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Foreword

Robotics is one of the most appealing and natural applicative area for the Planning and Scheduling (P&S) research activity,
however such a natural interest seems not reflected in an equally important research production for the Robotics community. In
this perspective, the aim of the PlanRob workshop is twofold. On the one hand, this workshop would constitute a fresh impulse
for the ICAPS community to develop its interests and efforts towards this challenging research area. On the other hand, it aims
at attracting representatives from the Robotics community to discuss their challenges related to planning for autonomous robots
(deliberative, reactive, continuous planning and execution etc.) as well as their expectations from the P&S community.

The PlanRob workshop aims at constituting a stable, long-term forum on relevant topics concerned with the interactions
between the Robotics and P&S communities where researchers can discuss the opportunities and challenges of P&S when
applied to Robotics. Started during ICAPS 2013 in Rome (Italy) and followed by a second edition at ICAPS 2014 in Portsmouth
(NH, USA), a third one at ICAPS 2015 in Jerusalem (Israel), and a fourth one at ICAPS 2016 in the UK (London), the PlanRob
WS series (http://pst.istc.cnr.it/planrob/) has gathered excellent feedback from the P&S community which is also confirmed by
the organisation of a specific Robotics Track from ICAPS 2014.

This fifth edition of the PlanRob workshop has been proposed in synergy with the Robotics Track to further enforce its
original goals and to maintain an informal forum where more preliminary/visionary works can be discussed. PlanRob 17
succeeded in achieving these objectives providing a rich and articulated program. Indeed, 13 papers have been accepted for
oral presentation covering many relevant topics in Planning and Robotics such as high-level task planning, task and motion
planning, planning and execution for robots, planning and learning, human-robot interaction, real applications and case studies.
The workshop program is completed by an invited talk and a discussion panel.

The varieties of research topics and results collected in these proceedings reflect a stimulating and intense research activity
along with a growing interest for a forum where the Planning and Robotics communities can find a common ground.

Among the numerous people that contribute to the success of PlanRob 2017, we would first of all thank the ones that
submitted their research papers to the workshop and attended the event. Moreover, we sincerely thank the program committee
for the important work on the reviewing process.

Alberto Finzi, Erez Karpas, and Goldie Nejat
June 2017
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Intra-Robot Replanning to Enable Team Plan Conditions

Philip Cooksey1 and Manuela Veloso1

1Carnegie Mellon University

Abstract

Individual team members are the building blocks of success-
ful multi-robot teams in dynamic competitive domains. The
current approach to designing a team is to divide the plan-
ning into a hierarchy by separating team coordination and
task assignment – global planning – from task planning and
execution – local planning. The global planner must make
assumptions based on simplified models of dynamics and/or
opponents, and as such certain conditions are assumed true
when globally planning but are not always true at local ex-
ecution time. In this paper, we describe several algorithms
for intra-robot replanning that allow the individual robots to
enable the conditions of their tasks. We then demonstrate im-
provements in task completion when the robots are capable
of replanning their task(s) and their teammates’ task(s) in a
simplified robot soccer domain. We further show preliminary
results on learning when to replan.

Introduction and Related Work
Cooperative multi-robot team planners in competitive robot
domains often have limited computational time, have poorly
modeled dynamic objects, and have incomplete knowledge
of their environment. These issues remain with the individ-
ual robots, however they can gather state information and
learn to improve their execution by choosing the best fit re-
planning algorithms. Involving the team planner to incor-
porate more information on every robot is not effective or
practical for highly dynamic domains with potentially many
robots. Likewise, team planners often reduce information
and complexity in order to make team planning feasible
within dynamic domains, so additional information can hin-
der performance.

The standard approach to team planning in the literature
is to use a hierarchy, thereby dividing up the planning prob-
lem involved in controlling a team of robots (Yan, Jouan-
deau, and Cherif 2013), (Simmons et al. 2002), (Pecora and
Cesta 2002). We follow the Skills, Tactics, and Plays (STP)
hierarchy as described by (Browning et al. 2005). This divi-
sion of computation is used to simplify the problem of con-
trolling a team in dynamic, competitive environments and
allows planning to happen at different abstraction layers.
Skills are low level repeatable algorithms that are specific to
the domain. Tactics combine skills towards accomplishing
a more complex task using finite-state machines, consider

(a, b, l, w)

Tb TrOb Or

Figure 1: Passing with marking: Tb needs to pass the ball to
Tr within the zone (a, b, l, w). Tb is facing the ball with the
direction arrow. Opponents Ob and Or try to remain on the
line between the other robots to block or intercept the pass.
The top image is the physical robots, middle is the simulated
robots, and bottom is a simplified representation that we will
use in this paper.

passing the ball which includes Skills like driving into the
ball, positioning the ball, and kicking the ball. Plays guide
the team towards their goal(s) and they define robot roles,
positions, and a series of Tactics. Plays are changed based
on defined state variables, i.e., number of robots and ball on
defensive side. STP essentially separates planning into two
levels, global (Plays) and local (Tactics).

In competitive dynamic domains, the global planner will
assign a Play using incomplete information and simplified
models of the environment. This missing information is of-
ten due to opponents’ adversarial behavior but can also be
attributed to the simplified models of the team members’
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abilities. A Play will only change when new information
is presented at the global level that triggers a failure in its
defined state variables, so failures at the local level might
not be considered. This is due to the different requirements
of the global planner and the local planning robots with re-
spect to their abstraction in planning, i.e., to local informa-
tion gains and/or the global planner not fully modeling the
domain. We can especially see this in competitive domains
like the Small-Size Robot Soccer League (SSL).

The SSL league matches two teams of six omnidirec-
tional robots and each team receives the same information
(positions and headings) through overhead cameras (Zick-
ler et al. 2010). Any further information must be generated
by each team including velocities, predicting opponents, and
the physics of ball movement at the expensive of each team’s
computation. In STP, a Play may assign a pass between two
robots for reasons unknown to the local robot. Still, the com-
putation for completing that pass is left to the Tactic, and op-
ponents may make that exact pass impossible to the assigned
robot. Therefore, knowing that the global planner has made
assumptions, we argue that robots can collect local informa-
tion to learn when to use intra-robot replanning algorithms
to enable conditions during execution to make a more suc-
cessful team.

We note that Plays provide a fully instantiated team plan
for each team member robot Ti. The robots execute their
Tactics according to their assigned variables. The global
planner may at any time change the Play due to new infor-
mation, but there is no guarantee for changes in Plays due
to faults observed only at the local level. The Play was cre-
ated with the Tactics’ conditions considered true and that the
robot could complete its role using those Tactics. An implicit
assumption was that a failure to complete a Tactic would
lead to a global failure, which the global planner would then
solve. If however a local failure does not cause an immedi-
ate global failure, then the robot will continue failing until
complete global failure. In robot soccer, a local failure is a
robot maintaining control of the ball but never finding an
open pass, which results in it driving around in circles look-
ing for an open pass. A global failure would be a missed pass
or stolen ball.

In this paper, we investigate intra-robot replanning algo-
rithms to enable conditions that are preventing locally suc-
ceeding at the assigned task. The topic of intra-robot replan-
ning has recently been investigated and formalized in (Tala-
madupula et al. 2013), which defines a more general model
for replanning using different constraints. Replanning for in-
dividual robots has mostly been seen as a task of minimizing
the changes to the current plan, and this same idea has been
applied to multi-robot systems. However, in competitive do-
mains, the robots have to compensate for the dynamic nature
of the environment, so replanning must be quick and should
be focused on enabling failed conditions with the highest
chance of success. Optimality is often ill-defined in such
complex domains so we focus on the robot accomplishing
the assigned Tactic rather than failing, subsequently failing
the team’s objective. We contribute intra-robot replanning
algorithms to enable the soccer robot to replan for failed
conditions. We further demonstrate that the robot can learn

which algorithm has the highest chance of success.
We highlight a few competitive domains that require

intra-robot replanning but acknowledge that it can be useful
in other domains like fleets of autonomous cars or drones co-
ordinating towards a common goal while compensating for
dynamic changes. In capture the flag (Atkin, Westbrook, and
Cohen 1999), the team can have limited information about
the opponent’s team and their flag. The team plan that is cre-
ated is limited to their available information. Assuming they
can only globally plan on their side, they would need to lo-
cally replan for local changes in their information as well as
their teammates’. Similarly, in robot soccer, the global plan-
ner has partial information about the opponent’s behavior
and it makes assumptions when creating Plays. The robot
tasked with passing may need to replan its own position or
the other robot’s passing location to help it accomplish the
pass. We will focus our efforts on a derivative of robot soccer
to demonstrate the need for intra-robot replanning to enable
conditions.

Problem Domain
Passing with marking, shown in Figure 1, is a sub-domain of
robot soccer where the task is for the robot with the ball, Tb,
to pass the ball to the receiving robot, Tr, while opponents
try to steal and/or intercept the ball. One opponent is always
placed near Tb to block the initial pass. In our example, the
opponents, Oi, are placed on the line between the two Ti to
block and intercept the straight pass.

An example Play generated by the global planner is given
in Figure 2. The Play is made of Tactics: Pass, Goto, and
Receive. Each Tactic has instantiated variables defining the
assigned robot and the variable(s) for that Tactic. For Pass,
Tb is assigned to kick the ball to (5, 5). For Goto, Tr is going
to location (5, 5) to Receive the ball and must stay within
the Zone(a, b, l, w) defining a box with the left top corner
at location (a, b) with length l and width w.

The Play assigned the Role kicker to Tb and receiver to Tr.
In this case, Tr is assigned the best passing location within
its zone (the dashed-dotted square in Figure 1), but clearly
Or will attempt to intercept the ball. The assignment for the
best passing location and the generation of the probability
of success for that pass follows the approach in (Biswas et
al. 2014) and is outside the scope of this paper. The Play
will often fail quickly from the opponents’ interference. It
can also fail due to randomness in the robot’s performance
and kicking ability in the physics simulator. There have been
attempts to solve this issue in robot soccer as passing is a
major requirement and machine learning has been a major
focus of this research (Stone et al. 2006). However, our ap-
proach is to design replanning algorithms that enable failed
conditions and learn when to use each algorithm.

Individuals Enabling Conditions
In (Mendoza et al. 2016), they describe an approach called
pass-ahead that tries to sync the arrival of the receiver with
the ball so that they arrive at the passing location at the same
time. This approach alone does poorly in the passing with
marking domain because of the opponent Ob that blocks or
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Initial Position
Tb:loc→ (0,0)
Tr:loc→ (5,0)

Pass
Tb(5, 5)

Goto
Tr(5, 5)

Zone(a, b, l, w)

Receive
Tr

Figure 2: A team plan for Tb to pass the ball to Tr.

steals the ball. In (Cooksey, Mendoza, and Veloso 2016),
they demonstrated the requirement of opponent aware algo-
rithms for Tb to maintain possession of the ball, which im-
proved pass-ahead’s performance in the passing with mark-
ing domain (Dribbling-Move in Results Section). However,
that algorithm does poorly in our example domain where an
opponent was added to mark the receiving robot. The issue
is that Dribbling-Move only focuses on replanning to enable
one condition of the Tactic Pass, which is ball possession
(HasBall). HasBall is defined as true if the ball is closer
to it than any other robot. And, the condition being failed is
Open, which is defined true if the pass can be successful.
Open is ill-defined without knowledge of the opponents’
intercept abilities and therefore is estimated by the global
planner. Another issue is in Tb’s ability to enable the Open
condition.

Pass
Tb(5, 5)

HasBall()
Open()

Dribbling-Move
Tb(5, 5)

¬Open∨¬HasBall

Open∧HasBall

Figure 3: Intra-robot replanning to enable Pass’s condi-
tion HasBall through dribbling. HasBall() and Open() are
conditional functions (T/F) and switch what Tactic is used
through the links.

Dribbling-Move enables the condition HasBall by drib-
bling – the robot has a rotating bar in its forward direction,
the arrow in Figure 1, that applies a back spin on the ball for
maintaining possession – and can implicitly enable the con-
ditionOpen by moving the ball towards the passing location
while circumventing nearby opponents. This does not solve
the issue of opponents marking the receiver or the ill-defined
Open condition. For now,Open can be defined as true if the
probability of a successful pass, given by the team planner,
is above the defined threshold γ. The partial Play in Figure 3
illustrates the intra-robot replanning for Tb using Dribbling-
Move. The robot changes its local position variable towards
the passing location. As previously stated, the condition
Open is only being enabled implicitly as Tb is not attempt-
ing to find a new or better passing location. The condition
will be enabled when the global planner declares the current
pass probability above γ given some assumptions and sim-
plification based on the current state. Dribbling-Move gives
a relatively simple solution to enabling conditions HasBall
and Open, but it performs poorly in our example domain.

HasBall can be defined as an independent condition.
The ability to enable it is on a single robot’s own ability
to keep the ball or get the ball. Independent conditions can
be enabled by changes in the robot’s assigned variables to
compensate for changes in the environment. Open can be
defined as a dependent condition. Its ability to be enabled
is highly dependent on the other teammate(s) and/or oppo-
nent(s). Dependent conditions can be enabled by changes
in the variables of the robots that are involved with enabling
the condition. Obviously, the opponents’ variables cannot be
manipulated directly so it can be difficult to enable a depen-
dent condition.

Pass
Tb(px, py)
HasBall()

Open()

Dribbling-Move
Tb(px, py)

Goto
Tr:(px, py)

Zone(a, b, l, w)

Adjust Teammate
Zone(x, y + w

2 , l, w)¬Open∨¬HasBall

Open∧HasBall

¬Open

Zone

px, py

Figure 4: Intra-robot replanning to more explicitly enable
Open by using the action Adjust Teammate to change the
zone variable.

