in planning competitions (McDermott
2000). The blocksworld problem is concerned with building
towers of blocks. The constraints are due to the vertical
arrangements of blocks since only the top block of each
tower can be accessed. How the blocks are moved does not
impose any constraints, except that only a given number of
blocks can be moved at the same time. The logistics prob-
lem, on the other hand, is concerned with moving objects to
given cities. The constraints are due to how objects can be
moved from city to city, given by the transportation options
and their capacities. The spatial arrangement of objects
does not impose any constraints. Planning researchers have
also studied combinations of the blocksworld and logistics
domains (Ghallab, Nau, and Traverso 2016) where both
the spatial arrangement of objects and how they are moved
imposes constraints, for example, in the context of moving
containers in container terminals.

Collaborative construction imposes more constraints than
the blocksworld, logistics or container terminal problems
since blocks can be picked up from the tops of towers only
when certain spatial conditions hold, blocks can be put down
on tops of towers only when certain spatial conditions hold,
and they need to be carried from their pick-up locations
to their drop-off locations along spatially-feasible paths.
This presents a variety of issues not present in the existing
planning problems. For example, ramps of many blocks
need to be built to satisfy the spatial conditions, resulting
in long plans with many objects — which makes planning

very time consuming already for a single agent. Collective
construction with multiple agents is even more difficult since
one needs to figure out how to achieve a high degree of
parallelism even though the state space grows exponentially
in the number of agents and multiple agents can easily
obstruct each other in tight spaces.

Feasibility Study
No planning methods existed for collaborative construction
with agents that correspond to the Harvard TERMES robots.
We therefore considered it important to develop a planning
method for this domain in a feasibility study before advocat-
ing its use as testbed for cooperative multi-agent planning.
We assume in the following for simplicity that the reservoir
(that provides the blocks) is unlimited and that the start
configuration is empty, that is, all blocks are initially stored
in the reservoir.

One intuitive single-agent planning method, called the
tower-by-tower planning method, is to build the towers
one by one, starting from one of the corners, each time
constructing a ramp and then deconstructing it again. In
this approach, the agent needs to build a ramp consisting
of towers of heights h � 1, h � 2 . . . 1 to build a tower
of height h. The ramp is then deconstructed, resulting in
O(h2) total number of block (pick-up and drop-off) oper-
ations to build a tower of height h. This intuitive planning
method is correct, is complete, runs in polynomial time and
performs a polynomial number of block operations for any
user-specified structure. It demonstrates that any structure
can be built by one or more agents provided that there is
sufficient empty space around it. However, the tower-by-
tower planning method is not very effective even for simple
structures.

We therefore first developed a better single-agent plan-
ning method for this domain in a feasibility study. This
planning method attempts to minimize the total number
of block operations but is heuristic in nature, that is, is
not guaranteed to achieve its objective (Kumar, Jung, and
Koenig 2014). It is based on the idea of performing dynamic
programming on a tree that spans the cells of the workspace
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Figure 2: Shows an example of the phases of our planning
algorithm. (a) shows the empty workspace matrix, which
is the start configuration. (b) shows the workspace matrix
after Phase 1, which adds blocks. A ramp for the tower
and the tower itself have now been completely constructed,
while the wall has been partially constructed. (c) shows the
workspace matrix after Phase 2, which removes blocks. The
ramp has now been deconstructed. (d) shows the workspace
matrix after Phase 3 (goal configuration), which adds blocks.
The remainder of the wall has now been constructed, finish-
ing the goal configuration.

matrix and restricts the movements of the agent to the
edges of this tree. The use of dynamic programming allows
us to exploit common substructures and keep the number
of block operations small. We then generalized it to a
centralized multi-agent planning method (Cai et al. 2016).
In the remainder of this section, we discuss both our single-
agent planning method and its generalization.

Both planning methods operate on an undirected graph
constructed from the workspace matrix. Each vertex corre-
sponds to a cell, and each edge connects neighboring cells
in the four compass directions. A special vertex S represents
the reservoir and is connected to those vertices whose cells
are neighbors of the reservoir, for example, the vertices
whose cells are the boundary cells of the workspace matrix
(since an agent carrying a block to or from the reservoir must
cross the boundary of the workspace). The agents move on a
spanning tree of this graph, rooted at S, as shown in Figure
3. They build a user-specified structure in phases. They add
blocks to the structure in odd phases and remove blocks from
the structure in even phases.

Our single-agent planning method uses dynamic pro-
gramming on the spanning tree from its leaves to the root to
first decide on the heights of the towers in each cell and then
on the movements of the agent between the reservoir and the
cells where blocks need to be added or removed. Consider,
for example, a vertex in the spanning tree with two children

1

2

1

3

4

2 3 4 5

5

S
Figure 3: Shows the spanning tree used for the example.

during a phase where blocks are added to the structure. If
dynamic programming has decided that towers of heights
three and five are needed in the cells that correspond to the
first and second child (respectively) of the vertex, then it can
deduce that a tower of height four is needed in the cell that
corresponds to the vertex itself since this height is necessary
for an agent to put down the block that builds the tower of
height five in the cell that corresponds to the second child.
Details are given in (Kumar, Jung, and Koenig 2014), and an
example is shown in Figure 2.

Our single-agent planning method is correct, is complete,
runs in polynomial time and performs a polynomial num-
ber of block operations for any user-specified structure.
It yields, within seconds, construction plans for problem
instances with many blocks that require only 50-60 per-
cent of block operations compared to the tower-by-tower
planning method. However, our planning method can be
improved. For example, its plan quality crucially depends
on the spanning tree since the movements of the agent are
restricted to the edges of the spanning tree, which can result
in longer paths for the agent than necessary. One can find
a good spanning tree for a given goal configuration in at
least two ways: First, one can use heuristics for choosing
good spanning trees. For example, minimum spanning trees
on edge-weighted graphs can reduce the total number of
block operations if the weight of an edge is the absolute
value of the difference between the heights of the cells
in the goal configuration that corresponds to the vertices
it connects. (All edges neighboring S have weight zero.)
Intuitively, a minimum spanning tree for this edge-weighted
graph finds paths with minimum height variations in the goal
configuration. Second, local search methods in an outer loop
of our planning method can improve the initial spanning tree
further over several iterations. Details are given in (Cai et al.
2016).

Our single-agent planning method can easily be gener-
alized to multi-agent planning. Spanning trees allow for
some parallelism in movements since the block operations
carried out in the cells that correspond to the vertices of one
subtree do not affect the operations for another subtree. For
agents moving outside of their subtrees, one can exploit that
multi-agent path finding is easier on trees and with identical
agents (Yu and LaValle 2012). One simple technique to
simplify coordination and avoid deadlocks is, for example,
to move the agents in phases. All agents move along the tree
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from the reservoir during odd phases and to the reservoir
during even phases. Details are given in (Cai et al. 2016).

Conclusions
In this paper, we made a case for using collaborative con-
struction with agents that correspond to the Harvard TER-
MES robots as testbed for cooperative multi-agent planning.

We have developed a first multi-agent planning method
for this domain in a feasibility study. While elegant, it
has a number of disadvantages. For example, it is domain-
dependent, centralized, non-optimal, attempts to minimize
the total number of block operations (rather than, say, the
makespan, which is a more natural objective) and restricts
the movements of the agents to the edges of the spanning
tree, which can result in longer paths for the agents than
necessary. The spanning tree also limits the amount of
achievable parallelism for multiple agents. Agents can be as-
signed to different subtrees and then operate independently
within their subtrees but still need to coordinate outside of
their subtrees to avoid obstructing each other, for example,
when picking up blocks from the reservoir. Finally, single
agents do not have to carry blocks all the way to their
destinations since agents can hand over blocks to each other,
which our multi-agent planning method does not consider.
Domain-independent, distributed and/or optimal planning
raises a number of additional research issues that have not
been addressed yet.

A student project at Ben-Gurion University of the Negev
(Israel) recently encoded collaborative construction with the
TERMES robots in a MA-PDDL format (Kovacs 2012)
and used two existing (domain-independent) MA-STRIPS
planners from the 2015 CoDMAP competition on toy in-
stances that are much smaller than those that our (domain-
dependent) planning method has been applied to (Yogev
and Segal 2016). We predict that planning methods can be
developed that are more efficient and effective than the ones
existing one so far. Many different domain-dependent and
domain-independent planning methods with different ad-
vantages and disadvantages are imaginable, such as learning
a “ramp construction” macro to shorten the plan lengths and
make planning more efficient. Smart macros are needed in
this case since a crucial component of planning is to figure
out how to fit ramps into the available space and how to
amortize their construction and deconstruction effort among
several towers that need to be built.

References
Cai, T.; Zhang, D.; Kumar, S.; Koenig, S.; and Ayanian, N.
2016. Local search on trees and a framework for automated
construction using multiple identical robots [short paper]. In
Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 1301–
1302.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Grushin, A., and Reggia, J. 2008. Automated design of
distributed control rules for the self-assembly of prespecified

artificial structures. Robotics and Autonomous Systems
56(4):334–359.
Jones, C., and Mataric, M. 2004. Automatic synthesis
of communication-based coordinated multi-robot systems.
In Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS), 381–387.
Kovacs, D. 2012. Multi-agent extension of PDDL3.1. In
Proceedings of the ICAPS Workshop on the International
Planning Competition, 19–27.
Kumar, S.; Jung, S.; and Koenig, S. 2014. A tree-
based algorithm for construction robots. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
McDermott, D. 2000. The 1998 AI planning systems
competition. Artificial Intelligence Magazine 21(2):35–55.
Napp, N., and Klavins, E. 2010. Robust by composition:
Programs for multi-robot systems. In Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), 2459–2466.
Petersen, K.; Nagpal, R.; and Werfel, J. 2011. TERMES: An
autonomous robotic system for three-dimensional collective
construction. In Proceedings of the International Confer-
ence on Robotics: Science and Systems (RSS).
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Werfel, J.; Petersen, K.; and Nagpal, R. 2011. Distributed
multi-robot algorithms for the TERMES 3D collective con-
struction system. In Proceedings of the Workshop on
Reconfigurable Modular Robotics at the IEEE International
Conference on Intelligent Robots and Systems (IROS).
Werfel, J.; Petersen, K.; and Nagpal, R. 2014. Designing
collective behavior in a termite-inspired robot construction
team. Science 343(6172).
Wilt, C., and Botea, A. 2014. Spatially distributed multia-
gent path planning. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS).
Wurman, P.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9–20.
Yogev, E., and Segal, A. 2016. A new problem domain
for Classical MAS: 3D construction. Technical report, De-
partment of Information System Engineering, Ben-Gurion
University of the Negev. Supervisor: R. Stern.
Yu, J., and LaValle, S. 2012. Multi-agent path planning
and network flow. In Proceedings of the Workshop on
Algorithmic Foundations of Robotics (WAFR), 157–173.
Yun, S., and Rus, D. 2010. Adaptation to robot failures and
shape change in decentralized construction. In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA), 2451–2458.

 14



Optimizing Electric Vehicle Charging Through Determinization

Sandhya Saisubramanian and Shlomo Zilberstein and Prashant Shenoy
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA 01003, USA

{saisubramanian, shlomo, shenoy}@cs.umass.edu

Abstract

We propose a determinization based approach to optimize the
charging policies of an electric vehicle (EV) operating in a
vehicle-to-grid (V2G) setting. By planning when to charge
or discharge electricity from the vehicle, the long-term cost
of operating the EV can be minimized, while being consis-
tent with the owner’s preferences. For an EV operating under
price uncertainty caused by the dynamic pricing of electric-
ity, this problem needs to be solved on-the-fly. Therefore,
we model this problem as a Stochastic Shortest Path (SSP)
problem and employ a determinization technique to solve it.
Since it is hard to predict a priori the performance of a de-
terminization method on a given problem, we introduce the
notion of Lossless Determinization (LLD) that produces op-
timal action selection via determinization and present an ap-
proach that achieves lossless determinization by adjusting the
cost of actions to account for the ignored outcomes. We also
present Approximate Lossless Determinization (ALLD)—an
effective method for approximating the cost of actions based
on state features. We evaluate the performance of ALLD and
demonstrate its effectiveness on a range of settings for the
electric vehicle charging problem.

Introduction
Electric vehicles function primarily as consumers of elec-
tricity from the grid. However, recent developments in
cyber-physical systems allow electric vehicles to act as both
consumers and producers of electricity when connected to
a smart grid. Specifically in the Vehicle-to-Grid (V2G) set-
ting, connections are added to electric vehicles to allow the
flow of electricity from the vehicles to the smart grid, thus
enabling electric vehicles to act as consumers and producers
of electricity (Guille and Gross 2009; Kempton and Letendre
1997).

The efficiency of an electric vehicle largely depends on
its efficient battery charging schedule. Donadee and Ilic
model the EV charging problem under price uncertainty as
an MDP with continuous space of decision variables and
solve it using stochastic dynamic programming. The price
uncertainty is modeled using a Gaussian copula (Donadee
and Ilic 2014). Donadee, Ilic, and Karabasoglu model the
EV charging problem operating under price uncertainty with
stochastic driver behavior as an infinite horizon average re-
ward MDP. The price uncertainty is modeled using a Gaus-
sian copula and the MDP is solved offline using the value
iteration algorithm (Donadee, Ilic, and Karabasoglu 2014).

Ruelens et al. consider the stochasticity in the arrival and de-
parture time for a fleet of Plug-in Hybrid Vehicles (PHEVs)
and optimize the charging schedule for the fleet, using ap-
proximate policy iteration to minimize the cost (Ruelens et
al. 2012). Shi and Wong optimize the charging policies of
an EV operating under price uncertainty using Q-learning
technique (Shi and Wong 2011). Most researchers have fo-
cused on devising policies for EV charging in the traditional
setting only (Donadee, Ilic, and Karabasoglu 2014; Sor-
tomme and El-Sharkawi 2011; Vayá and Andersson 2012;
Donadee and Ilic 2014; Ruelens et al. 2012). Since electric
vehicles can charge and discharge electricity in a V2G set-
ting, it is possible to exploit this feature to further minimize
the long-term costs associated with battery charging (Ma et
al. 2012).

Hence, our objective is to optimize the charging schedule
for an electric vehicle that is parked and connected to a smart
grid in a V2G setting. By planning when to buy or sell elec-
tricity, the EV can devise a robust schedule for charging and
discharging that is consistent with the owner’s preferences,
while minimizing the long-term cost of operating the vehi-
cle. This problem needs to be solved quickly and on-the-fly
due to price uncertainty caused by the dynamic pricing of
electricity. Hence, we model it as a Stochastic Shortest Path
(SSP) problem.

Solving large SSPs is an active research area in automated
planning. Among the different techniques for solving SSPs
that have been explored, determinization has attracted sig-
nificant interest because it greatly simplifies the problem
and can quickly solve large SSPs on-the-fly. Determiniza-
tion ignores the stochastic transitions, leverages efficient off-
the-shelf classical planners to solve the corresponding deter-
ministic problem, and uses online replanning when an unex-
pected state is encountered. Since the policies for the EV
charging problem needs to be obtained on-the-fly, we solve
the EV charging SSP using determinization.

While determinization could be extremely effective, it is
often hard to predict when it will work particularly well as
policies produced via existing determinization techniques
do not guarantee bounded-optimal performance. Since the
value of the deterministic policy is a loose lower bound on
the optimal value of the SSP (i.e., the expected cost of reach-
ing the goal), a large difference between the values may be
indicative of the deviation of the optimal policy for the de-
terministic problem from the optimal policy for the SSP. We
call this difference the loss. For example, in the EV charging
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problem, a suboptimal policy for the SSP yielded by deter-
minization could be very expensive for the owner or could
even lead to battery depletion at an unfavorable time. There-
fore, it is beneficial to minimize the loss. When the loss
is zero, it means that action values according to the deter-
ministic policy match action values according to the optimal
solution of the SSP, allowing for an easy derivation of the
optimal actions. We examine the conditions under which
this can be achieved and, more broadly, how to minimize
the loss and thereby derive better policies.

To this end, our contributions in this paper are as follows,
1. We model the EV charging problem in a V2G setting as

an SSP and consider different cost function scenarios;
2. We present the notion of Lossless Determinization (LLD)

that requires the loss to be zero, and an approach called
Cost Adjustment for Lossless Determinization (CALLD)
that achieves zero loss by altering the costs of actions to
account for the cost of ignored outcomes;

3. Naturally, it is challenging to accurately estimate the
value discrepancy associated with each outcome and ad-
just the cost of each action without solving the original
SSP. Hence, we propose an approximation technique to
adjust the cost of actions in each state without calculating
the true value of the outcomes. Specifically, in a factored
MDP, the states are represented by feature vectors. The
Approximate Lossless Determinization (ALLD) exploits
the feature vector to derive an approximate cost for every
action in a state;

4. We test the performance of ALLD on a range of settings
for the EV charging problem.

We begin with a description of the model of EV charging
as an SSP in Section 2. Section 3 defines determinization
of an SSP and the notion of lossless determinization, and
explains the CALLD algorithm for achieving zero loss. In
Section 4 we describe our approach to approximating cost
adjustments. Section 5 summarizes the performance of our
approach in different settings of the EV charging domain.

The Model
By modeling the EV charging problem as an SSP, we aim to
derive a sequence of actions that would minimize the long-
term operational cost for an electric vehicle that is parked in
a parking lot (parked and connected to a smart grid). On av-
erage, vehicles are parked for about 96% of the time (Kemp-
ton and Tomić 2005). Therefore, we restrict the decision
process to the duration for which the vehicle is parked and
connected to a smart grid. We begin with a formal back-
ground description of an SSP followed by a detailed expla-
nation of modeling EV charging problem as an SSP.

Stochastic Shortest Path (SSP)
An SSP is a Markov Decision Process (MDP) with a start
state and goal or terminal states, where the objective is to
find a policy that minimizes the expected cost of reaching a
goal state from the start state. A Stochastic Shortest Path
MDP is denoted by the tuple M = hS,A, T, C, s0, SG

i,
where,

Figure 1: An illustration of EV charging problem

• S is a finite set of states;
• A is a finite set of actions with A

s

denoting the set of
actions available in state s 2 S;

• T : S⇥A⇥S ! [0, 1] is the transition function specifying
the probability of moving to a state s0 by executing an
action a 2 A

s

in state s 2 S, denoted by T (s, a, s0);
• C : S ⇥ A ! R+ [ {0} is the cost of executing action

a in state s, denoted by C(s, a). The cost of an action is
positive in all states except goal states, where it is zero;

• s0 is the initial state of the SSP, s0 2 S; and
• S

G

is the set of goal states of the SSP, S
G

✓ S.
The solution of an SSP is a policy ⇡ : S ! A that min-

imizes the expected cost of reaching a goal state. The Bell-
man equation defines a value function over states, V ⇤

(s),
from which the optimal policy ⇡⇤ can be extracted by:

V ⇤
(s) = min

a

Q⇤
(s, a) 8s (1)

Q⇤
(s, a) = C(s, a)+

X

s

0

T (s, a, s0)V ⇤
(s0) 8s, a (2)

where Q⇤
(s, a) denotes the optimal Q-value of the action a

in state s in the SSP M .

Modeling EV Charging Problem as an SSP
Since the decision process is restricted to the duration of
parking for the electric vehicle, we model the EV charging
problem as a finite horizon SSP with the parking duration as
the horizon H . We assume that the vehicle can charge to a
maximum limit (l

max

) which is either the battery capacity
(B

c

) of the vehicle or some maximum threshold set by the
vehicle owner, 0 < l

max

 B
c

. Since we consider the elec-
tric vehicle in a V2G setting, we assume that the vehicle can
discharge energy up to a minimum threshold level (l

g

) which
is either zero or some threshold set by the vehicle owner,
0  l

g

 B
c

. Assuming the parameters – l
max

, l
g

, H – are
known, we can model this problem as an SSP with:
• S is the finite set of states that an electric vehicle can be

in. It is defined by the tuple hl, t, d, pi ,where l denotes
the current level of charge of the vehicle, l 2 [0, l

max

],
t 2 H denotes the current timestep, d denotes the cur-
rent demand level for electricity, and p denotes the price
distribution of electricity.
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• A is the set of actions available to the vehicle. The vehicle
can charge (Ch+

i

) and discharge (Ch�
i

) at three different
speed levels, where i denotes the speed level, or remain
idle (NOP ). Therefore, there are seven actions in total,
A = {Ch+

1 , Ch+
2 , Ch+

3 , Ch�
1 , Ch�

2 , Ch�
3 , NOP}. A

s

denotes the set of actions available to the vehicle in state
s. The charging and the discharging actions are stochastic,
while the NOP action is deterministic.

• T : S ⇥A⇥ S ! [0, 1] is the transition function denoted
by Pr(s0|s, a). It denotes the probability of reaching state
s0 by executing action a in state s. The state transition
function also accounts for the demand level transitions
and the pricing distribution transitions, as each state en-
capsulates the current demand level and current pricing
distribution.

• C : S ⇥ A ! R+ [ {0} is the cost function denoted
by C(s, a, s0). It denotes the cost of executing action a
in state s and reaching state s0. The costs for charging
and discharging depend on the electricity pricing, and the
speed setting. The cost for a NOP action is a constant.
Based on real-world, the cost for discharging is modeled
as a negative value (since the user profits by selling elec-
tricity), the cost for charging is modeled as a positive
value (since the user has to pay for charging), and the cost
for NOP action is modeled as zero.

• s0 2 S is the start state. It it defined by the tuple
s0 = hl0, t0, d, pi, where l0 2 [0, l

max

], and t0 denote the
charge level of the vehicle and the time when the vehicle
is parked, respectively. t0 also denotes the beginning of
the decision process. d denotes the demand level at time
t0 and p denotes the price distribution at time t0.

• S
G

✓ S is the set of goal states. It is denoted by the
set of all states that match the tuple hl, t

g

, d, pi, where
l
g

 l  l
max

, and t
g

denotes the end of decision process
when the vehicle is unplugged from the smart grid. d de-
notes the demand level at time t

g

and p denotes the price
distribution at time t

g

.

The objective is to find a cost minimizing policy ⇡⇤
: S ! A

that maximizes goal reachability, given the schedule of the
vehicle owner. Figure 1 illustrates the EV charging problem.

Modeling Price Uncertainty
We consider four different types of cost functions that model
the price uncertainty in a progressively more realistic way.

• Case 1 : The cost of discharging is the negation of the cost
of charging and the costs are assumed to be known in ad-
vance. C(s, Ch�

i

, s0) = �C(s, Ch+
i

, s0), 8i, 8s, s0 2 S,
where i denotes the speed level for charging or discharg-
ing.

• Case 2: The cost of discharging is the negation of the
cost of charging plus a constant k. We again assume
that the costs are known in advance. C(s, Ch�

i

, s0) =

�C(s, Ch+
i

, s0) + k, k � 0, 8i, 8s, s0 2 S, where i de-
notes the speed levels for charging and discharging. When
k = 0, this case is the same as the previous case.

• Case 3: We assume that the cost of charging is known
in advance, but the cost of discharging varies dynamically
based on the actual level of demand. We assume that there
is a known distribution for the demand level fluctuation
based on the time of the day, with P (d0|d, t) denoting the
probability of demand d0 at time t if the demand at time
t�1 was d. P (C(s, Ch�

i

, s0) = r|t, d) denotes the proba-
bility of the discharge cost r for state s, given the demand
d at time t.

• Case 4: We assume that the cost of charging is known
in advance, but the cost of discharging varies dynami-
cally based on the pricing distribution, which in turn de-
pends on the current demand level. We assume that there
is a known distribution for the demand level and for the
pricing. For a price distribution p, P (p|t, d) denotes the
probability of the pricing distribution p at time t with de-
mand level d, and P (d0|d, t) denotes the probability of
demand d0 at time t if the demand at time t � 1 was
d. Given the demand d and the pricing distribution p,
P (C(s, Ch�

i

, s0) = r|t, d, p) denotes the probability of
the discharge cost r for state s.

Generally SSPs are defined with non-negative costs as this
would avoid any negative cost cycles. In a finite horizon
SSP, negative costs cycles cannot be formed because it is
not possible to transition to a state with a lower or equal time
step from the current state. Since the EV charging problem
described in this paper is modeled as a finite horizon SSP,
the negative costs in the model would not lead to negative
cost cycles.

Determinization of SSPs
A determinization yields a simplified variation of the SSP,
with deterministic transition function that can be solved
quickly using an off-the-shelf solver. Interest in deter-
minization increased after the success of FF-Replan (Yoon,
Fern, and Givan 2007) which won the 2004 IPPC, using the
Fast Forward (FF) technique to generate fast deterministic
plans (Hoffmann 2001). FF-Replan generates a determinis-
tic version of the problem and solves it using FF. If an un-
expected state is reached during plan execution, the process
repeats with the unexpected state as the initial state, until a
goal state is reached.

Following the success of FF-Replan, researchers have
proposed various methods to improve determinization.
Specifically, Robust FF (RFF) reduces the frequency of re-
planning by generating a plan for an envelope of states such
that the probability of reaching a state outside the envelope
is below some predefined threshold (Teichteil-Königsbuch,
Kuter, and Infantes 2010). HMDPP generates plans with
low probability of deviations using self-loop determiniza-
tion and using a pattern database to avoid dead ends (Keyder
and Geffner 2008). FF-hindsight uses hindsight optimiza-
tion to approximate the value function of the MDP by sam-
pling multiple deterministic futures that are solved using FF.
These efforts resulted in a rich collection of determinization-
based planning algorithms (Kolobov, Mausam, and Weld
2009; Yoon et al. 2008; 2010; Issakkimuthu et al. 2015;
Keller and Eyerich 2011; 2012).
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In the deterministic version of the SSP M , the start state
s0 and the goal states S

G

are unaltered. Hence, the deter-
ministic version M

d

of the SSP M is denoted by the tuple
M

d

= hS,A
d

, T
d

, C
d

, s0, SG

i, where, A
d

is the finite set of
actions (in this paper, A

d

= A), T
d

: S⇥A! S denotes the
deterministic transition function of M

d

and C
d

: S ⇥ A !
R+ [ {0} specifies the cost function of the deterministic
problem M

d

. Conventional determinization techniques do
not alter the cost function.

