
Active Tree Search

Robert Lieck Marc Toussaint
Machine Learning and Robotics Lab

University of Stuttgart
prename.surname@ipvs.uni-stuttgart.de

Abstract

Monte-Carlo tree search is based on contiguous rollouts.
Since not all samples within a rollout necessarily provide
relevant information, contiguous rollouts may be wasteful as
compared to sampling selected transitions. In this paper, we
describe an active learning approach that can be used to se-
lect single transition within the tree for sampling with the goal
of maximizing information gain. We show that this approach
can be used to enhance purely rollout-based MCTS by ac-
tively sampling single transitions in addition to performing
contiguous rollouts. We demonstrate that our method outper-
forms classical MCTS in a prototypical domain and discuss
the interplay of the active learning component with the clas-
sical rollout-based sampling strategy.

Introduction
Monte-Carlo tree search (MCTS) has become a standard
planning method that has been successfully applied in var-
ious domains, ranging from computer Go to large-scale
POMDPs (Silver et al. 2016; Browne et al. 2012). An ap-
pealing property of MCTS is that it is sufficient to be able
to simulate transitions in the environment. Planning is then
performed by simulating contiguous rollouts from the root
node. When collecting new samples, an important concern is
to improve the estimates of the transition and reward func-
tion. For this concern contiguous rollouts may be wasteful
because not all samples along a rollout necessarily provide
relevant information. For instance, transitions that are (close
to) deterministic do not require as many samples for a good
estimate as transitions with high stochasticity. We therefore
suggest an alternative to rollout-based sampling by formu-
lating an active learning measure (Settles 2009) that can be
used to select single transitions for sampling anywhere in the
tree. In order to make computation of the involved expecta-
tions tractable we derive an efficiently approximation based
on reverse accumulation of the objective gradient through
the tree. In a prototypical domain, we demonstrate that com-
bining our active learning measure with rollout-based sam-
pling outperforms classical MCTS. We also discuss the in-
terplay between active samples and rollout-based samples
providing deeper insight into the different concerns to be ad-
dressed and giving directions for further research.

Our main contributions are as follows

• We formulate an active learning measure for selecting sin-
gle transition to be sampled.

• We derive an efficient approximation of our measure for
practical application.

• Provide an enhanced MCTS algorithm by combining our
active learning measure with rollout-based samples.

• We empirically show that our enhanced method outper-
forms classical MCTS in a prototypical domain.

• We discuss the characteristics, possible shortcomings, and
possible extensions of our method.

In the remainder of this paper we will first discuss related
work on MCTS and active learning, then present our active
learning measure and show how to approximate it efficiently,
and finally present our empirical evaluations and discuss the
characteristics of our method.

Related Work
Monte-Carlo Tree Search
Monte-Carlo tree search (MCTS, Browne et al. 2012) comes
in a number of flavors that mainly differ in three respects
(Keller and Helmert 2013): (1) the tree-policy that is used
for selecting actions (2) the value heuristic that is used for
initializing leaf nodes and (3) the backup method that is used
for propagating information back to the root node.

In this work we focus on sampling transitions within the
tree, which is the task of the tree-policy in conventional
MCTS. The tree-policy has to balance exploration and ex-
ploitation. That is, it has to choose actions that help improv-
ing the estimates of the action values (exploration) but it also
has to choose actions with a high value in order to focus sub-
sequent sampling and expansion of the tree on relevant re-
gions of the state space (exploitation). These two concerns
are somewhat conflicting and the attempt to address them
separately has led to alternative scheduling schemes for the
tree-policy (Feldman and Domshlak 2012).

However, to our knowledge, there is no work on departing
from a rollout-based scheme for sampling transitions, which
is exactly what we suggest in this paper. While we still use
a tree-policy to select leaf nodes for expansion we addition-
ally sample single transitions within the tree with the goal of
maximizing information gain.



In a prototypical domain we demonstrate that this com-
bined method outperforms purely rollout-based MCTS

Active Learning
The goal of active learning (Settles 2009) generally is to se-
lect samples optimally for learning a property of interest.
For MCTS the multi-armed bandit problem (MAB, Berry
and Fristedt 1985) is of particular interest as most research
on improving the tree-policy is based on MABs. To transfer
results from MABs to MCTS, action selection in each deci-
sion node is treated as a separate MAB with non-stationary
reward distribution. The overall problem of sampling transi-
tions within the tree is thus split up into a series of simpler
problems. The approach we suggest in this paper is differ-
ent in that we do not break down the problem into a series
of MABs but instead formulate the problem of choosing a
new transition to be sampled anywhere in the tree as a single
active learning problem.