To enable Open, Tb would need to change its variables
– this occurs through dribbling – and the variable(s) of the
teammate’s Tactic involved in the pass. Here we add the ac-
tion Adjust Teammate to Dribbling-Move which changes
the Zone variable of the receiver’s Goto Tactic, shown in
Figure 4. Adjust Teammate is used if Open is not enabled
when dribbling. It places the zone in front of Tb and towards
Tr as shown in Figure 5. A new location is found within the
new zone for the pass and given to Tb and Tr. Tb can now
explicitly attempt to enable the Open condition by moving
the teammate to a zone better situated for its own dribbling
abilities.

The Zone becomes a sliding window towards the right
based on Tb’s location, shown in Figure 5. This ensures that
Tb is always close to the passing Zone and the global plan-
ner finds Tr a new pass location.

Experimental Results
Experimental Setup
We use the passing with marking domain as we described
in our example with a field size of 9m long by 6m wide.
Tb starts at (2m, 3m) with the ball directly in front of it
at (1.86m, 3m) and opponent Ob behind it at (2.4m, 3m).
Teammate Tr starts at (7m, 3m) with the opponent Or in
front of it at (6m, 3m). The Play is always the same with Tb
passing to Tr, however the passing location changes quickly
as the global planner attempts to find the best position within
Tr’s defined zone. The zone is defined as (x = 4.5m, y =

3



(a, b, l, w)

Tb TrOb Or

(x, y + w
2 , l, w)

Tb TrOb Or

Figure 5: Demonstrating the Zone adjustment, resulting in
a change in pass location, from the plan in Figure 4.

0m, l = 4.5m,w = −6m), so the zone covers half of the
field.

The pass must happen within one minute or it is consid-
ered a failed pass. If the ball goes outside field boundaries
it is also considered a failed pass. Touching is defined as
being within a robot radius plus a ball radius to the center
of a robot. If the ball is touching an opponent for five video
frames then it has been intercepted and the pass has failed. A
pass succeeds if Tr is touching the ball for five video frames.

The opponents place themselves in the direct line of sight
between the two Ti. Ob maintains a close distance of three
robot radii (3*0.09m) from Tb. Or maintains a distance of
0.5m from Tr. When the ball is kicked, i.e., its velocity goes
above 0.9m/s and it is two robot diameters away from Tb,
Or attempts to intercept the ball.
Tr uses the pass ahead algorithm to receive the ball as pre-

viously referenced. We are introducing Change-Zone which
follows Figure 4. The zone parameters were determined by
trial and error for improving the performance of passing. We
compare Change-Zone to three algorithms for Tb with vary-
ing degrees of replanning to enable conditions:
• Base Case: Positions to face the ball and pass location,

then immediately kicks as planned (no replanning).
• Dribbling-Move, D0

M , γ = 0: Previously referenced al-
gorithm with γ set for any pass.

• Dribbling-Move, D1
M , γ = 0.15: Only passes if the pass

probability is above γ.
• Change-Zone, CZ : Uses D1

M with the Adjust Teammate
action to enable the conditionOpen by altering the Team-
mate’s Zone using: (l = 2m,w = 6m).

Results
Each different Tb algorithm was run five hundred times in
a physics-based simulator starting with the same formation
of teammates, opponents, and the ball. The results can be

Base Case D0
M D1

M
CZ

0

20

40

60

80

100

2.4

31
37

60.6

Su
cc

es
s

%
(5

00
Tr

ia
ls

)

Figure 6: Results for four different algorithms used by Tb in
the passing with marking domain.

found in Figure 6. Base Case fails almost every time and its
few successes can be attributed to random chance as the ball
is often stolen or blocked. Both Dribbling-Move algorithms
improved the chance of a successful pass by enabling the
condition HasBall, but passes were often intercepted by
Or. With the higher γ, Dribbling-Move further increased the
success rate by waiting for γ to improve (even if just slightly
as 0.15 is still very low). Change-Zone further increased the
success rate by more explicitly attempting to enable Open
by moving Tr closer to find an open pass.

We used the binomial proportion test to verify that the
different success rates of the algorithms were not due to ran-
domness or limited sampling. The binomial proportion test
is, as defined in (Ryan 2008): given a set of N1 observations
in a variable X1 and a set of N2 observations in a variable
X2, we can compute a normal approximation test that the
two proportions are equal, or alternatively, that the differ-
ence of the two proportions is equal to 0. A standard ap-
proach is that a p value of less than 0.05 can reject the null
hypothesis. In our case, the null hypothesis defines that there
is not enough evidence to show a statistically significant dif-
ference between the results of the algorithms.

As shown in Figure 7 each improvement on the Base algo-
rithm is statistically significant when compared to previous
algorithms. The initial change, D0

M , occurred when replan-
ning enabled the condition HasBall by dribbling. Our con-
tribution, CZ , shows further significant improvement by re-
planning to enable the condition Open by moving the team-
mate into a more beneficial zone. Our data demonstrate the
large improvement when individual robots within a team can
replan to enable all the conditions needed by their Tactics.

The authors of the Dribbling-Move algorithm showed the
improved success rate of passing when marked by an oppo-
nent similar to Ob. With the inclusion of the second oppo-
nent, Or, the success rate dropped dramatically. We can see
that the improvement of Dribbling-Move mainly contributed
to the enabling of the condition HasBall and its ability to
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Binomial Proportion Test (Two-Tailed)
Algorithm Algorithm P Value
Base Case D0

M < 0.0001
D0

M D1
M 0.0452

D1
M CZ < 0.0001

Figure 7: Testing for the null hypothesis that the two propor-
tions are equal and the difference is due to randomness.

handle the close opponent, Ob. Changing-Zone’s improve-
ment was in changing the teammate’s zone variable to ben-
efit the dribbling algorithm’s abilities. It brought the passing
location closer for tighter, shorter passes and this helped im-
prove the probability of enabling Open.

Choosing a Replanning Algorithm
In this section, we describe how to choose which algorithms
to use during the execution of the robot’s Tactic. First, we de-
scribe an approach using the worst case analysis for choos-
ing the appropriate algorithm. Second, we describe a state
based approach that learns which algorithm to use given a
world state. This approach allows the robot to use simpler
algorithms when possible, like the base case, while learning
when to use the more complicated ones like CZ .

Worst Case
The task of our robot is to pass the ball to another teammate.
This involves releasing the ball and losing all further control
over it. It is an irreversible action, which cannot be replanned
or halted. With irreversible actions, we would like to choose
an algorithm that would minimize the worst case failure rate
of the robot, because most of the failures cause the other
team to obtain the ball.

Given the individual robot must pick to execute one of the
algorithms in order to accomplish the task of passing, we de-
fine a method of choosing an algorithm based on the worst
case. A standard approach for choosing one algorithm over
another is if the algorithm is better in the worst case indepen-
dently of the worst case actually occurring. Let Z = {0, 1},
where 0 is a failure and 1 is a success, and p be the function
that gives the probability p(z), where

∑
z∈Z p(z) = 1, for

obtaining the failure or success in Z. We then assign a value
v(z) to the values of Z. We set v(z) to be the total number of
success for the algorithm, in Figure 6. We use the definition
in (Rubinstein 2006),

p % q if min{v(z)|p(z) > 0} ≥ min{v(z)|q(z) > 0}
(1)

Therefore, the algorithms would be ordered CZ % D1
M %

D0
M % BaseCase. So, the Change-Zone algorithm would

have the largest minimum value and be chosen as the default
algorithm.

State Based
The worst case method will choose the algorithm that min-
imizes the worst case scenario, but by definition it does not
consider the actual probability of the worst case happening.

This can be seen as an issue if the worst case rarely, if ever,
happens. Another possible issue is that each of the replan-
ning algorithms alters the team plan causing changes that
may have been unnecessary. In a normal game, situations
like our example domain may not occur with high probabil-
ity. In other words, if we have an open pass to our teammate
with no opponents nearby there would be no point in drib-
bling the ball and/or moving the teammate closer.

A better method for picking the replanning method would
then be based on the state of the world. Using the state infor-
mation, it is possible to learn the likelihood of that algorithm
being successful. Then we can choose the algorithm given
its likelihood of succeeding. We must reiterate that, because
the domain is dynamic and adversarial, success is very prob-
abilistic even in the exact same state. Our robots move with
some randomness which means that predicting the likeli-
hood of an algorithm being successful at any given state will
be probabilistic. The robots will likely diverge quickly into
very different states in the future as subtle differences and
randomness influence their trajectories.

We use neural networks to learn a function from world
state to the probability of success. The state is described in
the reference frame of the robot using the algorithm in order
to help generalize different situations across the field.

Input State
• Tb: (X, Y) position and velocity of Tb.
• Ball: (X, Y) position and velocity of ball in robot’s frame

of reference.
• Teammates: (X, Y) position and velocity of each team-

mate in robot’s frame of reference.
• Opponents: (X, Y) position and velocity of each oppo-

nent in robot’s frame of reference.

Output State
• Probability Value: Likelihood of input state leading to a

successful pass using an algorithm.
The data needed to train the neural network can be col-

lected over many runs of each algorithm in various scenar-
ios. We can simulate similar episodes in our example do-
main with variations on ball location, opponent’s locations,
and teammate’s locations. As an episode starts we begin sav-
ing state information for each video frame. Then once the
pass has either been received, intercepted, or gone out of
bounds (the episode ends), we label all the saved states with
a success value of 1 or a failure value of 0. As previously
mentioned, even starting in the same state does not mean the
robots will execute the same path in the future even when
using the same algorithm. There is therefore a probabilistic
nature to succeeding from a given state.

The neural network can then be trained using a supervised
learning method. Given that similar, even the exact same,
states will most likely be labeled success and failure, the net-
work will actually learn the probability of succeeding within
the training data. Therefore, the output is the likelihood of an
algorithm succeeding from a given state.

Given that we train multiple neural networks, each trained
on one algorithm, we will have the likelihood of success

5



Predicting Success or Failure of D1
M

Data Sets Accuracy Recall Precision
Training Data 0.70 0.31 0.74
Next 200,000 0.65 0.26 0.65
Next 200,000 0.71 0.24 0.50

Figure 8: Accuracy of predicting successes or failures for
our example domain using the algorithm D1

M .

for each algorithm given a state. We then must decide on
a method of choosing which algorithm to run based on the
probability value. We use the expected utility of the algo-
rithm as described in (Rubinstein 2006):

p % q if
∑

z∈Z

v(z)p(z) ≥
∑

z∈Z

v(z)q(z) (2)

where v(z) = z
C(ai)

and C(ai) is an ordering cost for
each algorithm, ai.

Preliminary Experimental Evidence To test the state
based method, we used the open source library OpenANN
(Fabisch 2017). The neural network has 20 inputs, see Input
State, and 1 output as the probability of success, see Output
State. We used a fully-connected network with three hidden
layers with 100 neurons in each layer. We used LOGISTIC
activators for the neurons and Mini-batch Stochastic Gra-
dient Descent (MBSGD) to solve the supervised learning
problem.

Our preliminary work has focused on determining the ac-
curacy of predicting the success or failure of an algorithm
using our example domain. We used the D1

M algorithm and
repeatedly ran our example domain roughly five thousand
times, gathering over 4 million states. We used two hundred
thousand states to train the network over ten thousand itera-
tions of MBSGD.

In Figure 8, we see that the accuracy of prediction is be-
tween 0.65-0.71. The low accuracy can be attributed to the
randomness of a state leading to a success or failure because
of the inherit randomness in the robot’s performance. For
example, the starting position of our passing with marking
domain should be labeled as failure because on average it
fails more often than it succeeds. This is confirmed as the
start position produces the value 0.412. The neural network
will always consider that position as a failure, which brings
down the accuracy when the robot happens to succeed. In
comparison to D1

M ’s success rate in Figure 6, 0.37, the neu-
ral network has learned a similar approximation.

The low recall performance can be attributed to the large
bias for failure in the dataset. The individual robot is started
in an disadvantaged position and the likelihood of succeed-
ing is already low. Similarly, when the robot actually suc-
ceeds in a given state it has probably failed multiple times
from that exact same state in the dataset. The negative ex-
amples then highly outnumber the positive examples lead-
ing the neural network to perform poorly on recalling pos-
itive examples. A possible correction for this would be to
balance the samples of positive and negative, however, this

new bias would likely decrease the precision and accuracy
of predicting if the algorithm will fail from a given state.

This preliminary work demonstrates the ability to learn
the probability of success for a given state. Future work
includes training neural networks for every algorithm and
choosing which algorithm to execute based on their predic-
tions and expected utilities.

Conclusion and Future Work
Competitive dynamic multi-robot domains are challenging
tasks to solve, and the use of hierarchical planning, like STP,
to divide the planning is a useful and successful method
for tackling this enormous problem. In STP, research has
focused on improving the creation of Plays and designing
Tactics that react to the environment in real-time. How-
ever, there still lacks thorough understanding of the require-
ments of the individual teammate and its need for replan-
ning within teams and hierarchical planners. Plays are often
determined by global variables that change slowly or at a
global view point. Replanning at the Play’s level is focused
on the task of fixing global problems for the team. There-
fore, replanning at the Tactic’s level has been left struggling
to accomplish the predefined task as assigned by the global
planner.

Intra-robot replanning is then a way for Tactics to enable
the conditions of their tasks by changing and adjusting the
variables of the team’s plan. We demonstrated an increase
in team performance by providing the Tactic level with the
ability to replan its robot’s location, the ball’s location, and a
team member’s variable in order to enable the Tactic’s condi-
tions. In our example, this was through dribbling and adjust-
ing the preplanned zone of the team member. As the types
of conditions were different, independent and dependent, en-
abling them required a difference in what variables needed
to be changed. Replanning to enable both types of conditions
clearly provides a better alternative to failing and waiting for
the global planner to change its task.