The optimal Q-value of M
d

is computed as follows:

Q⇤
d

(s, a) = C
d

(s, a) + V ⇤
d

(T
d

(s, a)) 8s 2 S, a 2 A
d

.
(3)

In general, a determinization may introduce dead ends
by ignoring an outcome that is crucial for goal reachabil-
ity, making the goal unreachable in some states. However, it
is possible to derive determinizations that preserve the goal
reachability (for example, by using heuristics to devise the
deterministic transition function that preserves goal reacha-
bility).

We define the loss of a determinization, l
d

, as the maxi-
mum difference between the optimal Q-value of actions in
the SSP M and the optimal Q-values in the determinized
problem M

d

.
Definition 1. The loss associated with a determinization M

d

of an SSP M is l
d

= max

s,a

|Q⇤
(s, a)�Q⇤

d

(s, a)|.

This difference is treated as a loss as it could potentially
cause the model to yield a policy that significantly deviates
from the optimal policy. As this could affect the cost of the
plan and goal reachability in many problems, it is beneficial
to minimize the loss. However, conventional determiniza-
tion techniques may have arbitrary non-zero loss, l

d

> 0.

Lossless Determinization
In this section, we describe a simple technique to modify the
cost function of M

d

such that the loss is provably zero.
Definition 2. A determinization is a lossless determiniza-

tion (LLD) when the corresponding loss is zero: l
d

= 0.

Note that solving a lossless determinization of a given
SSP guarantees that the selected actions are optimal for the
SSP.

We can achieve zero loss, l
d

= 0, by adjusting the cost of
actions in each state. The costs are modified for every (s, a)
pair to account for the values of the outcomes ignored by the
determinization. Consequently, the optimal Q-values of M

d

are equal to the optimal Q-values of M , reducing the loss to
zero. The process of arriving at a lossless determinization by
adjusting the cost of each action in every state is referred to
as Cost Adjustment for Lossless Determinization (CALLD).

Algorithm 1 describes a cost modification technique that
produces a lossless determinization. The input is the SSP
and a deterministic transition function, and the output is the
cost function for the determinized problem, C

d

. Line 3 is the
cost adjustment step, where V ⇤

(s0) is the optimal value of
the successor s0 and V ⇤

(T
d

(s, a)) is the optimal value of the

Algorithm 1: CALLD (M,T
d

)
1 foreach s 2 S do
2 foreach a 2 A

s

do
3 C

d

(s, a) 
P

s

0

⇣
T (s, a, s0)V ⇤

(s0)
⌘
+

C(s, a)� V ⇤
(T

d

(s, a)) ;
4 end
5 end
6 return C

d

successor in the deterministic transition function in the SSP
M . Since the cost adjustment in Algorithm 1 depends on
the difference between outcome values, the costs yielded by
CALLD algorithm may be negative. In general, in an infinite
horizon SSP, negative costs may lead to negative cost cy-
cles, affecting the validity of the SSP. Therefore, we discuss
the necessary and sufficient conditions under which CALLD
produces non-negative cost.
Proposition 1. The necessary and sufficient condition for
having non-negative costs in a CALLD, C

d

(s, a) � 0, is
that the deterministic transition function chooses outcomes
in M such that Q⇤

(s, a) � V ⇤
(T

d

(s, a)).

Proof. We consider each one of the implication directions:

Case 1:
⇣
Q⇤

(s, a)� V ⇤
(T

d

(s, a))
⌘
=)

⇣
C

d

(s, a)� 0

⌘

Assume Q⇤
(s, a) � V ⇤

(T
d

(s, a)). Using the definition of
Q-values (Equation (2)), we get:

C(s, a) +
X

s

0

⇣
T (s, a, s0)V ⇤

(s0)
⌘
� V ⇤

(T
d

(s, a)) � 0.

Substituting for C
d

(s, a) from Algorithm 1, we get
C

d

(s, a) � 0. Thus, Q⇤
(s, a) � V ⇤

(T
d

(s, a)) is a suffi-
cient condition for non-negative cost in CALLD.

Case 2:
⇣
C

d

(s, a)� 0

⌘
=)

⇣
Q⇤

(s, a)� V ⇤
(T

d

(s, a))
⌘

Assume C
d

(s, a) � 0. Substituting for C
d

(s, a) from Algo-
rithm 1,

C(s, a) +
X

s

0

T (s, a, s0)V ⇤
(s0) � V ⇤

(T
d

(s, a)).

Using the definition of Q-values, Equation (2), we get:

Q⇤
(s, a)� V ⇤

(T
d

(s, a)).

Hence, we conclude that the proposition holds.

In the case of a finite horizon stochastic planning problem,
negative cost cycles cannot be formed and therefore, satisfy-
ing the necessary and sufficient conditions for non-negative
costs in a CALLD is non-mandatory.
Proposition 2. CALLD produces a lossless determinization
when a deterministic transition function that preserves the
goal reachability is used.

Proof. We need to show that given an SSP M and its
determinization M

d

that preserves the goal reachability,
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the optimal Q-values in M
d

are equal to the Q-values
in M , Q⇤

d

(s, a) = Q⇤
(s, a), if the cost function C(s, a)

is modified to account for the outcomes ignored during
determinization.

Substituting for C
d

(s, a) from Algorithm 1 in Equa-
tion (3) and using Equation (2) we get

Q⇤
d

(s, a) = Q⇤
(s, a)� V ⇤

(T
d

(s, a)) + V ⇤
d

(T
d

(s, a)).

Since the cost adjustment is performed for every (s, a)
pair and the determinization preserves goal reachability,
V ⇤

(T
d

(s, a))=V ⇤
d

(T
d

(s, a)) and hence l
d

= 0.

Corollary 1. There exists a lossless determinization for ev-
ery SSP.

Since it is possible to derive a goal reachability preserv-
ing determinization for every SSP and using CALLD would
produce a lossless determinization (Proposition 2), it is pos-
sible to arrive at a lossless determinization (Definition 2) for
any SSP.

Approximate Lossless Determinization
In many real-world problems, it is challenging to derive a
complete cost adjusted lossless determinization of the prob-
lem without solving the SSP and this defeats the purpose
of determinization. Therefore, we propose an approxima-
tion technique, referred to as Approximate Lossless Deter-
minization (ALLD). An ALLD estimates the cost for each
action in a state for a determinization of the SSP. We con-
sider sampling and machine learning techniques for estimat-
ing the cost adjustment for a large SSP, which we will re-
fer to as our target problem for simplicity. In this paper,
the approximate cost adjustments for the target problem are
learned from sampled small problems using a feature-based
cost function.
Definition 3. A feature-based cost function estimates the
cost of an action in a state using the features of the state,
C

d

(s, a) = g(~f(s), a).
In a factored MDP, a state s is characterized by a set of

features and these can be used to predict the cost of an action
in the state. Let ~f(s) = hf1(s), ..., fn(s)i be a set of features
in a state s that significantly affect the cost of actions. Such
features can be identified using machine learning techniques
such as regression.

In order to estimate the feature-based approximate cost,
sample problems are generated and solved. The costs ad-
justment values for the samples are computed in hindsight.
The samples are obtained either from known small problem
instances in the target domain or generated automatically by
sampling states from the target problem. If the target prob-
lem has unavoidable dead ends, then sampling states may
not be a good representative of the target problem. In such
cases, smaller problem instances from the domain can be
used. In this paper, smaller problems are created by multiple
trials of depth limited random walk on the target problems
and solved using LAO* (Hansen and Zilberstein 2001). The
cost adjustments are computed for the samples using their

Figure 2: Example 1:Illustration

exact solutions and the feature-based costs are learned. The
learned values are projected onto the target problem using
the feature-based cost function.

We also consider an extreme case, where the feature set
characterizing each state is empty.

Definition 4. A state independent cost adjustment assigns a
constant cost adjustment per action, regardless of the state,
resulting in a constant cost C

d

(s, a) = g(a).

This simple form of generalization of the cost adjustment
ignores the state altogether. In particular, PPDDL descrip-
tion of problems (Younes and Littman 2004) have a single
description per action and hence having constant cost ad-
justment for actions in a problem instance can be extended
to having constant cost adjustment for those actions in the
various instances of problems in the domain.

For example, consider an action a and the set of states in
which a is applicable. If the relative discrepancy between
the values of the outcomes of a is the same in every state
and the cost of a, C(s, a), is the same in every state, then
the cost adjustment can be trivially generalized with a state
independent cost adjustment.

Although it is challenging to balance the trade-off be-
tween using state independent costs and solution quality, the
following examples suggest that state independent cost ad-
justment could be effective.

Example 1. Consider an SSP in which an action can
achieve a successful outcome with probability 1�p or fail
with probability p>0. When an action fails, the state re-
mains unchanged. Let s denote a state of the SSP for which
a successful execution of action a with cost C(s, a) results in
outcome state s0. Figure 2 is an illustration of this example.

Proposition 3. State independent cost adjustment produces
zero loss for the class of problems identified in Example 1.

Proof. In a goal reachability preserving determinization of
the problem, the failure outcome would be ignored and the
cost, C

d

(s, a), calculated by Algorithm 1 is,

C
d

(s, a) = C(s, a)+
X

s

0

⇣
T (s, a, s0)V ⇤

(s0)
⌘
�V ⇤

(T
d

(s, a)).

Since a fails with a probability p, we get

C(s, a)+
X

s

0

⇣
T (s, a, s0)V ⇤

(s0)
⌘

=

C(s, a)

1� p
+V ⇤

(T
d

(s, a)).
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Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE(MLO) %DE
(ALLD)

P1 (909,7) (80,20) -7.60 -1.98 ± 0.07 -5.47 ± 0.02 -5.55 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P2 (909,7) (60,20) -6.15 -1.93 ± 0.07 -4.42 ± 0.08 -4.52 ± 0.06 0 ± 0 21.40 ± 0.04 0 ± 0
P3 (909,7) (30,40) 1.12 2.53 ± 0.07 1.86 ± 0.02 1.59 ± 0.01 0 ± 0 20.00 ± 0.20 16.00 ± 0.3
P4 (909,7) (50,50) -0.31 0 ± 0.01 0.09 ± 0.03 -0.62 ± 0.02 0 ± 0 20.00 ± 0.01 3.00 ± 0.02
P5 (909,7) (30,60) 3.58 4.38 ± 0.05 4.12 ± 0.03 3.58 ± 0.03 0 ± 0 0 ± 0 0 ± 0
P6 (909,7) (20,60) 4.12 5.58 ± 0.07 4.56 ± 0.03 4.33 ± 0.05 0 ± 0 23.05 ± 0.20 12.00 ± 0.3
P7 (909,7) (40,90) 4.36 4.93 ± 0.06 4.86 ± 0.03 4.42 ± 0.05 0 ± 0 20.00 ± 0.02 15.00 ± 0.03

Table 1: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 1

Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE(MLO) %DE
(ALLD)

P1 (909,7) (80,20) -4.87 -1.55 ± 0.04 -2.72 ± 0.02 -3.17 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P2 (909,7) (60,20) -3.97 -1.52 ± 0.05 -2.5 ± 0.02 -2.62 ± 0.02 0 ± 0 0 ± 0 0 ± 0
P3 (909,7) (30,40) 1.16 3.06 ± 0.04 1.92 ± 0.06 1.54 ± 0.02 0 ± 0 1.00 ± 0.03 0.50 ± 0.03
P4 (909,7) (50,50) 0.00 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
P5 (909,7) (30,60) 4.26 5.57 ± 0.08 4.63 ± 0.02 4.29 ± 0.02 0 ± 0 0 ± 0 0 ± 0
P6 (909,7) (20,60) 4.44 5.54 ± 0.08 4.55 ± 0.09 4.46 ± 0.01 0 ± 0 3.00 ± 0.02 0.50 ± 0.02
P7 (909,7) (40,90) 4.68 5.25 ± 0.03 4.85 ± 0.02 4.74 ± 0.02 0 ± 0 16.00 ± 0.02 1.10 ± 0.02

Table 2: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 2

Substituting the above equation in the first equation, we get

C
d

(s, a) =

C(s, a)

1� p
+ V ⇤

(T
d

(s, a))� V ⇤
(T

d

(s, a))

=

C(s, a)

1� p
. (4)

Thus, the proposition illustrates a class of problems for
which state independent cost (Equation 4) is perfectly accu-
rate with zero loss.

The above proposition highlights the potential benefits of
ALLD that can achieve a perfectly accurate cost adjustment
for problems such as the Blocksworld, that satisfies the re-
quired conditions. In the Blocksworld problem—an IPPC
problem with stochastic actions— given an initial configu-
ration of a collection of blocks, the blocks need to be re-
arranged to satisfy some goal conditions. Since the actions
are stochastic, an action, for example, “pick block” may be
successful or unsuccessful. If unsuccessful, the block slips
and is dropped on the table and the action is repeated until
it is successful. Since the relative discrepancy in the values
of the outcomes is constant, a state independent cost adjust-
ment that is accurate with zero loss is feasible. Consider the
setting with unit cost actions that fail with a probability of
0.25. Our experiments show that regardless of the specific
block, the state independent cost for this action is constant
that matches the value of 1.33 obtained using Equation 4.
This example illustrates the scope of generalized constant
cost. However, not all domains satisfy this property. Iden-
tifying actions and domains that exhibit this property would
alleviate the need for the preprocessing and help exploit the
hidden structure in the given domain.

Experimental Results
The performance of ALLD is tested on four different cost
function settings of EV. For each cost function, we con-
sider seven different entry and exit level charges. In each
cost function scenario, the charging costs are assumed to
be known ahead of the decision process, and the costs as-
sociated with discharge actions may or may not be known
ahead of time, depending on the cost function case. For the
costs known in advance, we use the Time-of-Use (ToU) pric-
ing (Eversource 2017). In case 3 of the cost function, we
consider four demand levels– super off-peak, off-peak, mid-
peak, and peak demand. In cost function case 4, we consider
two pricing distributions – off-peak, and peak pricing levels,
in addition to the four demand levels. The peak and the non-
peak hours are based on real world peak hours and non-peak
hours (Eversource 2017).

In all our experimental test cases, we consider an EV
parked for a span of two hours and the duration of each
timestep t is equivalent to 15 minutes in real time. The bat-
tery capacity and the three charge speed settings for the EV
were selected based on Nissan Leaf EV configuration. We
assume the discharge speeds to be the same as that of charge
speeds. We also assume that the battery efficiency of the ve-
hicle is not 100% and therefore, it may be required to buy
more electricity from the grid than needed, and the electric-
ity that reaches the grid during discharge would be lesser
than the actual quantity discharged from the vehicle. We
account for this battery inefficiency by adding a penalty of
15% to the current charging and discharging costs.

The goal in this domain is to devise a robust policy for
EV charging such that the long-term operational cost of
the vehicle is minimized, while being consistent with the
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Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE
(MLO)

%DE
(ALLD)

P1 (3636,7) (80,20) -4.60 -1.12 ± 0.02 -1.63 ± 0.04 -2.84 ± 0.03 0 ± 0 0 ± 0 0 ± 0
P2 (3636,7) (60,20) -2.60 -1.10 ± 0.01 -1.14 ± 0.02 -1.70 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P3 (3636,7) (30,40) 1.42 3.53 ± 0.03 1.62 ± 0.05 1.46 ± 0.02 0 ± 0 0 ± 0 0 ± 0
P4 (3636,7) (50,50) -0.94 0 ± 0 -0.02 ± 0.02 -0.32 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P5 (3636,7) (30,60) 2.49 4.20 ± 0.01 2.79 ± 0.02 2.49 ± 0.02 0 ± 0 0 ± 0 0 ± 0
P6 (3636,7) (20,60) 3.28 4.52 ± 0.04 3.93 ± 0.02 3.72 ± 0.02 0 ± 0 5.00 ± 0.02 0 ± 0
P7 (3636,7) (40,90) 3.47 4.86 ± 0.03 4.25 ± 0.04 3.70 ± 0.02 0 ± 0 15.00 ± 0.02 2.00 ± 0.02

Table 3: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 3

Instance#
(|S|, |A|)

%Charge
(entry,exit)

Optimal
Cost

Cost(Greedy) Cost(MLO) Cost(ALLD) %DE
(Greedy)

%DE
(MLO)

%DE
(ALLD)

P1 (7272,7) (80,20) -4.76 -3.22 ± 0.09 -3.30 ± 0.09 -3.52 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P2 (7272,7) (60,20) -3.71 -3.08 ± 0.08 -3.21 ± 0.06 -3.38 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P3 (7272,7) (30,40) 1.10 1.78 ± 0.09 1.77 ± 0.03 1.34 ± 0.01 0 ± 0 0 ± 0 0 ± 0
P4 (7272,7) (50,50) -1.00 0 ± 0 -0.25 ± 0.04 -0.35 ± 0.02 0 ± 0 0 ± 0 0 ± 0
P5 (7272,7) (30,60) 2.90 3.79 ± 0.04 3.65 ± 0.03 3.07 ± 0.01 0 ± 0 10.00 ± 0.02 3.00 ± 0.02
P6 (7272,7) (20,60) 3.29 5.09 ± 0.02 4.73 ± 0.03 3.91 ± 0.01 0 ± 0 20.00 ± 0.02 7.00 ± 0.02
P7 (7272,7) (40,90) 3.59 4.84 ± 0.04 3.97 ± 0.02 3.59 ± 0.02 0 ± 0 12.80 ± 0.04 0 ± 0

Table 4: Plan quality for seven instances of Electric Vehicle Charging- Cost Case 4

owner’s preferences. Any state from where the goal (exit
level charge) cannot be reached in the remaining duration of
the parking is treated as a dead end in the SSP.

A feature-based cost function is used to estimate the cost
in ALLD in all our experiments. While ALLD requires
a preprocessing step, estimating the costs is only required
once per domain. The scalability of ALLD is preserved as
we limit the size of the required sampled problems; in our
experiments a depth of 4-8 was sufficient in most cases. The
quality of the plan generated by ALLD is compared with:
• Quality of the plan generated by solving the Most Likely

Outcome determinization of the SSP (MLO),
• Quality of the plan generated by using a greedy heuristic

based on a naive human decision making.
• Optimal cost obtained by solving the SSP offline.

The value of the plan (average cost of reaching the goal)
and fraction of dead end visits (%DE) are used as metrics to
estimate the quality of the generated plan. Standard errors
are reported for the value of the plan and the dead end visits
based on 1000 trials per setting.

In MLO determinization and ALLD, the deterministic
transition function chooses the most likely outcome for an
action in a state. Since both the techniques share the de-
terminisitic transition function, we use an optimal solver to
solve the determinisitic problems, and to efficiently evalu-
ate and compare the performance of ALLD. Therefore, the
MLO determinization and ALLD are solved using the A*
algorithm (Hart, Nilsson, and Raphael 1968), which is max-
imally efficient, and are complemented by replanning when
necessary. It is assumed that the time taken for replanning is
negligible.

Greedy heuristic We model a naive, and risk-averse hu-
man decision making as a simple greedy heuristic. Since
most people prefer to ensure that the vehicle achieves the
predefined exit charge over the monetary profits, we con-
sider this as a risk-averse decision making. It is also consid-
ered naive and greedy because the decision is based only on
the current state of the system. If the current charge of the
vehicle is equal to the predefined exit charge for the vehicle,
then the heuristic policy is to do NOP . If the current charge
level is less than the exit charge, then the heuristic policy is
to charge the vehicle at the maximum charge speed. If the
current charge level is greater than the required exit charge,
then the heuristic policy for that state is to discharge the elec-
tricity in medium speed as that would ensure profit for the
vehicle without draining the battery quickly. Using these
heuristic guidelines, a greedy policy can be devised for the
EV charging.

Discussion The performance of ALLD in the different
cost function scenarios is discussed below. The costs in the
tables account for the expenses related to charging and prof-
its from discharging.

In case 1, we assume that the cost of discharging is the
negation of the cost of charging. The result of the 1000 tri-
als are tabulated in table 1. In most cases, ALLD performed
better than MLO and greedy approach, in terms of cost. In
case 2, we assume that the cost of discharging is the negation
of the cost of charging plus some non-zero constant which
depends on the time and is known ahead of the decision pro-
cess. The result of the 1000 trials are tabulated in table 2.
In all our test cases, ALLD performed better than MLO and
greedy approach, in terms of cost, with significantly lower

 21



dead end visits.
In case 3, we assume that the cost of charging is known

in advance and is based on the Time-of-Use pricing. The
discharging cost depends on the current demand level and
we assume that the distribution is known. The result of the
1000 trials are tabulated in table 3. In most of our test cases,
ALLD performed better than MLO and greedy approach,
in terms of dead ends and cost. In case 4, we assume that
the cost of charging is known in advance and is based on
the Time-of-Use pricing. The discharging cost depends on
the current demand level and the current pricing distribu-
tion. We assume that the demand and pricing distributions
are known in advance. The result of the 1000 trials are tabu-
lated in table 4. In all our test cases, ALLD performed better
than MLO and greedy approach, in terms of cost, with sig-
nificantly lower dead end visits.

For every test case in each case of the cost function dis-
cussed above, the greedy approach consistently avoids dead
ends. This is an expected behavior as the greedy approach is
conservative with respect to discharging electricity. How-
ever, the cost obtained by executing the greedy policy is
much higher than the optimal, compared to the two deter-
minization techniques. In cases where the entry charge is
lower than the exit charge, the greedy policy is very expen-
sive as it tries to charge as fast as possible to avoid dead end.
However, this may be unnecessary if the parking duration is
long enough. Also, the greedy policy does not consider the
price variation which significantly affects the total cost.

Overall, while greedy approach is simple and easy, it is
not effective when there is price variation with respect to
time or in complicated settings such as the price depending
on the current demand level. This reinforces the need for
automated planning for EV charging under price uncertainty.
ALLD always performs better than the greedy approach in
terms of cost, and better than MLO determinization in terms
of both cost and dead end visits, illustrating the potential of
ALLD in achieving near-optimal policy for an EV operating
under price uncertainty.

Conclusion and Future Work
Until recently, electric vehicles were primarily perceived as
consumers of electricity from the smart grid. In the Vehicle-
to-Grid (V2G) setting, electric vehicles can act as both con-
sumers and producers of electricity. Using this feature, we
aim to derive a charging policy for the EV that minimizes the
long-term operational cost of the vehicle and that is consis-
tent with the owner’s preferences. Due to price uncertainty,
this problem needs to be solved on-the-fly. Hence, we model
this problem as a stochastic shortest path problem and em-
ploy determinization technique to solve it.

Since the policies yielded by conventional determiniza-
tion techniques can significantly deviate from the optimal
policy, we introduce the notion of lossless determinization
that produces optimal action selection via determinization.
We present cost adjustment for lossless determinization, an
approach to achieve lossless determinization by adjusting
the costs of actions in the deterministic problem. Since it
is difficult to compute the exact cost adjustment without

knowing the optimal values of the states, we propose ap-
proximation techniques to compute estimated costs. Our ex-
periments show that ALLD can effectively use approximate
costs to get better results than conventional determinization
techniques.

The model presented in this paper aims to optimize the
charging policies of an electric vehicle in a V2G setting.
However, we do not consider the ancillary services like fre-
quency regulation that an EV can offer. In future work, we
plan to explore the role of determinization in general, and
ALLD in particular, for other ancillary services of an EV in
a V2G setting. While we assume that the duration of park-
ing is known in advance, planning with stochastic parking
duration is an interesting direction for the future work.
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Abstract

Scenario planning is a commonly used method that various
organizations use to develop their long term plans. Scenario
planning for risk management puts an added emphasis on
identifying the extreme yet possible risks that are not usually
considered in daily operations. While a variety of methods
and tools have been proposed for this purpose, we show that
formulating an AI planning problem, and applying AI plan-
ning techniques to develop the scenarios provides a unique
advantage for scenario planning. Our system, the Scenario
Planning Advisor (SPA), takes as input the relevant news
and social media trends that characterize the current situa-
tion, where a subset of them is selected to represent key ob-
servations, as well as the domain knowledge. The domain
knowledge is acquired using a graphical tool, and then au-
tomatically translated to a planning domain. We use a plan-
ner to generate multiple plans explaining the observations and
projecting future states. The resulting plans are clustered and
summarized to generate the scenarios for use in scenario plan-
ning. We discuss our knowledge engineering methodology,
lessons learned, and the feedback received from the pilot de-
ployment of the SPA system in a large international company.
We also show our experiments that measure planning perfor-
mance and how balanced and informative the generated sce-
narios are as we increase the complexity of the problem.

1 Introduction
Scenario planning is a commonly used method for strategic
planning (Schoemaker 1995). Scenario planning involves
analyzing the relationship between forces such as social,
technical, economic, environmental, and political trends in
order to explain the current situation in addition to providing
insights about the future. A major benefit to scenario plan-
ning is that it helps businesses or policy-makers learn about
the possible alternative futures and anticipate them. While
the expected scenarios are interesting for verification pur-
poses, scenarios that are surprising to the users (e.g., policy-
makers businesses) are the ones that are the most important
and significant (Peterson et al. 2003).

Risk management is a set of principles that focus on the
outcome for risk-taking (Stulz 1996). A variety of methods
and standards for risk management under different assump-
tions have been developed (Avanesov 2009). In this paper,
we address scenario planning for risk management, the prob-
lem of generating scenarios with a significant focus on iden-

tifying the extreme yet possible risks that are not usually
considered in daily operations. The approach we take in this
paper is different from previous work in that we reason about
emerging risks based on observations from the news and so-
cial media trends, and produce scenarios that both describe
the current situation and project the future possible effects
of these observations. Our objective is not to find a precise
answer, that is to predict or forecast, but rather to project the
possible alternative scenarios that may need consideration.
Each scenario we produce highlights the potential leading

indicators, the set of facts that are likely to lead to a sce-
nario, the scenario and emerging risk, the combined set of
consequences or effects in that scenario, and the business im-

plications, a subset of potential effects of that scenario that
the users (e.g., policy-makers, businesses) care about. The
business implications are akin to the set of possible goals.

For example, given a high inflation observation, economic
decline followed by a decrease in government spending can
be the consequences or the possible effects in a scenario,
while decreased client investment in the company offerings
is an example of a business implication (i.e., the resulting
goal). Furthermore, an increase in the cost of transporta-
tion could have been the leading indicator for that scenario.
To the best of our knowledge, we are the first to apply AI
planning in addressing scenario planning for enterprise risk
management. We believe that AI planning provides a very
natural formulation for the efficient exploration of possible
outcomes required for scenario planning.