A common objective for active learning, especially when
formulated in the framework of optimal experimental design
(Chaloner and Verdinelli 1995), is to minimize the uncer-
tainty of the distribution of interest as measured by the en-
tropy or the variance. Our objective in this work is to min-
imize the state-value variance at the root node by sampling
transitions that maximize its expected change. A major con-
tribution of this paper is an efficient approximation of this
objective by propagating its gradient through the tree.

Active Tree Search
We will first formally state the problem of sampling-based
planning and then present our active learning approach to
solve it.

In sampling-based planning the planner can repeatedly
use a black-box simulator for sampling transitions, that is,
query state-action pairs (s, a) ∈ S × A and observe the re-
sulting state and reward (s′, ρ) ∈ S × R in response. The
value Q of action a in state s under policy π is defined as

Q
(π)
(s,a) =

∑
s′∈S

p(s′|s,a)

(
r(s,a,s′) + γ

∑
a′∈A

π(a′|s′)Q(s′,a′)

)
(1)

with

p(s′|s,a) : S ×A S (transition function) (2)

r(s,a,s′) : S ×A× S → R (expected reward) (3)

π(a′|s′) : S  A (policy) (4)

γ ∈ [0, 1] (discount factor) , (5)

where · · denotes a stochastic mapping. The action-value
Q corresponds to the expected discounted return an agent
is going to receive when following policy π (see e.g. Sut-
ton and Barto 1998). To the planner, the transition function,

p, and the expected reward, r, are unknown and only avail-
able via the black-box simulator by sampling concrete tran-
sitions. The discount factor, γ, is fixed and known. The ob-
jective for the planner is to identify the optimal action

a∗ = argmaxaQ
(π∗)
(s0,a)

(6)

for the current state s0, where π∗ is the optimal policy that
deterministically chooses the optimal action in any state.
The basic idea of MCTS is to estimate Q(π∗)

(s0,a)
by repeat-

edly sampling trajectories that rollout the recursive structure
of (1) starting at s0.

In contrast to rollout-based MCTS, the idea of active tree
search, suggested in this paper, is to sample single transi-
tions in a way that most rapidly decreases the uncertainty of
the estimates of Q(π∗)

(s0,a)
. To this end we will (a) quantify the

uncertainty and (b) compute the expected change of uncer-
tainty for all possible state-action queries in order to choose
the one with highest information gain.

For solving the first task we extend our backup function
such that it propagates not only the value but also its variance
back to the root node while remaining fully differentiable. If
the value is normal distributed, the variance is a monotonic
function of the entropy, the most common information theo-
retic measure of uncertainty. While not being crucial for our
method, the normality assumption is supported by the cen-
tral limit theorem (the value is a sum of random variables –
albeit not strictly independent ones) and the principle of
maximum entropy (for fixed variance). For the second prob-
lem of computing the expected change of uncertainty, a brute
force approach seems intractable because the expectations
cannot be computed in closed form and instead we would
need to perform dynamic programming updates throughout
the whole tree for all possible state-action-outcome com-
binations. We therefore approximate the objective by first
computing its gradient with respect to all nodes, which can
be done by a single reverse accumulation pass through the
tree, and then multiplying it with expected changes that we
compute locally for each node.

The next two sections describe our approach in detail. For
better readability we will drop the superscript denoting the
policy (Q(π) → Q) and the explicit indication of the spaces
in summations in what follows, as both is clear from the
context.

Propagating the Variance
In the action value Q(s,a) defined in (1) we inter-
pret Q, p, and r as random variables and denote their
mean and variance by ·̂ and ·̃ , respectively. The
mean and variance of p and r can be estimated di-
rectly from the sampled transitions. The mean and
variance of Q are (see Appendix for the full derivation)

Q̂(s,a) =
∑
s′

p̂(s′|s,a)

(
r̂(s,a,s′) + γ

∑
a′

π(a′|s′) Q̂(s′,a′)

)
(7)



Q̃(s,a) =
∑
s′

(
p̂ 2
(s′|s,a) + p̃(s′|s,a)

)[
r̃(s,a,s′) + γ2

∑
a′

π 2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ

∑
a′

π(a′|s′)Q̂(s′,a′)

][
r̂(s,a,s′′) + γ

∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]
,

(8)

where we assumed independence of variables belonging to
different states. Q̃ quantifies the uncertainty per action. To
quantify the overall uncertainty at the root node we therefore
use the state-value V of state s, defined as

Vs =
∑
a

π(a|s)Q(s,a) , (9)

and compute its variance (cf. (31) in the Appendix)

Ṽs =
∑
a

π2
(a|s)Q̃(s,a) . (10)