We showed preliminary results on predicting the probabil-
ity of succeeding for an algorithm. Using state information
gathered by the tactic during its execution, we could train a
neural network afterwards to output the probability of suc-
cess. Future work has been left to picking the algorithm with
the highest expected utility such that the robot succeeds of-
ten without defaulting to an unnecessarily complicated algo-
rithm. Research is also needed to learn how to change vari-
ables in different situations. Specifically, it would be ben-
eficial to learn the actual zone size and zone location that
improves the pass success beyond the hard coded zone used
in our experiments.

References
Atkin, M. S.; Westbrook, D. L.; and Cohen, P. R. 1999.
Capture the flag: Military simulation meets computer games.
In Proceedings of AAAI Spring Symposium Series on AI and
Computer Games, 1–5.
Biswas, J.; Mendoza, J. P.; Zhu, D.; Choi, B.; Klee, S.; and
Veloso, M. 2014. Opponent-driven planning and execution
for pass, attack, and defense in a multi-robot soccer team.

6



In Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, 493–500. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Browning, B.; Bruce, J.; Bowling, M.; and Veloso, M. 2005.
Stp: Skills, tactics, and plays for multi-robot control in ad-
versarial environments. Proceedings of the Institution of Me-
chanical Engineers, Part I: Journal of Systems and Control
Engineering 219(1):33–52.
Cooksey, P.; Mendoza, J. P.; and Veloso, M. 2016.
Opponent-aware ball-manipulation skills for an autonomous
soccer robot. In Proceedings of the RoboCup Symposium.
Leipzig, Germany: Springer. Nominated for Best Paper
Award.
Fabisch, A. 2017. Openann. https://github.com/
OpenANN/OpenANN.
Mendoza, J. P.; Biswas, J.; Zhu, D.; Cooksey, P.; Wang, R.;
Klee, S.; and Veloso, M. 2016. Selectively Reactive Coordi-
nation for a Team of Robot Soccer Champions. In Proceed-
ings of AAAI’16, the Thirtieth AAAI Conference on Artificial
Intelligence.
Pecora, F., and Cesta, A. 2002. Planning and Scheduling
Ingredients for a Multi-Agent System. In Proceedings of
UK PLANSIG02 Workshop, Delft, The Netherlands.
Rubinstein, A. 2006. Lecture Notes in Microeconomic The-

ory. Dordrecht: SUNY-Oswego, Department of Economics.
87–96.
Ryan, T. P. 2008. Modern Engineering Statistics. Number
124-126. Wiley.
Simmons, R.; Smith, T.; Dias, M. B.; Goldberg, D.; Hersh-
berger, D.; Stentz, A.; and Zlot, R. 2002. A Layered Ar-
chitecture for Coordination of Mobile Robots. Dordrecht:
Springer Netherlands. 103–112.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006.
Keepaway soccer: From machine learning testbed to bench-
mark. In RoboCup 2005: Robot Soccer World Cup IX, 93–
105. Springer.
Talamadupula, K.; Smith, D.; Cushing, W.; and Kambham-
pati, S. 2013. A theory of intra-agent replanning. ICAPS
2013 Workshop on Distributed and Multi-Agent Planning
(DMAP).
Yan, Z.; Jouandeau, N.; and Cherif, A. A. 2013. A sur-
vey and analysis of multi-robot coordination. International
Journal of Advanced Robotic Systems 10.
Zickler, S.; Laue, T.; Birbach, O.; Wongphati, M.; and
Veloso, M. 2010. Ssl-vision: The shared vision system for
the robocup small size league. In RoboCup 2009: Robot
Soccer World Cup XIII. Springer. 425–436.

7



Expressing Campaign Intent to Increase Productivity
of Planetary Exploration Rovers

Daniel Gaines, Gregg Rabideau, Gary Doran,
Steve Schaffer, Vincent Wong, Ashwin Vasavada, Robert Anderson

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

{firstname.lastname}@jpl.nasa.gov
Abstract

Achieving consistently high levels of productivity has been a
challenge for Mars surface missions. While the rovers have
made major discoveries and dramatically increased our un-
derstanding of Mars, they often require a great deal of effort
from the operations teams and achieving mission objectives
can take longer than anticipated. Missions have begun in-
vestigating ways to enhance productivity by increasing the
amount of decision making performed onboard the rovers.
Our work focuses on the use of goal-based commanding as
a means of more productively operating rovers. In particular,
we are working on ways to convey the intent that operations
team use to conduct science campaigns to the rover so that it
can guide the rover in creating high quality plans and in iden-
tifying its own goals based on operator guidance. In addition
to informing future surface exploration missions, this work is
relevant for a wide range of applications in which operators
must interact with a robotic system with limited communica-
tion opportunities.

Introduction
Maintaining high levels of productivity for the Mars ex-
ploration rover missions is highly challenging. While the
Curiosity operations team has made significant accomplish-
ments with the rover, doing so often requires a large amount
of human effort in planning, coordinating, sequencing and
validating the development of command products for the
rover. Further, limitations in communication opportunities
and anomalies on the vehicle can cause delays in accom-
plishing the team’s objectives. These productivity chal-
lenges can result in the under-utilization of the vehicle’s re-
sources. These productivity challenges are anticipated to in-
crease as our aging fleet of sun-synchronous orbiters are re-
placed by non-sun-synchronous orbiters, which do not pro-
vide a consistent pattern of “end-of-day” downlink relays.

The Jet Propulsion Laboratory has been exploring op-
tions for addressing these productivity challenges including
conducting an extensive study of productivity factors in the
Mars Science Laboratory mission (Gaines et al. 2016) and
investigation into incorporating onboard activity scheduling
for the Mars 2020 mission (Benowitz 2016).

Copyright c© 2017, California Institute of Technology. U.S. Gov-
ernment sponsorship acknowledged.

In this paper we discuss work that is continuing the in-
vestigation into increasing the amount of decision making
performed onboard rovers for future planetary exploration
missions. In particular, we are leveraging existing technol-
ogy and developing new technology to enable rovers to be
more goal-directed, including following goals provided by
ground operations as well as identify their own goals under
the guidance of operators. We believe that this approach to
goal-directed behavior will enhance surface mission produc-
tivity in the following ways:

Reducing operator effort: A goal-based interface presents
a higher-level, more intuitive interface to rovers compared
to the current highly-detailed command sequence inter-
face. We believe that developing and validating command
products with a goal-based interface will require less time
and effort for the operations team.

Increasing rover resource utilization: The limited deci-
sion making of current rovers results in the opera-
tions team making highly conservative predictions of the
amount of resources, e.g. time and energy, required to
perform activity and results in significant amount of un-
used vehicle resources. By increasing onboard decision
making, the rover can use knowledge of current vehi-
cle resources to make more informed decisions about the
goals that can be accomplished.

Reducing reliance on ground-in-the-loop cycles:
Current operations relies on frequent interactions
with the rover to maintain high levels of productivity
in which the team assesses the rover’s latest state and
provides the detailed command products that direct the
rover in accomplishing mission objectives. In contrast, a
goal-based interface allows the team to provide objectives
to the rover with reduced knowledge of the rover’s state.
In addition, by providing appropriate guidance, the
rover is able to identify its own goals to accomplish
mission objectives, further reducing the reliance on
ground-in-the-loop contacts.

Although goal-based commanding has not been used on
planetary rovers, it is of coarse a well-established form of in-
teraction with robots and has also been used in other forms
of space missions (Muscettola et al. 1998; Chien et al. 2005).
In addition, the Opportunity and Curiosity rovers have a re-
stricted form of goal selection in which they are able to
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select targets for follow-up observations based on scientist
guidance (Francis1 et al. 2016).

Our focus in this paper is providing rovers guidance on
what goals to work on when:

1. the set of proposed goals over-subscribe vehicle resources
and the planner must select a subset of goals to accom-
plish, and

2. the rover has a surplus of resource or has entered a new
area that ground operators have not yet seen and should
identify its own set of goals to pursue.

Our approach is to derive this guidance from the intent the
science team uses when developing science campaigns. We
go into more detail on campaign intent in later sections, but
in general, we view intent as specifying relationships among
goals. These relationships are used to determine the value of
including a set of goals in a plan and, in some cases, how, or
more specifically, when goals are accomplished. For exam-
ple, the science team may be interested in collecting samples
of a certain type of rock formation or performing a certain
type of observation every X meters the rover drives. In the
former case, the intent would specify the type of goal of in-
terest (sampling a formation) and the value of accomplishing
goals of this type (e.g. 2 or 3 samples is very important, ad-
ditional samples are nice but less important). The latter case
indicates a preference to periodically collect an observation
and would indicate how important it is to accomplish the
goals within a given tolerance of the indicated periodicity.

While our initial motivation for expressing campaign in-
tent was for science objectives, this type of guidance is also
relevant for many types of engineering maintenance activi-
ties performed by the rover. For example the team performs
periodic activities to monitor various rover subsystems and
dump system information. There is a cadence that must be
followed in collecting this information, but there is flexibil-
ity in the exact timing of the activity. We have found that
guidance for these engineering activities is similar to guid-
ance for science campaigns.

In the next section we provide background on rover oper-
ations to help establish context. We then describe examples
of rover science campaigns and how we derived campaign
intent from these examples. Next we describe the specific
semantics we developed to represent campaign intent and
discuss how we are using this intent as guidance to enable
the rover to generate high quality plans and identify its own
goals.

Background on MSL Mission Operations
We begin with a brief overview of some important facets of
MSL operations to provide context for the case study. This is
not a comprehensive description of MSL operations, rather a
description of some important aspects to help frame the case
study.

One of the challenges of surface missions is the degree
to which operations are impacted by a priori unknown and
changing environmental conditions. While orbital imagery
provides valuable information to guide activity, it does not
capture all the conditions that affect the rover. For example,

while orbital imagery may indicate that exploring a partic-
ular region is promising to achieve a science objective, the
specific science targets are not known until additional data
is collected from the rover itself.

As such, surface operations must be reactive and respond
to the results of activity carried out during the previous sol
(Martian day). This daily planning activity is referred to as
“tactical” operations and is patterned after the tactical oper-
ations developed for the Mars Exploration Rovers (Mishkin
et al. 2006).

MSL operations augments this tactical process with
“strategic” and “supratactical” phases (Chattopadhyay et al.
2014). Strategic planning focuses on developing long-term
plans, typically spanning weeks or months, to achieve high-
level objectives. Examples of strategic planning include the
development of strategies for exploring a large geographical
area or a high-level traverse route for reaching a distant ob-
jective. The supratactical stage provides a bridge between
the long-term strategic plan and the day-to-day, highly reac-
tive tactical process. The process is designed to coordinate
the complex science instruments and manage the constraints
and resources required to conduct campaigns.

An Example Sol in the Life of the Rover
To provide an idea of how the team operates the rover, Fig-
ure 1 illustrates an example sol of rover activity. This is an
example of a typical drive sol, derived from an actual Sol
780 command products. Following are some key aspects of
the sol.

The plan for each sol begins with an “Uplink” window in
which new commands products may be sent to the vehicle
from Earth. There are various downlink windows through-
out the sol in which the rover uses orbiter relays to send
collected data back to Earth. While there are multiple down-
link windows, certain downlinks have increased importance
based on the time that data in the relay will reach operators.
If data from a relay will reach operators by the start of the
next tactical planning shift, then they relay is termed “de-
cisional” because data from the relay can be used to make
decisions in for the rover’s next plan. Which relays are con-
sidered decisional depends on the relative timing between
Earth and Mars along with latencies in the orbiter relay pro-
cess. In Figure 1 the starred “MRO Relay” represents the
decisional relay for this sol. It is important to realize that for
this plan, only the data collected prior to this pass could be
used to inform the next plan. While the remaining data will
eventually be sent to Earth and may be used to inform future
plans, it will arrive too late to inform the next plan.

Another important aspect of Figure 1 is how the team
structures the sol into “blocks” of activity. For example,
the main portion of the rover’s day consists of a Pre-Drive
Science block, a Drive with Mid-Drive Imaging bock and a
Post-Drive Imaging block. The block structure organizes ac-
tivity into related groups and allows a “Master” sequence to
enforce timing between these major types of activity. The
latter has to do with uncertainties in predicting the dura-
tion of activity in the plan. Due to environmental conditions
such as lighting, scene content and terrain, the time to per-
form imaging and drive activities varies. The team uses the
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block structure to ensure that if activity in one block runs
longer than expected, it can be cut off to avoid interfering
with subsequent activity. To protect against loss of data,
the team builds “Margin” into each block, to allow activi-
ties to run longer than predicted. To deal with cases where
durations exceed allocated margin, the team also sequences
“Cleanups” after each block, to ensure that any activity is
finished before the start of the next block.

Restricted Sols
The vast majority of the surface mission is conducted with
the team restricting operations to daytime hours on Earth.
The consequence is that the operations team is often out of
sync with the activity of the rover on Mars. Figure 2 illus-
trates the impact this can have on the data available to the
team during planning. In the diagram, the end-of-day relay
from the rover arrives on the ground late in the Earth day.
The team waits until the next Earth day to begin planning.
Meanwhile the rover is waking up for its next Mars day with-
out a new set of command products from Earth. By the time
the team has completed the tactical process, they must wait
for the subsequent Mars morning to uplink the products to
the vehicle.

This often limits what the team can command the vehicle
to do during the middle sol of Figure 2. If the vehicle were
allowed to make significant changes to its state, in particu-
lar driving to a new location, this would significantly limit
the types of activities the team could command on the sub-
sequent sol. These limited activity sols are referred to as
“restricted sols” because the latency of data often restricts
the type of activity the team can perform.