In this paper, we propose to view the scenario planning
problem for enterprise risk management as a problem that
can be translated to an AI planning problem. An intermedi-
ate step is a plan recognition problem, where the set of given
business implications forms the set of possible goals, and the
observations are selected from the news and social media
trends. The domain knowledge is acquired from the domain
expert via a graphical tool and is then automatically trans-
lated to an AI planing domain. AI planning is in turn used to
address the plan recognition problem (Ramı́rez and Geffner
2009; Sohrabi et al. 2016a; 2017). Top-k planning or find-
ing a set of high-quality plans is used to generate multiple
plans that can be grouped into a scenario (Riabov et al. 2014;
Sohrabi et al. 2016b). The set of plans is then clustered and
summarized to generate the scenarios. Hence, each scenario
is a collection of plans that explain the observations and con-
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siders the possible cascading effects of the actions to identify
potential future outcomes.

2 System Architecture
The system architecture for our system, Scenario Planning
Adviser (SPA), is shown in Figure 1. There are three ma-
jor components. The planning engine, shown under the Sce-

nario Generation and Presentation component, takes as in-
put the output of the other two components: the News Aggre-

gation component and the Domain Knowledge component.
The News Aggregation component deals with analyzing the
raw data coming from the news and social media feeds. To
this end, several text analytics are implemented in order to
find the information that is relevant for a particular domain
as filtered by the provided Topic Model. The Topic Model,
provided by the domain expert, includes the list of impor-
tant people, organization, and keywords. The result of the
News Aggregation component is a set of relevant key ob-
servations, a subset of which can be selected by the busi-
ness user and is fed into the Scenario Generation compo-
nent. The Domain Knowledge component captures the nec-
essary domain knowledge in two forms, Forces Model and
Forces Impact. The Forces Model is a description of the
causes and effects for a certain force, such as social, tech-
nical, economic, environmental, and political trends, and is
provided by a domain expert who have little or no AI plan-
ning background. Forces Model are captured by a Mind Map
(http://freemind.sourceforge.net/wiki/), a
graphical tool that encodes concepts and relations. An ex-
ample of a Mind Map for the currency depreciation force
is shown in Figure 3. The Forces Impact, describes poten-
tial likelihoods and impact of a cause (i.e., concepts with
an edge going into the main force) or an effect (e.g., con-
cepts with an edge going from the main force and all other
cascading concepts). The Scenario Generation component
takes the domain knowledge and the key observations and
automatically generates a planning problem whose outcome
when clustered in the post-processing step generates a set of
alternative scenarios.

Our system is currently deployed for an international or-
ganization. We use a company name Acme, for anonymity,
in our examples. The system generates thousand plans and
presents three to six scenarios to the business user. The
extensive feedback we have collected has been encourag-
ing and helpful in improving our system. We report on our
knowledge engineering efforts, collected feedback, and the
lessons learned in the rest of this paper.

3 Problem Definition
In this section, we briefly review necessary background on
AI planning and Plan Recognition before defining the sce-
nario planning for risk management problem.

Definition 1 A planning problem is a tuple P = (F,
A, I,G), where F is a finite set of fluent symbols, A is a set

of actions with preconditions, PRE(a), add effects, ADD(a),
delete effects, DEL(a), and action costs, COST(a), I ✓ F
defines the initial state, and G ✓ F defines the goal state.
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Figure 1: The SPA system architecture

The solution to the planning problem, P , is a sequence
of executable actions, ⇡ = [a0, ..., an] such that if exe-
cutable from the initial state, I , meets the goal (i.e., G ✓
�(an, �(an�1, . . . , �(a0, I))), where �(a, s) = ((s\DEL(a))
[ ADD(a)) defines the successor state.

Definition 2 A Plan Recognition (PR) problem is a tuple

R = (F,A, I,O,G, PROB), where (F,A, I) is the planning

domain as defined above, O = {o1, ..., om}, where oi 2
F , i 2 [1,m] is the set of (partially ordered) observations,

G is the set of possible goals G, G ✓ F , and PROB is a

probability distribution over G, P (G).

The solution to the PR problem is the posterior proba-
bilities P (⇡|O) and P (G|O). Plan recognition problem can
be transformed to an AI planning problem and the poste-
rior probabilities can be approximated using AI planning
(Ramı́rez and Geffner 2010; Sohrabi et al. 2016a). Note, the
observations are said to be satisfied by an action sequence
if it is either explained or discarded following the work of
Sohrabi et al. 2016a. This allows for some observations to
be left unexplained in particular if they are out of context
with respect to the rest of the observations.

Definition 3 A scenario planning for enterprise risk man-

agement problem is defined as a tuple SP = (F,A, I,O,G),
where (F,A, I) is the planning domain acquired by the do-

main experts, O = {o1, ..., om}, where oi 2 F , i 2 [1,m]
is a set of observations selected from the news and social

media trends, G is a set of possible goals G ✓ F ; the set of

goals are called business implications in the scenario plan-

ning problem.

As shown in Figure 1, the input to the SPA system are raw
social media posts and news articles with RSS feeds. The
News Aggregation component analyzes such news and posts
and suggests possible observations. In the deployment of the
SPA system, we addressed unordered set of observations as
input; however, in theory, the observations can be expressed
in any Linear Temporal Logic (LTL) formula (Sohrabi et al.

2011).
The solution to the SP problem is defined as a set of sce-

narios, where each scenario is a collection of plans ⇧ such
that: (1) each plan ⇡ = [a0, ..., ai, ai+1, ..., an] is an action
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Figure 2: Sample questions

sequence that is executable from the initial state I and re-
sults in state s = �(an, . . . , �(a0, I)), (2) at least one of the
goals is met (i.e., 9G 2 G, where G ✓ s), and (3) the set of
observations is satisfied by the action sequence [a0, ..., ai]
(i.e., observations are either explained or discarded). The
SP problem can be thought of as a plan recognition prob-
lem, where observations and a set of goals are given. Rather
than computing P (⇡|O) and P (G|O), the solution to the
SP problem is a set of scenarios showcasing the alternative
possible outcomes.

4 Knowledge Engineering
While several knowledge engineering tools exists, most of
them assume that the domain expert has some AI plan-
ning background and these tools provide the additional sup-
port in writing the domain knowledge (e.g., (Muise 2016;
Simpson et al. 2007)). However, we anticipate the lack of
proper AI planning expertise in writing the domain knowl-
edge and the unwillingness to learn a planning language. In-
stead, the domain expert may choose to express their knowl-
edge in a light-weight graphical tool and have this knowl-
edge translated automatically to a planning language such as
Planning Domain Description Language (PDDL) (McDer-
mott 1998). In this section, we discuss the representation of
the domain knowledge and its translation to planning.

As shown in Figure 1, the domain knowledge comes in
two forms: Forces Model and Forces Impact. Forces Model,
is the domain knowledge corresponding to the causes and ef-
fects of the different forces influencing the risks in a business
organization such as the economy, currency, corruption, so-
cial unrest, and taxes. The domain experts express these re-
lationship for each force trends (e.g., economic decline and
economic growth) in separate Mind Maps. A Mind Map1 is
a graphical method that can be used to express the Forces
Model in a simple way. The Mind Maps can be created in a
tool such as FreeMind2 which produces an XML represen-
tation of the Mind Maps which can serve as an input to our

1
https://en.wikipedia.org/wiki/Mind_map

2
http://freemind.sourceforge.net/wiki/
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      Currency  
depreciation against 
      US dollar  

Acme

Acme

Figure 3: Part of the Mind Map for the currency depreciation
against US dollar force.

system. An example Mind Map is shown in Figure 3. The
force in this Mind Map is the currency depreciation. The
concepts with an edge going towards the force, are the pos-
sible causes, and the concepts with an outgoing edge from
the force, are the possible effects. The causes and effects can
appear in chains, and cascade to other causes, and effects,
with a leaf concept of either a business implication (i.e., the
planning goal), or another force, with its own separate Mind
Map that describes it. For example, “Acme workforce capital
available at better rates” is an example of a business implica-
tion, where Acme is the name of the organization. Note, one
of the leafs of this Mind Map, economic decline, is another
force which would be described in a separated Mind Map.
Any of the concepts in the Mind Map, except for the busi-
ness effects, can serve as observations in order to generate
the scenarios.

Additional information on the Mind Maps is encoded
through the Forces Impact, which is captured by a series of
automatically generated questions based on the Mind Maps.
These questions are created by a script that reads the XML
encoding of the Mind Maps. Sample questions are shown
in Figure 2. The domain expert is given options of low,
medium, and high in addition to the option of “do not know”
in which a default value is selected for them. The answers
to these questions determine the weight of the edges in the
Mind maps.

The domain knowledge encoded in the Mind Maps (i.e.,
Forces Model), together with the answers from the question-
naire (i.e., Forces Impact), is automatically translated into
a planning language such as PDDL. There are at least two
ways to translate the Mind Maps into a planning language.
The first method, we call “ungrounded”, defines one general
and ungrounded set of actions in the PDDL domain file with
many possible groundings of the actions based on the given
Mind Maps. The domain file includes an action named “in-
dicator” for each of the causes in a Mind Map. There would
be three different “indicator” actions, one for each level (i.e.,
“indicator-low”, “indicator-med” and “indicator-high”). The
levels are determined based on the answers to the question-
naire. The domain file also includes an action named “next”,
and “next-bis” for each of the edges in the Mind Map. The
“next” action also has three different versions, one for each
level. The “next-bis” actions do not have levels and are those
that end in a business implication concept (i.e., a concept
that includes the name of the company).

Table 1 shows part of the planning domain. For example,
the “next-med” action will be grounded by setting the pa-
rameter x1 to “increasing trade deficit” and the parameter
x2 to the “currency depreciation against US dollar”. Each
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(:action next-med

:parameters (?x1 - occ ?x2 - occ)

:precondition (and (occur ?x1)

(next-med ?x1 ?x2))

:effect (and (occur ?x2)

(not (occur ?x1))

(increase (total-cost) 10)))

(:action indicator-med

:parameters (?y - force ?x - occ)

:precondition (and (indicator-med ?y ?x))

:effect (and (occur ?x)

(increase (total-cost) 15)))

(:action next-bis

:parameters (?x1 - occ ?x2 - bisimplication)

:precondition (and (occur ?x1)

(next-bis ?x1 ?x2)

:effect (and (bis-implication-achieved)

(increase (total-cost) 6)))

Table 1: Part of the planning domain.

of the “next” actions (-low, -med, -high) have a cost that
maps to the importance of that edge such that lower im-
pact/likelihood answers map to a higher cost. Hence, while
the domain is fixed, based on the answers obtained by the
domain experts, the actions will have a different set of pos-
sible groundings defined in the problem file. The “next-bis”
action is the action that if executed, indicates that at least
one of the business effects have been reached and the “bis-
implication-achieved” predicate is set to true; this is the goal
of the planning problem. The problem file (i.e., the initial
state) will include all the possible groundings of these ac-
tions by including a grounding for the predicates “(next-med
?from ?to)”, “(next-bis ?from ?to)”, and “(indicator-med ?y
?x)”. Note that the size of the Mind Map leads to a larger
problem file, as the domain file is fixed. A successful plan
maps to an execution of an “indicator” action, followed by
the execution of one or more “next” actions, followed by an
execution of a “next-bis” action. This maps to a path through
the connected Mind Maps.

The second method to translate the Mind Maps into a
planning language is called “grounded” which as the name
suggests, defines one action per each edge in the Mind Map
in addition to one action for each of the causes in the Mind
Map in the planning domain itself. So rather than having
one fixed planning domain which can get grounded by the
problem file, the second approach fully specifies all the pos-
sible actions in the planning domain. We evaluate the per-
formance of both methods in the experimental evaluation.

5 Computing Plans
In the previous section, we discussed how to translate the
information available in the Mind Maps into a planning do-
main and problem. However, we are also given the set of
observations as the input and we need to compile away the
observations in order to use planning. To do so we follow
the work of Sohrabi et al. 2013; 2016a which adds a set of
“explain” and “discard” actions for each observation. The
discard action can be selected in order to leave some obser-
vations unexplained. The observations are driven from news

and social media posts and not all of them are reliable; in
addition, some of them could be mutually exclusive and not
all of them could be explainable. Hence, it is important to
have the ability to discard some observations. However, to
encourage the planner to generate plans that explain as many
observations as possible, a penalty is set for the “discard” ac-
tion in the form of a cost. The penalty is relative to the cost
of the other action in the domain; we currently set it to be
five times the cost of a “next-med” action. After considering
multiple options, this seemed to be good a middle-ground
option between the two extremes; a high discard cost will
cause the planner to consider many long and unlikely paths,
while a low discard will cause the planner to discard obser-
vations without trying to explain them. In addition, to ensure
all observations are considered, whether explained or dis-
carded, a set of special predicates, one per each observation
is used and must hold true for each of the “next-bis” actions.
This ensures that a plan that meets one of the goals also has
considered all of the observations. To disallow different per-
mutation of the discard action, we discard observations us-
ing a fixed order.

The resulting planning problem captures both the domain
knowledge that is encoded in the Mind Maps and its associ-
ated weights of the edges as well as the given set of obser-
vations, and possible set of goals, associated with the plan
recognition aspect of the problem. To compute a set of high-
quality plans on the transformed planning problem, we use
the top-k planning approach proposed in (Riabov et al. 2014;
Sohrabi et al. 2016b). Top-k planning is defined in as the
problem of finding k set of plans that have the highest qual-
ity. The best known algorithm to compute the set of top-k
plans is based on the k shortest paths algorithm called K⇤

(Aljazzar and Leue 2011) which also allows use of heuristics
search. We use the K⇤ algorithm together with the LM-cut
heuristic (Pommerening and Helmert 2012) in our system.
Next, we discuss how the generated plans are post-processed
into the scenarios.

6 Computing Scenarios
To compute the type of scenarios shown in Figure 4, we per-
form a set of post-processing steps on the computed set of
plans. All of the post-processing steps are done automati-
cally. First, we identify the number of plans out of the top-k
plans (e.g., 1000) generated by the planner to consider for
scenario generation. We argue that this number is problem-
dependent rather than being a fixed number for all problems.
To calculate the cost cutoff, we calculate the average and the
standard deviation of the cost of all plans among the top-k
plans. We then consider plans that have a lower cost than
the average cost subtracted by the standard deviation. The
number of plans considered for scenario generation is shown
under the “# of Plans” column in Table 2.

Next, we cluster the resulting plans to create scenarios.
Hence, rather than presenting all plans, we group similar
plans and only present 3-6 clusters of plans to the end user.
We cluster plans according to the predicates present in the
last state. Given that the number of ground predicates (i.e,
F) is finite, we first represent each plan through a bit array
of the same size such that 1 indicates the predicate is in the
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Figure 4: The screenshot of a sample generated scenario for the high inflation observation. Each scenario is divided into three
parts, the leading indicators, scenario and emerging risks, and the business implications.

ddd	

Observations

Concepts

Figure 5: Part of the screenshot of a explanation graph for the scenario shown in Figure 4. Observations are shown in green,
leading indicators are shown in blue, and business implications are shown in yellow.
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final state, and 0 indicates that the predicate is not in the fi-
nal state. To determine the Euclidean distance between two
plans, we compute a XOR of the corresponding bit arrays
and take the square root of the sum of 1 bits. Normally, we
want to avoid plans with opposite predicates (e.g., weaken-
ing/strengthening economic environment, increase/decrease
in inflation, etc.) ending up in the same cluster. To ensure
this, we add a penalty factor to the number of 1 bits we use
to compute the distance for every pair of opposite predicates.
Given this distance function for each pair of plans, we com-
pute a dendrogram bottom-up using the complete-linkage
clustering method (Defays 1977). The user can specify a
minimum and maximum consumable number of scenarios.
These settings are used to perform a cut through the dendro-
gram that yields the number of plans in the specified interval
with the optimal Dunn index (Dunn 1973), a metric for eval-
uating clustering algorithms that favors tightly compact sets
of clusters that are well separated.

After post-processing is complete, we automatically per-
form several tasks to prepare the scenarios for presentation.
First, we separate the predicates in each cluster (scenario)
into business implications and regular predicates. At the
same time, we separate probable and possible predicates in
each of these categories by determine the proportion of plans
where the predicate is present in the last state from all plans
in the scenario; predicates that appear in more than 66% of
plans are put into the probable category, those that appear
between 25% and 66% are placed in the possible category.
Second, we identify discriminative predicates, i.e. predicates
that appear early on the plans that are part of one scenario
but not other scenarios (i.e., they tend to lead to this scenario
and not others); these are useful to monitor in order to deter-
mine early on whether a scenario is likely to occur. Third, we
compute a summary of all plans that are part of the scenario
and present this as a graph to the user. Figure 5 shows an
example of this graph. This serves as an explanatory tool for
the predicates that are presented in each scenario. This graph
also shows how the different Mind Maps are connected with
each other through concepts that are shared between them.

7 Experimental Evaluations
In this section, we evaluate: (1) the performance of the plan-
ner, (2) quality of the clusters measured by the size of the
cluster, and (3) how informative each cluster measured by
number of predicates and business implications. In the next
section, we provide details on the pilot deployment of the
Scenario Planning Adviser (SPA) tool, feedback and the
lessons learned in interacting with the domain experts as
well as the business users. All our experiments were run on
a 2.5 GHz Intel Core i7 processor with 16 GB RAM.

We compare the performance of the planner on our
two proposed methods to translate the Mind Maps into
a planning domain: “ungrounded” and “grounded”. The
“grounded” method creates 670 actions when considering
the full set of Mind Maps. We remove some of these Mind
Maps creating 403 actions instead and report on that result
under the “ungrounded small” method. To increase the dif-
ficulty of the problem, we increase the size of the O. Obser-

Figure 6: Planning performance comparison between the
“grounded” and “ungrounded” methods, as we increase the number
of observations. The time is in seconds and is shown in logarithmic
scale.

vations are chosen randomly from the set of possible obser-
vations.

Table 2 presents a comparison between “ungrounded
small” and “grounded”. The objective of this experiment
is to show how the planning domain size influence perfor-
mance and the generated clusters. All numbers shown in
each row are averages over 10 runs of the same type of prob-
lem, where the same number of observations is considered in
both cases. The columns show the planning performance in
seconds, total number of business implications, G, number
of actions, A, number of observations O, number of dis-
carded observations in the optimal plan, “# of Discards”,
number of plans considered for scenario generation, “# of
Plans”, and number of scenarios generated “# of Scenarios”.
We also show the average, standard deviation, max, and min
count on the number of members of each cluster, number of
predicates, and number of business implications in each sce-
nario. We used a timeout of 900 seconds. The problems with
30 or more observations did not finish within the time limit.

The results show that the performance of the planner de-
pends on both the number of observations and the size of the
domain, as expected. As the number of observations grow
the planner’s performance worsens but this does not influ-
ence the number of plans, the number of scenarios, size of
the clusters, or the number of scenario predicates. However,
the number of business implications decreases, as expected,
as the observation size grows. Looking at the average num-
ber of cluster members, the average number of scenarios
predicates, and the average number of bossiness implica-
tions, the results show that the clusters in both cases are bal-
anced and informative.

We also compare the planning performance between two
methods of translating the Mind Maps. The results in log-
arithmic scale is shown in Figure 6. Each shown point
in the figure is an average over 20 instances. The re-
sults show that in our current implementation, as the num-
ber of observations increases, planning performance using
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#of #of #of Cluster Members Scenario Predicates Bis Implications
Time |G| |A| |O| Discards Plans Scenarios Avg � Max Min Avg � Max Min Avg � Max Min
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d

Sm
al

l

0.03 65 403 1 0.0 129.0 3.8 37.0 28.6 76.9 11.2 9.6 2.7 13.5 6.6 4.8 1.7 7.1 2.7
0.03 65 403 2 0.5 141.7 3.8 39.9 31.7 83.4 6.5 9.8 3.1 13.7 5.4 4.1 1.7 6.1 1.8
0.05 65 403 4 1.6 120.5 3.6 34.6 27.9 72.1 7.9 10.9 2.7 13.9 6.9 3.7 1.2 5.3 2.1
0.22 65 403 8 4.4 122.4 3.8 34.8 33.4 82.6 4.3 10.0 2.4 13.0 6.9 2.1 0.9 3.5 1.3
0.80 65 403 10 5.0 112.6 4.5 25.6 26.0 71.5 5.6 7.6 2.0 10.1 5.4 2.3 0.8 3.8 1.6
2.33 65 403 12 5.9 100.1 4.2 25.3 20.7 56.2 4.4 9.4 1.4 11.1 7.4 1.7 0.4 2.6 1.2
9.16 65 403 15 8.8 104.8 3.9 30.2 25.6 68.5 8.8 10.6 1.2 12.4 8.8 1.9 0.4 2.8 1.5

27.85 65 403 18 9.9 92.8 4.8 20.2 23.5 61.3 3.0 8.5 1.2 10.3 6.7 1.6 0.5 2.4 1.3
103.71 65 403 20 11.3 117.7 3.9 30.9 26.8 68.0 3.7 9.0 1.4 11.0 7.3 1.8 0.6 2.5 1.0
179.90 65 403 23 14.9 103.7 4.1 26.3 21.2 58.6 4.4 9.0 1.4 11.1 6.9 1.9 0.6 2.7 1.2
282.87 65 403 26 16.9 90.6 4.9 20.3 19.0 53.5 5.3 9.5 1.1 11.3 7.8 1.6 0.3 2.0 1.3

U
ng

ro
un

de
d

0.03 112 670 1 0.0 91.5 4.4 24.4 16.6 48.6 6.6 7.0 2.5 10.4 4.3 4.5 1.7 6.6 2.2
0.04 112 670 2 0.4 132.1 4.3 34.4 32.2 80.3 3.7 8.0 3.0 11.7 4.0 3.8 1.8 6.1 1.5
0.08 112 670 4 1.5 114.1 3.6 32.9 30.7 77.9 4.3 10.2 2.9 13.2 6.1 3.6 1.4 6.0 2.3
0.35 112 670 8 3.7 109.7 3.6 31.5 24.6 65.9 7.0 9.1 1.9 11.4 6.5 3.8 1.3 5.4 2.3
1.17 112 670 10 5.1 139.4 4.2 34.6 27.9 73.2 5.9 7.8 2.0 10.1 4.9 2.6 0.8 3.9 1.6
3.35 112 670 12 5.4 99.5 4.8 22.8 24.8 64.7 3.5 8.6 1.9 11.0 6.3 1.6 0.4 2.8 1.2

22.01 112 670 15 8.1 92.3 4.1 23.3 22.1 57.9 3.2 9.9 1.8 12.0 7.0 2.5 1.0 4.0 1.5
85.73 112 670 18 9.4 88.5 4.3 22.2 19.2 51.6 6.7 7.2 1.1 8.7 5.5 2.2 0.3 2.7 1.7
144.89 112 670 20 10.7 124.3 5.1 26.0 19.4 57.0 5.0 9.0 1.0 10.0 7.2 2.1 0.2 2.3 1.9
284.73 112 670 23 14.5 106.8 4.8 24.5 23.9 62.5 4.0 8.6 1.6 10.6 6.5 2.9 0.6 3.6 2.0
511.95 112 670 26 16.8 80.0 4.7 17.2 9.0 30.2 7.8 7.8 1.0 9.5 6.5 1.7 0.7 2.8 1.2

Table 2: Comparison between “ungrounded” and “ungrounded small” as we increase the number of observations: “grounded”
considers all of the Mind Maps, “ungrounded small” considers a smaller set of Mind Maps.

Figure 7: Planning performance comparison between two meth-
ods (i.e, “grounded” and “ungrounded”) as the number of discarded
observations in an optimal plan increases when considering prob-
lems with 20, 23, and 26 observations. The time is in seconds and
is shown in logarithmic scale.

the “ungrounded” method is significantly better than the
“grounded” method.

Considering problems with 20, 23, and 26 observations,
we also looked at the number of discarded observations in
the optimal plan in each case. This indicates whether or not
the observations are explainable in a single path through the
Mind Maps. The results in logarithmic scale is shown in Fig-
ure 7. The results confirm that the performance of the “un-
grounded” method is better than the “grounded” method. It
also shows that as the number of discarded observation in-
creases, the planning time decreases. This seems to indicate

that the planner identifies the unexplainable observations,
through its heuristics, and does not spend time on explaining
the unexplainable observations.

Based on these results, we conclude that performance of
the planner depends on number of observations, the size of
the domain, the method used in the translation of the Mind
Maps, as well as the number of unexplainable observations.
Given this result, we deployed the “ungrounded” method
and use the full set of Mind Maps.

8 User Experience
The SPA tool was evaluated in a pilot deployment with 7
teams of business users, whose responsibilities included risk
management within their business area. For those teams SPA
was introduced together with the new scenario planning pro-
cess; hence, there was no pre-automation baseline available
to compare against. In addition the functionality provided
by the tool cannot be reproduced manually due to the broad
news analysis the tool provides.

The Mind Map were developed over the course of three
months by one enterprise risk management expert work-
ing with an assistant and in consultation with other experts.
While Mind Maps in general can be in any form, we briefly
educated the domain expert to provide Mind Maps that have
one force (e.g., currency deprecation against US dollar) as
their main concept and provide causes and consequences of
this force in one Mind Map; the concepts with an edge to
the central concept and the concepts with an edge from the
main concept and their cascading effects where the last ef-
fect is either a business implication or another force with its
own separate Mind Map. This ensures that we can automati-
cally translate the Mind Maps into a planning language. We
used 23 Mind Maps in the pilot deployment and used the
“ungrounded” method to translate the Mind Maps. The re-
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sulting planning problem that aggregates the knowledge of
all Mind Maps (i.e., the grounding of the actions based on
the edges on the Mind Maps) has around 350 predicates and
670 actions.

Additionally, the end users (i.e., the analysts) provided us
with a list of possible keywords, such as organizations of in-
terest, key people, key topics, and were able to pick the rele-
vant sequence of observations when we presented them with
the summary of relevant news and RSS publications. For
RSS publications, around 3,000 news abstracts from 64 pub-
lishers, and for Twitter, around 73,000 tweets from around
32,000 users matched our keyword search criteria.