Computing Expectations
Let O(ξ) be the objective that we want to minimize, which
depends on a set of variables ξ,D be a set of known samples
determining the values of ξ as ξ[D], and (x, y) be a new
query-outcome sample where x is to be chosen such that the
expected value of O becomes minimal. Further let ξx ⊆ ξ
be the subset of variables whose values may change when
querying x. The optimal query x∗ then is

x∗ = argmin
x

E
[[
O
(
ξ[D,x, y]

)]]
y|x (11)

= argmin
x

E
[[
O
(
ξ[D,x, y]

)
−O

(
ξ[D]

)]]
y|x (12)

≈ argmin
x

E
[[∂O(ξ[D]

)
∂ξx

(
ξx[D,x, y]− ξx[D]

)]]
y|x

(13)

= argmin
x

∂O
(
ξ[D]

)
∂ξx

E
[[
ξx[D,x, y]

]]
y|x , (14)

where in (13) we assumed the change of O to be approxi-
mately linear in the variables ξx affected by query x.

In the case of active tree search, our objective is the vari-
ance of the state valueO ≡ Ṽs at the root node; the indepen-
dent variables are ξ ≡ {r̂(s,a,s′), r̃(s,a,s′), p̂(s′|a,s), p̃(s′|a,s)}
for all possible transitions within the tree; the query x ≡
(s, a) is a state-action pair; and the outcome y ≡ (s′, ρ) is a
state-reward pair.

Under this approximation the problem of choosing a sam-
ple that minimizes the variance at the root node decomposes
into (a) computing the gradient of the variance and (b) com-
puting expected changes of the variables ξ.

The gradient of the variance can be computed in the same
order of complexity as the variance itself by performing re-
verse accumulation through the tree, starting at the root node
(Bartholomew-Biggs et al. 2000). In our implementation,
which will be released along with this paper, we employ
Theano (Theano Development Team 2016) for computing
the partial derivatives of (7) and (8) and then perform re-
verse accumulation throughout the tree for computing the
gradient.

For computing the expected changes, note that sampling
a transition from a specific node in the tree only affects vari-
ables at that node. Specifically, when sampling (s, a) all
changes are accumulated into Q̂(s,a) and Q̃(s,a) at that node.
The corresponding expectations can be computed as

E
[[
Q̂(s,a)

]]
=
∑
s′

p̂(s′|s,a) Q̂
∗
(s,a) (15)

E
[[
Q̃(s,a)

]]
=
∑
s∗

p̂(s∗|s,a)

{
Q̃ ∗(s,a) −

1

(n+ 1)3

[
· · · (16)

· · · (n2 + 3n+ 1) p̂ ∗2(s∗|s,a) + (2n+ 1) p̃ ∗(s∗|s,a)

]
r̃(s,a,s∗)

}
where the starred variables p̂∗, p̃∗, Q̂∗, Q̃∗ are computed by
temporally adding the corresponding transition (s, a) → s∗

(ignoring the reward) and updating the transition probabili-
ties p̂ and p̃ accordingly. The second term in (16) accounts
for changes of r̃(s,a,s′) and r̂(s,a,s′). We defer the full deriva-
tion including more details to the Appendix.

As the policy we use a soft-max of the upper bound

π(a|s) ∝ exp
1

τ

[
Q̂(s,a) + C

(√
Q̃(s,a) + ε2 − ε

)]
, (17)

where the temperature τ regulates the greediness, C deter-
mines the amount of exploration/optimism, and the small
constant ε ensures differentiability for zero variance.

Extensions and Challenges
The framework of active tree search presented in this paper
provides a number of interesting options for further research.
• The method of automatic differentiation is not restricted

to first order derivatives so that one might attempt to relax
the linearity assumption in Eqs. (11–14) and go to higher
order expansions of the objective.

• The effect of structural changes when sampling new tran-
sitions may be included in computing the expectations
and modeled using a Dirichlet process.

• The employed priors for the transition probabilities and
expected rewards have a crucial influence, especially in
the early planning phase, since they determine the inde-
pendent variable’s values in case of little or no data. We
conjecture that choosing priors more carefully in a do-
main specific way or inferring them from data may sub-
stantially improve the performance.

• In this paper we are concerned with sampling informative
transition within the tree. Other relevant aspects that could
be included into an active learning objective include se-
lecting a leaf node for expansion and performing rollouts
for value initialization.



• Our choice of the soft-max policy is by no means com-
pulsive and it would be interesting to explore the effect of
other policies.

• The same is true for our choice of the variance as objective
function O.

• We estimate the transition probabilities and the expected
reward for each transition separately. Also we can com-
pute the expectations of Q̂(s,a) and Q̃(s,a) analytically.
However, due to our factorization into gradient and expec-
tations Monte-Carlo methods become applicable, which
allow the estimation of more complex or correlated ex-
pectations.