A similar situation arises when the team takes days off for
weekends and holidays. In these cases, the team will create
plans that span multiple sols (aka multi-sol plans). Again,
activities that result in significant changes to vehicle state
are limited since they will impact the activity that can be
done in later sols of the plan.

Given the current way in which we design and operate
rovers, restricted sols are a major detractor from mission
productivity. For example, with current surface operations,
when the rover drives to a new location it must wait for im-
agery collected at this location to be sent to Earth and for the
science and engineering teams to analyze the data and iden-
tify the specific set of activities to perform at the location to
meet their current mission objectives. If the mission is in a
restricted time period, this results in an entire sol in which
the rover waits for these new activities.

Overall, 41% of sols on the MSL mission are restricted
sols. This percentage is expected to be much higher if the
mission were to rely on a highly eccentric relay orbiter such
as the MAVEN orbiter.

Resource Prediction
An additional challenge to surface operations is that it is dif-
ficult for ground operators to predict the time and energy
that will be required to perform these activities and the con-
sequence of over-subscribing resources is severe (e.g. safing
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the vehicle if energy is over-subscribed). As such, the team
makes conservative estimates which almost always results in
significantly under-utilizing available vehicle resources.

In the campaigns we analyzed in our MSL case study, we
estimated that the rover could have conducted an additional
3 to 4 hours of activity each sol of the campaigns with the
energy that went unused (Gaines et al. 2016). This would
have resulted in a dramatic increase in productivity.

Identifying Campaign Intent
The previous section described the significant loss of pro-
ductivity experienced by surface missions due to restricted
sols and the challenge predicting resource usage. Our ob-
jective in this work is to increase the autonomy of rovers
so that they can remain productive even in situations of re-
duced contact with human operators. Our approach is to
convey mission intent to the rover so that mission operators
can provide guidance to the rover even if they do not know
the specific state the rover will be in when it receives the
guidance. Further, operators will be able to provide a col-
lection of goals that have the potential for over-subscribing
available resources and let the rover select a high value sub-
set based on actual available resources.

To enable more autonomous operation of a Mars rover,
we aim to capture the intent behind activities planned for the
rover during its service of a scientific campaign. Ultimately,
the intent of all Mars rover activities is to advance our sci-
entific understanding of the planet. However, by breaking
up this larger intent into smaller, well-defined components,
we can make some of this knowledge accessible to plan-
ning software for decision making. With the intent knowl-
edge carried onboard, along with software that can use it,
the rover can be more productive during times when ground
interaction is limited.

The first step in this process is to understand the types of
science and engineering intent that drives surface missions.
We looked at several MSL campaigns in an effort to iden-
tify common relationships between planned activities and
the objectives they are meant to achieve. Specifically, we
investigated relationships that influence the inclusion or ex-
clusion of an activity, as well as relationships that influence
the timing of the included activities. From our initial inves-
tigation, we found three general types of relationships: sam-
ples of a class, temporally periodic observations, and sam-
pling based on changes in rover or environmental state. In
this section, we describe each of these types of relationships
and the MSL examples that motivate them.

Sampling from a Class
The first relation we discuss is “samples of a class”. In this
relationship the operations team has some class in mind that
they wish study and they want the rover to collect observa-
tions of examples of this class. This type of relation may be
used to identify general areas to study or it may result is the
selection of specific targets.

For example, during the Pahrump Hills Walkabout cam-
paign the team performed a reconnaissance loop with the
high level objective of studying a rock formation named

Poten&al)end+of+drive)imaging)stops)
Poten&al)mid+drive)imaging)stops)

Book_Cliffs)

Pink_Cliffs)

Chinle)

Zion_Canyon)
Whale_Rock)
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Figure 3: Curiosity’s planned route for Pahrump Hills Walk-
about Pass 1 at start of campaign.

Sol 1439 Navcam

Sol 1441 Mastcam

Sol 1441 RMI

Figure 4: Catabola, an example vein target (NASA/JPL-
Caltech/MSSS/LANL/CNES/IRAP/LPGNANTES/CNRS/IAS).

Murray formation, the strata recognized as lower Mount
Sharp (Stack et al. 2015). During the strategic planning
phase of this campaign, the team used imagery from the
rover to identify resistant beds and other examples of unique
rock textures that they wished to explore to develop a bet-
ter understanding of the area. Figure 3 shows these identi-
fied areas, white boxes, as well as the initial route that was
planned to visit them. These white boxes are an example of
general areas that represent samples of class (e.g. resistant
beds) the team is interested in studying.

This type of sampling from a class frequently occurs at a
more local scale. For example, the team is often interested in
studying veins that run through rocks (Nachon et al. 2015).
Figure 4 shows the Catabola target, a vein identified in im-
agery acquired following a drive on Sol 1439. On Sol 1441,
the operations commanded the rover to acquire the corre-
sponding Mastcam and ChemCam data which resulted in
the detection of high levels of boron (Jet Propulsion Labora-
tory Press Release 2016a). Notice that although the imagery
containing Catabola was first collected on Sol 1439, it was
not until Sol 1441 that the follow-up observations were col-
lected. This is because the team was in restricted sols during
this time and the rover spent Sol 1440 collecting untargeted
observations without ground interaction.

Figure 5 shows another example of sampling from a class.
In this case, the team identified two targets that were good
examples of light-toned rocks, Elk and Lamoose. These
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Figure 5: Navcam image taken after the Sol 991 drive, show-
ing the Elk and Lamoose targets.

turned out to be particularly interesting targets as follow-up
observations indicated they contained high levels of silica.
The study of the high-silica targets lead to the conclusion
that the introduction of silica represented one of the most
recent water-rock interactions observed in Gale crater (Fry-
denvang et al. 2016). The data would also contribute to the
study of the subsequently visited Bridger Basin area (Gasda
et al. 2016).

In each of these examples, there are typically several in-
stances that would serve as examples of a class. Given the
limited time and resources available as well as other objec-
tives the team has, the operations team must select a subset
of candidate targets to perform follow-up observations. We
would like to explicitly capture this notion of sampling from
a class and allow operators to convey the value of collecting
multiple samples from the class to enable the rover to make
similar trade-offs. For example, it may be important to col-
lect at least 3 samples of a class. Additional samples are
nice to have, if additional resources are available, but with
reduced additional value.

Temporally-Periodic Sampling
Other relationships between activities result from the de-
sire to sample the Martian terrain and atmosphere at regular
time intervals. These sampling intervals can determine how
many observations are needed, as well as preferences on the
temporal separations between observations. For example,
throughout the mission, a variety of periodic observations
are collected to monitor the Martian environmental condi-
tions. Example monitoring includes periodically acquiring
images of the sun at different times of day to measure at-

mospheric opacity (Mason et al. 2017). The SAM (Sample
Analysis at Mars) is used to perform period sampling of the
atmosphere with the intent to monitor the seasonal evolution
of methane in the atmosphere (Webster et al. 2015).

While our primary focus on capture intent is for increas-
ing science productivity, there are also many type of engi-
neering activities that have similar intent relationships. For
example, the team performs maintenance of different rover
subsystems and collects detailed dumps of various vehicle
telemetry on periodic cycles. The team also performs a
variety of instrument calibration activities including peri-
odic viewing of calibration targets for ChemCam (Chemi-
cal Camera), APXS (Alpha Particle X-Ray Spectrometer)
and MAHLI (Mars Hand Lens Imager) calibration targets,
to name just a few. While these maintenance activities may
consume time and resources that would otherwise be used
for immediate science, they must be considered to keep the
rover safe and healthy for future science activities.

For both science and engineering periodic activities there
is a preference on scheduling observations at a particular
cadence, but there is flexibility in deviating from a precise
interval to allow these periodic activities to be inter-mixed
with other objectives vying for the same pool of rover re-
sources. Thus, when capturing periodic intent, we want to
express the preferred period as well as how value decreases
as particular observations deviate from the preferred timing.

State-Based Sampling
The final type of intent relation we consider are requests that
are based on changes in state that occur as the rover operates
on the Martian surface. For example, as the rover traverses
across the landscape there is interest in collecting certain
types of observations including using navigation cameras
to perform clast surveys (Yingst et al. 2013) and using the
DAN (Dynamic Albedo of Neutrons) instrument to search
for signs of subsurface water (Litvak et al. 2013). Due to
the complexities of current operations practices the team is
limited to acquiring these observations at the end of drives,
which have high variance in their lengths, rather than at op-
timal distances to support systematic sampling. Part of our
objective in increasing rover autonomy is to make it easier
for the rover to perform these types of surveys closer to their
ideal locations.

In recent operations, Curiosity has been climbing Mount
Sharp to reach a layer of hematite, as seen in Figure 6. The
team is interested in performing systematic surveys along
the route in order to study variations that occur up the slope.
In this case, the sampling strategy is based on change in ele-
vation rather than strictly distance.

There are also engineering maintenance activities that
correspond to changes in rover state. It is well known that
the rover’s wheels have suffered damage during its explo-
rations. The engineering team conducts a periodic wheel
wear monitoring activity based on distance traveled (Jet
Propulsion Laboratory Press Release 2016b). The team also
has the rover perform an attitude update activity in which the
relative location of the sun is combined with accelerometer
data to update the rover’s attitude knowledge. This attitude
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Figure 6: Curiosity’s planned route to reach hematite layer
(NASA/JPL-Caltech/Univ. of Arizona).

update activity is also scheduled as a function of distance
traveled.

As with temporally periodic activities, this state-based pe-
riodic activities also come with a preferred cadence with
flexibility about the actual timing.

In summary, we have reviewed several MSL science and
engineering campaigns to identify patterns of relationships
between activities and the objectives they serve. We identi-
fied three common types of relationships:

Sampling from a class: goals are selected based on how
well they exemplify a class, there is typically an increase
in value as more examples are collected, but with di-
minishing returns after a certain number of samples is
reached.

Temporally-periodic sampling: goals are selected and
scheduled based on a periodic temporal relationship, there
is typically a preference on the cadence but with some
amount of allowed flexibility in specific timing.

State-based sampling: goals are selected and scheduled
based on changes in state of the rover and/or terrain, there
is typically a preference on the cadence but with some
amount of allowed flexibility in specific sampling.

In the next section, we discuss these types in more detail,
including how they are implemented to capture intent and
enable autonomous plan generation and repair.

Expressing Campaign Intent
We define a new type of planning construct, called a Plan
Campaign, in order to guide automated planning algorithms
towards solutions that better satisfy high-level science cam-
paigns. These Plan Campaigns impose relationships be-
tween activities in the plan as a way of capturing the intent
of performing those activities. In addition, a Plan Campaign
provides an assessment of the current plan, indicating how
well it is satisfying the constraints and relationships of the

Figure 7: ASPEN classes for the three campaign types.

campaign. This satisfaction level, for example, may be de-
fined in terms of the number of activities in the plan com-
pared to the maximum requested by the Plan Campaign. A
Plan Campaign also provides a set of satisfaction methods,
which define ways that the plan might be changed to better
satisfy the campaign.

We implement three types of Plan Campaigns in the AS-
PEN planning system (Fukunaga et al. 1997), corresponding
to the most common relationships identified in the previous
section. They are:

Goal Set Campaign: activities are scheduled based on a
specific group of goals that request them. This type can
be used to implement the “Sampling from a class” rela-
tionships.

Temporal Campaign: activities are scheduled based on
temporal separation constraints. This type can be used to
implement the “Temporally periodic sampling” relation-
ships.

State-based Campaign: activities are scheduled based on
state-change separation constraints. This type can be used
to implement the “State-based sampling” relationships.

Each plan campaign type has its own definition for satis-
faction level, and its own satisfaction method. A partial class
diagram can be seen in Figure 7.

A Goal Set Campaign is a request to include in the plan
some of the goals from a predefined set, such as those to
sample a rock classification. In ASPEN, a goal is a request
for an activity with specific parameter settings. For example,
one rover goal may be to observe a particular rock at a close
distance using stereo cameras. A goal might also generate
new goals, such as when the intent is for the rover to col-
lect measurements of some rock outcrop, and the particular
location of the measurement can be generated onboard after
approaching the outcrop and acquiring more detailed images
not yet available on the ground for targeting. Each goal can
be assigned an ID to specify the goal set to which it belongs.
The Goal Set Campaign then references the same ID to re-
quest the set of goals. It also has parameters to specify the
minimum and maximum number of goals to select from the
set, which become constraints in ASPEN. The level of satis-
faction increases as more goals are added to the plan. We use
this type of Plan Campaign, for example, to capture a set of
targeted observations for the rover that may all investigate
the same type of rock formation. Multiple Goal Set Cam-
paigns could be used for different types of formations, with
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each competing for time and resources in the plan. For ex-
ample, driving from one formation to another will take time
and energy, but may provide more value than additional ob-
servations at the current location.

A Temporal Campaign is a request to include activities
at regular time intervals. Again, a minimum and maximum
number of activities can be provided. This type of campaign
is very similar to the “Repeat” campaign type used to sched-
ule Rosetta science observations (Chien et al. 2015). In
addition, a minimum and maximum temporal separation is
specified and captured as an ASPEN constraint to ensure an
even sampling. Environmental monitoring, such as measur-
ing dust levels in the atmosphere, is often specified in this
way. In this case, the satisfaction level will be a function
of not only the number of activities, but how well they are
spaced.