The teams have universally found the tool easy to use and
navigate. Although no detailed feedback was collected for
each scenario, the teams have reported that approximately
80% of generated scenarios had identified implications di-
rectly or indirectly affecting the business. By design, the
tool is trying to help the business users to think outside the
box and it is expected that some of the scenarios it generates
will not be relevant. Judging by the provided comments, the
teams whose business is affected by frequent political, regu-
latory and economic change have found the tool more useful
than those operating under relatively stable conditions.

In addition, the teams found the explanation graph, visu-
alization of a set of plans, essential to the adaptation of the
tool (Figure 5). They believe that the explanation graph “de-
mystifies” the tool by providing them with an explanation
of why they are presented with a particular scenario. This is
critical for the business users or policy-makers who would
be basing their decisions on the generated scenarios.

The suggestions for improvement focused primarily on
the need for further automated assistance in selecting ob-
servations based on the news, to ensure that no important
context is lost, and on the additional information about the
scenarios. Several teams have requested confidence levels
or at least ranking information provided with the generated
scenarios. We believe this is an interesting future direction
and believe more accurate models are required in order to
provide that additional information.

In working with the domain experts and users from the
start of the pilot deployment, we learned several lessons: (1)
The users are interested in being presented with several sce-
narios rather than one along with the explanation of each
scenario. This captures the possible alternatives rather than
a precise prediction, analogous to a generation of a multi-
ple plans rather than a single (optimal) plan; (2) The users
wanted personalized scenarios specific to their particular use
case. To address that we consider the Mind Maps as a tem-
plate that holds true for all use cases and allow personal-
ization of the scenarios by incorporating different weights
of the edges of the Mind Maps. As mentioned previously
we automatically generate a serious of questions in order to
obtain the impact and likelihoods that are specific to a use
case. Hence, computing a set of high-quality plans for dif-
ferent use cases results in different set of plans, which in
turn results in different scenarios; (3) The domain experts
found themselves continuously updating the Mind Maps af-
ter interacting with the tool and we had to enable those con-
tinuous updates. In addition to building the automated tech-

nique of translating the Mind Maps to planning language,
we assigned unique identifiers to each of the concepts in the
Mind Maps. This allowed us to develop scripts for super-
vised detection and propagation of the associated knowledge
throughout theses changes.

9 Related Work and Summary
There exist a body of work on the plan recognition prob-
lem with several different approaches (e.g., (Zhuo et al.

2012)). However, most approaches assume that the obser-
vations are perfect, mainly because they do not take as in-
put the raw data and that they do not have to analyze and
transform the raw data into observations (Sukthankar et al.

2014). Also, most plan recognition approaches assume plan
libraries are given as input, whereas we use AI planning
(Goldman et al. 1999). Furthermore, there is a body of
work on learning the domain knowledge (Yang et al. 2007;
Zhuo et al. 2013). Our focus in addressing knowledge engi-
neering challenges was to transform one form of knowledge,
expressed in Mind Maps, into another form that is accessible
by planners. Learning can be beneficial in domains in which
plan traces are available.

In this paper, we applied AI planning techniques for a
novel application, scenario planning for enterprise risk man-
agement and addressed knowledge engineering challenges
of encoding the domain knowledge from domain experts. To
this end, we designed Scenario Planning Adviser (SPA), that
takes as input the raw data, news and social media posts, and
interacts with the business user to obtain key observations.
SPA also allows upload of Mind Maps, as one way of ex-
pressing the domain knowledge by the domain experts, and
obtains additional information based on these Mind Maps
by an automatically generated questionnaire. SPA then auto-
matically generates scenarios by first generating large num-
ber of plans and then clustering the generated plans into a
small set (i.e., 3-6) in order to be consumable by a human
user. The SPA system is in pilot deployment with several
teams of business users. The feedback we have received so
far have been positive and show that our approach seems
promising for this application.
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Abstract

Vulnerability assessment (VA) is a well established method
for determining security weaknesses within a system. The
VA process is heavily reliant on expert knowledge, something
that is attributed to being in short supply. This paper explores
the possibility of automating VA and demonstrates an initial
proof-of-concept involving decision-making skills compara-
ble with a human-expert. This is achieved through encoding a
domain model to represent expert-like capabilities, and then
using model-based VA planning to determine VA tasks. Al-
though security evaluation is a complex task, through the help
of such models, we can determine the ways to find potential
vulnerabilities without an expert present. This technique al-
lows time constrained assessments, where a ‘risk factor’ is
also encoded to represent the significance of each security
flaw. The ultimate goal of this work-in-progress is to real-
istically simulate a human vulnerability auditor. This paper
demonstrates the first step towards that goal; a systematic
transformation of the VA knowledge into a PDDL represen-
tation, accommodating a broad range of time constrained in-
vestigative actions. The output plan and its analysis evidently
evinces many potential benefits such as increased feasibility
and productivity.

Introduction

Security vulnerabilities exist in IT infrastructures within
most organisations, and given the increasing size and im-
portance of the infrastructure on a organisation’s daily busi-
ness, there is a pressing need to identify and mitigate secu-
rity vulnerabilities. The organisation itself is responsible for
protecting their IT resources against potential attacks, and
this will often be performed through conducting periodic se-
curity assessments. However, an organisation may not al-
ways have the necessary expertise in-house and they will be
required to pay for external consultancy. If an organisation
does have in-house expertise to maintain their security, they
are also required to maintain such expertise in this rapidly
changing discipline. Both approaches incur a large financial
cost and there is wide-scale motivation to decrease costs,
as well as make an organisation more agile in that they are
quicker to respond to detecting vulnerabilities as new threats
develop. The general principle behind vulnerability assess-
ment process can be summarised as (Kamongi et al. 2013):

Copyright c� 2017,All rights reserved

1. Identify and taxonomise available system resources such
as network and operating systems;

2. Prioritise resources or assets based on their importance
level such as data sensitivity;

3. Determine threats to each resource and create potential
point of vulnerabilities;

4. Based on the importance level, remove the most serious
potential problems first and so on; and

5. Create a policy or guideline, that can minimise the conse-
quences if an attack occurs in future.

A major bottleneck behind security assessments is the
lack of knowledge and understanding of the latest potential
threats. The adversaries are continuously becoming increas-
ingly sophisticated in their attack mechanisms, and anyone
who is not improving their security accordingly can become
the victim of a damaging attack. Another important factor
to consider is the inevitable human error during system con-
figuration and use. In our previous work (Khan and Parkin-
son 2016), we created an expert system based on If-Then
rules but the system produced mutually exclusive actions,
was difficult to maintain and had very limited intelligence.
A potential solution to these problems is through the use
of computational intelligence to generate security evaluation
plans in an automated manner. In general terms, the intelli-
gent technique should consider all known evaluation tech-
niques and determine their applicability to the system, and
to identify mitigation plans for a complex system. The sys-
tem should imitate and support the human expert’s decision-
making ability.

In this paper, we propose a system that applies Automated
Planning (AP) to generate vulnerability assessment strate-
gies for manual checking. It uses the Planning Domain Def-
inition Language (PDDL) (McDermott et al. 1998) for de-
veloping domain models and encoding problem instances.
We use PDDL 2.2 for its support of durative actions, nu-
meric fluents (Fox and Long 2003), and timed initial lit-
erals (Edelkamp and Hoffmann 2004). The domain model
is essentially the description of knowledge, gathered from
expert experience and published work detailing vulnerabil-
ity assessment techniques. Each vulnerability is transformed
into one or more actions. To demonstrate the suitability of
the approach, we have also created a simple post-processor
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that can automatically translate the output plan file to a hu-
man understandable format.

The paper is organised as follows: the first section pro-
vides a brief summary of vulnerability assessment and the
applications of planning in cyber security systems. The next
section is devoted to the detailed explanation and example
results of the proposed solution. This leads to the experi-
mental analysis section, whereby solutions are tested under
different circumstances. This section also discusses the ad-
vantages of the proposed solution. Following this, the paper
concludes and the direction of further work is provided.

Related work

Vulnerability assessment

Vulnerability assessment is the process of determining the
security gaps of a system, which can be exploited by the at-
tacker from inside or outside of organisation, to gain con-
fidential data, financial benefits, amongst others (Umrao,
Kaur, and Gupta 2012). Many generic vulnerability assess-
ment tools are available that can identify known security
flaws such as OpenVAS, Burp Suite, Nikto, Vega, App-
Scan, AVDS and Grabber (Owsap 2017). The purpose of
these tools is to determine a system’s security issues and
stay ahead of attackers by constantly patching and mitigat-
ing identified vulnerabilities. Apart from the generic tools
and approaches, some vulnerability detection techniques tar-
get specific applications. For example, (Benton, Camp, and
Small 2013) performed a detailed security assessment for
OpenFlow protocol, (Ristov, Gusev, and Donevski 2014) as-
sessed the vulnerabilities of OpenStack’s architectural com-
ponents, (Zhao and Zhao 2015) analysed privacy and se-
curity issues of social media sites, (Barrere, Badonnel, and
Festor 2014) identified and explained the vulnerabilities of
autonomic systems and (Rahman, Ahmad, and Ramli 2014)
discussed potential Wireless Body Area Network security
vulnerabilities. Many patents also present different vulner-
ability assessment techniques, e.g. (Webb, Boscolo, and
Gilde 2016) created a network appliance that can evaluate
security of multiple networks concurrently. These specific
evaluations are limited in use but provide deep insight into a
particular product.

One of the major shortcomings of aforementioned ap-
proaches is that they require extensive knowledge for run-
ning and understanding the results. It is very difficult for a
non-expert to conduct the security evaluation without first
spending significant time to acquire the necessary expertise.
Furthermore, most of the approaches do not consider time
limits, prioritisation and real-time damages associated with
the vulnerabilities. The damages might cause exposure of
sensitive data, unavailability of crucial services and many
others. These factors motivate the requirement for an auto-
mated system, which can decide and prioritise vulnerabili-
ties based on time constraints and the potential for damage,
and outputs the most feasible solution without relying on a
human expert.

Applications of Planning in Cyber-Security

There have been successful exploration of the use of Auto-
mated Planning (AP) in different cyber security domains,
mainly for generating attack plans for penetration test-
ing (Riabov et al. 2016). In this work, courses of actions
are generated based upon a system configuration; however,
the goal is adversarial in that the aim is to compromise the
system in efficient shortest path, albeit by a trusted secu-
rity professional (widely termed white-hat hacking). Recent
work by Sohrabi et. al pursues the use of hypothesis explo-
ration for identifying potential attack plans in network secu-
rity (Sohrabi, Udrea, and Riabov 2013; Sohrabi et al. 2016).
Furthermore, recent research presents continued develop-
ment of AP for penetration testing (pen testing) (Shmaryahu
2016a; Hoffmann 2015) discussing the need to overcome
scalability limitations. The fundamental difference between
pen testing and vulnerability assessment (VA) is that VA is
searching for vulnerabilities that exist and mitigate them,
where as pen testing is searching to exploit a series of vul-
nerabilities for adversarial gain.

Penetration testing frameworks are available, both com-
mercial and open-source, which can perform expert-like se-
curity assessment through simulated attacks on different sys-
tems. One such example is Metasploit that can launch ex-
ploits and drop payloads to damage remote systems (Maynor
2011). The problem with such frameworks is that expert
knowledge is required to manually select and launch the
attacks. Although, some security weaknesses such as un-
patched software and insecure ports can be identified by
vulnerability scanning tools, but their results might not be
comprehensive (Holm et al. 2011). Studies suggests that, if
the attack plans are generated by a computer, there is po-
tential to discover more plans than human expert, mean-
while helping the non-expert to avoid the complexity and
save time, effort and resources. One such commercial tool
(Core Impact) and uses AP to generate possible attack
plans and performs real-time penetration testing (Sarraute,
Richarte, and Lucángeli Obes 2011). It uses Probabilis-
tic PDDL (PPDDL), which is capable of extending attack
graphs models and handling probabilistic and numerical ef-
fects. The system also constructs AND-OR trees to deter-
mine candidate attacks paths towards a particular asset. The
tool is also efficient in terms of execution time and in the
generated network traffic. It’s computational complexity is
O(n log n), where n is the total number of actions in domain
file. Similar work has been done by (Shmaryahu 2016b),
where contingent plan trees are constructed for simulated
pen testing.

One initial piece of work involved the use of classical
planning to generate hypothetical attack scenarios to exploit
the system (Boddy et al. 2005). The study simulates realis-
tic adversary courses of action and mainly focuses on ma-
licious insider’s threat. The domain model includes 25 dif-
ferent objects (basic elements of computing), 124 predicates
(information about system) and 56 actions (adversarys ob-
jectives), whereas each problem contains between 200 to
300 facts. Classical and forward heuristic planners, specifi-
cally FF-Metric (Hoffmann 2003) are used to generate attack
plans. As writing domain models manually can be labour in-
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tensive and prone to errors, M4 macros have been used to
design large scale PDDL files, hence avoiding the need for
representing actions and facts directly. Their tool also trans-
lates the planner output into human-readable format (post-
processing) by using a Perl script.

Another paper (Obes, Sarraute, and Richarte 2013) uses
planning to assess network security. First, a transformation
algorithm is used to convert attack models into PDDL repre-
sentation. Attack information containing requirements and
exploits are encoded into a domain file, while the infor-
mation about system such as networks, machines, operat-
ing systems, ports and running services are stored in prob-
lem files. The object types are the system properties such as
privileges and operating systems, while predicates are es-
sentially depicts the relationship among objects. This pa-
per analyses the whole network, has up-to 1800 actions and
hosts 700 exploits. However, as classical planning is used,
the system cannot handle incomplete knowledge.

Partially Observable Markov Decision Processes
(POMDP), can be used to overcome the limitation on
incomplete knowledge by generating attack plans even if
the planner is given incomplete knowledge and uncertain-
ties (Sarraute, Buffet, and Hoffmann 2013a). POMDPs are
capable of prioritising actions based on expected reward that
is composed of asset value, time and risk of detection, to
find the optimal terminal state. Further research (Sarraute,
Buffet, and Hoffmann 2013b) investigates how to produce
better attack plans for a particular machine within short
period of time. Their solution employs intelligent vulner-
ability scanning actions through using POMDPs to find
feasible attacks for each individual machine and inquires
targeted network structure approximations on-demand.
Despite all the advantages of POMDPs, they are complex
and require large computational resources. It is also difficult
to design the ’initial belief’ for every real-world problem.
As a solution, (Hoffmann 2015) presents a middle ground
between classical planning and POMDPs called MDPs.
The actions work same as before, but they do not perform
scanning. Every outcome of action (effect) is assigned
a probability regardless of host configuration predicates.
The probability value depends on the level of attackers
uncertainty in launching that particular action. As PDDL is
not equipped to tackle these uncertainties, the paper also
suggests a PDDL-like language that can allow probability
values inside action.

Literature review shows that planning has been applied
to automate pen testing, but to best of our knowledge, there
is no such work in automating VA. According to the sur-
vey (Shah and Mehtre 2015), VA and pen testing are differ-
ent in term of motivations and objectives. VA is applied to a
system which is likely to have vulnerabilities, unlike pene-
tration testing where system defences are tested. The pene-
tration testing has specific goals and requires particular ex-
pertise, whereas VA finds and prioritises the assessment of
system vulnerabilities. As the VA is first step towards ma-
turing the security state of the entire system and focuses on
both breadth over depth of analysis, we recognise the need
for automation and we provide a feasible and resourceful
solution.

Figure 1: Architecture of proposed system

Automated Planning as a Solution

The purpose of our solution is to help the non-expert users to
determine efficient and time-constrained VA checks and per-
form them manually. The solution is not aimed at replacing
the human-expert, but rather in providing decision support
aid to users of all technical abilities. The following sections
contain a detailed description of the system design, domain
modelling, problem description and a sample plan output.

System Design

This section discusses the overall system design and its com-
ponents. Our proposed solution is inspired by (Sarraute,
Richarte, and Lucángeli Obes 2011) as is shown in Figure 1.
The explanation of each module is in the following:

Pre Vulnerability Assessment (VA) process – The purpose
of VA is to systematically evaluate the security of any given
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Figure 2: Pre-Vulnerability-Assessment process

system. The VA process should comply to well-established
criteria and standards. For now, our solutions is mainly fo-
cused on Authentication, Authorisation and Permission con-
trol along with few data security assessment techniques. To
develop a system that advises on relevant VA procedures,
we need to manually collect authentic, expert and verified
knowledge on existing VA techniques, e.g. using acquisi-
tion software such as (Parkinson and Crampton 2016). The
formal preprocess of VA is described in figure 2. It shows
the tasks that were conducted before creating the solution.
The VA procedures consists of strict steps, which should
be followed in the same manner and sequence, hence the
need for systematic knowledge acquisition. The first step is
to identify the domain whose vulnerabilities are going to be
assessed. Then, with the help of expert knowledge and pub-
lished work, relevant, applicable and useful VA techniques
should be extracted manually, along with their preconditions
and effects. These conditions and effects are modelled into
PDDL later on.

Representing domain knowledge – After information is
gathered regarding VA procedures, it is manually converted
into predicates and objects, which signify the properties
and relationships of individual VA procedures. The group
of inter-related predicates form an action, whereas each VA
process is defined by one or more actions. For each action,
we are also estimating and modelling their durations of iden-
tification and potential damage level in case that vulnerabil-
ity is exploited. The quantification of impact and duration
values are then used to provide the most feasible results in
accordance with given user-requirements. The user can in-
put deadline value and output plans will inform about the
most crucial VA procedures that should be conducted within

Figure 3: Plan’s Post Processor

that limited time.
Problem description – The initial state is a collection of

all preconditions from domain file which describe the un-
derlying system. The goal state is empty except from the
time duration limit. This is because the solutions aims to
find the most feasible plan for VA within given a deadline,
whilst maximising the overall impact. The system has static
knowledge, which means it will always output the same set
of actions. The only variation in plans is brought by impos-
ing time constraints in each action, where the planner will
choose actions based on their impact on the optimisation
metric.

Planner – LPG-td (Local search for Planning Graphs)
planner (Gerevini et al. 2004) is used to extract plans from
domain and problem description files. LPG-td, an improved
version of LPG, supports durative-actions and plan adapta-
tion (as the goal state is not explicitly described) problems.
We used LPG in this initial work due to its general good
performance and handling of PDDL features.

Plan – Consists of actions, which represent the actual
vulnerability. For example, (SYSTEM-VULNERABLE-TO-
DENIAL-OF-SERVICE-ATTACK SYSTEM) is a single ac-
tion of certain plan. It describes that the system is susceptible
to denial of service attack. The plan would continue to have
a sequence of actions, used to describe mitigation actions to
pro-actively eradicate vulnerabilities, minimise threats and
prevent future attacks.

Post-processing – The post processor is a Java-based ap-
plication, whose only purpose is to elaborate the plan in a
more human understandable format (shown in figure 3). It
contains a simple mapping of actions to their respective de-
scriptions. In future, we aim to enhance the preprocessor in
a way, that can convert the actions into appropriate and com-
plete shell commands, which can be executed to perform
real-time automated VA operations.

Domain modelling

The domain file consists of 23 durative-actions. Each action
contains parameters, duration, conditions and effects. The
parameters define objects required for the action to work.
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( : d u r a t i v e �a c t i o n Minimum�password�r e q u i r e m e n t s �unmet
: p a r a m e t e r s ( ? password )
: d u r a t i o n (= ? d u r a t i o n 5 )
: c o n d i t i o n ( and

( ove r a l l ( No�Uppercase�L e t t e r s ? password ) )
( ove r a l l ( No�Lowercase�L e t t e r s ? password ) )
( ove r a l l ( No�Numbers ? password ) )
( ove r a l l ( No�Symbols ? password ) )
( ove r a l l ( n o t
( Minimum�password�r e q u i r e m e n t s �unmet�found ? password ) ) )
( ove r a l l ( a c t i o n �d u r a t i o n s ) )
( a t s t a r t ( n o t ( o p e r a t o r �busy ) ) )

)
: e f f e c t ( and

( a t end
( Minimum�password�r e q u i r e m e n t s �unmet�found ? password ) )
( a t end ( i n c r e a s e ( t o t a l �im p a c t ) 8 ) )
( a t end ( i n c r e a s e ( t o t a l �d u r a t i o n ) 5 ) )
( a t s t a r t ( o p e r a t o r �busy ) )
( a t end ( n o t ( o p e r a t o r �busy ) ) )

)
)

Figure 4: Example PDDL action

The duration is the approximate time required to assess a
particular vulnerability and depends on its complexity level.
The conditions are composed of issues that needs to be true
for the vulnerability to exist. There are also fixed predi-
cates in each durative-action, called action-durations and
operator-busy, which are used to sum up the duration of
each action and to ensure they execute sequentially. The ef-
fect explains the damage of a particular vulnerability. It also
defines the level of damage in terms of impact value, which
is between 1 and 10, where 1 being minimal and 10 being
the largest damage.

Table 1 shows the list of all actions, durations and impact
levels, extracted from the expert knowledge. The duration
of vulnerability assessment action might vary for different
systems. The impact level too depends on the sensitivity of
data, services and resources of the underlying system.

An example of durative-action is shown in Figure 4,
where the purpose is to check if the system has weak pass-
word and might be vulnerable to password-cracking attacks.
The complete explanation is in the following:

Predicates – The predicates are extracted and derived
from the requirements of the vulnerability assessment. The
information regarding vulnerabilities is collected from var-
ious sources such as books, papers, web articles and expert
knowledge. A single vulnerability is represented by one or
more predicates. In addition, there are two more predicates,
action-durations and operator-busy. The action-durations is
used to define a deadline for all actions in the output plan,
where the time-limit is given by the user. The operator-busy
is used to ensure actions are performed sequentially. The
total-time of a plan should be less than or equal to action-
durations, which is used as a timed initial literal to restrict
the makespan.

Functions – There are two functions in the domain de-
scription: total-impact and total-duration. The total-impact
is used to determine the accumulative impact value of all ac-
tions in the output. Its value is increased by the impact value
of each action. Similarly, total-duration is the accumulation
of each individual action’s duration. By using these func-
tions, the planned is able to select actions that have the great-

Table 1: Transformation of knowledge into Actions, their
duration and impact level

#

Action name

Duration

Impact

(total 10)

1 Insufficient-password-
length

2 8

2 Minimum-password-
requirements-unmet

5 8

3 Password-is-guessable 7 5
4 Insecure-password-

storage
15 6

5 Password-brute-force-
attack

10 4

6 Insecure-forgot-
password-option

20 4

7 Insecure-single-factor-
authentication

8 5

8 Infeasible-
authentication-scheme

20 8

9 Access-vulnerability-
File-system

25 7

10 Access-Control-
Authorisation-
vulnerability

30 5

11 Unmanaged-
permission-of-
application

10 7

12 Applications-might-be-
outdated

15 9

13 Lack-of-network-
firewalls

10 8

14 Lack-of-maintenance-
in-network-firewalls

7 6

15 Default-Configuration-
network-firewall-
might-be-useless

10 5

16 Each-Node-Should-
Have-Personal-firewall

9 4

17 System-Vulnerable-
to-Denial-of-service-
attack

5 8

18 Network-connection-
events-logging-are-not-
enabled

8 5

19 Access-control-events-
are-not-auditable

10 6

20 Security-events-are-
not-auditing

5 7

21 Data-at-rest-should-be-
Encrypted-Privacy-in-
danger

5 9

22 Data-at-motion-should-
be-Encrypted-Privacy-
in-danger

5 9

23 Feasible-encryption-
algorithm-not-used

8 7

Total

249 150
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( : i n i t
( No�Uppercase�L e t t e r s password )
( No�Lowercase�L e t t e r s password )
( No�Numbers password )
( No�Symbols password )
< . . .>
(= ( t o t a l �im pa c t ) 0 )
(= ( t o t a l �d u r a t i o n ) 0 )
( a t 0 ( a c t i o n �d u r a t i o n s ) )
( a t 10 ( n o t ( a c t i o n �d u r a t i o n s ) ) )

)
( : g o a l ( and

(<= ( t o t a l �d u r a t i o n ) 10)
) )
( : m e t r i c

maximise ( t o t a l �im pa c t )
)

Figure 5: Example PDDL problem definition

est impact within the available time frame specified through
the Timed Initial Literal.

Durative-action – The purpose of using temporal actions
is to model the time needed to execute a vulnerability as-
sessment action. The action presented in Figure 4 illustrates
that a vulnerable password would lack upper and lower-case
letters, numbers or symbols. The condition also contains the
negation of effect because our problem file does not have any
explicit goal. Without this, we would have duplicate actions
in the plan. The action-durations and operator-busy are used
to limit the number of actions and remove their concurrency
respectively.

Effect – Figure 4 shows that any password having the
aforementioned issues does not meet the minimum require-
ments of a strong password, hence it is viable to password-
cracking attacks. It states the impact level of the vulnerabil-
ity as well as identifying the possible amount of damage it
can cause, which is 8 out of 10 in this particular case. It also
increases the accumulative impact and duration value (total-
impact and total-duration). In adition, the effect starts by
stating the operator-busy predicate, so that no other action
can be executed at that instance. Once the action is com-
pleted (at end), operator-busy is reverted to its original state,
freeing the lock and the planner proceeds to next action.

Problem Description

A sample part of problem file is also shown in figure 5. It
contains the initial state, goal state and metric descriptions.
The complete explanation on the construction of problem
file is in the following:

Init – Describes the complete initial state of system in
terms of properties such as the password has no lower or
upper case letters and many others. The initial state is a col-
lection of all predicates the represent the system under ex-
amination that can subsequently be used for vulnerability
assessment. The objects represent the constant names of as-
sets under assessment. For example, password is an object,
whose strength level is rated in the aforementioned domain
description.

0 . 0 0 0 3 : ( FEASIBLE�ENCRYPTION�ALGORITHM�NOT�USED
ENCRYPTIONALGORITHM)

8 . 0 0 0 5 : (DATA�IN�MOTION�SHOULD�BE�ENCRYPTED�PRIVACY�IN�DANGER
DATAINMOTION)

1 3 . 0 0 0 7 : (DATA�AT�REST�SHOULD�BE�ENCRYPTED�PRIVACY�IN�DANGER
DATAATREST)

1 8 . 0 0 1 0 : (SYSTEM�VULNERABLE�TO�DENIAL�OF�SERVICE�ATTACK
SYSTEM)

2 3 . 0 0 1 2 : (MINIMUM�PASSWORD�REQUIREMENTS�UNMET
PASSWORD)

Figure 6: Example PDDL plan output

Goal – Notice there is no explicit goal to reach as we want
all of those actions, which should be completed within the
given deadline. Thus, we only check whether the accumu-
lative value of duration, total-duration, is less or equal to
deadline-value (which is 10 in this case). Once the condition
is satisfied, the planner should stop generating the plan, even
if there can be more actions.