• Employing our active learning objective saves on the
number of required samples at the cost of additional com-
putations for the gradient and the expected changes. In
practice this is only useful if the sampling costs are large
compared to the costs of computing our objective, for in-
stance, if sampling involves a complex physics simulation
of the environment.

Experiments
Our empirical evaluation aims at investigating multiple as-
pects. (1) we designed a prototypical environment (as de-
scribed below) where we expect active sampling to provide
an advantage over purely rollout-based sampling. (2) recall
that our active learning strategy only selects samples within
the tree while expanding the tree and performing rollouts for
initializing leaf nodes are important aspects in MCTS, too.
This is especially the case in the initial planning phase. We
thus want to explore to what extend our method impairs per-
formance at that stage. (3) we evaluate how efficiently our
method optimizes the chosen objective and compare its per-
formance to rollout-based sampling. (4) we are interested in
how far our objective of minimizing the variance correlates
with the ability to actually choose the best action. We dis-
cuss these points below, after describing the employed envi-
ronment and some technical details.

Our Highway environment consists of n lanes of depth
T . At each time step the agent moves forward one step and
if it is at one of the predefined switch points it may addi-
tionally change to a neighboring lane. At switch points, with
probability α the agent ends up in an arbitrary lane (left,
right, or same) irrespective of its action and with probabil-
ity 1 − α it ends up in the lane corresponding to its action.
The agent starts in the left-most lane and the only reward
it receives is when reaching a terminal state after T steps:
When ending in the right-most lane it receives a reward uni-
formly distributed in [0.9, 1] otherwise it receives a reward
uniformly distributed in [0, 0.1]. The Highway instance we
performed our experiments on had n = 4 lanes, a depth of
T = 21, a randomness of α = 0.5, and switch points at
times {0, 10, 20}.

We employed a mixing strategy where the ratio of ac-
tive samples and rollout samples is kept constant. That is,
after each rollout the strategy active[χ] continues drawing
active samples until they make up an χ-fraction of all sam-
ples (e.g. 10% of all samples for χ = 0.1). We compare

active[0.2], active[0.1], active[0.01], and active[0], where
the last one corresponds to purely rollout-based MCTS. For
the backups we used a discount of γ = 1. In the pol-
icy (17) we used (τ, C, ε) = (0.5, 1, 10−3) for active sam-
ples and (τ, C, ε) = (10−2, 0, 10−3) for rollout samples,
where the latter practically corresponds to the greedy pol-
icy. States without a proper value initialization (i.e. states
only ever reached by an active sample) were excluded from
computations for rollout samples. As the tree-policy for roll-
outs we used UCB1 (Auer, Cesa-Bianchi, and Fischer 2002;
Kocsis and Szepesvri 2006)

a∗ = argmax
a

Q̂(s,a) + 2Cp

√
2 log ns
n(s,a)

(18)

with Cp =
√

2. Note that by using UCB1 as tree-policy in
conjunction with the greedy policy for backups (see above),
active[0] corresponds to the classical UCT algorithm (Koc-
sis and Szepesvri 2006) with full Bellman updates (Keller
and Helmert 2013). Value initialization was done by con-
tinuing the rollout with uniform policy until reaching a ter-
minal state. For active samples, we used the absolute value
of the expected change of the objective as scoring function,
which counteracts the risk of getting stuck in local optima
(Kulick, Lieck, and Toussaint 2016). In case of equal scores,
the least-sampled transition was chosen (with random tie-
breaking).

In Figs. 1–3 we show the results of about 2600 runs for
each method (between 2659 and 2819). The error bands cor-
respond to one standard deviation of the mean estimator at
that point. Note that due to the fixed depth of the Highway
environment active samples and rollout samples follow ex-
actly the same pattern for different runs of the same method.
This allows a detailed analysis on a per-sample basis.

Fig. 1 shows the performance of the different methods as
measured by their probability of choosing the best action.
There are two salient aspects that confirm our points (1) and
(2) from above. First, note that towards the end of the plan-
ning process all methods that draw active samples are on
the same level, while the purely rollout-based method falls
significantly behind. At that stage the tree is fully expanded
so that any samples, including rollout samples, are drawn
within the tree. Our active learning approach is tailored for
this scenario and the experiments show its superiority for
that case. On the other hand, in the early planing phase
(from 500 to 3000 samples) the methods with a higher frac-
tion of active samples fall behind pure rollout-based sam-
pling and active[0.01]. Their lag corresponds approximately
to the amount of active samples they draw. This suggests that
active samples do not significantly contribute to the perfor-
mance at the early planning stage, which goes well with the
intuition that at this stage expanding the tree has a greater
significance. Note, however, that they do contribute to op-
timizing the objective (as discussed below). Also note that
all active methods fully compensate at a later stage. This
suggests that active samples drawn during the initial plan-
ning phase build up a latent potential that only shows dur-
ing the final planning phase. Finally, we observe that the ac-
tive[0.01] method does at no point fall behind pure rollout-



based sampling, yet it shows a significant advantage at the
final stage.