The last, called a State-based Campaign, is the type of
campaign implemented to support sampling based on rover
state. In planning systems, state predictions are often plot-
ted on a timeline. This prediction can then be used to deter-
mine where to schedule activities that were requested by the
State-based Campaign. For example, as we include drives in
the plan, we can predict the total distance traveled along a
timeline. If a request was made to sample every 100 me-
ters, these sampling activities can be placed on the time-
line where the drive distance changes by 100m. A range
of acceptable spacings can be provided using minimum and
maximum parameters in the State-based Campaign defini-
tion. This, for example, would allow a campaign to request
samples between 90m and 110m apart. Note that the drive,
which may have been added to support a different campaign,
may need to be interrupted to perform the sampling. Again,
campaigns will compete for time and resources, and the sat-
isfaction level of each campaign can be used to make plan-
ning decisions for requested activities. As with the Temporal
Campaign, the State-based Campaign satisfaction level will
partly depend on activity spacing. In this case, however, the
spacing is driven by the change in a particular attribute of
the rover state. Requested activities can be moved along
planned state changes, or other activities can be used to ex-
plicitly change the planned state. For example, a drive could
be added solely to increase spatial sampling, if no specific
target location is provided.

All three types of Plan Campaigns have been imple-
mented as extended features in the ASPEN planning and
scheduling system. Problem-specific campaigns definitions
are specified along with activity definitions in the ASPEN
Modeling Language (AML). Once a set of campaigns have
been provided, ASPEN scheduling functions can be used to
generate campaign activities, repair campaign constraint vi-
olations, or optimize campaign satisfaction.

Using Campaign Intent

In this section, we discuss how captured campaign intent can
be used for activity planning, as well as autonomous goal
generation.

Activity Planning
One of the primary reasons for capturing and expressing
campaign intent is to provide guidance for on-board plan
generation and repair. During plan generation, the objective
is to create and schedule activities that best satisfy all cam-
paigns according to their preferences and relative priorities.
During plan repair, the objective is to change the plan to bet-
ter serve the campaigns in light of new state information.
While plan generation may be done at regular times of rel-
atively low activity (e.g. during the night), plan repair will
most likely be triggered during execution when a new plan
is needed quickly to keep the rover busy. We describe the
algorithms implemented for generating and repairing plans
based on a set of input campaigns that have been expressed
in the manner discussed in the previous section.

Our approach to plan generation is based on branch-and-
bound search. Here, various options (i.e. branches) are cre-
ated from a partially generated plan, starting with the empty
plan. As they are generated, the various options are evalu-
ated and pruned based on a threshold (i.e. bound) on plan
quality. Specifically, we compute the best possible quality
of any plan that could be built from a new partial plan, and
compare this to the worst possible quality of partial plans
that have already been considered. If the new option can do
no better, then that option, and all possibilities that extend
from it, are pruned. The quality metric used for pruning is
also used to periodically sort the options under considera-
tion. After sorting, the partial plans that have the highest
potential quality are expanded first. This is often referred
to as “best-first” search. Quality of a partial plan is based
on the level of satisfaction for the prioritized set of cam-
paigns. Finally, after being selected, a partial plan is ex-
panded forward in time. For periodic campaigns (Tempo-
ral and State-based), this means that the earliest activity is
added first, while the next expansion will schedule the next
activity based on the campaign separation constraint. For
non-periodic campaigns (Goal Set), the partial plan is ex-
panded multiple times, one for each goal scheduled to occur
after the periodic activities scheduled so far. In the end, the
search will evaluate all possible combinations of including
or excluding campaign activities, as well as all possible or-
derings of those included.

While this can be time-intensive, it is guaranteed to find
the optimal plan as defined by the campaign preferences and
priorities. Further, a time limit can be placed on the search,
to ensure that a plan is returned in a timely manner. Al-
though this may not be a globally optimal plan, it will enable
the rover to continue to be productive, and can be adjusted
by more time-efficient repair strategies.

For plan repair, we use a greedy, local search algorithm
to make fast improvements to the plan (Rabideau, Engel-
hardt, and Chien 2000). This algorithm can be run itera-
tively as the plan executes and new state information is re-
ceived. On each iteration, the campaigns and their prefer-
ences are evaluated. From this, one preference is greedily
selected based on its prioritized contribution to plan qual-
ity. An example might be a pair of activities occurring hours
apart that are contributing to a high-priority campaign that
is requesting periodic activities with a one hour separation.

14



Drive Survey
 Objective

Environmental Tau
Objecitve

Drive
Objective

H
ea

tin
g

Figure 8: Example generated plan illustrating a long-range drive objective that was split up to support two different types of
campaign objectives.

Once a poor-performing preferences is selected, an attempt
is made to modify the plan to better satisfy the preference.
For the periodic example, this would simply mean moving
one of the activities closer to the other. As another example,
consider a state-based campaign that is requesting observa-
tions every 100 meters as the rover drives. If a drive takes
longer than expected, future observations can be postponed
to better match the 100m separation preference. While local
improvements to quality issues may be sub-optimal, the re-
sponse time can be much shorter, making this method more
suitable during execution.

Figure 8 shows an example plan generated by our system.
The planning model is derived from the activity model used
for MSL rover operations and includes important aspects of
the mission such as science activities, communication win-
dows and device heating. The example illustrates how the
plan generator uses provided campaign relationships to co-
ordinate rover activity.

For this example, the rover was given a long range drive
objective along with two different campaign relationships:
acquire environmental tau (atmospheric opacity measure-
ment) observations every 3 hours (Temporal Campaign) and
perform a mid-drive survey activity every 75 meters (State-
Based Campaign). The resulting plan shows the drive objec-
tive being paused at different points to support interleaving
these campaign activities.

Autonomous Goal Generation

In addition to plan generation and repair, the other use of
campaign objectives in our system is to identify new goals
for the system based on scientist guidance. This is appli-
cable in cases where the operations team does not have up
to date information of the area around the rover but want
the rover to continue performing productivity activities. As
discussed in the Background section, this situation can arise
during restricted sol phases of the mission.

A high-level campaign goal can be used to generate more
specific goals using onboard software. For example, sup-
pose scientists are interested in remote-sensing, composi-
tional measurements of a rock formation seen previously and
known to exist in a region the rover is approaching. Using
the TextureCam software (Thompson et al. 2012), scientists
can train a model to detect the rock formation using labeled
examples of the formation in previous navigation camera
images (Figure 9, left). Then, upon driving into the new
region, the rover can run TextureCam onboard to compute
a probability map of the regions most likely to contain that
rock formation (Figure 9, center). The probability map can
be used to select the best locations for measurement, as well
as the likelihood that each measurement satisfies the scien-
tific intent of measuring the rock formation (Figure 9, right).
Each measurement becomes a new goal, and the planner can
use the probability information to reason about the tradeoffs
between acting upon the various generated goals.
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Figure 9: An example showing how scientists can use TextureCam to express intent to autonomously generate new goals on
board. The left image shows hand-labeled regions of a geological formation of interest. The center image shows the estimated
probabilities that regions in a new image are of the same formation, given a model trained from labels. The right image shows
the top five software-selected locations for diverse observations of the rock formation, each corresponding to a new goal for the
planning system.

Related Work
Shalin, Wales, & Bass, (2005) conducted a study of Mars
Exploration Rovers operations to design a framework for ex-
pressing the intent for observations requested by the science
teams. Their focus was the use of intent to coordinate plan-
ning among human operators and the resulting intent was not
captured in a manner that would be conducive for machine
interpretation. Our approach codifies some of the fields in
their framework in a way suitable for the rover. In partic-
ular, the authors defined a “Related Observations” field as
a way for scientists to identify relationships among differ-
ent observations, which need not be in the same plan. Our
work on campaign intent can be seen as a way of defining a
specific semantics to these types of relationships to facilitate
reasoning about these relationships by the rover.

Their framework also includes information that we agree
is essential for effective communication among operators
but that we do not currently express to the rover. For ex-
ample, the “Scientific Hypotheses” field is used to indicate
what high-level campaign objective is being accomplished
by the requested observation. We are not yet providing these
higher-level campaign objectives to the rover, though it is an
interesting area of future research.

Mali (2016) views intent as a means for a user to place
constraints on the types of plans a planner is allowed to pro-
duce such as only generating plans that have at most one
instance of a class of actions or that plans must limit the use
of a particular action. The primary role of our use of intent is
to allow the planner to assess the value of achieving a given
set of goals. However, some of our campaign intent does im-
ply constraints and preferences on how, or more specifically,
when goals are accomplished. For example, the periodic
campaign intent specifies a timing relationship among goals
and a preference on how close to comply with the desired
timing.

There are some similarities between our campaign defi-
nitions and those used for Rosetta science planning (Chien

et al. 2015). Both use campaigns to express requests for
variable-sized groups of observations with relationships and
priorities. Rosetta plans covered much longer time periods
(e.g. weeks) and required more complex temporal patterns,
such as repeating groups of observations. But observation
patterns were primarily driven by the predictable trajectory
of the spacecraft, allowing relationships to be expressed as
temporal constraints. This is not sufficient for rovers, where
many observations are dictated by the rover location and sur-
rounding terrain, and the duration of many activities cannot
be accurately predicted. State-based and goal set relation-
ships more accurately represent some of the science intent
found on surface missions.

There have been a variety of autonomous science systems
deployed or proposed for rovers include AEGIS system run-
ning on the Opportunity and Curiosity rovers (Francis1 et al.
2016), and the SARA component proposed for an ExoMars
rover (Woods et al. 2009). These systems allow the rover
to identify targets in its surroundings that match scientist-
provided criteria. The introduction of campaign relation-
ships broadens the scope of the type of guidance that sci-
entists can provide these systems, allowing scientists to ex-
press the amount of observations they would like for their
different objectives along with the relative priorities of the
high-level objectives.

The ProViScout project has similar objectives to our
work (Paar et al. 2012). ProViScout is an integrated system
to conduct planetary scouting and exploration. It includes
autonomous science capabilities to enable onboard identifi-
cation of science targets. Similar to our approach, the sys-
tem selects follow-up observations for identified targets and
submits these requests to an onboard planner to determine
if there are sufficient resources to accomplish these new ob-
jectives. The campaign intent concepts we have developed
would also be applicable to ProViScout as a way to increase
the expressivity for providing scientist intent to the rover.

There is an active area of research in intent recogni-
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tion (Sukthankar et al. 2014). The general goal of this area
is to identify the objectives of other agents (human or other-
wise) from observations of the agents’ actions. In contrast,
in our work, it is acceptable for users to explicitly identify
their intent, rather than require the system to attempt to in-
fer intent. Indeed, there is interest in the operations team
to clearly document their intent for the purpose of commu-
nication among teams and as a record of what activity was
planned for the rover and why. As such, rather than try to in-
fer user intent, our objective is to increase the expressivity of
the rover’s interface in order to more closely reflect mission
intent.

Conclusions
We have discussed a formalism for encoding aspects of sci-
ence campaign intent in a manner suitable for reasoning by
a rover. Campaign intent specifies relations among goals.
These relations provide guidance to the rover to enable it to
select a high-value subset of goals to accomplish among a
set of goals that oversubscribe available resources. Further,
they provide guidance to the rover when it identifies its own
goals to work on.

We have begun implementing this campaign intent frame-
work within the ASPEN system and integrating it with a re-
search rover at JPL. Over the next years we will be conduct-
ing mission-relevant, multi-sol scenarios with the rover at
the JPL Mars Yard to evaluate its ability to support produc-
tive operations with limited ground-in-the-loop interactions.
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Abstract

Many robotic planning applications involve continu-
ous actions with highly non-linear constraints, which
cannot be modeled using modern planners that con-
struct a propositional representation. We introduce
STRIPStream: an extension of the STRIPS language
which can model these domains by supporting the spec-
ification of blackbox generators to handle complex con-
straints. The outputs of these generators interact with
actions through possibly infinite streams of objects and
static predicates. We provide two algorithms which both
reduce STRIPStream problems to a sequence of finite-
domain planning problems. The representation and al-
gorithms are entirely domain independent. We demon-
strate our framework on simple illustrative domains,
and then on a high-dimensional, continuous robotic task
and motion planning domain.

Introduction
Many important planning domains naturally occur in contin-
uous spaces involving complex constraints among variables.
Consider planning for a robot tasked with organizing several
blocks in a room. The robot must find a sequence of pick,
place, and move actions involving continuous robot config-
urations, robot trajectories, block poses, and block grasps.
These variables must satisfy highly non-linear kinematic,
collision, and motion constraints which affect the feasibil-
ity of the actions. Each constraint typically requires a spe-
cial purpose procedure to efficiently evaluate it or produce
satisfying values for it such as an inverse kinematic solver,
collision checker, or motion planner.

We propose an approach, called STRIPStream, which can
model such a domain by providing a generic interface for
blackbox procedures to be incorporated in an action lan-
guage. The implementation of the procedures is abstracted
away using streams: finite or infinite sequences of objects
such as poses, configurations, and trajectories. We introduce
the following two additional stream capabilities to effec-
tively model domains with complex predicates that are only
true for small sets of their argument values:

• conditional streams: a stream of objects may be defined
as a function of other objects; for example, a stream of
possible positions of one object given the position of an-
other object that it must be on top of or a stream of pos-

sible settings of parameters of a factory machine given
desired properties of its output.

• certified streams: streams of objects may be declared not
only to be of a specific type, but also to satisfy an arbitrary
conjunction of predicates; for example, one might define
a certified conditional stream that generates positions for
an object that satisfy requirements that the object be on
a surface, that a robot be able to reach the object at that
position, and that the robot be able to see the object while
reaching.

Figure 1: Problem 2-16.

Through streams, STRIPStream can compactly model a
large class of continuous, countably infinite, and large fi-
nite domains. By conditioning on partial argument values
and using sampling, it can even effectively model domains
where the set of valid action argument values is lower di-
mensional than the possible argument space. For example,
in our robotics domain, the set of inverse kinematics solu-
tions for a particular pose and grasp is much lower dimen-
sional than the full set of robot configurations. However, us-
ing a conditional stream, we can specify an inverse kinemat-
ics solver which directly samples from this set given a pose
and grasp.