Metric – The requirement for our system is to output
those actions, which have the maximum impact and can be
completed within deadline. For maximising the impact, we
have used maximize feature on total-impact function. It will
enable the planner to only select the most feasible action
with respect to their impact value, if various options become
available within limited time.

Planer output

A sample plan is shown in figure 6. It took 1 second to search
this plan on Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz of
processor with 16GB RAM. The operating system was 32-bit
Ubuntu Kylin. The deadline was specified as 30 minutes and
the planner output provides a plan with the total duration of
28 minutes. The plan shows VA tasks that should be con-
ducted to evaluate the security. The planner was executed
several times (-n 10) to reach a plan better quality. If the
plan output file is provided to the post processor (figure 3),
it can elaborate the plan in further details. The post processor
is a primitive application which matches the actions against
pre-determined sentences to provide more detail instructions
with context for the user.

Experimental Results and Analysis

This section presents the results of proposed solution and
evaluate them to demonstrate the advantages in terms of us-
ability and applicability of this technique. Using the same
domain file, we provided the planner with various problem
files, all of them having different time constrained deadlines,
ranging from 10 to 250 minutes in duration. For each dead-
line, the planner was executed more than once, i.e. until it
could not find any better plan within the specified 5 min-
utes of cut-off time. The results of various plans are shown
in Figure 7. The x-axis shows the total number of actions,
while the y-axis shows the deadlines and accumulated im-
pact value of each plan. Furthermore, planner is displaying
the correct results as the output matched our expected output
that was derived manually.
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The number and impact value of the actions are directly
proportional to the deadline. This feature significantly max-
imises the efficiency of VA process, as more important vul-
nerabilities can be identified within specific amount of time.
Furthermore, the total value of duration in domain file is 249
and the total number of actions are 23 (shown in Table 1).
With the deadline of 250 minutes, which is more amount
than the sum of all durations of actions, the planner outputs
all 23 actions as expected. It means that the full potential
of solution can be used if user has enough time. It is also
observed that some different deadlines (e.g. of 60 and 70
minutes) present the same amount of actions (10), but with
the different impact values (72 and 76 respectively). This
proves that our resultant plan will try to maximise the overall
impact, while choosing only crucial and minimum number
of actions. Hence, the user will be able to detect important
vulnerabilities in a shorter time span and protect the system
against common, yet harmful attacks.

Potential advantages

Our solution is beneficial for both experts and non-experts. It
should be noticed that the solution is not supposed to replace
human experts, but assist them in a useful, resourceful and
practical way. Following are the benefits that our solution
can provide in terms of vulnerability assessment.

Cost – One company charge 1495-USD for single vul-
nerability assessment of an IT infrastructure with up-to 100
individual internal Internet Protocol (IP) addresses or nodes
and takes minimum of two-weeks. But with our solution,
any company or individual can get the vulnerability assess-
ment free of charge, within a significantly lower timeframe.

Less effort and more productivity – As the planner auto-
matically outputs the VA tasks, there is no effort required to
conduct tiresome searching to find suitable techniques and
results in reduction of time, without compromising the qual-
ity. Also, the plan itself allocates an appropriate amount of
time for each assessment task, hence the whole VA process
becomes systematic, precise and efficient.

Quality and effectiveness – The quality of solution de-
pends on the quality of knowledge in domain model. The
knowledge of our solution is collected from renowned re-
search outlets and experts. So, the solution is capable of
mimicking human expert abilities, hence making it some-
what equally effective.

Feasibility – There are some cases where a company does
not want to utilise 3rd party contractors or outsourced vulner-
ability assessment operations. It is possibly that due to lack
of access to experts, the company are paranoid of exposing
their private data and system configuration. Using this solu-
tion, one can perform in-house VA processes on-demand.

Decide custom time frame – Generally, the VA process is
performed on monthly, quarterly, semi-annually or annually
basis. But, with our solution at hand, there is no restriction
of predefined schedule. Furthermore, one can decide their
own custom time-frame and obtain the list of VA tasks in a
specified time window.

Scope of domain model – The domain models are man-
ually defined and based on human knowledge. Although
this paper focuses on a specific aspect of cyber security,

Figure 7: Relationship between different deadlines, and their
impact and number of actions. It shows that (deadline dura-
tions / number of actions & accumulative impact).

the domain model can describe any number of techniques
and methodologies from multiple areas simultaneously. It is
just a matter of modelling the knowledge into domain file.
Hence, it would not be wrong to state that our proposed sys-
tem can comprehend the knowledge of multiple human ex-
perts inside a single domain model and provide a better and
holistic plan, as well as strategy by considering various areas
of cyber security.

Conclusion and Future work

We have shown in this paper that vulnerability assessment
techniques can be modelled into planning problem, where
they are solved more efficiently along with integrating new
functionality such as time constraints. The proposed solu-
tion, though currently work-in-progress, has shown signif-
icant initial results in aiding the non-expert users to con-
duct vulnerability assessment tasks own their own. This pa-
per discussed the complete design of proposed solution and
the details on how to transform the expert knowledge to the
planning domain. The results successfully depicts that it is
not necessary for a non-expert to rely on others. The plan it-
self can inform the user in manually performing comprehen-
sive VA process. The domain model is created from expert
knowledge and hence the VA procedures mimic the abili-
ties of an expert as well. By using our domain model, plan-
ners such as LPG-td and user deadline requirements, optimal
plans can be generated based on their threat level and time
duration.

As our final goal is to produce a real-time automated
VA solution, the following important questions remains as
regards to future work. First, how to increase the quality
and quantity of knowledge in domain models? It essentially
leads towards incorporating better knowledge acquisition
techniques from the experts. Second, how to deal with in-
complete knowledge? One possible solution would be using
probabilistic planning techniques that can generate discrete
actions. Last but not least, how this solution can become
more beneficial and usable? It can be done by transform-
ing the plan into executable commands in accordance with
the underlying system.
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Abstract 
Earth Observation market has been increasing in both size 
and complexity over the last years. EO missions are 
becoming more capable and more agile, carrying high-
resolution sensors that need to frequently be steered at 
different directions depending on the mission goals. In this 
paper we discuss the Coverage Planning problem Disaster 
Monitoring Constellation (DMC3) mission deals with. It is 
an Earth Imaging mission from Surrey Satellite Technology 
Ltd (SSTL). The combinatorial optimization problem of 
determining a not only feasible but optimal sequence of the 
spacecraft attitude in order to image the total of a target area 
is NP-hard. We propose an automated planning system for 
DMC3, employing a self-organizing software architecture 
and a nature inspired optimization algorithm, Ant Colony 
Optimization. The advantages of the system are discussed 
and some key results are shown.  

Introduction 
Planning the operations of an Earth Observation satellite is 
the process of determining which available tasks the 
satellite will perform and when these will take place, as the 
available resources, samples’ collection goals, weather 
conditions and user requirements evolve. Agile EO 
spacecraft orbit the Earth, and gather information by 
slewing their sensors towards areas of interest. Automating 
the process of finding feasible schedules for EO satellites 
has recently been the objective of several researchers in 
both academic and industrial environment. (Chien et al., 
2012) The difficulty of the underlying combinatorial 
optimization problem initially depends on the satellite 
characteristics, constraints and the planning horizon. The 
complexity increases even further when accounting for the 
highly dynamic nature of the problem, due to goals that 
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might be redefined, weather conditions that can change, 
emergency cases that might strike. 

In this paper, we study the planning and scheduling of 
imaging requests submitted to SSTL's Disaster Monitoring 
Constellation 3 (DMC3) mission. It is an Earth Imaging 
mission of low cost small satellites, providing images for 
several applications, commercial or of public interest, on a 
daily basis. The platform consists of 3 high-resolution 
optical Earth imaging agile spacecraft flying in a 650km 
Sun Synchronous orbit, which can be steered up to 45° off-
nadir pointing along the roll and pitch axes. Their slewing 
ability results in a very big Area of Regard in the surface of 
the Earth, but also increases the complexity of the planning 
process. The objective of this work is to find schedules for 
this mission, when the Areas of Interest considered cannot 
be entirely imaged with a single pass. 

 Previous research considers the selection of swaths for a 
fixed nadir pointing spacecraft. (Cordone R. et al., 2006) A 
Langrangian heuristic and a subgradient optimization 
method were used, producing very good solutions. When 
the assumption of fixed pointing is removed, the main 
approaches found in the literature involve a greedy 
(Muraoka et al., 1998) and a GRASP algorithm applied to 
an Integer Linear Programming model. (Galan-Vioque et 
al., 2011)  

In this paper, we aim at applying a Swarm Intelligence 
(SI) algorithm to the design of an automated ground based 
Mission Planning System (MPS). Our work is based on a 
previous research in which a SI method, Ant Colony 
Optimization (ACO), was applied to Mission Planning for 
EO Constellations where the planning problems could be 
represented as binary decision problems (Iacopino et al., 
2013). Generalising the approach, we study the application 
of ACO in planning problems of higher complexity, which 

 41



involve multiple decision problems – at each decision step 
multiple options exist rather than two. 

 
Coverage Planning Problem 

 
The Coverage planning problem consists of finding a way 
to cover all the parts of an area of arbitrary shape. In 
robotics, covering an area translates to visiting all of its 
points, thus a motion path has to be found for the robot. In 
Earth Imaging applications, the satellite is expected to 
image the total of the area. When agile spacecraft are 
considered, a plan of the attitude maneuvers has to be 
decided. Regardless of the field of research, coverage 
planning is an NP-hard combinatorial optimization 
problem. (Strimel G.P. et al., 2014). 

More specifically, DMC3 constellation is expected to be 
able to image a ground area of around 1 million square km 
in the surface of the Earth, each day. The satellites are in a 
650km sun-synchronous orbit and operate under three 
imaging modes, but the most commonly used is the strip 
mode. In this mode, the satellite captures long strips of 
orthogonal shape (Figure 1). This is due to the “push 
broom” form of imaging employed, i.e. the camera is lying 
across the orbit ground track. The satellites are agile, thus 
can be steered up to 45° off-nadir pointing along the roll 
and pitch axes. For this paper we consider only roll axis 
steering. Strips consist of smaller size images of square 
size 23 by 23 square kilometers, called scenes, which can 
be imaged within the roll capability range of the satellites. 
The width of a scene increases as the attitude of the 
spacecraft diverges from nadir, with a maximum width of 
about 44km. Power and thermal constraints limit the 
maximum strip length to 175 scenes. The spacecraft have 2 
data recorder devices: a small one of a total memory 
consisting of 30 GB meant to be used for near real time 
imaging, and one large device of a total memory of 512 
GB meant to be used in a stored and forward manner. The 
size of a single image i.e. a scene, can vary depending on 
the attitude of the spacecraft, the location and compression 
used, from about 250MB to 1300MB. The frequency of 
Ground Station passes is as high as once per orbit. Each 
strip imaged is firstly stored on the on board memory, 
limiting the rest of the images that can be acquired before a 
downlink. The satellites download data with a rate of 350 
Mb/s, thus their memory can be emptied after a pass with 
duration of at least 616s. Ground Station passes’ duration 
can vary between 2-10 minutes. 

The planning problem we consider is: given an Area of 
Interest (AoI) of arbitrary shape, a planning horizon, a 
single spacecraft orbit and pointing availability, and 
Ground Station passes, the objective is to maximize the 
area that can be imaged, while respecting the following 
constraints: 

 

Figure 1. Two passes over the same AoI, with different ground 
tracks, and their imager slew angle options. 
 

x Temporal constraints. They regard the sequence 
of the spacecraft' imaging opportunities of the AoI 
and the Ground Stations. The orbit of the 
spacecraft defines the order of the imaging 
opportunities, which dictates the order of the 
Nodes in the graph representation of the problem 
shown in Figure 2. 

x Resource constraints. For the on-board storing, 
we consider the use of only the small data 
recorder device. The resource constraints are 
satisfied by updating the current schedule once a 
newly added imaging opportunity results in 
memory overflow, as described in the Algorithm 
section. Another part of the resource constraints is 
defined by the Ground Stations' availability. 
DMC3 can serve multiple Ground Stations but 
their number and position on Earth are not 
considered in this paper. We only regard the 
Ground Station passes as on board memory 
renewals. Also, Ground Stations are not 
guaranteed to be available during the time of a 
pass. Their availability is subject to changes due 
to the workload or emergency cases, thus they are 
regarded as unreliable resources from a planning 
point of view. This unreliability can lead to 
having fewer Ground Station passes than initially 
expected, resulting in increased severity of the 
resource constraint. In such cases, the system 
should adapt to this change. 

x Spatial constraints. Given that the ground track of 
the spacecraft is not the same every time it passes 
over an AoI, it is certain that some acquisitions 
will overlap with others. This will not only hinder 
or delay the total coverage of an area, but will also 
result in unnecessary use of the spacecraft 
imaging sensor. Overlap cannot be considered as 
a hard constraint of the problem, since a solution 
will still be feasible even when the images 
overlap. It is though highly desirable to keep it at 
minimum levels, especially when the time horizon 
requested by the user for the completion of the 
task is not long. 

x Imaging constraints. The strip mode of imaging if 
considered. The spacecraft image strips of 
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orthogonal size of the AoI in each imaging 
opportunity. (Figure 1) 

 
The operational requirements form the objectives for a 

mission planning system to perform well, and cannot be 
overlooked. An automated MPS, especially, needs to cope 
with the following requirements: 
 

� Reliability. A feasible solution must be provided 
at all times. The MPS has to be designed in a way 
that a high level of system responsiveness is 
preserved.  
 

� Scalability. An increase in the number of users, 
AoIs or spacecraft results in a corresponding burst 
in the complexity of the planning problem. Hence, 
the MPS needs to be scalable to the input size, 
preserving its performance and usability. 
 

� Adaptability. Given that the satellites’ 
availability and the users’ preferences might be 
redefined or an emergency situation might arise, 
we desire a system that will be able to adjust its 
behaviour, in response to environmental changes. 

 
In the next section we discuss the potential of a Swarm 

Intelligence algorithm in dealing with these requirements. 

Planning with Stigmergy 
For an MPS that copes with all the aforementioned 
requirements we employ a nature inspired meta-heuristic 
method, Ant Colony Optimization. ACO is a probabilistic 
algorithm used to find the solution in Computer Science 
and Operations fields’ problems that can be reduced to 
finding optimal paths in graphs. (Dorigo & Stutzle, 2004) 
Real world ant colonies are able to find the shortest paths 
between their nests and a food source. They do that using 
no direct communication with each other. All the 
individuals follow simple sets of rules, and none has 
universal knowledge of the colony’s actions. Nevertheless, 
the colony does have a complex behavior, which is the 
result of interaction with the environment. This mechanism 
is called stigmergy, a means of indirect coordination of a 
number of individuals, through their environment.  

The basic principle is that the traces left in the 
environment by an agent’s actions stimulate the next 
agent’s actions. Stigmergy is a form of self-organization. 
Complex, seemingly intelligent structures are produced, 
without need for any control, using only indirect 
communication. Thus, the agents usually are designed to 
be simple, without intelligence, memory, or awareness of 
one other.The same principles apply to ACO. The basis of 
ACO algorithms is summarized below: 
 

When the ants are searching for food, in the natural 
world, they first wander randomly. After finding a source 
of food, they return to their colony laying down pheromone 
in the path that they follow. If other ants find such a trail 
they are less likely to continue their wandering, but follow 
the trail instead. In case it leads them to food, they will also 
reinforce it upon their return to the colony. The pheromone 
trails start to evaporate over time. Hence, the pheromone 
will eventually be gathered in the shorter paths, which get 
marched over more frequently. 
 

The deposit mechanism helps the colony find a good 
solution whereas the pheromone evaporation is a means of 
avoiding convergence to a locally optimal solution. A 
typical ACO algorithm involves three main steps:  
 
- Path Construction: The ants construct a path that 

includes all the vertices of the graph. They do that by 
iteratively adding an edge to the path, after they chose it 
based on its amount of pheromone. The probabilistic rule 
used favours the edge with the highest pheromone 
amount:  
 

𝑃𝑖,𝑗 =
𝜏𝑖,𝑗
𝛼

∑ 𝜏𝑖,𝑗
𝛼𝑀𝑖

𝑗=1
         (1) 

 
where τi,j is the amount of pheromone in the edge j of 
vertex i and Mi is the number of incoming edges in the 
vertex i. The parameter α defines the importance of the 
pheromone intensity in the ant’s choice of edge. 𝑃𝑖,𝑗 is 
the probability of edge (i,j) to be chosen. In the system, it 
is implemented as a roulette wheel selection process.  
 

- Path Evaluation: Once at the end of the graph, each ant 
evaluates the path they created, based on an objective 
function, f. 

 
- Update of pheromone field: The update takes place in 

two steps. First each ant deposits an amount of 
pheromone to the path it constructed, based on its 
evaluation. Then, the pheromone of the whole graph is 
evaporated by a certain rate, ρ.     

 
Problem representation 
 
ACO is a graph search optimization method; the graph 
gives structure to the search space. It is a critical part of the 
optimization process as it provides the environment. To 
that respect, it should be easy to build and traverse while 
also being representative of the problem. Our choice of 
representation is a directed graph that follows these 
guidelines.  

During each pass over the AoI, the attitude of the 
spacecraft needs to be determined. Since there is a range of 
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roll angles that allow it to point to the AoI, there is a choice 
of attitude to be made, for each single pass. The problem is 
represented in the system by a directed graph G(V,E), 
where the Nodes represent imaging opportunities of the 
AoI, and the edges the spacecraft attitude. More 
specifically:  

 
x V is the set of vertices or Nodes of the graph. There 

are two types of Nodes: 
 

� N Nodes that represent a pass of the spacecraft 
over the AoI. In these Nodes, the memory 
resource is consumed.  

� G Nodes that represent a pass over a Ground 
Station, or downlink availability. In these Nodes, 
memory resource is renewed. 

 
x E is the set of all the Edges of the graph, each one 

representing a spacecraft attitude. Each N Node has a 
set of incoming edges to it, each corresponding to a 
roll angle choice for this pass. For all the N Nodes 
there is an extra edge representing the option of no 
image capturing during this pass.  
 

The order of the Nodes is the corresponding 
chronological order of the imaging opportunities defined 
by the orbit, as shown in Figure 2. Each edge is associated 
with two values: θi,j for the roll angle it represents, and mi,j 
for the memory the corresponding strip consumes. Given 
its form, we refer to this directed graph representation as 
the N-ary chain, due to the arbitrary number (N) of edges 
that are incoming to each Node. 

Figure 2. An N-ary chain representation of the coverage planning 
problem. 

In the case of many independent AoIs requested to be 
imaged, the graph includes the passes and corresponding 
imaging opportunities of all of them in a chronological 
order.  
 
Algorithm 

 
All search algorithms involve making a choice at each 
step: to either exploit or explore the search space. The first 
suggests that the search will be directed towards already 
visited regions of the search space, whereas the second 
means that more information will be gathered regarding its 
unexplored regions. Balancing the two phases is important 
for the success of Evolutionary Computation and Swarm 

Intelligence algorithms. (Crepinsek, Liu, & Mernik, 2013). 
Several mechanisms have been proposed to this direction:  

x The deposit and evaporation mechanisms are 
forms of exploitation and exploration 
respectively. (Dorigo & Stutzle, 2004)  

x Pheromone deposit function.  
o Having a minimum and maximum 

amount of pheromone added. (Stutzle & 
Hoos, 2000)  

o Allowing only for “elite ants” to deposit 
pheromone (Bullnheimer, Hartl, & 
Strauss, 1999) 

x Probabilistic edge selection function.  
o Random edge selection in parallel to the 

selection that is guided by the 
pheromone field and heuristic value. 
(Nakamichi & Takaya, 2004)  

o Tuning parameter alpha when a 
probabilistic rule of the form (1) is used.  
(Meyer, 2004) 

 
In this system the alpha parameter control approach is 
used. In (Iacopino et al., 2013) it was proven that for 
probabilistic rules of the form (1) parameter alpha controls 
the balance between exploration and exploitation in ACO 
algorithms. The critical value around which the colony’s 
behavior changes is alpha = 1. The algorithm workflow is 
summarized in the following: 
 
1: PheromoneInitialization(); 
2: for all ant do  
3: for all node do 
4:  path+=TransitionRule();      //Path Construction 
5:  feasibilityCheck(path); 
6: end for 
7: phDep=ObjectiveFuntion(path);                //Path Evaluation 
8: update(phDep);            //Pheromone field Update 
9: update(phEvap);  
9: updateAlpha();                //Alpha Update 
10: if convergence then 
12:  savePath(); 
12:  restartAlpha();  
13: end if 
14: end for  
 

Through the feasibilityCheck method, we make sure that 
each path that is evaluated is feasible i.e. consumes less 
memory than the one available on board. Each time a new 
edge is added, the total memory is computed. In case there 
is a constraint violation, some edges are deleted from the 
path, and replaced by the corresponding ‘No imaging’ 
edges. The selection is made by a weighted roulette wheel 
which includes all the edges on the path, based on the 
pheromone levels and memory they consume.  

The evaluation of the path includes a dynamical scale 
that adjusts to the best current solution, in order to 
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determine the amount of pheromone that will be deposited. 
The objective function we use in this optimization problem 
is:  

𝑓 = max{Coverage}     (2) 
 
The key part of the algorithm is the updateAlpha 

method, or the way we balance between exploration and 
exploitation phases. Alpha takes values around 1 in [0.5, 
2], and is changing based on a non-decreasing function. By 
increasing the value of alpha, we increase the effect of the 
pheromone field in the ants’ choice. An exploration/ 
exploitation cycle thus happens by starting with a value 
below 1, and reaching a value above it, depending on when 
the convergence criteria is considered reached. Restarting 
the cycle multiple times, we give the system the ability to 
integrate any changes of the environment, like the addition 
or deletion of graph nodes and edges, or the change in the 
available resource. It is a way of increasing the system’s 
adaptability. 
 
Coverage calculation 
Computing the size of the imaged area can become a 
bottleneck for the performance of the system. The 
underlying geometric problem involves the calculation of 
the size of each strip’s intersection with the AoI, 
subtracting the areas covered by two or more strips 
(overlap). This calculation is computationally too 
expensive to take place many times during the planning. 
We estimate the coverage employing a simpler algorithm. 
The calculation is based in one assumption: given that 
DMC3 is imaging only in ascending node, for a sufficiently 
small Area of Interest the Earth's curvature is small enough 
to assume that the ground tracks of the spacecraft are 
almost parallel to one another (Figure 3a). Thus, we 
assume that the orientation of the all the strips in the search 
space will be roughly the same. 
 
 
 
 
 
 
 
 
 
 
 

(a)                              (b) 
Figure 3. (a) Ground Tracks of satellite passes over Spain for a 
week (b) Division of AoI in bands 

In Figure 3a we show the Ground Tracks over the area 
of Spain for one spacecraft and a period of one week. The 
average inclination with respect to a Cartesian frame, for 
this example, is 6º. The average difference among the 

ground tracks inclinations is smaller than 1º. Our 
assumption, thus, is acceptable. 

The calculation involves dividing the AoI in bands 
parallel to each other, as shown in Figure 3b, with a band-
frame orientation equal to the average orientation of all the 
ground tracks considered, that is 6º with respect to the 
Cartesian frame. For sufficiently narrow bands, if two 
strips intersect with the same band, they will most likely 
overlap each other. We maintain and update two tables, 
each with size B, equal to the number of bands considered. 
In the first table we keep the number of strips intersecting 
each band. This process can be reduced to a binary search 
of the position of each strip’s starting and ending longitude 
coordinates, with respect to the positions of the bands. The 
second table has the maximum and minimum latitude 
values of all the strips intersecting the band. Objective 
function (2) becomes: 
 

𝑓 = max{𝑙𝑎𝑡𝐶𝑜𝑣 + 𝑙𝑜𝑛𝑔𝐶𝑜𝑣}  (3) 
 
where 𝑙𝑎𝑡𝐶𝑜𝑣 = ∑ (𝑙𝑎𝑡[𝑖]𝑚𝑎𝑥 − 𝑙𝑎𝑡[𝑖]𝑚𝑖𝑛

𝐵
𝑖=1 ) is the 

latitude coverage estimation, B is the total number of 
bands, 𝑙𝑎𝑡[𝑖] is the latitude – maximum or minimum – per 
band and 𝑙𝑜𝑛𝑔𝐶𝑜𝑣 is the longitude coverage estimation, 
equal to the number of bands that intersect with at least one 
strip. Thus, the more the overlap among the strips, the 
more strips each single band intersects with and the smaller 
the value of 𝑙𝑜𝑛𝑔𝐶𝑜𝑣. The bands’ width is chosen with 
respect to the swath width. We usually select a width equal 
to a quarter of the nadir pointing swath width, given the 
tradeoff between computation time and accuracy. 

 
Considering priorities 
The current system can also accommodate requirements 
that can be described through priorities. These can include 
weather conditions, user priority, etc. In such cases, the 
objective function will become: 

𝑓 = max{Coverage +∑𝑝𝑖𝑗} 
 Priorities are integrated in the system by adding a 
priority value 𝑝𝑖𝑗  in the corresponding imaging 
opportunities, or adding a weight value on the edges of the 
graph. They can be user specific, and area specific. In the 
first type, the acquisitions associated with a specific user 
are assigned with the corresponding priority value. The 
area specific priorities, involve imaging a subarea of the 
AoI with higher priority. For example while imaging 
Spain, the capital of the country, Madrid, might need to be 
fully covered or in the case when we are aware that a lot of 
clouds will be gathered in some area, we choose to avoid 
imaging it during this time.  

 45



Simulation results 
In our software prototype, a user submits their imaging 
request and preferred time of task completion, along with 
more specific requirements such as subareas with higher 
priority, or weather conditions that can render an image 
unacceptable. Their requests are asynchronous and can 
change or be filed anew at any time. SSTL's orbit 
propagator (Wu, Brewer, & Palmer, 2002) then produces 
the imaging opportunities of the spacecraft which is the 
input of the system, and the user’s preferred time of 
completion constitutes the planning horizon. The available 
on board memory and set of Ground Station passes during 
this horizon are also imported to the system, and the graph 
environment is formed. The output is a feasible schedule of 
the imaging sensor tilts for each spacecraft. 