Number of Samples

Be
st

 A
ct

io
n 

Pr
ob

ab
ilit

y

active[0.01]
active[0.1]
active[0.2]

active[0]

Figure 1: Probability of selecting the best action at the root
node as a function of the number of sampled transitions.

Number of Samples

O
bj

ec
tiv

e

active[0.01]
active[0.1]
active[0.2]

active[0]

Figure 2: Objective value as a function of the number of
sampled transitions. Note the logarithmic scale.

Number of Samples

Ch
an

ge
 o

f O
bj

ec
tiv

e active[0.01] active samples
active[0.1] active samples
active[0.2] active samples

active samples
rollout samples

rollout samples

rollout samples

active[0] rollout samples

Figure 3: Change of the objective value as a function of
the number of sampled transitions, distinguishing active and
rollout samples. For rollouts we divided the change by the
number of samples that were drawn. Note that we used a
non-linear scaling for better visualization.

In order to understand where the advantage of active sam-

ples comes from, note that the Highway environment is con-
structed such that a rollout has to pass through segments
where it cannot gain valuable information because transi-
tions are deterministic. The Highway environment is deliber-
ately kept extreme in this respect but an alternation between
more and less predictable passages is common in other
domains, too. In contrast to rollouts, our active learning
approach can selectively pick switch points for sampling,
thereby reducing uncertainty more efficiently. We were also
able to construct an adversarial environment where any tran-
sition provides roughly the same amount of information so
that selectively picking single transitions is futile. In that sit-
uation rollouts collect the maximum amount of information
possible and active[0.01], while being at the level with pure
rollout-based sampling, cannot display its merits in the fi-
nal planning phase. We omit a more detailed discussion here
because it does not provide additional insights.

Fig. 2 shows the objective value as a function of the num-
ber of samples. These results clearly demonstrate that our
active sampling strategy optimizes the objective more effi-
ciently than rollout samples. This becomes apparent on the
global time scale where methods with a higher fraction of
active samples converge more quickly. But this can also be
see on the per-sample basis as showcased in the inset: Active
samples successively minimize the objective while rollouts
lead to an increase (except for active[0.01]).

The interplay of active samples and rollout samples be-
comes more apparent when plotting the change of the ob-
jective for both types separately, as done in Fig. 3. Note that
we plot the change per sample so that, for instance, active
samples in active[0.01] have the strongest impact among the
active sampling methods yet the convergence (see Fig. 2)
is slowest because the they make up only 1% of all sam-
ples. We also see (confer the inset in Fig. 3) that succes-
sive active samples have a decreasing impact on the objec-
tive. As it seems, there is a competition between active sam-
ples and rollout samples (and even between successive ac-
tive samples) on collecting variance-reducing information.
On that score, our active learning approach proves superior
to rollout-sampling as it is designed specifically for that pur-
pose. In the final planing phase this coincides with a supe-
rior ability of identifying the best action, which suggests that
reducing the variance is a suitable objective at that stage.
However, we also note that this is not the case in the initial
planning phase. This raises the question what an appropriate
objective for sampling transitions in the early planing stage
is.

Conclusion
In this paper we applied the idea of active learning to the
problem of sampling transitions in Monte-Carlo tree search.
We formulated an active learning objective that minimizes
uncertainty of the state value at the root node by collect-
ing samples that maximize information gain. We also de-
rived an approximation that allows computing our objective
efficiently. In empirical evaluations on a prototypical envi-
ronment we showed that combining rollout-samples with
actively sampling single transitions within the tree outper-
forms purely rollout-based tree search.



Appendix
Backup Equations
The mean and variance of the transition probabilities p and
the expected reward r are computed (assuming a Dirichlet
distribution for p) as

p̂(s′|s,a) =
n(s′|s,a)

n(s,a)
(19)

p̃(s′|s,a) =
p̂(s′|s,a)

(
1− p̂(s′|s,a)

)
n(s,a) + 1

(20)

p̃(s′/s′′|s,a) = −
p̂(s′|s,a) p̂(s′′|s,a)

n(s,a) + 1
s′ 6= s′′ (21)

r̂(s,a,s′) =
Σρ(s,a,s′)

n(s′|s,a)
(22)

r̃(s,a,s′) =
Σρ2

(s,a,s′)

n2(s′|s,a)
−
r̂ 2
(s,a,s′)

n(s′|s,a)
, (23)

where n(s′|s,a) is the number of transitions that ended in
s′, n(s,a) =

∑
s′ n(s′|s,a) is the number of all transitions,

Σρ(s,a,s′) is the sum of rewards for transitions that ended
in s′, and Σρ2

(s,a,s′)
is the corresponding sum of squared re-

wards. Note that in order to get meaningful values also for a

single sample, we use the sample variance for the reward in-
stead of the bias-corrected estimator of the population vari-
ance. As an alternative one could use a Bayesian approach
including a prior for the reward distribution.