The approach is entirely domain-independent, and re-
duces to STRIPS in the case of finite domains. The only ad-
ditional requirement is the specification of a set of streams
that can generate objects satisfying the static predicates in
the domain. It is accompanied by two algorithms, a simple
and a focused version, which operate by constructing and
solving a sequence of STRIPS planning problems. This strat-
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egy takes advantage of the highly optimized search strate-
gies and heuristics that exist for STRIPS planning, while ex-
panding the domain of applicability of those techniques. Ad-
ditionally, the focused version can efficiently solve problems
where using streams is computationally expensive by care-
fully choosing to only call potentially useful streams.

Related work
There are a number of existing general-purpose approaches
to solving planning problems in infinite domains, each of
which has some significant limitation when modeling our
robot domain.

Temporal planning, such as defined in PDDL2.1 (Fox and
Long 2003), is often formulated in terms of linear con-
straints on plan variables and is typically solved using tech-
niques based on linear programming (Hoffmann and others
2003; Coles et al. 2013). PDDL+ (Fox and Long 2006) ex-
tends PDDL2.1 by introducing exogenous events and contin-
uous processes. Although PDDL+ supports continuous vari-
ables, the values of continuous variables are functions of the
sequence of discrete actions performed at particular times.
Thus, time is the only truly non-dependent continuous vari-
able. In contrast, our motivating robot domain has no no-
tion of time but instead a continuously infinite branching
factor. Many planners solve PDDL+ problems with non-
linear process models by discretizing time (Della Penna
et al. 2009; Piotrowski et al. 2016). Some recent planners
can solve PDDL+ problems with polynomial process mod-
els exactly without time discretization (Bryce et al. 2015;
Cashmore et al. 2016). However, even in simplified robotics
domains that PDDL+ can model, modern PDDL+ planners
are ineffective at planning with collision and kinematic con-
straints (both highly non-polynomial constraints), particu-
larly in high-dimensional systems.

General-purpose lifted and first-order approaches, such as
those based on first-order situation calculus or Prolog, pro-
vide semi-decision procedures for a large class of lifted plan-
ning problems. However, the generality tends to come at a
huge price in efficiency and these planning strategies are
rarely practical.

The Answer Set Programming (ASP) literature contains
analysis on reasoning in infinite domains through finitary,
ω-restricted, finitely ground, and finite domain ASPs (Bon-
atti et al. 2010). The DLV-Complex system (Calimeri et al.
2009) is able to solve feasible finitely ground programs by
extending the DataLog with Disjunction (DLV) system to
support functions, lists, and set terms. We believe that the
language of ASP allows specification of conditional and cer-
tified streams. However, the ground ASP solver still has to
address a much more general and difficult problem and will
not have the appropriate heuristic strategies that make cur-
rent domain-independent STRIPS planners so effective.

Semantic attachments (Dornhege et al. 2009), predicates
computed by an external program, also provide a way of in-
tegrating blackbox procedures and PDDL planners. Because
semantic attachments take a state as input, they can only be
used in forward state-space search. Furthermore, semantic
attachments are ignored in heuristics. This results in poor
planner performance, particularly when the attachments are

expensive to evaluate such as in robotics domains. Finally,
because semantic attachments are restricted to be functions,
they are unable to model domains with infinitely many pos-
sible successor states.

Many approaches to robotics planning problems, includ-
ing motion planning and task-and-motion planning, have de-
veloped strategies for handling continuous spaces that go be-
yond a priori discretization. Several approaches, for exam-
ple (Kaelbling and Lozano-Pérez 2011; Erdem et al. 2011;
Srivastava et al. 2014; Garrett et al. 2015; Dantam et al.
2016; Garrett et al. 2016), have been suggested for inte-
grating these sampling-based robot motion planning meth-
ods with symbolic planning methods. Of these approaches,
those able to plan in realistic robot domains have typically
been quite special purpose; the more general purpose ap-
proaches have typically been less capable.

Representation
In this section we describe the representational components
of a planning domain and problem, which include static and
fluent predicates, operators, and streams. Objects serve as
arguments to predicates and as parameters to operators; they
are generated by streams.

A static predicate is a predicate which, for any tuple of
objects, has a constant truth value throughout a problem in-
stance. Static predicates generally serve to represent con-
straints on the parameters of an operator. We restrict static
predicates to only ever be mentioned positively because, in
the general infinite case, it is not possible to verify that a
predicate does not hold.

An operator schema is specified by a tuple of formal
parameters (X1, . . . , Xn) and conjunctions of static posi-
tive preconditions stat, fluent literal preconditions pre, and
fluent literal effects eff and has the same semantics as in
STRIPS. An operator instance is a ground instantiation of an
operator schema with objects substituted in for the formal
parameters. When necessary, we augment the set of opera-
tor schemas with a set of axioms that naively use the same
schema form as operators. We assume the set of axioms can
be compiled into a set of derived predicates as used in PDDL.

A generator g = 〈ō1, ō2, ...〉 is a finite or infinite sequence
of object tuples ō = (o1, ..., on). The procedure NEXT(g) re-
turns the next element in generator g and returns the special
object None to indicate that the stream has been exhausted
and contains no more objects. A conditional generator f(x̄)
is a function from x̄ = x1, ..., xn to a generator gx̄ which
generates tuples from a domain not necessarily the same as
the domain of x̄.

An stream schema, σ(Ȳ | X̄), is specified by a tuple of in-
put parameters X̄ = (X1, ..., Xm), a tuple of output param-
eters Ȳ = (Y1, ..., Yn), a conditional generator gen = f(X̄)
defined on X̄ , a conjunction of input static atoms inp defined
on X̄ , and a conjunction of output static atoms out defined
on X̄ and Ȳ . The conditional generator f is a function, im-
plemented in the host programming language, that returns a
generator such that, for all x̄ satisfying the conditions inp,
∀ȳ ∈ f(x̄), (x̄, ȳ) satisfy the conditions out. A stream in-
stance is a ground instantiation of a stream schema with ob-
jects substituted in for input parameters (X1, . . . , Xn); it is
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conditioned on those object values and, if the inp conditions
are satisfied, then it will generate a stream of tuples of ob-
jects each of which satisfies the certification conditions out.

The notion of a conditional stream is quite general; there
are two specific cases that are worth understanding in detail.
An unconditional stream σ(Ȳ | ()) is a stream with no in-
puts whose associated function f returns a single generator,
which might be used to generate objects of a given type, for
example, independent of whatever other objects are speci-
fied in a domain. A test stream σ(() | X̄) is a degenerate,
but still useful, type of stream with no outputs. In this case,
f(X1, ..., Xm) contains either the single element (), indi-
cating that the inp conditions hold of X̄ , or contains no el-
ements at all, indicating that the inp conditions do not hold
of X̄ . It can be interpreted as an implicit Boolean test.

A planning domain D = (Ps,Pf , C0,A,X ,Σ) is spec-
ified by finite sets of static predicates Ps, fluent predicates
Pf , initial constant objects C0, operator schemas A, axiom
schemas X , and stream schemas Σ. Note that the initial ob-
jects (as well as objects generated by the streams) may in
general not be simple symbols, but can be numeric values
or even structures such as matrices or objects in an underly-
ing programming language. They must provide a unique ID,
such as a hash value, for use in the STRIPS planning phase.

A STRIPStream problem Π = (D, O0, s0, s∗) is specified
by a planning domain D, a finite set of initial objects O0, an
initial state composed of a finite set of static or fluent atoms
s0, and a goal set defined to be the set of states satisfying
fluent literals s∗. We make a version of the closed world as-
sumption on the initial state s0, assuming that all true fluents
are contained in it. This initial state will not be complete: in
general, it will be impossible to assert all true static atoms
when the universe is infinite.

Let OΠ and SΠ be the universe of all objects and the set
of true initial atoms that can be generated from a finite set Σ
of stream schemas, a finite set C0∪O0 of initial objects, and
initial state s0. We give all proofs in the the appendix.

Theorem 1. OΠ and SΠ are recursively enumerable (RE).

A solution to a STRIPStream problem Π is a finite se-
quence of operator instances π∗ with object parameters con-
tained within OΠ that is applicable from SΠ and results in a
state that satisfies s∗. STRIPStream is undecidable but semi-
decidable, so we restrict our attention to feasible instances.

Theorem 2. The existence of a solution for a STRIPStream
problem Π is undecidable.

Theorem 3. The existence of a solution for a STRIPStream
problem Π is semi-decidable.

Planning algorithms
We present two algorithms for solving STRIPStream prob-
lems: the incremental planner takes advantage of certified
conditional streams in the problem specification to gener-
ate the necessary objects for solving the problem; the fo-
cused planner adds the ability to focus the object-generation
process based on the requirements of the plan being con-
structed. Both algorithms are sound and complete: if a solu-
tion exists they will find it in finite time.

Both planners operate iteratively, alternating between
adding elements and atoms to a current set of objects and
initial atoms and constructing and solving STRIPS planning
problem instances. A STRIPS problem (P,A, O, sinit , s∗) is
specified by a set of predicates, a set of operator schemas, a
set of constant symbols, an initial set of atoms, and a set of
goal literals. Let S-PLAN(P,A, O, sinit , s∗) be any sound
and complete planner for the STRIPS subset of PDDL. We
implement S-PLAN using FastDownward (Helmert 2006).

Incremental planner
The incremental planner maintains a queue of stream in-
stances Q and incrementally constructs set O of objects and
set S of fluents and static atoms that are true in the initial
state. The done set D contains all streams that have been
constructed and exhausted. In each iteration of the main
loop, a STRIPS planning instance is constructed from the
current sets O and S, with the same predicates, operator
and axiom schemas, and goal. If a plan is obtained, it is re-
turned. If not, then K ≥ 1 attempts to add new objects are
made where K is a meta-parameter. In each one, a stream
σ(Ȳ | x̄) is popped from Q and a new tuple of objects ȳ is
extracted from it. If the stream is exhausted, it is stored in
D. Otherwise, the objects in ȳ are added to O, the output
fluents from σ applied to (x̄, ȳ) are added to S , and a new
set of streams Σn is constructed. For all stream schemas σ
and possible tuples of the appropriate size x̄′, if the input
conditions σ′.inp(x̄′) are in S, then the instantiated stream
σ′(Ȳ ′ | x̄′) is added toQ if it has not been added previously.
We also return the stream σ(Ȳ | x̄) to Q so we may revisit
it in the future. The pseudo-code is shown below.

INCREMENTAL(((Ps,Pf , C0,A,X ,Σ), O0, s0, s∗), S-PLAN,K) :

O = C0 ∪O0; S = s0; D = ∅
Q = QUEUE({σ(Ȳ | x̄) | σ(Ȳ | X̄) ∈ Σ,

x̄ ∈ O|X̄|, σ.inp(x̄) ⊆ S})
while True:

π∗ = S-PLAN(Ps ∪ Pf ,A ∪ X ,O,S, s∗)
if π∗ 6= None:

return π∗
if EMPTY(Q):

return None
for k ∈ {1, ...,MIN(K, LEN(Q))}:

σ(Ȳ | x̄) = POP(Q)
ȳ = NEXT(σ.f(x̄))
if ȳ = None:

D = D ∪ {σ(Ȳ | x̄)}
continue

O = O ∪ ȳ; S = S ∪ σ.out((x̄, ȳ))
for σ′(Ȳ ′ | X̄ ′) ∈ Σ:

for x̄′ ∈ O|X̄′|:
if σ′.inp(x̄′) ⊆ S, σ′(Ȳ ′ | x̄′) /∈ (Q ∪D):

PUSH(Q, σ′(Ȳ ′ | x̄′))
PUSH(Q, σ(Ȳ | x̄))

In practice, many S-PLAN calls report infeasibility imme-
diately because they have infinite admissible heuristic val-
ues. We prove the incremental algorithm is complete in the
appendix.

Theorem 4. The incremental algorithm is complete.

21



Focused planner
The focused planner is particularly aimed at domains for
which it is expensive to draw an object from a stream; this
occurs when the stream elements are certified to satisfy ge-
ometric properties such as being collision-free or having ap-
propriate inverse kinematics relationships, for example. To
focus the generation of objects on the most relevant parts of
the space, we allow the planner to use “dummy” abstract ob-
jects as long as it plans to generate concrete values for them.
These concrete values will be generated in the next iteration
and will, hopefully, contribute to finding a solution with all
ground objects.

As before, we transform the STRIPStream problem into a
sequence of PDDL problems, but this time we augment the
planning domain with abstract objects, two new fluents, and
a new set of operator schemas. Let {γ1, ..., γθ} be a set of
abstract objects which are not assumed to satisfy any static
predicates in the initial state. We introduce the fluent predi-
cate Concrete, which is initially false for any object γi but
true for all actual ground objects; so for all o ∈ O, we add
Concrete(o) to sinit. The planner can “cause” an abstract
object γi to satisfy Concrete(γi) by generating it using a
special stream operator, as described below. We define pro-
cedure TFORM-OPS that transforms each operator scheme
a(x1, ..., xn) ∈ A by adding preconditions Concrete(xi)
for i = 1, ..., n to ensure that the parameters for a are
grounded before its application during the search.

To manage the balance in which streams are called,
for each stream schema σ, we introduce a new predicate
Blockedσ; when applied to arguments (X1, . . . , Xn), it
will temporarily prevent the use of stream σ(Y1, ...Ym |
X1, ..., Xn). Additionally, we add any new objects and static
atoms first to setsOt and St temporarily before adding them
to O and S to ensure any necessary existing streams are
called. Alternatively, we can immediately add directly to O
and S a finite number of times before first adding to Ot
and St and still preserve completeness. Let the procedure
TFORM-STREAMS convert each stream schema into an op-
erator schema σ of the following form.