We test the system with two problems of different 
difficulty, considering a single AoI imaging request. In this 
paper, we define the difficulty by the size of the AoI and 
the planning horizon, since these two factors determine the 
size and topology of the N-ary chain. The size of the AoI is 
defined by the ratio of its longitude range over the nadir 
pointing swath width of the spacecraft e.g. for a small AoI 
this ratio is less than 10, whereas an AoI with a ratio bigger 
than 30 is considered of big size. The first test regards a 
small AoI which can be seen in blue outline in Figure 5, 
and a planning horizon of up to 10 days. The optimal 
solution in this case does not take too long to calculate 
with exhaustive search, therefore a comparison between 
ACO solution and optimum can be made. In the exhaustive 
search algorithm, the search space is pruned by not 
considering a path which exceeds the memory resource 
constraint once one is found.  

For the given AoI, we increase the planning horizon – 
thus increasing the problem difficulty – and note the 
performance of the system. Increasing the time horizon by 
one day is usually equal to an increase of the graph 
representation by one Node – if the AoI is in the field of 
view of the spacecraft during that day – but a 
multiplication of the search space by a factor equal to the 
number of incoming edges to the new Node. For example, 
adding a new Node to the graph with 9 edges translates to a 
search space that is 9 times bigger. In this example, the 
graph representation includes up to 10 Nodes with 2-8 
incoming edges each.  

Depending on which axis we are more interested in 
covering we can use weights in Objective function (3) and 
adjust them accordingly: 

𝑓 = max{𝑘1𝑙𝑎𝑡𝐶𝑜𝑣 + 𝑘2𝑙𝑜𝑛𝑔𝐶𝑜𝑣} 
Increasing 𝑘1 we include a bigger number of longer strips 
in the solution, which can result in the increase of overlap. 
Based on our assumption regarding the orientation of the 
strips, we can avoid overlap by increasing the importance 
of the longitude coverage, 𝑘2, since 𝑙𝑜𝑛𝑔𝐶𝑜𝑣 table 

includes the overlap value in its calculation. Thus, the 
higher 𝑘2, the smaller the tolerance to overlap. Depending 
on the AoI and the specific time horizon though, the 
system will choose the option of no imaging in some 
passes, in an effort to find a solution with no overlap. This 
can pose the risk of a very poorly imaged AoI. For the rest 
of the paper, we set 𝑘1=𝑘2=1.  
 

The number of ants used in the simulations is chosen 
empirically based on experience of the system performance 
for different input sizes. In general, the quality of the 
solutions does not improve linearly to the number of ants, 
but there exists a maximum ant population size after which 
the solution quality does not improve. For the sake of 
brevity, the corresponding tests are not shown. For this 
problem, 3000 ants are used, which corresponds to 3000 
objective function evaluations. In Figure 4 we note the 
error between the solution of the system and the optimum, 
for an increasing input size. 

 
 
 
 
 
 
 
 

        (a)                                            (b) 
Figure 4. (a) Optimal solution and ACO system’s output (b) 

Percentage of the error 

The error is very small ranging between 1-8%. In order to 
visualize the quality and differences of the two solutions, 
we contrast them in Figure 5. 

       (a)                                                     (b)    
Figure 5. (a) Optimal solution (b) Average ACO solution 

We now discuss the reliability of the system. In Figure 6 
the evolution of the ACO solution error is shown after 
multiple individual runs, for the longest considered time 
horizon i.e. 10 days. The error value in both Figure 4 and 
Figure 6 is a percentage computed with respect to the 
optimum value: 

𝑒𝑟𝑟𝑜𝑟 = 
𝑜𝑝𝑡𝑖𝑚𝑢𝑚 − 𝑣𝑎𝑙𝑢𝑒

𝑜𝑝𝑡𝑖𝑚𝑢𝑚
100% 
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Figure 6. Evolution of the ACO solution error in independent 
runs. 

We see that for 100 different independent runs, the error 
never increases more than 10% of the optimum value. The 
simulations are independent of each other so as to point out 
the uniformity of the solutions produced.   
 

Next we study a problem of big size in which Spain is 
the Area of Interest. In order to test the system in increased 
problem complexity and produce solutions that cover a 
large percentage of the AoI, we increase the planning 
horizon to 3 weeks, which translates to a graph of 21 
Nodes with 5-45 incoming edges. In each simulation we 
now use 5000 ant agents. In Figure 7 we note the 
percentage of the error between the ACO solutions and the 
ACO optimum for multiple runs, and visualize the average 
solution. 

 

(a)                                            (b) 
Figure 7. (a) ACO error for individual simulations (b) 

Visualization of average ACO solution 

Figure 7(a) description is twofold: first, the system 
converges to a feasible solution at every simulation. 
Secondly, it demonstrates that the system steadily provides 
solutions of similar quality. We now compare the average 
ACO solution with an algorithm of greedy nature, for the 
same AoI and planning horizon. The algorithm’s criteria is 
the strip size; for every pass over the AoI the strip of 
biggest size is chosen. In Figure 8 we contrast the two 
results; the percentage of the imaged area when the greedy 
algorithm is used is 20% smaller than with ACO. This 
percentage is problem dependent and will vary for problem 
instances of different difficulty.  

 
 

 
 
 
 
 
 
 
 
Figure 8. Comparison of ACO average solution with a greedy 
algorithm outcome for a given imaging request.  

 
Future Work 

 
Multiple objectives 
In a MPS the user should be able to define the goals, thus 
there should be a level of freedom to the metric they can 
choose to measure the performance of the system. 

To that respect, there are many aspects of the mission 
that need to be considered. In the coverage planning 
problem, for example, a solution of specific coverage and 
zero overlap, is considered worse than another solution of 
the same coverage, with some overlap, which can be 
completed in an earlier time. Another aspect to consider is 
the quality of the images provided. The bigger the distance 
from nadir pointing, the more distorted the image, but the 
wider the strip as well. Decreasing the distortion, might 
mean longer time to cover an AoI. Hence, we want to take 
into account multiple mission objectives, which can also be 
conflicting, and produce the Pareto front of the solution. 
This will allow for the trade-off between each of the 
objectives to appear.  

Generalizing to diverse missions 

The scope of our research is to not only produce a MPS 
architecture that is mission specific, but use a general 
enough approach to address planning problems that many 
missions deal with. To that respect, we have already 
applied our approach to oversubscribed scheduling 
problems (Ntagiou et al., 2017). This type of problem is 
often found in space missions e.g. data relay missions. 
 
Scaling to multiple spacecraft 
Currently, given that each DMC3 spacecraft has their own 
orbit and imaging opportunities, we employ 3 separate 
chains. Parallel implementation will be considered as the 
chains can be traversed in parallel by different ants, as long 
as in the objective function evaluation the paths of all the 
chains are taken into account. In this way, the constellation 
is regarded as a unity by the system and not 3 different 
spacecraft. Our future plan is to work on the load balancing 
among the three spacecraft.   
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Given the current trend of Earth Observation missions 
involving hundreds of spacecraft (Buchen, 2015), our 
focus is also in the scalability of our system, when the 
number of spacecraft increases that much. To that respect, 
we aim at producing a coordination mechanism that is 
irrelevant of the number of spacecraft considered.  
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Abstract

Deciding when to intervene can be as important as recog-
nizing a goal or plan. Intervening too early may waste effort
on false positives or provide clues for the next attack, while
intervening too late may result in undesirable state (e.g., a
stolen file). We build on prior work in plan and goal recog-
nition to study intervention for cybersecurity and benchmark
planning domains. Because each application may have dis-
tinct needs for selecting interventions, we formulate the prob-
lem as a multi-objective planning problem of three domain-
independent metrics: timeliness, which captures how soon the
undesirable state may occur; certainty, which captures how
frequently the undesirable state may be seen; and desirability,
which captures the user’s preference for continuing the cur-
rent action despite the increased risk. Against an ideal base-
line, we examine trade-offs in choosing the “correct” inter-
vention point by varying the weights associated with these
metrics, the observability of actions, and the presence of ex-
traneous actions. We find that timeliness is essential for iden-
tifying eminent consequences, certainty and desirability are
less sensitive to extraneous actions, and all three metrics are
very sensitive to worsened observability. Our study provides
a foundation for further work in understanding intervention.

1 Introduction
A wealth of literature in plan and goal recognition has ex-
amined how to infer a single agent’s plan (e.g., (Geib and
Goldman 2009; Ramırez and Geffner 2009)), the agent’s
goal (e.g., (Ramı́rez and Geffner 2011; Yin, Chai, and
Yang 2004)), or the goals or plans of multiple agents (e.g.,
(Banerjee, Kraemer, and Lyle 2010; Kaminka, Pynadath,
and Tambe 2002)). Some recent work has even examined
plan/goal recognition in the face of noisy observations (e.g.,
(Geib and Goldman 2005; Vattam and Aha 2015)) or extra-
neous actions (e.g., (Gal et al. 2012; Sohrabi, Riabov, and
Udrea 2016)). Yet relatively little of this research considers
the question of when to intervene if one wants to thwart the
plan or goal if, for example, the agent we want to disrupt is
attempting to produce an undesirable state. The decision of
when to intervene must be made judicially. Intervening too
early may lead to wasted effort chasing down false positives,
helpful warnings being ignored as a nuisances, or leaking in-
formation for the next attack. On the other hand, intervening
too late may result in undesirable consequences.

Our motivating application is a software agent that moni-
tors the state of a personal computer to help home computer
users avoid security and privacy vulnerabilities. Home com-
puter users are viewed as the “weakest link” in computer se-
curity because they lack the time, knowledge and resources
to defend against the increasing incidence of computer secu-
rity and privacy threats (Sasse, Brostoff, and Weirich 2001).
Moreover, some threats, such as software downloads and
phishing, require user action or at least acquiescence (Howe
et al. 2012). Security analysis for home computer users fo-
cuses on identifying threats on a personal computer by mod-
eling attacker actions, the system state of the computer and
computer user’s actions, including both ordinary and risky
actions. The Personalized Attack Graph (PAG) extends the
attack graph model (Sheyner et al. 2002) to support indi-
vidual computer/user level granularity and by representing
the states and actions in PDDL (Urbanska et al. 2013) At-
tacker actions do not include actions that cannot be observed
on the home computer. System states can include levels of
partial compromise (e.g., access to the password key-chain),
configuration information (e.g., operating system), and state
changes achieved on specific system components (e.g., im-
planting a keystroke logger).

In this paper, we examine how well an algorithm can
determine the best intervention point for the cybersecurity
application, calling it a “critical trigger action” because it
may lead to undesirable state. As each situation may have a
unique definition of the ideal intervention point, we formu-
late intervention as a multi-objective optimization problem
of three domain independent metrics: (1) timeliness, which
quantifies how soon the undesirable state may occur, (2) cer-
tainty, which highlights frequently occurring actions as im-
portant, and (3) desirability, which measures the contribu-
tion of the action to user’s own objective. The desirability
metric helps separate common harmless actions that further
the user’s actual goal from harmful actions to be avoided.
A critical trigger action is a user action that maximizes the
linear combination of these three objective metrics.

Given a PDDL domain model, a set of undesirable states
to avoid, and an observation trace of actions, our algorithm
identifies critical trigger actions. An intervention is correct
if, compared to a ground truth trace, the algorithm (1) ig-
nores extraneous actions (i.e., as true-negatives) and, (2)
identifies actions leading to undesirable state (i.e., as true-
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positives). We begin with a study of traces taken from a
human subject study for computer security. We then gen-
eralize our results to four benchmark planning domains and
consider the impact of missing and extraneous observations
of actions and test the algorithm. Across all benchmark do-
mains, certainty and desirability metrics perform well in ig-
noring extraneous actions, while the timeliness metric and
it’s combinations with certainty and desirability perform
well in identifying true positives. Thus, in this work we have
identified two metrics that are sensitive to noise in action
based observation traces and a metric that is sensitive to par-
tial observability of actions.

1.1 Example
Before introducing a formal definition, we present an
example to clarify the key concepts. Suppose a user
wants to read email (e.g., the goal G) but there ex-
ists an undesirable state U1 (e.g., installation of

malicious software). Figure 1 illustrates the possi-
ble manifestation of U1. The user has executed actions
a1, a2, . . . (e.g., start email application, log

in to email account, . . .) from the initial state I
to achieve G, resulting in Sa1, Sa2, . . ..

Let us now consider possible plans that lead to U1

through actions b, c, d, f, g, h, j, k, l,m, n, p, q. In the
context of email, these actions might be clicking phishing
links, downloading affected files, etc. We will call these
undesirable plans and denote any such plan as ⇡U1 . Ideally,
the user would continue toward achieving G. However,
by mistake or undue influence, the user may deviate from
pursuing G and unwittingly follow paths reaching U1.
The security agent has observed the action sequence O
= {a1, a2, a3} executed by the user. In state Sa3, the
user might reach U1 through a set of undesirable plans
⇧U1 = {(bgn[u1]), (bgmq[u1]), (ch[u1]), (cjp[u1]),
(cjdfl[u1]), (cjdfkp[u1]), (fl[u1]), (fkp[u1]), (fkdfl[u1]),
(fkdfkp[u1])} where a plan is a sequence of actions (let-
ters) followed in brackets by the undesirable state that
results and each letter (b, c, d, f, g, h, j, k, l,m, n, p, q)
denotes candidate trigger actions (an action that appears in
at least one undesirable plan). Our question is: given the
current state Sa3, which action in the set of actions in ⇧U1

will be the best choice for the security agent to issue an
interrupt if observed?

2 Problem Statement
We adapt the notation of Ramirez and Geffner (2010) to
define the intervention problem. There, a planning domain
D = hF,Ai is a tuple of F , the set of fluents, and A, the
set of actions with preconditions and effects that are flu-
ents. A planning problemP = hD, I,Gi is a tuple consist-
ing of the domain D an initial state I ✓ F and goal state
G ✓ F . We assume that the planning domain and prob-
lems are represented in PDDL. Each action a 2 A, a =

hPre(a), Add(a), Del(a)i, consists of preconditions, add
and delete effects, respectively. A solution to the planning
problem is a sequence of actions where the final state of the
plan entails G.

Figure 1: An application domain where a user executes ac-
tions a1, a2, . . . in succession to transform initial state I to
a goal state G. An undesirable state U1 may develop from
state Sa3 after a3 has been executed, following dotted paths
towards U1.

An observation trace O is a sequence of observed ac-
tions O = {o1, o2, ..., on} where oi 2 A and i =

1, 2, . . . , n (n = length of observation trace) and states re-
sulting from execution of actions oi 2 O are known.

When we are looking for possible paths leading to un-
desirable state, we search for an undesirable plan ⇡U =

{a1, . . . , ak} of length k that entails the one or more un-
desirable states U ✓ F and ai 2 A. There may be more
than one undesirable plan, in which case we consider a set
of undesirable plans ⇧U . In the example in section 1.1, the
domain has only one undesirable state U = U1.

An intervention problem T = hD,O, I, U,↵i consists
of a planning domain D, a sequence of observed actions
O ✓ A, an initial state I ✓ F , a set of undesirable states
U ✓ F , and a weight vector ↵ for the objective function,
where ↵ = [↵1, . . . ,↵m], ↵i is in the range [0, 1], m is the
number of objectives and

Pm
1 ↵i = 1. We will discuss the

object function in more detail below.
Traces may contain extraneous or missing actions. An

extraneous action is an observation o 2 O such that the
state resulting from executing o is never added to the global
state (i.e., set of fluents that are true) by any of the actions
ai 2 ⇡U . A missing observation with respect to ⇡U occurs
when the state resulting from executing o is added to the
global state by an of the actions ai 2 ⇡U , and o /2 O. A
trigger action is an action ti, ti 2 O, that is found in at
least one undesirable plan for a sequence of O observed ac-
tions. A critical trigger action ci is a trigger action at oi
that maximizes V (ci), as defined in section 2.1.

A solution to the intervention problem is a vector of de-
cision points corresponding to actions in the observation se-
quence indicating whether it was identified as a critical trig-
ger action or not given the observations up to that point in
the sequence.
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C T D ↵ = [0.33,0.33,0.33] ↵ = [1,0,0] ↵ = [0,1,0] ↵ = [0,0,1]
V (a) V (a) V (a) V (a)

b 2/10=0.2 max(3/3,4/4)=1.0 -2/39=0.05 0.38 0.2 1.0 -0.05
c 4/10=0.4 max(2/2,3/3,5/5,6/6)=1.0 -4/39=0.1 0.43 0.4 1.0 -0.1
d 4/10=0.4 max(3/5,4/6,3/5,4/6)=0.6 -4/39=0.1 0.30 0.4 0.6 -0.1
f 6/10=0.6 max(2/5,3/6,2/2,3/3,5/5,6/6)=1.0 -6/39=0.15 0.48 0.6 1.0 -0.15
g 2/10=0.2 max(2/3,3/4)=0.75 -2/39=0.05 0.30 0.2 0.75 -0.05
h 1/10=0.1 max(1/2)=0.5 -1/39=0.03 0.19 0.1 0.5 -0.03
j 3/10=0.3 max(2/3,4/5,5/6)=0.83 -3/39=0.08 0.35 0.3 0.83 -0.08
k 4/10=0.4 max(2/6,2/3,4/5,5/6)=0.83 -6/39=0.15 0.36 0.4 0.83 -0.15
l 3/10=0.3 max(1/5,1/2,1/5)=0.5 -3/39=0.08 0.24 0.3 0.5 -0.08
m 1/10=0.1 max(2/4)=0.5 -1/39=0.03 0.19 0.1 0.5 -0.03
n 1/10=0.1 max(1/3)=0.33 -1/39=0.03 0.13 0.1 0.33 -0.03
p 4/10=0.4 max(1/3,1/6,1/3,1/6)=0.33 -4/39=0.1 0.21 0.4 0.33 -0.1
q 1/10=0.1 max(1/4)=0.25 -1/39=0.03 0.11 0.1 0.25 -0.03

Table 1: Certainty (C), timeliness (T), desirability (D) computations for each candidate trigger action for the example in Figure
1. V (a) is the value returned by the critical trigger multi-objective function assuming equal weighting (↵ = [0.33, 0.33, 0.33]),
only C (↵ = [1, 0, 0]), only T (↵ = [0, 1, 0]) and only D (↵ = [0, 0, 1]) for each candidate trigger action.

2.1 Objective Function
To quantify when an intervention should occur we define a
multi-objective function of three metrics: certainty, timeli-
ness and desirability. These metrics are calculated based on
a set ⇧U , which supports a form of sampling.

Certainty measures the likelihood of action a occurring in
⇧U .

Certainty(a|⇧U ) =
|⇡U 2 ⇧U in which a occurs|

|⇧U |
(1)

Actions occurring frequently in ⇧U indicate the importance
of that action toward causing U . For example, if an action a
occurs in all plans ⇧U , the certainty metric will assign a high
value to a, giving it a higher probability of being selected as
a critical trigger compared to a less frequent action.

Timeliness requires knowing what actions could yet be ob-
served, which might effect the causation of the undesirable
state. For this study, timeliness is measured by the maxi-
mum normalized steps remaining in ⇧U in which the action
a occurs. Timeliness quantifies how soon an observation will
trigger the undesirable state. Let n be the remaining number
of steps in ⇡U 2 ⇧U after some action a. Then,

T imeliness(a|⇧U ) = max

⇡U2⇧U

✓
max (n)

|⇡U |

◆
(2)

Desirability measures the effect of an action on user’s goals,
which is ignored in the other two metrics. It separates com-
mon harmless actions (e.g., user opening web browser) from
avoidable ones and connects the observations to knowledge
of the user’s goals. In this study, we use Desirability to
downgrade the contribution of common actions to critical-
ity. Hence, the negative metric:

Desirability(a|⇧U ) = � |appearance of a in ⇧U |
P|⇧U |

i=1 |⇡i|
(3)

Together, these define V (a) for candidate trigger action a
for a weighting provided by ↵:
V (a) = ↵1 ⇤ Certainty(a|⇧U ) + ↵2 ⇤ T imeliness(a|⇧U )

+ ↵3 ⇤Desirability(a|⇧U )

Table 1, shows how the critical trigger action is identi-
fied using the proposed objective function for the exam-
ple in Figure 1 given the observation sequence of actions
O = {a1, a2, a3}. In state Sa3, assuming equal weighting
of metrics, the algorithm identifies f to be the action that
maximizes the objective function, and returns it as a possi-
ble point of intervention. Table 1 also shows how this deci-
sion is affected by the choice of ↵. If only certainty metric is
used (↵ = [1, 0, 0]) action f gets selected as the intervention
point. Using only timeliness metric (↵ = [0, 1, 0]) yields
three possible intervention points: f , b and c. Finally, using
only desirability yields four possible intervention points: h,
m, n and q.

3 Critical Trigger Recognition Algorithm
Intervention is different from the typical plan recognition
problem because we assume the user pursues goals but
wants to also avoid undesirable state. As such, the agent re-
sponsible for identifying the critical trigger actions (i.e., in-
tervention point) has no knowledge about the user’s end goal
and knows only the set of states the user should avoid. Fur-
thermore, identifying the goal or the plan of the user, as in
the solution to goal or plan recognition problem, does not
guarantee that the undesirable state will not be triggered.
Therefore, the objective is to identify intervention points,
based on their potential to cause an undesirable state.

Our problem assumes user’s actual end goals are un-
known and only possesses knowledge about a set of states
user wants to avoid. Thus, we view the user’s attempt to
achieve a goal as a planning process. This entails that plan
library based solutions are not feasible. Therefore, our ap-
proach borrows ideas from the generative plan recognition
approaches. Our algorithm analyzes the Planning Graph and
operates incrementally, similar to prior work by Sun et al.
(2007) and Hong (2001). Following work by Geib and Gold-
man (2009), we adopt a model focused on execution: what
could be done next. In contrast to the works of Ramirez
and Geffner (2009; 2010) that assumed a fully observable
state space, our approach takes into consideration the inher-

 51



ent unreliable nature of observations (missing and irrelevant
actions) towards identifying critical trigger actions. Further,
we assume that the undesirable states (goals) are known and
unintentional by the actor. Our solution employs PDDL and
the Mosaic planner (Roberts, Howe, and Ray 2014) to sam-
ple possible plans from the current state. For each obser-
vation, the algorithm outputs whether or not it is a critical
trigger action.

Figure 2 shows the seven-step decision cycle of the algo-
rithm. As defined in the problem statement, the process takes
as input: a PDDL domain, an initial state, a set of undesir-
able states and the objective function weights.

Step 1: We assume the full observation trace is known in
advance, with actions made available one at a time to iden-
tify the intervention point.

Step 2: For each possible undesirable state U , generate
PDDL problem instances. In the first cycle, the initial state
is from the input; in subsequent cycles, the state is updated
in step 7. To extract applicable states for the next cycle, we
chose to search forward the planning graph starting from ini-
tial state. This is because the unobservable actions require us
to update state during search to accommodate those changes
that are presupposed by the actions being able to execute.

Step 3: Mosiac returns ⇧U for U . Mosaic is built on top
of the LAMA 2008 (Richter and Westphal 2010) with some
patches applied to its parser from the current Fast Downward
repository1. It included three extensions to improve the plan
set and produce diverse plans faster: the use of a tabu mech-
anism to guide search away from already known solutions,
the use of multiple queues to increase the diversity of solu-
tions explored, and the use of parsimony to bias the search
toward goal-oriented solutions. From the family of variants,
iterated Tabu A*(ITA) and Multi-queue A* (MQA), we use
MQA-ts to compute up to 10 possible plans, based both on
the recommendation of the authors and because it showed
the most promise in prior work.

Step 4: Extract unique actions in ⇧U as candidate trigger
actions. Actions include the action name and the instantiated
parameter values.

Step 5: Compute C, T and D for each candidate trigger
action A by iterating over the plans in ⇧U , as defined in
section 2.1.

Step 6: Rank candidate actions by V and flag the highest
ranked actions are critical triggers corresponding to the cur-
rent observation. Step 6 also evaluates the accuracy of the
identified critical trigger by comparing against the observa-
tion. We use a ground-truth plan (UP) that achieves the un-
desirable state and assume that all actions in UP are critical
triggers. If the algorithm returns the current observation as
the critical trigger, then the decision is correct if the current
observation is an action in UP (i.e., true-positive). Alterna-
tively, if the current observation is not the critical trigger and
it was also missing from UP (i.e., observation was an extra-
neous action and a true-negative), then that decision is also
labeled as correct. All other cases are incorrect.

Step 7: The cycle begins over by merging the effects of
the observed action as defined in the PDDL domain with the

1See http://www.fast-downward.org/

Figure 2: Seven-step process for determining whether an ob-
served action is a critical trigger action.

current state. Because we allow for partial observability, the
observed action may appear to be inapplicable because ac-
tions that satisfied its preconditions were not observed and
so captured by the current state. Our approach addresses this
inconsistency in state by finding a plan that modifies current
state to the state after adding the effects of the observed ac-
tion. Then, each action in that plan are executed (i.e., adding
add effects, removing delete effects) to update the current
state.

4 Experimental Setup
We examine which factors impact the performance of detect-
ing critical trigger actions. The independent variables of the
study are summarized in Table 2, and include the weights
for V, the problems, the percentage of extraneous actions,
and the percentage of actions “removed” to emulated partial
observability. Objective weights vary between a single met-
ric, pairs of metrics and all three metrics with equal weights.
We decided on these objective weight settings in order to
identify which metrics (or their combinations) are sensitive
to partial observability and extraneous actions separately.

We begin with results from a user study on cybersecurity
that motivated our work. For traces from the user study, we
examine the impact of the objective weights (OW) used for
in the objective function. Noisy sensing can lead to extrane-
ous actions or missed observations, which complicates inter-
vention. So we generalize these results to a set of benchmark
domains from (Ramırez and Geffner 2009), where greater
experimental control allows us to evaluate the impact of ex-
traneous actions (EA) and partial observability (PO). Thus,
we expect some degradation in performance as the noise in-
creases and observability decreases; the question is by how
much?