For the state value V and the action value Q there are
some commonly made implicit assumptions that we explic-
itly state here to avoid confusion. The first assumption is that
states visited in the future are independent from the current
state, which allows to go from the definition of V and Q in
(25) and (27) below directly to their expected value in (26)
and (28). The second assumption is that the expected reward
r(s,a,s′), the state value Vs, and the action value Q(s,a) are
independent whenever s, a or s′ differs. As a consequence
their covariance is zero, which simplifies some of the sums
occurring below. The third assumption is that the policy π
is not a random variable, even though in most cases it ac-
tually depends on the action values. These assumptions are
implicit when performing vanilla MCTS and we will take
them for granted from now on. In the following calculations
we will repeatedly use the fact that for two random variables
x and y

E[[xy]] = x̂ ŷ + Cov[x, y] (24)

and that the covariance Cov[x, y] is zero if x and y are inde-
pendent.

Expected Value of V and Q

Vs =
∑
a

π(a|s)
∑
s′

p(s′|s,a)
(
r(s,a,s′) + γ Vs′

)
︸ ︷︷ ︸

Q(s,a)

(25) Q(s,a) =
∑
s′

p(s′|s,a)

(
r(s,a,s′) + γ

∑
a′

π(a′|s′)Q(s′,a′)︸ ︷︷ ︸
Vs′

)
(26)

V̂s =
∑
a

π(a|s)
∑
s′

p̂(s′|s,a)
(
r̂(s,a,s′) + γ V̂s′

)
(27) Q̂(s,a) =

∑
s′

p̂(s′|s,a)

(
r̂(s,a,s′) + γ

∑
a′

π(a′|s′) Q̂(s′,a′)

)
(28)

Variance of V and Q

Ṽs = E
[[[∑

a

π(a|s)Q(s,a)

]2]]
− V̂ 2

s (29)

= E
[[∑
a,a′

π(a|s) π(a′|s)Q(s,a)Q(s,a′)

]]
− V̂ 2

s (30)

=
∑
a

π2
(a|s) Q̃(s,a) . (31)

Q̃(s,a) = E
[[[∑

s′

p(s′|s,a)
(
r(s,a,s′) + γ Vs′

)]2]]
− Q̂2

(s,a) (32)

= E
[[ ∑
s′,s′′

p(s′|s,a) p(s′′|s,a)
[
r(s,a,s′) r(s,a,s′′) + γ2 Vs′ Vs′′ + γ r(s,a,s′) Vs′′ + γ r(s,a,s′′) Vs′

]]]
− Q̂2

(s,a) (33)



=
∑
s′

(
p̂ 2
(s′|s,a) + p̃(s′|s,a)

)[
r̃(s,a,s′) + γ2 Ṽs′

]
+ . . .

. . .+
∑
s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) r̂(s,a,s′′) + γ2 V̂s′ V̂s′′ + γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
+ . . .

. . .+
∑
s′,s′′

p̂(s′|s,a) p̂(s′′|s,a)

[
r̂(s,a,s′) r̂(s,a,s′′) + γ2 V̂s′ V̂s′′ + γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
− Q̂ 2

(s,a)

(34)

=
∑
s′

(
p̂ 2
(s′|s,a) + p̃(s′|s,a)

)[
r̃(s,a,s′) + γ2 Ṽs′

]
+
∑
s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ V̂s′

][
r̂(s,a,s′′) + γ V̂s′′

]
, (35)

=
∑
s′

(
p̂ 2
(s′|s,a) + p̃(s′|s,a)

)[
r̃(s,a,s′) + γ2

∑
a′

π2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ

∑
a′

π(a′|s′)Q̂(s′,a′)

][
r̂(s,a,s′′) + γ

∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]
,

(36)

where the third line in (34) cancels out.