STREAMOPERATORσ(X1, ..., Xm, Y1, ..., Yn):
pre = σ.inp ∪ {Concrete(Xi) | i = 1, ...,m} ∪

{¬Blockedσ(X1, ..., Xm)}
eff = σ.out ∪ {Concrete(Yi) | i = 1, ..., n}

It allows S-PLAN to explicitly plan to generate a tuple of con-
crete objects from stream σ(Y1, ...Ym | x1, ..., xn) as long
as the xi have been made concrete and the stream instance
is not blocked.

The procedure FOCUSED, shown below, implements the
focused approach to planning. It takes the same inputs as the
incremental version, but with the maximum number of ab-
stract objects θ ≥ 1 specified as a meta-parameter, rather
than K. It also maintains a set O of concrete objects and
a set S of fluent and static atoms true in the initial state.
In each iteration of the main loop, a STRIPS planning in-
stance is constructed: the initial state is augmented with the
set of static atoms indicating which streams are blocked and
fluents asserting that the objects in O are concrete; the set
of operator schemas is transformed as described above and

augmented with the stream operator schemas, and the set of
objects is augmented with the abstract objects. If a plan is
obtained and it contains only operator instances, then it will
have only concrete objects, and it can be returned directly.
If the plan contains abstract objects, it also contains stream
operators, and ADD-OBJECTS is called to generate an appro-
priate set of new objects. If no plan is obtained, and if no
streams are currently blocked as well as no new objects or
initial atoms have been produced since the last reset, then the
problem is proved to be infeasible. Otherwise, the problem
is reset by unblocking all streams and adding Ot and St to
O and S, in order to allow a new plan with abstract objects
to be generated.

FOCUSED(((Ps,Pf , C0,A,X ,Σ), O0, s0, s∗), S-PLAN, θ) :

O = C0 ∪O0; S = s0; Ot = St = βt = βp = ∅
Ā = TFORM-OPS(A); Σ̄ = TFORM-STREAMS(Σ)
while True:

π = S-PLAN(Ps ∪ Pf , Ā ∪ X ∪ Σ̄,O ∪ {γ1, ..., γθ},
S ∪ βt ∪ βp ∪ {Concrete(o ∈ O)}, s∗)

if π 6= None:
if ∀a ∈ π, SCHEMA(a) ∈ Ā:

return π
ADD-OBJECTS(π,Ot,St, βt, βp, Σ̄)

else
if Ot = St = βt = ∅:

return None // Infeasible
O = O ∪Ot;S = S ∪ St
Ot = St = βt = ∅ // Enable all objects & streams

Given a plan π that contains abstract objects, we pro-
cess it from beginning to end, to generate a collection of
new objects with appropriate conditional relationships. Pro-
cedure ADD-OBJECTS initializes an empty binding environ-
ment and then loops through the instances a of stream op-
erators in π. For each stream operator instance, we substi-
tute concrete objects in for abstract objects, in the input
parameters, dictated by the bindings bd , and then draw a
new tuple of objects from that conditional stream. If there
is no such tuple of objects, the stream is exhausted and it is
permanently removed from future consideration by adding
the fluent Blockedσ(ōx) to the set βp. Otherwise, the new
objects are added to Ot and appropriate new static atoms
to St. This stream is temporarily blocked by adding fluent
Blockedσ(ōx) to the set βt, and the bindings for abstract ob-
jects are recorded.

ADD-OBJECTS(π,Ot,St, βt, βp, Σ̄) :

bd = { } // Empty dictionary
for σ(ȳ | x̄) ∈ {a | a ∈ π and SCHEMA(a) ∈ Σ̄}:

ōx = APPLY-BINDINGS(bd , x̄)
if ōx 6= None:

ōy = NEXT(σ.f(ōx))
if ōy 6= None:
Ot = Ot ∪ ōy;St = St ∪ σ.out((ōx, ōy))
βt = βt ∪ {Blockedσ(ōx)} // Temporary
for i ∈ {1, ..., |ȳ|}:

bd [yi] = oy,i
else

βp = βp ∪ {Blockedσ(ōx)} // Permanent
return Ot,St, βt, βp

The focused algorithm is similar to the lazy shortest path

22



algorithm for motion planning in that it determines which
streams to call, or analogously which edges to evaluate, by
repeatedly solving optimistic problems (Bohlin and Kavraki
2000; Dellin and Srinivasa 2016). Stream operators can be
given meta-costs that reflect the time overhead to draw el-
ements from the stream and the likelihood the stream pro-
duces the desired values. For example, stream operators that
use already concrete outputs can be given large meta-costs
because they will only certify a desired predicate in the
typically unlikely event that their generator returns objects
matching the desired outputs. A cost-sensitive planner will
avoid returning plans that require drawing elements from ex-
pensive or unnecessary streams. We can combine the behav-
iors of incremental and focused algorithms to eagerly call
inexpensive streams and lazily call expensive streams. This
can be seen as automatically applying some stream operators
before calling S-PLAN.

Theorem 5. The focused algorithm is complete.

Example discrete domain

Although the specification language is domain indepen-
dent, our primary motivating examples for the application
of STRIPStream are pick-and-place problems in infinite do-
mains. We start by specifying an infinite discrete pick-and-
place domain as shown in figure 2. We purposefully de-
scribe the domain in a way that will generalize well to
continuous and high-dimensional versions of fundamentally
the same problem. The objects in this domain include a fi-
nite set of blocks (that can be picked up and placed), an
infinite set of poses (locations in the world) indexed by
the positive integers, and an infinite set of robot configu-
rations (settings of the robot’s physical degrees of freedom)
also indexed by the positive integers. In this appendix, we
give a complete Python implementation of this domain in
STRIPStream The static predicates in this domain include
simple static types (IsConf , IsPose , IsBlock ) and typical
fluents (HandEmpty , Holding , AtPose, AtConfig). In ad-
dition, atoms of the form IsKin(P,Q) describe a static re-
lationship between an object pose P and a robot configura-
tion Q: in this simple domain, the atom is true if and only if
P = Q. Finally, fluents of the form Safe(b′, B, P ) are true
in the circumstance that: if objectB were placed at pose P , it
would not collide with object b′ at its current pose. Because
the set of blocks B is known statically in advance, we ex-
plicitly include all the Safe conditions. These predicate def-
initions enable the following operator schemas definitions:

MOVE(Q1, Q2):
stat = {IsConf (Q1), IsConf (Q2)}
pre = {AtConf (Q1)}
eff = {AtConf (Q2),¬AtConf (Q1)}

PICK(B,P,Q):
stat = {IsBlock(B), IsPose(P ), IsConf (Q), IsKin(P ,Q)}
pre = {AtPose(B,P ),HandEmpty(),AtConfig(Q)}
eff = {Holding(B),¬AtPose(B,P ),¬HandEmpty()}

PLACE(B,P,Q):
stat = {IsBlock(B), IsPose(P ), IsConf (Q), IsKin(P ,Q)}
pre = {Holding(B),AtConfig(Q)} ∪ {Safe(b′ ∈ B, B, P )}
eff = {AtPose(B,P ),HandEmpty(),¬Holding(B)}

We use the following axioms to evaluate the Safe predi-
cate. We need two slightly different definitions to handle the
cases where the block B1 is placed at a pose, and where it
is in the robot’s hand. The Safe axioms mention each block
independently which allows us to compactly perform colli-
sion checking. Without using axioms, PLACE would require
a parameter for the pose of each block in B, resulting in an
prohibitively large grounded problem.

SAFEAXIOM(B1, P1, B2, P2):
stat = {IsBlock(B1), IsPose(P1), IsBlock(B2),

IsPose(P2), IsCollisionFree(B1, P1, B2, P2)}
pre = {AtPose(B1, P1)}
eff ={Safe(B1, B2, P2)}

SAFEAXIOMH(B1, B2, P2):
stat = {IsBlock(B1), IsBlock(B2), IsPose(P2)}
pre = {Holding(B1)}
eff ={Safe(B1, B2, P2)}

Discrete stream specification Next, we provide stream
definitions. The simplest stream is an unconditional genera-
tor of poses, which are represented as objects POSE(i) and
satisfy the static predicate IsPose .

POSE-U(P | ()):
gen = lambda() : 〈(POSE(i)) for i = 0, 1, 2...〉
inp = ∅
out = {IsPose(P )}

The conditional stream CFREE-T is a test, calling the un-
derlying function COLLIDE(B1, P1, B2, P2); the stream is
empty if block B1 at pose P1 collides with block B2 at pose
P2, and contains the single element ( ) if it does not collide.
It is used to certify that the tuple (B1, P1, B2, P2) statically
satisfies the IsCollisionFree predicate.

CFREE-T(() | B1, P1, B2, P2):
gen = lambda(B1, P1, B2, P2) :

〈() if not COLLIDE(B1, P1, B2, P2)〉
inp = {IsBlock(B1), IsPose(P1), IsBlock(B2), IsPose(P2)}
out = {IsCollisionFree(B1, P1, B2, P2)}

When we have a static relation on more than one variable,
such as IsKin , we have to make modeling choices when
defining streams that certify it.

We will consider three formulations of streams that cer-
tify IsKin and compare them in terms of their effective-
ness in a simple countable pick-and-place problem requir-
ing the robot gripper to pick block A at a distant initial pose
p0 >> 1, shown in figure 2.

KIN-U specifies an unconditional stream on block poses
and robot configurations; it has no difficulty certifying the
IsKin relation between the two output variables, but it has
no good way of producing configurations that are appropri-
ate for poses that are mentioned in the initial state or goal.
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KIN-U(P,Q | ()):
gen = lambda() : 〈(POSE(i),CONF(i)) for i = 1, 2, ...〉
inp = ∅
out = {IsPose(P ), IsConf (Q), IsKin(P,Q)}

KIN-T specifies a test stream that can be used, together
with the POSE-U stream and an analogous stream for
generic configurations to produce certified kinematic pairs
P,Q. This is an encoding of a “generate-and-test” strategy,
which may be highly inefficient, relying on luck that the
pose generator and the configuration generator will indepen-
dently produce values that have the appropriate relationship.

KIN-T(() | P,Q):
gen = lambda(P,Q) : 〈() if Q = INVERSE-KIN(P )〉
inp = {IsPose(P ), IsConf (Q)}
out = {IsKin(P,Q)}

Finally, KIN-C specifies a conditional stream, which
takes a pose P as input and generates a stream of configura-
tions (in this very simple case, containing a single element)
certified to satisfy the IsKin relation. It relies on an under-
lying function INVERSE-KIN(p) to produce an appropriate
robot configuration given a block pose.

KIN-C(Q | P ):
gen = lambda(P ) : 〈(INVERSE-KIN(P ))〉
inp = {IsPose(P )}
out = {IsConf (Q), IsIK (P,Q)}

In our example domain, both KIN-U and KIN-T require
the enumeration of poses and configurations (pi, qi) from
i = 0, 1, ..., p0 before certifying IsIK (p∗, q∗), allowing
STRIPS to make a plan include the operator PICK(A, p∗, q∗).
Moreover, KIN-T will test all pairs of configurations and
poses. In contrast, KIN-C can produce q directly from p0

without enumerating any other poses or configurations. The
conditional formulation is advantageous because it produces
a paired inverse kinematics configuration quickly and with-
out substantially expanding the size of the problem.

Table 1 validates this intuition though an experiment com-
paring these stream specifications. The initial pose of the
object p0 is chosen from 1, 100, 1000. All trials have a time-
out of 120 seconds and use the incremental algorithm with
K = 1 implemented in Python. As predicted, the KIN-U
and KIN-T streams require many more calls than KIN-C as
p0 increases and lead to substantially longer runtimes for a
very simple problem.

A
P(0)P(1)P(2)

C(2)C(1)C(0)

p0

A

p0

Figure 2: The initial state and goal state in an infinite, dis-
crete pick-and-place problem requiring picking block A.

p0 KIN-U KIN-T KIN-C
t i c t i c t i c

1 .1 3 2 .2 6 9 .1 3 2
100 29 102 101 71 303 10360 .1 3 2

1000 - 180 179 - 381 16383 .1 3 2

Table 1: The runtime (t), number of search iterations (i), and
number of generator calls (c) for the countable pick-and-
place KIN stream representation experiment.

Continuous domains

The STRIPStream approach can be applied directly in con-
tinuous domains such as the problem in figure 3. In this
case, the streams will have to generate samples from sets of
continuous dimensions, and the way that samples are gen-
erated may have a significant impact on the efficiency and
completeness of the approach with respect to the domain
problem. (Note that the STRIPStream planing algorithms are
complete with respect to the streams of enumerated values
they are given, but if these value streams are not, in some
sense, complete with respect to the underlying problem do-
main, then the resulting combined system may not be com-
plete with respect to the original problem.) Samplers that
produce a dense sequence (LaValle 2006) are good candi-
dates for stream generation.

Continuous stream specification

With some minor modifications, we can extend our discrete
pick-and-place domain to a bounded interval [0, L] of the
real line. Poses and configurations are now continuous ob-
jects p, q ∈ [0, L] from an uncountably infinite domain. The
stream POSE-U now has a generator that samples [0, L] uni-
formly at random.

While in the discrete case the choice of streams just af-
fected the size of the problem, in the continuous case, the
choice of streams can affect the feasibility of the problem. In
the continuous simple pick-and-place domain, suppose that
the blocks have width 1 and the gripper has width δ ≥ 1.
A kinematics pair (p, q) is valid if and only if the grip-
per is entirely over the block, i.e., p + 1/2 ≤ q + δ/2
and p − 1/2 ≥ q − δ/2. Consider the case where KIN-U
and KIN-C are implemented using random samplers. KIN-
U will almost certainly generate a sequence of infeasible
STRIPS problems, because the probability that the point p0

is produced from its generator is zero. For δ > 1, the config-
uration stream has nonzero probability of generating a q that
would constitute a valid kinematics pair with p as certified
by KIN-T. But this probability can be made arbitrary small
as δ → 1. Only the KIN-C strategy is robust to the choice of
δ. Table 2 shows the results of an experiment analogous to
the one in table 1, but which varies δ ∈ {1.5, 1.01} instead
of varying p0. KIN-U was unable to solve either problem
and KIN-T could not find a solution in under two minutes
for δ = 1.01. But once again, the conditional formulation
using KIN-C performs equivalently for different values of δ.
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Figure 3: Initial state for countable pick-and-place problem requiring picking and placing block A, with a single obstacle.