The dependent variables of the study include accuracy
and computational overhead as measured in CPU time. For
the cybersecurity domain, accuracy is defined as the percent
true-positives only. For the benchmarks, we report accuracy
in terms of percent true-positives and true-negatives. Com-
putation time is included because ultimately we envision this
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Variable Settings
Objective weights (OW) (1,0,0), (0,1,0), (0,0,1),

(C,T,D) (0.33,0.33,0.33), (0.5,0.5,0),
(0.5,0,0.5), (0,0.5,0.5)

Planning domains (PD) PAG, blocks-words,

navigator, ipc-grid+,

logistics

Extraneous actions (EA) 0%, 50%, 75%, 100%
Partial observability (PO) 25%, 50%, 75%, 100%

Table 2: Independent variables for evaluating impact of al-
gorithm parameters and sensitivity to noisy data

being one component of a user supporting agent, which will
require fast response. CPU time includes the time required to
process each observation (one cycle of the process depicted
in Figure 2) within a trial; this includes both generating the
alternate plans and ranking the actions.

We treat the undesirable plan (UP) achieving the unde-
sirable goal state as the ‘ground truth’ trace. This is a fair
assumption because the trace generation algorithm produces
traces leading to the undesirable state (with varying levels
of noise and observability). We measure accuracy with two
metrics: (1) success rate in ignoring extraneous actions (Ig-
nored EA) and (2) success rate in flagging undesirable ac-
tions that appear in the ground truth plan (UP) (Flagged UP).
Ignored EA for an observation trace is computed as the count
of instances where the observation was an extraneous action
and it was not flagged as a critical trigger (count EA). Thus,
Ignored EA% = (count EA / number of extraneous observa-
tions in trace). Flagged UP for an observation trace is com-
puted as the count of instances where the observation was an
action from UP and was flagged as a critical trigger (count
UP). Thus, Flagged UP% = (count UP / number of actions
of UP that are in trace)

5 Cybersecurity Domain (PAG)
We conducted an human subject experiment in a sand-boxed
simulation environment to determine how non-expert users
behave when presented with questionable computer secu-
rity situations and to compare their actual observed behavior
to their self-reports obtained via pre- and post-hoc surveys.
Participants were presented with a desktop which includes
common applications such as emailing, Web-browsing, so-
cial networking etc. Subjects were provided with written in-
structions on how to perform normal home computer user
activities such as reading/sending email, installing software
etc. While the normal computer activities were being per-
formed, different events were simulated, without the sub-
ject’s knowledge that can trigger threats and vulnerabilities
of interest. These events included enticing user to disclose
sensitive information (login names, passwords) to phishing
sites over email and social media communications, respond-
ing to pop-ups asking the user to download a software, and
reacting to malicious activities detected in the computer by
an anti-virus program. Sixty-three human subjects partici-
pated in the study; their actions were collected into observa-
tion traces.

We constructed a PDDL domain for the Personalized At-
tack Graph (PAG) to investigate what actions subjects might
take amid the aforementioned threat scenarios. We consid-
ered four undesirable states for this domain, resulting in four
problem definitions. The PAG domain has 45 actions, 47
types, 70 constants and 55 predicates.

We expected accuracy to be low because user logs of-
fer unique challenges to the algorithm. Human users do not
typically perform tasks in a ordered sequence. For exam-
ple, some logs indicated that the subject was performing the
same task repetitively, users had skipped a task to come back
to it after an interval and more interestingly, some users were
actively trying to trigger the vulnerabilities. These scenarios
make it difficult to model a consistent state in a planning en-
vironment and affect candidate trigger actions being selected
for the critical trigger ranking algorithm. To assess algorithm
performance in a more controlled environment, we turned to
benchmarks.

5.1 PAG Results
Since activity logs captured during the experiment could
not be properly controlled for extraneous and missing ac-
tions, we limit the assessment to accuracy and the effect
of objective metric weightings on accuracy and CPU us-
age. The subjects were only provided with instructions to
perform normal computer tasks. No restrictions were im-
posed on how they should interact with desktop environ-
ment (e.g., undo/redo tasks, exploring application features).
To this end, subject’s goals while performing the tasks were
unknown. Logs generated by two subjects were discarded
because they did not complete the experiment. Considering
61 traces used in this evaluation, mean trace length was 39
(SD=21.13). The longest trace contained 120 observations,
while the shortest was 10.

Mean accuracy was 59.53% (SD=30.79) for all
OW, but the weights exerted a significant influence
on accuracy (F=40866, p⌧0). The highest accuracy
(mean=95.59%,SD=2.13) occurred for two configurations
of objective weight assignments: one that equally weighted
all three metrics and one that equally weighted certainty and
timeliness, ignoring desirability. This suggests, by tagging
specific undesirable actions and monitoring progress of
plans, onset of critical states can be identified accurately
in cybersecurity scenario. Mean CPU time per cycle of
the algorithm was 1.7 seconds (SD=0.45), suggesting that
this algorithm could easily be integrated into an agent that
mitigates cybersecurity issues.

6 Benchmark Domains
To generalize the results, we examine four domains
from (Ramırez and Geffner 2009). Block-Words con-
structs one of 20 English words using 8 distinct letters.
Grid-Navigation forms paths through a connected
graph to specific locations (goals). IPC-grid+ is a grid
navigation with keys added at a restricted set of locations.
Logistics moves packages between locations. To keep
the scale similar to the user study, we randomly selected four
problems from each domain distribution.
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6.1 Trace Generation
To construct problem factors (EA, PO), we consider four
problems from each benchmark domain. For each problem,
we generate noisy traces by incrementally building the plan
starting from the initial state and interleaving it with actions
from a set of precomputed extraneous actions when the cur-
rent state meets the preconditions of the extraneous action.
Thus, the trace generation algorithm consists of two stages
(1) computing the set of extraneous actions (EA) and (2) in-
terleaving these extraneous actions. Actions from the origi-
nal undesirable plan are randomly removed from the inter-
leaved trace to account for partial observability (PO).

We use Metric-FF (Hoffmann 2003) planner to generate
extraneous actions because the planner’s implementation of-
fers configuration options to extract the relaxed planning
graph and add/delete effects of actions. The challenge in
generating extraneous actions to ensure it (1) does not in-
troduce new facts that interfere with the progression of the
’ground truth’ plan or (2) does not delete the progress al-
ready made by the ’ground truth’ plan. We incrementally
build the set of extraneous action starting from selecting ac-
tions that can be executed immediately after the goal state
has been reached. By adding new actions, object types, and
predicates to the domain model, the size of the resulting ex-
traneous action set can be significantly increased to handle
longer plans and create lengthy traces. The advantage of it-
eratively forward-expanding the set of extraneous actions
starting at the goal state that at this stage the only condi-
tion we need to check is whether or not the chosen action
deletes the goal state or not. Additionally, alternative actions
available at the current level of the plan graph do not guar-
antee that they will not violate conditions (1) and (2) later.
In certain occasions this could lead to traces where the same
action is being done and undone repeatedly without mak-
ing progress through the plan. We designed trace generation
algorithm that can overcome this challenge and builds the
ground-truth plan incrementally from the initial state, while
interleaving it with extraneous actions at relevant states.

We define percent extraneous actions (EA) in the obser-
vation trace (number of extraneous actions in trace / number
of actions in plan) as a proxy for signal-to-noise ratio [0%,
50%, 75%, 100%]. Starting from the initial state, actions in
undesirable plan are added to the observation trace sequen-
tially, including extraneous actions as appropriate. This pro-
duces a final plan. Partial observability (PO) is computed by
removing actions from the final plan are randomly selected
and removed such that, PO% (number of original actions in
trace after removal / number of original actions in trace be-
fore removal) is one of [25%, 50%, 75%, 100%].

6.2 Benchmark Results
We review the overall accuracy of our algorithm in bench-
mark domains by evaluating how well it ignores extraneous
actions and flags undesirable actions.

Ignoring Extraneous Actions When encountered with
extraneous actions in the trace, the algorithm must be able to
avoid flagging it as critical. We define mean Ignored EA%
percentage for a domain as: (sum of Ignored EA% per trial

/ number of trials with EA%>0). Table 3 shows how mean
Ignored EA% varies with the noise level of the observation
trace and objective weight assignments.

Results show that our algorithm consistently ignores ex-
traneous actions for all benchmark domains. This high accu-
racy rate can be attributed to our process of selecting critical
trigger actions. Since candidate trigger actions are extracted
from a set of alternative plans leading to the same undesir-
able state, the likelihood of true extraneous actions to appear
in the set of alternative plans is low. This reduces the likeli-
hood of false-positives in the trace.

The OW combinations significantly influence Ignored
EA% (p < 0.05 for the blo, ipc and log domains). Post-
hoc analysis using TukeyHSD at ↵ = 0.05 shows that across
domains, OW combinations that do not consider the time-
liness metric better perform at ignoring extraneous actions
than combinations that include timeliness. This is because
timeliness metric is not sensitive to extraneous actions in
the trace. As a result, the objective function can not suffi-
ciently differentiate between extraneous actions and actions
in ground truth plan, leading to false positives. In contrast,
certainty and desirability metrics look for occurrences of an
action in undesirable plans. As extraneous actions do not oc-
cur in undesirable plans, both metrics are capable of filtering
extraneous actions from the candidate action pool by mini-
mizing objective function value and preventing them from
being selected as the critical trigger.

Flagging Undesirable Actions Flagged UP% captures
how well the algorithm flags observations as critical trig-
gers given that the observation appears in an undesirable
plan treated as ground truth. We first look at Flagged UP%
in traces with 0% noise and full observability (i.e., best-case
scenario) to establish an upper bound to the metric.

Table 6 shows a very large range (Max-Min) for Flagged
UP%. This indicates that although the only variable for this
sample is OW, Flagged UP% is also sensitive to other ex-
ternal factors that have not been accounted for in our pro-
posed objective function. The challenge lies in identifying
these external factors and determining their relationship so
that the objective function can be tuned to improve accuracy.
This will be the main focus of our future work.

Table 4 shows that Flagged UP% also increases when ob-
servability increases in the trace. Factor analysis using one-
way ANOVA for OW shows that this positive effect is sig-
nificant (p < 0.05, df = 6) for all four benchmark domains.
Interestingly, high Flagged UP% was reported for OW com-
binations that consider timeliness: specifically for configura-
tions, certainty-timeliness-desirability with equal weighting,
certainty-timeliness with equal weighting and desirability-
timeliness with equal weighting. Post-hoc analysis using
TukeyHSD at ↵ = 0.05 shows that this difference is sig-
nificant. Thus, we conclude that the timeliness metric can
improve the true-positive rate, yielding higher precision for
the algorithm. The timeliness metric is sensitive to partial
observability because it sufficiently captures distance to trig-
gering an undesirable state, which is a consistent indicator of
the progress is being made. Even with partial observability,
the remaining steps of a plan change in such a way that it can
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Mean Ignored EA%

Domain
EA% in trace OW Assignments (C,T,D)

50% 75% 100% (0,0,1) (0,0.5,0.5) (0,1,0) (0.3,0.3,0.3) (0.5,0,0.5) (0.5,0.5,0) (1,0,0)

blo

95.2
(8.0)

97.6
(3.6)

97.3
(3.2)

99.0
(1.6)

94.7
(6.7)

95.2
(6.2)

95.4
(7.0)

98.6
(1.7)

95.4
(7.0)

98.6
(1.7)

ipc

86.4
(14.4)

89.9
(11.6)

89.9
(10.7)

95.6
(3.7)

83.2
(13.0)

81.3
(12.9)

83.9
(15.1)

95.9
(3.4)

85.1
(14.8)

95.9
(3.4)

log

97.9
(4.4)

96.7
(5.7)

96.1
(5.4)

98.4
(2.8)

94.4
(7.2)

96.1
(3.6)

96.2
(6.9)

98.6
(2.6)

96.2
(6.9)

98.5
(2.6)

nav 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

Table 3: Mean Ignored EA% (and standard deviation) for benchmark domains for levels of EA% in observation trace and
objective weight assignment classes. The left three columns combine mean Ignored EA% for OW assignments across all values
of ↵ and breaks mean Ignored EA% down by EA% in trace. The right OW columns breaks down mean Ignored EA% by
specific ↵ value for all levels of EA% in observation trace.

Mean Flagged UP%

Domain
PO% in trace OW Assignments (C,T,D)

25% 50% 75% 100% (0,0,1) (0,0.5,0.5) (0,1,0) (0.3,0.3,0.3) (0.5,0,0.5) (0.5,0.5,0) (1,0,0)

blo

20.1
(21.2)

23.6
(14.4)

31.8
(19.3)

40.2
(26.1)

9.2
(7.6)

24.8
(20.1)

37.0
(17.5)

46.5
(24.9)

19.0
(7.6)

46.8
(24.9)

19.0
(7.6)

ipc

6.9
(18.8)

25.6
(20.0)

42.3
(32.0)

50.8
(36.2)

9.7
(5.2)

46.5
(34.7)

47.9
(35.0)

47.5
(35.8)

10.5
(4.9)

47.1
(35.9)

10.6
(4.9)

log

18.4
(27.4)

16.4
(20.1)

20.4
(19.5)

31.5
(17.8)

15.2
(10.6)

20.9
(28.2)

24.6
(25.4)

27.2
(28.5)

18.3
(10.1)

27.2
(28.5)

18.3
(10.9)

nav

14.8
(19.1)

32.4
(22.6)

45.2
(27.4)

61.7
(39.8)

14.1
(3.4)

56.8
(33.7)

56.8
(33.7)

56.8
(33.7)

14.1
(3.43)

56.8
(33.7)

14.1
(3.4)

Table 4: Mean Flagged UP% (and standard deviation) for benchmark domains for levels of PO% in observation trace and
objective weight assignment classes. The left four columns combine mean Flagged UP% for OW assignments across all values
of ↵ and breaks mean Flagged UP% down by PO% in trace. The right OW columns breaks down mean Flagged UP% by
specific ↵ value for all levels of PO% in observation trace.

Domain EA% in trace PO% in trace
0% 50% 75% 100% 25% 50% 75% 100% �

blo 2.3 2.2 2.2 2.2 2.2 2.2 2.3 2.2 1.4
ipc 4.9 4.8 4.9 4.9 4.9 4.9 4.9 4.8 0.9
log 1.7 1.7 1.6 1.7 1.7 1.7 1.7 1.7 0.5
nav 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.5

Table 5: Mean CPU time in seconds for problem factors for
each domain. � is the difference between the min and max
times for each domain.

be tracked and correctly reflected in the objective function.
Accuracy of the certainty and desirability metrics lowers as
partial observability increases because they consider occur-
rences of an action.

Computational Overhead For each benchmark domain,
we calculated the average CPU time per cycle for problem
factors (EA and PO). As shown in Table 5, we found differ-
ences due to observation trace factors; two-way ANOVA on
EA and PO showed significant main effects and interaction
effects (p <0.05) for ipc, log and nav domains.

7 Related Work
The two most closely related areas of literature are plan
recognition and automated planning for cybersecurity. Plan
recognition is the problem of inferring the course of action
(i.e., plan) an actor may take towards achieving a goal from a

Domain Flagged UP%
Mean SD Min Max

blo 37.12 24.83 6.12 77.78
ipc 43.27 30.55 0.00 90.00
log 31.77 17.27 12.82 66.67
nav 61.68 40.31 14.10 100.00

Table 6: Flagged UP% for traces with 0% EA and
100% PO for Block-words (bw), IPC-grid+ (ipc),
Logistics (log), and Grid-Navigation (nav) do-
mains

sequence of observations (Schmidt, Sridharan, and Goodson
1978; Kautz and Allen 1986). The constructed plan, if fol-
lowed to completion, is expected to result in states that cor-
respond to goals of the actor, which in turn presupposes that
the actor intends to achieve those goals. Many approaches
to plan recognition use a plan library to infer a relationship
between the observed actions and hypothetical plans/goals
(Carberry 2001). For example, PHATT enumerated all plans,
which included the observations, to compute the propor-
tion consistent with each goal (Geib and Goldman 2009).
Plan libraries use pre-compiled plans (with some approaches
allowing for learning new plans (Lesh and Etzioni 1996;
Bauer 1998)), which can limit the set of recognizable se-
quences.
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Hong (2001) constructed a “Goal Graph” of observed ac-
tions, world state nodes and goal nodes; this graph was an-
alyzed to extract the goals that explained the observed ac-
tions. Sun and Yin (2007) constructed valid plans given a
partial set of observations extending the Planning Graph
(Blum and Furst 1997) to allow for states to be unknown
and embedded the analysis in a system that incremen-
tally updated the graph while action transpired. Ramirez
and Geffner (2009; 2010) used an existing planner to gen-
erate hypotheses from observations. Their approaches of-
fer advantages of being more adaptive to input as well as
exploiting existing planning systems and plan representa-
tions. Their first approach computed the set of goals that
can be achieved by optimal plans that match the observa-
tions. Their second approach removed the optimality con-
straint and computed a probability distribution across pos-
sible plans that could be generated from existing planners.
Vattam et al. (2015) allowed for missing or misclassified ac-
tions in the traces. Their SET-PR represented library plans as
action sequences and computed a similarity metric between
observations and known plans.

AI Planning has previously been used to reason about
computer security. Boddy et al. (2005) built Behavioral Ad-
versary Modeling System, which could identify potential
vulnerabilities and countermeasures with a focus on insider
subversion. Sohrabi et al. (2013) generated hypotheses of
which nodes in a network might be infected with malware.
The Core Security model captures the actions of attackers at
the level of known network vulnerabilities(Obes, Sarraute,
and Richarte 2010). Hoffmann has extended the Core Se-
curity model as a POMDP (Hoffmann 2015) for penetra-
tion testing: simulating what an attacker might reasonably
try over time. Geib and Goldman (2009) defined a domain
in which attackers try to achieve one of three goals: Brag-
ging, which is the attacker boasting of success, Theft, which
is the theft of information, or causing a Denial of Service
to legitimate users by exploiting security vulnerabilities on
servers.

The CIRCA architecture for adaptive real-time control
systems (Goldman et al. 1997) presents a solution to the
problem of avoiding undesirable states. They proposed the
concept “temporal preemption”, which builds event con-
trollers (plans) that make potential failure states unreach-
able, and thereby keeping the system safe. The difference
between their domain and ours is that in their domain, the
actions to which the plans are generated have timing con-
straints/durations and ours do not. Further, our focus is on
identifying the intervention point as early as helpful when a
user may be triggering an undesirable state.

8 Summary and Future Work
We have described a variant of plan recognition that can
help identify intervention points to help a user avoid un-
desirable states while interacting with a computer. Our ap-
proach views the decision of when to intervene as a multi-
objective optimization problem that optimizes three domain-
independent objective metrics: certainty, timeliness and de-
sirability. We tested our algorithm on both benchmark do-
mains and human subject data from a cybersecurity experi-

ment. Results show that, across all benchmark domains, cer-
tainty and desirability metrics perform well in ignoring ex-
traneous actions, while the timeliness metric and it’s combi-
nations with certainty and desirability perform well in iden-
tifying true positives. We identified two metrics that are sen-
sitive to noise in action based observation traces and a metric
that is sensitive to partial observability of actions.

However, the low percentage of true-positives in the best
case scenario indicate that the metrics are not good enough
in their raw form in dealing with partial observability. There-
fore, metrics must be developed to evaluate the contribution
of less frequent actions appearing in alternative plans. Eval-
uation of the effects of objective weight metrics, shows that
desirability metric does not adequately downgrade the ef-
fect of certainty and timeliness. This indicates that objec-
tive weight assignments require an in depth look into multi-
objective optimization techniques to find the optimal com-
bination of weights over metrics. Furthermore, concepts be-
hind certainty metric touches upon landmarks in planning.
We will further explore these aspects in the future.

Intervention should be embedded in a system that acts like
a smart executive assistant. As suggested in (Papadimitriou
et al. 2015), adding reasoning about the goals of the actors
can add personalization (e.g., tune when actions are flagged)
and improve the effectiveness of the computer/user interac-
tion.
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Abstract

We investigate the application of temporal planners to the
problem of compiling quantum circuits to newly emerging
quantum hardware. While our approach is general, we focus
our initial experiments on Quantum Approximate Optimiza-
tion Algorithm (QAOA) circuits that have few ordering con-
straints and thus allow highly parallel plans. We report on
experiments using several temporal planners to compile cir-
cuits of various sizes to a realistic hardware architecture. This
early empirical evaluation suggests that temporal planning is
a viable approach to quantum circuit compilation.

1 Introduction
We explore the use of temporal planners to optimize compi-
lation of quantum circuits to newly emerging quantum hard-
ware. Previously, only special purpose quantum hardware
was available, namely, quantum annealers that could run
one type of quantum optimization algorithm. The emerg-
ing gate-model processors are universal in that once scaled
up, they can run any quantum algorithm and thus expand-
ing the empirical exploration of quantum algorithms be-
yond optimization, as well as enabling the exploration of a
broader array of quantum approaches to optimization. IBM
recently provided public access to a 5-qubit gate-model pro-
cessor through the cloud (IBM 2017), recently updated to
17 qubits, and scalable gate-model quantum computing ar-
chitectures are being manufactured by other groups, such as
TU Delft (Versluis et al. 2016), UC Berkeley (Ramasesh et
al. 2017), Rigetti Computing (Sete, Zeng, and Rigetti 2016),
and Google (Boxio 2016). All cited groups have announced
plans to build gate-model quantum processors with 40 or
more qubits in the near term.

Quantum algorithms process information stored in qubits,
the basic memory unit of quantum processors, and quantum
operations (called gates) are the building blocks of quantum
algorithms, just as instructions on registers are the building
blocks of classical algorithms. Specifically, quantum algo-
rithms must be compiled into a set of elementary machine
instructions (the gates), which are applied at specific times
in order to run them on quantum computing hardware. For a
review of quantum computing, see (Rieffel and Polak 2011).

Quantum algorithms are often specified as quantum cir-
cuits on idealized hardware since physical hardware has con-
straints varying from architecture to architecture. For ex-

ample, the emerging gate-model quantum hardware men-
tioned above all use superconducting qubits in a planar ar-
chitectures with nearest-neighbor restrictions on the loca-
tions (qubits) to which the gates can be applied. Idealized
circuits generally do not consider those nearest neighbor
constraints. For this reason, compiling idealized quantum
circuits to specific hardware requires adding supplementary
gates that move qubit states to locations where the desired
gate can act on them.

Quantum computational hardware suffers from decoher-
ence, which degrades the performance of quantum algo-
rithms over time. Especially for near-term hardware, which
will not be able to mitigate decoherence, it is important to
minimize the duration of the circuit that carries out the quan-
tum computation, so as to minimize the decoherence ex-
perienced by the computation. Optimizing the duration of
compiled circuits is a challenging problem due to the paral-
lel execution of gates with different durations. Further, for
quantum circuits with flexibility in when the gates can be ap-
plied, or when some gates can be applied in a different order
while still achieving the same computation, the search space
for feasible compilations is often very large. That freedom
makes it more challenging to find optimal compilations, but
also means there is a greater potential win from improved
compilation optimization than for less flexible circuits.

While there has been active development of software li-
braries to synthesize and compile quantum circuits from
algorithm specifications (Wecker and Svore 2014; Smith,
Curtis, and Zeng 2016a; Steiger, Häner, and Troyer 2016a;
Devitt 2016; Barends et al. 2016), few approaches have been
explored for compiling idealized quantum circuits to real-
istic quantum hardware (Beals et al. 2013; Brierly 2015;
Bremner, Montanaro, and Shepherd. 2016), leaving the
problem open for innovation. An analogous issue arising
when compiling classical programs is the register allocation
problem, in which program variables are assigned to ma-
chine registers to improve execution time; this problem re-
duces to graph coloring (Fu, Wilken, and Goodwin 2005).
Very recently, computer scientists have started looking at
heuristic approaches with off-the-shelf mixed-integer-linear-
programming MILP solvers such as Gurobi to solve similar
general benchmarking problems (Bhattacharjee and Chat-
topadhyay 2017).

In this paper, we apply temporal planning techniques to
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the problem of compiling quantum circuits to realistic gate-
model quantum hardware. Specifically, we model machine
instructions as PDDL2.1 durative actions, enabling domain-
independent temporal planners to find a parallel sequence
of conflict-free instructions that when executed can achieve
what the high-level quantum algorithm intends to achieve.
While our approach is general, we focus our initial exper-
iments on circuits that have few ordering constraints and
thus allow highly parallel plans. We report on experiments
using several temporal planners to compile circuits of vari-
ous sizes to an architecture inspired by those currently being
built. This early empirical evaluation suggests that temporal
planning is a viable approach to quantum circuit compila-
tion. A more elaborate discussions of the techniques and
results obtained can be found in the extended version of this
paper at (Venturelli et al. 2017).

2 Architecture-specific compilation problem
Quantum circuits for general quantum algorithms are often
described in an idealized architecture in which any 2-qubit
gate can act on any pair of qubits. In an actual architecture,
physical constraints impose restrictions on which pairs of
qubits support gate interactions. For superconducting qubit
architectures, qubits in a quantum processor can be thought
of as nodes in a planar graph, and 2-qubit quantum gates
are associated to edges. Gates that operate on distinct sets of
qubits may be able to operate concurrently though there may
be additional restrictions, such as requiring the sets to be
non-adjacent, as in Google’s proposed architecture (Boxio
2016)). Furthermore, there are different types of quantum
gates, each taking different durations, with the duration de-
pending on the specific physical implementation.

In order for the computation specified by the idealized
circuit to be carried out, we require a particular type of
2-qubit gate, the swap gate, which exchanges the state of
two qubits. A sequence of swap gates moves the contents
of two distant qubits to a location where a desired gate can
be applied. Swap gates may be available only on a subset
of edges in the hardware graph, and swap duration may
depend on where they are located. For the purposes of this
study, we will consider the case in which swap gates are
available between any two adjacent qubits on the chip and
all swap gates have the same duration, but our approach can
handle the more general cases.

Problem definition: Given an idealized circuit consisting
only of the non-swap gates, used to define a general
quantum algorithm, the circuit compilation problem is to
find a new architecture-specific circuit that implements
the idealized quantum circuit by adding swap gates when
required. The main objective is to minimize the overall
duration to execute all gates in a new circuit.