Expected Change of Q̂ and Q̃
Q̂ and Q̃ are expected to change given a new sample
(s, a)→ (s∗, ρ∗). The expected probability of observing s∗
is p̂(s∗|s,a), which allows us to compute the corresponding
expectation explicitly by summing over possible outcomes
s∗. The observed reward ρ∗ influences the mean and vari-
ance of the expected reward. Note that mean and variance of
ρ∗ relate to the mean and variance of the expected reward as

ρ̂ ∗ = r̂ and ρ̃ ∗ = n r̃ , (37)

where n is the number of transitions observed so far. We
denote values computed after adding the new sample with
an asterisk. The expected values of r̂ ∗, r̂ ∗2 and r̃ ∗, which
occur below, are

E
[[
r̂ ∗
]]

= E
[[ 1

n+ 1

[
ρ∗ + nr̂

]]]
= r̂ (38)

E
[[
r̂ ∗2
]]

= E
[[ 1

(n+ 1)2
[
ρ∗ + nr̂

]2]]
(39)

=
1

(n+ 1)2

[
E[[ρ∗2]] + 2nE[[ρ∗]]r̂ + n2r̂ 2

]
(40)

=
1

(n+ 1)2

[
r̂ 2 + nr̃ + 2nr̂ 2 + n2r̂ 2

]
(41)

= r̂ 2 +
n

(n+ 1)2
r̃ (42)

E[[ r̃ ∗]] = E
[[
ρ∗2 + n2r̃ + nr̂ 2

(n+ 1)2
− r̂∗2

n+ 1

]]
(43)

=
r̂ 2 + nr̃ + n2r̃ + nr̂ 2

(n+ 1)2
− r̂2

n+ 1
− nr̃

(n+ 1)3

(44)

=
r̂ 2 + nr̃ + n2r̃ + nr̂ 2

(n+ 1)2
− r̂2

n+ 1
− nr̃

(n+ 1)3

(45)

=
n2(n+ 2)

(n+ 1)3
r̃ , (46)

where (43) follows from (23). To simplify notation below,
we define

α(s,a,s′=s∗) =

{
n2(n+2)
(n+1)3 − 1 if s′ = s′′

0 else
(47)

β(s,a,s′=s′′=s∗) =

{
n

(n+1)2 if s′ = s′′ = s∗

0 else .
(48)

This allows us to compute the expected change of Q̂ and Q̃ as

E
[[
Q̂(s,a)

]]
= E

[[∑
s′

p̂ ∗(s′|s,a)

(
r̂ ∗(s,a,s′) + γ

∑
a′

π(a′|s′) Q̂(s′,a′)

)]]
s∗,ρ∗

(49)

=
∑
s∗

p̂(s∗|s,a)E
[[∑

s′

p̂ ∗(s′|s,a)

(
r̂ ∗(s,a,s′) + γ

∑
a′

π(a′|s′) Q̂(s′,a′)

)]]
ρ∗

(50)

=
∑
s∗

p̂(s∗|s,a)
∑
s′

p̂ ∗(s′|s,a)

(
E
[[
r̂ ∗(s,a,s′)

]]
ρ∗

+ γ
∑
a′

π(a′|s′) Q̂(s′,a′)

)
(51)

=
∑
s∗

p̂(s∗|s,a)
∑
s′

p̂ ∗(s′|s,a)

(
r̂(s,a,s′) + γ

∑
a′

π(a′|s′) Q̂(s′,a′)

)
(52)



=
∑
s∗

p̂(s∗|s,a) Q̂
∗
(s,a) (53)

E
[[
Q̃(s,a)

]]
= E

[[∑
s′

(
p̂ ∗2(s′|s,a) + p̃ ∗(s′|s,a)

)[
r̃ ∗(s,a,s′) + γ2

∑
a′

π 2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃ ∗(s′/s′′|s,a)
[
r̂ ∗(s,a,s′) + γ

∑
a′

π(a′|s′)Q̂(s′,a′)

][
r̂ ∗(s,a,s′′) + γ

∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]]]
s∗,ρ∗

(54)

=
∑
s∗

p̂(s∗|s,a) E
[[∑

s′

(
p̂ ∗2(s′|s,a) + p̃ ∗(s′|s,a)

)[
r̃ ∗(s,a,s′) + γ2

∑
a′

π 2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃ ∗(s′/s′′|s,a)
[
r̂ ∗(s,a,s′) + γ

∑
a′

π(a′|s′)Q̂(s′,a′)

][
r̂ ∗(s,a,s′′) + γ

∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]]]
ρ∗

(55)

=
∑
s∗

p̂(s∗|s,a)

{∑
s′

(
p̂ ∗2(s′|s,a) + p̃ ∗(s′|s,a)

)[
E
[[
r̃ ∗(s,a,s′)

]]
ρ∗

+ γ2
∑
a′

π 2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃ ∗(s′/s′′|s,a)

[
E
[[
r̂ ∗(s,a,s′)r̂

∗
(s,a,s′′)

]]
ρ∗

+ E
[[
r̂ ∗(s,a,s′)

]]
ρ∗
γ
∑
a′′

π(a′′|s′′)Q̂(s′′,a′′) + . . .

. . .+ E
[[
r̂ ∗(s,a,s′′)

]]
ρ∗
γ
∑
a′

π(a′|s′)Q̂(s′,a′) + γ
∑
a′

π(a′|s′)Q̂(s′,a′)γ
∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]} (56)

=
∑
s∗

p̂(s∗|s,a)

{∑
s′

(
p̂ ∗2(s′|s,a) + p̃ ∗(s′|s,a)

)[
(α(s,a,s′=s∗) + 1) r̃(s,a,s′) + γ2

∑
a′

π 2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃ ∗(s′/s′′|s,a)

[
r̂(s,a,s′)r̂(s,a,s′′) + β(s,a,s′=s′′=s∗)r̃(s,a,s∗) + r̂(s,a,s′)γ

∑
a′′

π(a′′|s′′)Q̂(s′′,a′′) + . . .

. . .+ r̂(s,a,s′′)γ
∑
a′

π(a′|s′)Q̂(s′,a′) + γ
∑
a′

π(a′|s′)Q̂(s′,a′)γ
∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]} (57)

=
∑
s∗

p̂(s∗|s,a)

{∑
s′

(
p̂ ∗2(s′|s,a) + p̃ ∗(s′|s,a)

)[
r̃(s,a,s′) + γ2

∑
a′

π 2
(a′|s′) Q̃(s′,a′)

]
+ . . .

. . .+
∑
s′,s′′

p̃ ∗(s′/s′′|s,a)
[
r̂(s,a,s′) + γ

∑
a′

π(a′|s′)Q̂(s′,a′)

][
r̂(s,a,s′′) + γ

∑
a′′

π(a′′|s′′)Q̂(s′′,a′′)

]
+ . . .

. . .+
(
p̂ ∗2(s∗|s,a) + p̃ ∗(s∗|s,a)

)
r̃(s,a,s∗)α(s,a,s∗) + p̃ ∗(s∗|s,a)r̃(s,a,s∗)β(s,a,s∗)

} (58)

=
∑
s∗

p̂(s∗|s,a)

{
Q̃ ∗(s,a) +

[(
p̂ ∗2(s∗|s,a) + p̃ ∗(s∗|s,a)

)(n2(n+ 2)

(n+ 1)3
− 1
)

+ p̃ ∗(s∗|s,a)
n

(n+ 1)2

]
r̃(s,a,s∗)

}
(59)

=
∑
s∗

p̂(s∗|s,a)

{
Q̃ ∗(s,a) −

1

(n+ 1)3

[
(n2 + 3n+ 1) p̂ ∗2(s∗|s,a) + (2n+ 1) p̃ ∗(s∗|s,a)

]
r̃(s,a,s∗)

}
, (60)

where the starred variables p̂∗, p̃∗, Q̂∗, Q̃∗ are computed by temporally adding the corresponding transition (s, a) → s∗

(ignoring the reward) and updating the transition probabilities p̂ and p̃ accordingly.



References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time Analysis of the Multiarmed Bandit Problem. Machine
Learning 47(2-3):235–256.
Bartholomew-Biggs, M.; Brown, S.; Christianson, B.; and
Dixon, L. 2000. Automatic differentiation of algo-
rithms. Journal of Computational and Applied Mathematics
124(1):171–190.
Berry, D. A., and Fristedt, B. 1985. Bandit Problems: Se-
quential Allocation of Experiments (Monographs on Statis-
tics and Applied Probability). Springer.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Chaloner, K., and Verdinelli, I. 1995. Bayesian experimental
design: A review. Statistical Science 273–304.
Feldman, Z., and Domshlak, C. 2012. Simple regret opti-
mization in online planning for markov decision processes.
arXiv preprint arXiv:1206.3382.
Keller, T., and Helmert, M. 2013. Trial-Based Heuristic Tree
Search for Finite Horizon MDPs. In ICAPS.
Kocsis, L., and Szepesvri, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kulick, J.; Lieck, R.; and Toussaint, M. 2016. Cross-
Entropy as a Criterion for Robust Interactive Learning of
Latent Properties. In NIPS Workshop on the Future of Inter-
active Learning Machines.
Settles, B. 2009. Active Learning Literature Survey.
Computer Sciences Technical Report 1648, University of
Wisconsin–Madison.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; and others. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587):484–489.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction (Adaptive Computation and Machine
Learning). The MIT Press.
Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical expres-
sions. arXiv e-prints abs/1605.02688.