Compilation example: Figure 1 shows a hypothetical chip
design that we will use for our experiments on circuit com-
pilation. It is inspired by the architecture of the machine en-
visioned by Rigetti Computing Inc. (Sete, Zeng, and Rigetti
2016). Qubits are labeled with n

i

and the colored edges in-
dicate the types of 2-qubit gates available, in this case swap

n8

n1 n2 n3

n4

n6
n7

n5

00
00

 

Figure 1: Left: A schematic for the hypothetical chip design
used in our numerical experiments, with available 2-qubit
gates represented by colored arcs in a weighted multigraph.
Each color is associated to a specified, distinct gate-type and
duration: SWAP gates (black) and two other types of 2-qubits
gates (red and blue). The 1-qubit gates are present at each
qubit (black dot). Right: Dashed boxes indicate the 3 differ-
ent chip sizes used in our empirical evaluation (see Sec. 5).
For visual clarity, only the label locations and the SWAP-
gates for the smaller chip size, corresponding to the top-left
sector of the largest chip, are shown.

gates and two other types of 2-qubit gate (further described
in Section 4).

To illustrate the challenges of finding effective compila-
tion, we present some concrete examples, with reference to
the 8-qubit section in the top left of Fig. 1. Suppose that at
the beginning of the compilation, each qubit location n

i

is
associated to the qubit state q

i

. Let us also assume that the
idealized circuit requires the application of a red gate to the
states q2 and q4, initially located on qubits n2 and n4. One
way to achieve this task would be to swap the state in n4

with n1, while at the same time swapping n2 with n3. An-
other swap, between n1 and n2, positions q4 in n2 where a
red-gate connects it to q2 (which is now in n3).

The sequence of gates to achieve the stated goal are:

{SWAP
n4,n1 , SWAP

n2,n3} ! SWAP
n1,n2 ! RED

n2,n3

⌘ RED(q2, q4) (1)

The first line refers to the sequence of gate applications,
while the second corresponds to the algorithm objective
specification (a task defined over the qubit states). The se-
quence in Eq. (1) takes 2⌧

swap

+ ⌧

red

clock cycles where ⌧

?

represents the duration of the ?-gate.
As the second example, the idealized circuit requires

BLUE(q1, q2)^RED(q4, q2), in no particular order. If ⌧
blue

>

3 ⇥ ⌧

swap

, the compiler might want to execute BLUE
n1,n2

while the qubit state q4 is swapped all the way clockwise in
five SWAPs from n4 to n3 where RED

n2,n3 can be executed.
However, if ⌧

swap

< 3 ⇥ ⌧

blue

, it is preferable to wait until
the end of BLUE

n1,n2 and then start to execute the instruc-
tion sequence in Eq. (1).

3 Compiling QAOA for the MaxCut problem
While our approach can be used to compile arbitrary
quantum circuits to a wide range of architectures, in this
paper we concentrate on one particular case: compiling
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Figure 2: An example 6-vertex MaxCut problem on a ran-
domly generated graph (qstates q2 and q8 are not appearing
in this instance) and the p-s and mix gates for p = 2.

QAOA circuits for MaxCut to an architecture shown in
Figure 1. We choose to work with QAOA circuits because
they have many gates that “commute” with each other
(i.e., no ordering enforced). Such flexibility means that the
compilation search space is larger than for other less flexible
circuits. Thus, compared to other classes of circuits, finding
the optimal compilation is more challenging, but there is
greater potential from improved compilation optimization.
MaxCut was selected as the target problem since it has
been becoming one of the de-facto benchmark standards
for quantum optimization of all types and it is considered
a primary target for experimentations in the architecture of
(Sete, Zeng, and Rigetti 2016)1.

MaxCut Problem: Given a graph G(V,E) with n = |V |
vertices and m = |E| edges. The objective is to partition the
graph vertices into two sets such that the number of edges
connecting vertices in different sets is maximized.

From an optimization standpoint, the quadratic boolean
objective function whose maximization solves MaxCut is:

U

MaxCut

=
1

2

X

(i,j)2E

(1� s

i

s

j

) (2)

where s

i

and s

j

are binary variables associated to the
vertices in V which assume value +1 or -1 depending on
which of the two partitions defined by the cut are assigned.
From this formulation, an idealized QAOA circuit requires
a 2-qubit gate for each quadratic term in Eq. (2), as well
as an 1-qubit gate for each vertice (Farhi, Goldstone, and
Gutmann. 2014a).

Idealized QAOA circuits for MaxCut alternate between a
phase separation step (PS) and a mixing step. The phase-
separation step for QAOA for MaxCut is simpler than for
other optimization problems and consists of a set of identi-
cal 2-qubit gates that must be applied between certain pairs
of qubits, depending on the graph of the MaxCut instance
under consideration. We will refer to these as p-s gates,

1Recently Google Inc. has published a modified QAOA pro-
cedure for MaxCutin fixed nearest-neighbor architectures (Farhi et
al. 2017) that explicitly tries to avoid the compilation problem that
is the main subject of our work. However, their approach does not
work for all classes of MaxCut instances, and the introduced mod-
ifications also led to overall performance reduction.

and the main goal of the compilation is to plan out those
gates. All p-s gates can be carried out in any order (subject
to constraints on the chip). In the mixing phase, a set of 1-
qubit operations are applied, one to each qubit. All p-s gates
that involve a specific qubit q must be carried out before the
mixing operator on q can be applied. These two steps are
repeated p times. We consider p = 1 and p = 2 in our ex-
periments (detailed in Section 5). Fig. 2 shows a concrete
6-vertex MaxCut example with the set of available p-s and
mix gates for p = 2.

With reference to Fig. 1, the constraints on the compila-
tion problem are:
• SWAP gates are located at every edge with ⌧

swap

= 2.
• there are two kind of non-swap gates: P-S gates are 2-

qubit gates and MIX gates are 1-qubit gates.
• P-S gates are located at every edge of the grid, but their

duration ⌧

p�s

can be 3 or 4 depending on their location
(respectively blue or red edges in Fig.1).

• MIX gates are located at every vertex with ⌧

mix

=1.
• In the initialization stage, which is not considered as part

of the compilation problem, a quantum state is assigned
to each qubit.

4 Compilation of a Quantum Circuit as
Temporal Planning Problem

Planning is the problem of finding a conflict-free set of
actions and their respective execution times that connects
the initial-state I and the desired goal state G. We now
introduce some key background concepts for the problem of
compiling quantum circuits as a temporal planning problem.

Planners: a planner is a software that takes as input a spec-
ification of domain and problem descriptions and returns
a valid plan if one exists. Many different approaches have
been implemented to find a viable plan, among them: (i)
heuristically search over the possible valid plan trajectories
or over the library of partial plans or (ii) compile the
planning problem into another combinatorial substrate (e.g.,
SAT, MILP, CSP) and feed the problem to off-the-shelf
solvers. At the abstract level, the planner needs to solve
the QAOA compilation problem exemplified in Figure 2:
it identifies the required P-S or MIX gates and builds a
conflict-free schedule for all those gates.

Planning Domain Description Language (PDDL): PDDL
is a modeling language that was originally created to stan-
dardize the input for planners competing in the International
Planning Competition (IPC). Over time, it has become
the de-factor standard modeling languages used by many
domain-independent planners. We use PDDL 2.1, which
allows the modeling of temporal planning formulation in
which every action a has duration d

a

, starting time s

a

,
and end time e

a

= s

a

+ d

a

. Action conditions cond(a)
are required to be satisfied either (i) instantaneously at s

a

or e

a

or (ii) required to be true starting at s
a

and remain
true until e

a

. Action effects eff (a) may instantaneously
occur at either s

a

or e

a

. Actions can execute when their
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temporally-constrained conditions are satisfied; and when
executed will cause state-change effects. The most common
objective function in temporal planning is to minimize
the plan makespan, i.e. the shortest total plan execution
time. This objective matches well with the objective of our
targeted quantum circuit compilation problem. To enable
reuse of key problem features present in an ensemble of
similar instances, the PDDL model of a planning problem
is separated into two major parts: (i) the domain description
that captures the common objects and behaviors shared
by all problem instances of this planning domain and
(ii) the problem instance description that captures the
problem-specific objects, initial state, and goal setting for
each particular problem.

Modeling Quantum Gate Compilation in PDDL 2.1:
PDDL is a flexible language that offers multiple alterna-
tive ways to model a planning problems. These model-
ing choices can greatly affect the performance of existing
PDDL planners. For instance, many planners pre-process
the original domain description before building plans; this
is time-consuming, and may produce large ‘ground’ mod-
els depending on how action templates were written. Also,
not all planners can handle all PDDL language features ef-
fectively (or even at all). We have iterated through differ-
ent modeling choices with the objective of constructing a
PDDL model that: (i) contains a small number of objects
and predicates for compact model size; (ii) uses action tem-
plates with few parameters to reduce preprocessing effort;
while (iii) ensuring that the model can be handled by a wide
range of existing PDDL temporal planners.

At the high-level, we need to model: (i) conceptually
how actions representing P-S, SWAP, and MIX gates affect
qubits and qubit states (qstate); (ii) the actual qubits and
qstates involved with a particular compilation problem,
their initial locations and final goal requirements, (iii) the
underlying qubit-connecting graph structure. We follow the
conventional practice of modeling (i) in the domain descrip-
tion while (ii) is captured in the problem description. One
common practice is to model (iii) within the problem file.
However, given that we target a rather sparse underlying
qubit-connecting graph structure (see Figure 1), we decide
to capture it within the domain file to ease the burden of
the potentially time-consuming step of “grounding” and
pre-processing step for existing planners. Specifically:

Objects: We need to model three types of object: qubits,
qstates, and the location of the P-S and SWAP gates (i.e.,
edges connecting different qubits). Since qstates are
associated to specific qubits (by means of the predicate
located at, see Figure 3 for concrete example), they have
been modeled explicitly as planning objects, while the
qubits and the gate locations (i.e., edges) are modeled
implicitly. It is clear from the action definitions in Figure 3
that qubit locations are embedded explicitly within the
action declaration. This approach avoids declaring qubits
as part of the action parameters, significantly reducing the
number of ground actions to be generated. For 2-qubit
actions, the potential number of ground actions reduce from

(:constants q1 q2 q3 q4 q5 q6 q7 q8 - qstate)

(:durative-action mix q1 at 1
:parameters ( )
:duration (= ?duration 1)
:condition (and (at start (located at 1 q1))

(at start (GOAL PS1 q1 q5))
(at start (GOAL PS1 q1 q7))
(over all (not (mixed q1))))

:effect (and (at start (not (located at 1 q1)))
(at end (located at 1 q1))
(at end (mixed q1))))

Figure 3: PDDL model of an example MIX gate.

N

4 to N

2⇥ |E|, with N the number of qubits in the chip (up
to 40) and E the set of connections between qubits. While
it’s true that many modern planners will be able to filter out
invalid ground actions during the grounding/preprocessing
step, our empirical evaluation shows that capturing the
graph structure explicitly in the domain file speeds up the
preprocessing time of all tested planners, sometime as
significantly as 40x.

Actions: temporal planning actions are created to model: (i)
2-qubit SWAP gates, (ii) 2-qubit P-S gates, and (iii) 1-qubit
MIX gates. The most complex constraint to model is the
conditions to mix a qstate q given the requirement that all
P-S gates involving q in the previous phase separation step
have been executed. We explored several other choices to
model this requirement such as: (i) use a metric variable
PScount(q) to model how many P-S gates involving q

have been achieved at a given moment; or (ii) use ADL
quantification and conditional effect constructs supported in
PDDL. Ultimately, we decided to explicitly model all P-S
gates that need to be achieved as conditions of the MIX(q)
action. This is due to the fact that alternative options require
using more expressive features of PDDL2.1 which are not
supported by many effective temporal planners2. Figure 3
shows an example of the mix gate modeled in PDDL3.

Alternative model: given that non-temporal planners can
perform much better than temporal planners on problems of
the same size, we have also created the non-temporal ver-
sion of the domain by discretizing action durations into con-
secutive “time-steps” t

i

, introducing additional predicates
next(t

i

, t

i+1) enforcing a link between consecutive time-
steps. However, initial evaluation of this approach with the

2Only one of six planners in the Temporal track of the latest
IPC (2014) supports numeric variables and also only one of six
supports quantified conditions. Preliminary tests with our PDDL
model using metric variables to track satisfied goals involving qs-
tate q using several planners shows that they perform much worse
than on non-metric version. This is to be expected as currently,
state-of-the-art PDDL planners still do not handle metric quantities
as well as logical variables.

3The full set of PDDL model for all our tested problems is
available at: https://ti.arc.nasa.gov/m/groups/

asr/planning-and-scheduling/VentCirComp17_

data.zip.
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P1 P2
N8 N21 N40 N8 N21

Util 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0

SGPlan 50 50 50 50 50 50 50 50 - -
TFD 50 50 50 50 - - 50 50 50 50
LPG 50 50 50 50 10 14 50 50 - 6

Table 1: Summary of the solving capability of selected plan-
ners. Numbers indicate how many random problems out of
50 have been solved.

p=1, N8 p=1, N21 p=2, N8
Utilization 0.9 1.0 0.9 1.0 0.9 1.0
SGPlan 0.74 0.76 0.68 0.68 0.76 0.80
TFD 0.96 0.98 0.96 0.95 1.0 0.99
LPG 0.82 0.83 0.83 0.81 0.53 0.51

Table 2: Plan quality comparison between different planners
using IPC formula (higher value indicates better plan qual-
ity).

M/Mp SAT-based planner (Rintanen 2012) (which optimize
parallel planning steps) indicated that the performance of
non-temporal planners on this discretized (larger) model is
much worse than the performance of existing temporal plan-
ners on the original model. Another option is to totally
ignore the temporal aspect and encode it as a “classical”
planning problem where actions are instantaneous. A post-
processing step is then introduced to inject back the temporal
constraints and schedule actions in the found classical plans.
While we do not believe this approach would produce good
quality plans, it’s another promising option to scale up to
larger problems in this domain.

5 Empirical Evaluation
We have modeled the QAOA circuit compilation problem
as described in the previous sections and tested them using
various off-the-shelf PDDL 2.1 Level 4 temporal planners.
The results were collected on a RedHat Linux 2.4Ghz
machine with 8GB RAM.

Problem generation: three grid sizes based with N = 8, 21
and 40 qubits (dashed boxes in Figure 1) were used. The
design in Figure 1 is representative of devices to come in
the next 2 years; a gate-model 8-qubit chip with the grid we
used will be available shortly from Rigetti.

For each grid size, we generated two problem classes:
(i) p = 1 (only one PS-mixing step) and (ii) p = 2 (two
PS-mixing steps). To generate the graphs G for which a
MaxCut needs to be found, for each grid size, we randomly
generate 100 Erdös-Rényi graphs G (Erdös and Rényi
1960). Half (50 problems) are generated by choosing N

of N(N � 1)/2 edges over respectively 7, 18, 36 qstates
randomly located on the circuit of size 8, 21, and 40 qubits
(referred to herafter as ‘Utilization’ u=90%). The other
half are generated by choosing N edges over 8, 21, and 40
qstates, respectively (referred to herafter as ‘Utilization’
u=100%). In total, we report tests on 600 random planning

problems with size ranging from 1024 - 232,000 ground
actions and 192 - 8,080 predicates.

Planner setup: Since larger N and/or p lead to more com-
plex settings with more predicates, ground actions, and thus
require planners to find longer plans, the allocated cutoff
time for different setting are as follow: (i) 10 minutes for
N = 8, (ii) 30 minutes for P = 1, N = 21; (iii) 60 minutes
for other cases. We select planners that performed well in
the temporal planning track of previous IPCs, while at the
same time representing a diverse set of planning technolo-
gies: (i) LPG: which is based on local search with restarts
over action graphs (Gerevini, Saetti, and Serina 2003); (ii)
Temporal FastDownward (TFD): a heuristic forward state-
space (FSS) search planner with post-processing to reduce
makespan (Eyerich, Mattmüller, and Röger 2009); and (iii)
SPGlan: partition the planning problem into subproblems
that can be solved separately, while resolving the inconsis-
tencies between partial plans using extended saddle-point
condition (Wah and Chen 2004; Chen and Wah 2006).

We ran SGPlan (Ver 5.22) and TFD (Ver IPC2014) with
their default parameters while for LPG (Ver TD 1.0) we
ran all three available options: (i) -speed that uses heuristic
geared toward finding a valid plan quickly, (ii) -quality that
uses heuristic balancing plan quality and search steps, and
(iii) -n 10 that will try to find within the time limit up to 10
plans of gradually better quality by using the makespan of
previously found plan as upper-bound when searching for
a new plan. Since LPG (n = 10) option always dominates
both LPG-quality and LPG-speed by solving more problems
with better overall quality for all setting, we will exclude
results for LPG-quality and LPG-speed from our evaluation
discussion. For the rest of this section, LPG result is
represented by LPG (n = 10).

Evaluation Result Summary: Table 1 shows the overall
performance on the ability to find a plan of different plan-
ners. SGPlan stops after finding one valid plan while TFD
and LPG exhaust the allocated time limit and try to find
gradually improving quality plans. Since no planner was
able to find a single solution for N = 40 and p = 2, we omit
the result for this case from Table 1. Overall, SGPlan and
TFD were able to solve the highest number of problems,
followed by LPG. SGPlan can find a solution very quickly,
compared to the time it takes other two planners to find
the first solution. It is the only planner that can scale up
to N = 40 for p = 1 (finding plans with 150-220 actions).
Unfortunately, SGPlan stopped with an internal error for
N = 21 and p = 2. TFD generally spent a lot of time on
preprocessing for p = 1, N = 21 (around 15 minutes) and
p = 2, N = 21 (around 30 minutes) but when it’s done with
the pre-processing phase 4 it can find a solution very quickly
and also can improve the solution quality very quickly. TFD

4The two most time-consuming parts in TFD’s pre-processing
routine are “processing axioms” and “invariant analysis”. While
“processing axioms” are always consistently time-consuming, “in-
variant analysis” is heuristically done and sometime can be quick
while some other times can be very time consuming.
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Figure 4: Instance-by-instance comparison of SGPlan, TFD and LPG. Top panel shows results for N=8: red dots indicate
instances with u=90% while blue dots are for u=100%. Lower makespan data points refer to p=1 while higher makespans refer
to p=2 (see Table 1). Bottom panel shows results for N = 21: Green indicates u=90% and yellow u=100%.

spent all of the 60 minutes time limit on pre-processing for
N = 40 problems. LPG can generally find the first solution
quicker than TFD (still much slower than SGPlan) but does
not improve the solution quality as quickly as TFD over
the allocated timelimit. We also tested YAHSP3-mt (Vidal
2014), another recent award winning temporal planner, but
it did not return any solution.

Plan quality comparison: to compare the plan quality across
planners, we use the formula employed by the IPCs to grade
planners in the temporal planning track since IPC6 (Helmert,
Do, and Refanidis 2008): for each planning instance i, if
the best-known makespan is produced by a plan P

i

, then
for a given planner X that returns a plan P

i

X

for i, the
score of P

i

X

is calculated as: makespan(P
i

) divided by
makespan(P i

X

). A comparative value closer to 1.0 indi-
cates that planner X produces better quality plan for in-
stance i. We use this formula and average the score for our

three tested planners over the instance ensembles that are
completely solved by the time cutoff. Table 2 compares dif-
ferent planners with regard to plan quality. For N = 8 and
p = 1, TFD found the best or close to the best quality plans.
LPG is about 15% worse while SGPlan, which unlike TFD
and LPG only find a single solution, produces lower quality
plans. The comparison results for N = 21 and p = 1 is
similar. For N = 8 and p = 2, TFD again nearly always pro-
duces the best quality plan. However, for this more complex
case, SGPlan produces overall better quality plans compared
to LPG, even though LPG returns multiple plans for each in-
stance.

Figure 4 shows in further detail the head-to-head
makespan comparison between different pairs of planners,
specifically pairwise comparisons between TFD, SGPLan,
and LPG: TFD always dominates SGPlan, TFD dominates
LPG majority of the times, and SGPlan dominates LPG on
bigger problems, but is slightly worse on smaller problems.
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Figure 5: Compilation of p = 2 QAOA performed by TFD for the MaxCut problem depicted in Fig. 2 on the N = 8 grid in
Fig. 1; with time-step on the x-axis and qubit locations on the y-axis. Each row indicates what gate operates on each qubit at
a given time-step during the plan. Colored blocks represents p-s gates (of duration 3 or 4 depending on whether they are RED
or BLUE). White blocks are swap gates. Gates synchronized in pair, since they involve 2-qubit. Black blocks with numbers
are mix gates acting on the corresponding state. Gates marked with a + indicate superfluous gates that could be detected and
eliminated in post-processing.

Planning time comparison: Both TFD and LPG use “any-
time” search algorithms and use all of their allocated time
to try finding gradually better quality plans. In contrast,
SGPlan returns a single solution and thus generally take a
very short amount of time with the median solving time for
SGPlan in p=1|N8, p=1|N21, P=1|N40 and P=2|N8 are
0.02, 1, 25, and 0.05 seconds5.

Other planners: we also conducted tests on: VHPOP,
HSP*, CPT, and POPF. While LPG, SGPlan, and TFD
were selected for their ability to solve large planning
problems, we hoped that HSP*, CPT, and VHPOP would
return optimal plans to provide a baseline for plan quality
estimation. Unfortunately, HSP*, CPT, VHPOP (and also
POPF) failed to find a single plan even for our smallest
problems for various reason: CPT underwent internal errors
after a quick search time, VHPOP ran out of memory
quickly, while HSP* couldn’t find any plan for a cutoff time
of 2 hours. POPF, which does not guarantee finding optimal
plans, but produced good quality plans for other temporal
planning domain, also does not find any solution.

Discussion: Our preliminary empirical evaluation shows
that the test planners provide a range of tradeoffs between
scalability and plan quality. At one end, we have SGPlan
that can scale up to large problems and solve them in a short
amount of time while providing reasonably good quality
plans (compared to the best known solutions). At the other
end, we have TFD, which utilizes all of the allocated time
to find the best quality solutions but in general is the slowest
by far to come up with some valid solution. LPG balances
between the two: it can either find one solution quickly like
SGPlan or can utilize the whole cutoff time to find better
quality solutions. Since planning is exponentially hard with
regard to the problem size (i.e., number of state variables
and actions), being able to partition it into sub-problems of

5For comparison purpose, LPG-quality, which also tries to re-
turn a single good quality solution, produces the median solving
time for P=1|N8 and P=2|N8 are 0.9 and 70 seconds respectively.

smaller sizes definitely help SGPlan to find a valid solution
quickly. However, there are several reasons that TFD and
LPG can find overall better quality solutions: (i) their any-
time algorithms allows them to gradually find better quality
plans using the previously found plans as baseline for prun-
ing unpromissing search directions; (ii) SGP’s partitioning
algorithm is based on logical relationship between state vari-
ables and actions and ignores all temporal aspects. Thus,
combining plans for sub-problems using logical global con-
straints can lead to plans of lower quality for time-sensitive
objective function such as minimizing the plan makespan.

What’s missing from our analysis is the assessment on
how good the quality of the best found plans compared to
the optimal solutions. At the moment, there is no pub-
lished work on finding optimal solution for this problem
and as outlined above, our current effort in getting the ex-
isting optimal-makespan planners to find solutions have not
been fruitful. This is one important future research direc-
tion. Based on the “eye-test” and manual analysis, the best
plans returned are usually of good quality but not without
defects. Figure 5 shows a visualization, in a ‘Gantt chart’
format, of a plan found by TFD for the problem instance de-
picted in Figure 2. In this plan, qstate q1 initially located at
n1, is undergoing the following sequence of actions:

P-S3(q1, q4) ! P-S3(q1, q3) ! P-S4(q1, q5) ! MIX(q1)

! WAIT(4) ! P-S4(q1, q5) ! WAIT(2)

! P-S3(q1, q3) ! WAIT(3) ! P-S3(q1, q4)

where we denote the duration of the P-S gates in subscript
and we introduced an WAIT gate to indicate inaction times.
The second mixing phase is trivially scheduled at the end of
the last tasks for each qstate. The example plan shown in
Figure 5, pictures the compilation of the problem instance
in Fig. 2. This plan has a very short makespan, but contains
some unnecessary gates. Examples are the repeated swaps
at time 11 and 30, and the mixing of the un-utilized logical
states q2 and q8 at times 1,5. These spurious gates/actions
do not affect the makespan, and they can be identified and
eliminated by known plan post-processing techniques (Do
and Kambhampati 2003). We also believe a tighter PDDL
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model will help eliminate extra gates.

6 Conclusion and Future Work
In this paper we presented a novel approach to the problem
of compiling idealized quantum circuits to specific quantum
hardware, focusing our experiments on QAOA circuits. Our
presentation and tests have been focused on the pedagogi-
cal and practically relevant example of MaxCut, but the ap-
proach is sufficiently general to be applied to any discrete
optimization problem, such as max E3LIN2 (Farhi, Gold-
stone, and Gutmann. 2014b). Three well-established tem-
poral planners were able to compile the QAOA circuits with
reasonable efficiency, demonstrating the viability of this ap-
proach.

This work paves the way for potentially impactful future
work on the use of artificial intelligence methods for quan-
tum computing. In future work, we plan to further tune the
performance of the planners, including choosing an initial
assignment of qstates to qubits favorable for compilation.
In order to scale reliably to larger plan sizes we will de-
velop decomposition approaches in which p > 1 could be
divided into multiple p = 1 problems to be solved indepen-
dently and matched in a post-processing phase. We will also
compare with other approaches to this compilation problem
such as sorting networks (Beals et al. 2013; Brierly 2015;
Bremner, Montanaro, and Shepherd. 2016), and we will
look at parameters values for the durations that match ex-
isting hardware, in collaboration with experimental groups.
A virtue of the planning approach is that the framework is
very flexible with respect to features of the hardware graph,
including irregular structures. Moreover, we will include in
the PDDL modeling additional features that are characteris-
tics of quantum computer architectures, such as the crosstalk
effects of 2-qubit gates and the ability to quantum teleport
quantum states across the chip (Copsey et al. 2003). We will
also consider other families of quantum circuits and more
sophisticated measures against which to optimize the com-
pilation beyond simply the duration of the cirucit. We be-
lieve that this approach could be of great interest for the lead-
ing community that is developing low-level quantum com-
pilers for generic architectures (Steiger, Häner, and Troyer
2016b; Häner et al. 2016) and for the designers of machine-
instructions languages for quantum computing (Smith, Cur-
tis, and Zeng 2016b; Bishop 2017).
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