δ KIN-U KIN-T KIN-C
t i c t i c t i c

1.5 - 191 190 3.1 75 745 .1 2 1
1.01 - 181 180 - 297 18768 .1 2 1

Table 2: The runtime (t), number of search iterations (i), and
number of generator calls (c) for the continuous pick-and-
place KIN stream representation experiment.

Focused algorithm example
The previous examples investigated the effect of different
representational choices on the tractability and even feasi-
bility of the resulting STRIPStream problem.

The example in figure 3 illustrates the behavior of the
focused algorithm on continuous a pick-and-place problem
with the goal condition that block A is at pose p∗. Because
block A, when at p∗, collides with block B at its initial pose
p′0, solving this problem requires moving block B out of the
way to place block A. Suppose we use KIN-C to model the
problem. We will omit MOVE operators for the sake of clar-
ity, and use capital letters to denote abstract objects. On the
first iteration, the focused algorithm will produce the follow-
ing plan (possibly ordered slightly differently):

π1 =
(
KIN-C(Q1 | p0), PICK(A, p0, Q1),KIN-C(Q2 | p∗),

CFREE-T(() | B, p′0, A, p∗), PLACE(A, p∗, Q2)
)

The generation of values proceeds as fol-
lows. KIN-C(Q1 | p0) will produce Q1 ← q1.
KIN-C(Q2 | p∗) will produce Q2 ← q2. However,
CFREE-T(() | B, p′0, A, p0) will produce the empty stream
because p′0 collides with p∗. Thus, the plan π1 definitively
cannot be completed. The algorithm adds q1 and q2 to
the current PDDL problem and records the failure of
CFREE-T(() | B, p′0, A, p0). On the next iteration, the
focused algorithm will produce the following plan.

π2 =
(
KIN-C(Q1 | p′0), PICK(B, p′0, Q1), POSE-U(P1 | ()),

KIN-C(Q2 | P1),CFREE-T(() | A, p0, B, P1), PLACE(B,P1, Q2),

PICK(A, p0, q1),CFREE-T(() | B,P1, A, p∗), PLACE(A, p∗, q2)
)

The generation of values proceeds as follows.
KIN-C(Q1 | p′0) will produce Q1 ← q3. POSE-U(P1 | ())
will produce P1 ← p1. KIN-C(Q2 | p1) will produce

Q2 ← q4. Let’s assume that P1 ← p1 is randomly sampled
and turns out to not be in collision with p∗. If p1 turned
out to be in collision with p∗, the next iteration would first
fail once, then repeat this process on the next iteration to
generate a new P1. So, CFREE-T(() | A, p1, B, p0) will
produce the stream 〈()〉 indicating that p1 and p0 are not in
collision. Thus, all of the properties have been successfully
satisfied, so the following plan is a solution. It is critical to
note that, for example, had there been several other pose
constants appearing in the initial state, focused would never
have found inverse kinematic solutions for them: because
the planner guides the sampling, only stream elements that
play a direct role in a plausible plan are generated.

π∗ =
(
PICK(B, p′0, q3), PLACE(B, p1, q4), PICK(A, p0, q1),

PLACE(A, p∗, q2)
)

Realistic robot domain
Finally, we extend our continuous pick-and-place to the
high-dimensional setting of a robot operating in household-
like environments. Poses of physical blocks are 6-
dimensional and robot configurations are 11-dimensional.
We introduce two new object types: grasps and trajectories.
Each block has a set of 6D relative grasp transforms at which
it can be grasped by the robot. Trajectories are finite se-
quences of configuration waypoints which must be included
in collision checking. The extended PICK operator, CFREE-
T test and KIN-C stream templates are:

PICK(B,P,G,Q, T ):
stat = {IsBlock(B), ..., IsTraj (T ), IsKin(P ,G,Q ,T )}
pre = {AtPose(B,P ),HandEmpty(),AtConfig(Q)} ∪
{Safe(b′, B,G, T ) | b′ ∈ B}

eff = {Holding(B,G),¬AtPose(B,P ),¬HandEmpty()}

CFREE-T(() | B1, P1, B2, G, T ):
gen = lambda(B1, P1, B2, G, T ) :

〈() if not COLLIDE(B1, P1, B2, G, T )〉
inp = {IsBlock(B1), ..., IsTraj (T )}
out = {IsCollisionFree(B1, P1, B2, G, T )}

KIN-C(Q,T | P,G):

gen = lambda(P ) : 〈(Q,T ) | Q ∼ INVERSE-KIN(PG−1),
T ∼ MOTIONS(qrest, Q)〉

inp = {IsPose(P ), IsGrasp(G)}
out = {IsKin(P,G,Q, T ), IsConf (Q), IsTraj (T )}

25



Π incremental, K = 1 incremental, K = 100 focused
% t i c % t i c % t i c

1 88 2 23 268 68 5 2 751 84 11 6 129
2-0 100 23 85 1757 100 9 3 2270 100 2 3 180
2-8 0 - - - 100 55 5 17217 100 7 3 352

2-16 0 - - - 100 112 6 36580 100 19 3 506

Table 3: The success percentage (%), runtime (t), search iterations (i), and number of stream calls (c) for the high-dimensional
task and motion planning experiments.

PICK adds grasp G and trajectory T as parameters and
includes Safe(b′, B,G, T ) preconditions to verify that T
while holdingB at graspG is safe with respect to each other
block b′. Safe(b′, B,G, T ) is updated using SAFEAXIOM
which has a IsCollisionFree(B1, P1, B2, G, T ) static pre-
condition. Here, a collision check for block B1 at pose P1

is performed for each configuration in T . Instead of simple
blocks, physical objects in this domain are general unions of
convex polygons. Although checking collisions here is more
complication than in 1D, it can be treated in the same way,
as an external function.

The KIN streams must first produce a grasp configu-
ration Q that reaches manipulator transform PQ−1 using
INVERSE-KIN. Additionally, they include a motion planner
MOTIONS to generate legal trajectory values T from a con-
stant rest configuration qrest to the grasping configuration
Q that do not collide with the fixed environment. In this do-
main, the procedures for collision checking and finding kine-
matic solutions are significantly more involved and compu-
tationally expensive than in the previous domains, but their
underlying function is the same.

Experiments
We applied the incremental and focused algorithms on four
challenging pick-and-place problems to demonstrate that a
general-purpose representation and algorithms can be used
to achieve good performance in difficult problems. For both
algorithms, test streams are always evaluated as soon as they
are instantiated. We experimented on two domains shown in
figure 4, which are similar to problems introduced by (Gar-
rett et al. 2015). The first domain, in which problem 1 is
defined, has goal conditions that the green object be in the
right bin and the blue object remain at its initial pose. This
requires the robot to not only move and replace the blue
block but also to place the green object in order to find a new
grasp to insert it into the bin. The second domain, in which
problems 2-0, 2-8, and 2-16 are defined, requires moving
an object out of the way and placing the green object in
the green region. For problem 2-n where n ∈ {0, 8, 16}
there are n other blocks on a separate table that serve as
distractors. The streams were implemented using the Open-
RAVE robotics framework (Diankov and Kuffner 2008). A
Python implementation of STRIPStream can be found here:
https://github.com/caelan/stripstream.

The results compare the incremental algorithm where
K = 1 and K = 100 with the focused algorithm. Ta-
ble 3 shows the results of 25 trials, each with a timeout of
120 seconds. The incremental algorithms result in signifi-

Figure 4: Problem 1.

cantly more stream calls than the focused algorithm. These
calls can significantly increase the total runtime because
each inverse kinematic and collision primitive itself is ex-
pensive. Additionally, the incremental algorithms are sig-
nificantly affected by the increased number of distractors,
making them unsuitable for complex real-world environ-
ments. The focused algorithm, however, is able to selectively
choose which streams to call resulting in significantly better
performance in these environments.

Conclusion
The STRIPStream problem specification formalism can be
used to describe a large class of planning problems in in-
finite domains and provides a clear and clean interface to
problem-specific sampling methods in continuous domains.
The incremental and, in particular, focused planning algo-
rithms take advantage of the specification to provide effi-
cient solutions to difficult problems.
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Appendix
Theorem 6. OΠ and SΠ are recursively enumerable (RE).

Proof. Consider an enumeration procedure for OΠ and SΠ:

• The first sequences of elements inOΠ and SΠ are C0∪O0

and s0 respectively.
• Initialize a set of stream instances ΣΠ = ∅.
• Repeat:

– For each stream schema σ ∈ Σ, add all instantiations
σ(Ȳ | x̄) where x ⊆ OΠ such that σ.inp(x̄) is con-
tained within SΠ, to ΣΠ. There are finitely many new
elements of ΣΠ.

– For each stream instance σ(Ȳ | x̄) ∈ ΣΠ, add ȳ =
NEXT(σ.f(x̄)) to OΠ and add σ∗.out((x̄, ȳ)) to SΠ.
There are finitely many new elements of OΠ and SΠ.

This procedure will enumerate all possible objects and all
possible initial atoms generated within the problem Π.

Theorem 7. The existence of a solution for a STRIPStream
problem Π is undecidable.

Proof. We use a reduction from the halting problem. Given
a Turning machine TM, we construct a STRIPStream prob-
lem ΠTM with a single operator HALT(X) with stat =
{IsReachable(X)}, pre = ∅, and eff = {Reached(X)}
where IsReachable and Reached are a static and fluent pred-
icate defined on TM’s states. There is a single unconditional
stream REACHABLE-U(X | ()) which enumerates the states
of TM by simulating one step of TM upon each call. Let
s0 = ∅ and s∗ = {Reached(a)} where a is the accept state
for TM. ΠTM has a solution if and only if TM halts. Thus,
STRIPStream is undecidable.

Theorem 8. The existence of a solution for a STRIPStream
problem Π is semi-decidable.

Proof. From the recursive enumeration of OΠ and SΠ we
produce a recursive enumeration of finite planning prob-
lems. Planning problem i is grounded using all objects and
static atoms enumerated up through element i. Plan exis-
tence in a finite universe is decidable. Thus, for feasible
problems, applying a finite decision procedure to the se-
quence of finite planning problems will eventually reach a
planning problem for which a plan exists and produce it.

Theorem 9. The incremental algorithm is complete.

Proof. The incremental algorithm constructsO and S in the
same way as theorem 6 for OΠ and SΠ except that it calls
NEXT in batches of K. Thus, any finite subsets of OΠ and
SΠ will be included inO and S after a finite number of itera-
tions. Let π∗ be a solution to a feasible STRIPStream problem
Π. Consider the first iteration whereO and S contain the set
of objects used along π∗ and static atoms supporting π∗. On
that iteration, S-PLAN will return some solution (if not π∗)
in finite time because it is sound and complete.

Theorem 10. The focused algorithm is complete.

Proof. Define an episode as the focused algorithm iterations
between the last reset (Ot = St = βt = ∅) and the next
reset. Consider a minimum length solution π∗ to a feasible
STRIPStream problem Π. Let O∗ ⊆ OΠ be the set of ob-
jects used along π∗ and S∗ ⊆ SΠ be the set of static atoms
supporting π∗.

For each episode, consider the following argument. By
theorem 6, there exists a sequence of stream instance calls
which produces O∗ and S∗ from the current O and S. Let
Σ∗ be the minimum length sequence that satisfies this prop-
erty. Σ∗ may include the same stream instance several times
if multiple calls are needed to produce the necessary values.
On each iteration, FOCUSED creates a finite STRIPS problem
Π̃ by augmenting Π with the abstract objects {γ1, ..., γθ}
and the stream operators Σ̄. Because Ot and St are with-
held, O and S are fixed for all iterations within the episode.
Thus, a finite number of simple plans are solutions for Π̃.
One of these plans, π̃∗, is Σ∗ concatenated with π∗ where
additionally any object o ∈ (O∗ \ O) is replaced with some
abstract object γ. Assume all redundant stream operators are
removed from π̃∗. The same γ can stand in for several o on
π̃∗ at once. Thus, FOCUSED will be complete for any θ ≥ 1.

We will show that at least one stream instance in Σ∗ will
called performed during each episode. On each iteration, S-
PLAN will identify a plan π. If π does not involve any ab-
stract objects and is fully supported, it is a solution. Other-
wise, ADD-OBJECTS will call each stream σ(Ȳ | ōx) associ-
ated with π. It adds Blockedσ(ōx) to βt, preventing π and all
other plans using σ(Ȳ | ōx) from being re-identified within
this episode. If π overlaps with π̃∗ and σ(Ȳ | ōx) ∈ Σ∗,
then the episode has succeeded. Otherwise, this process re-
peats on the next iteration. Eventually a stream instance in
Σ∗ will be called, or π̃∗ itself will be the only remaining un-
blocked plan for Π̃. In which case, S-PLAN will return π̃∗,
and ADD-OBJECTS will call a stream instance in Σ∗.
|Σ∗| strictly decreases after each episode. Inductively ap-

plying this, after a finite number of episodes, O∗ ⊆ O and
S∗ ⊆ S . During the next episode, S-PLAN will be guaran-
teed to return some solution (if not π∗).

Python example discrete domain
Figure 5 gives a complete encoding of the example discrete
domain and a problem instance within it using our Python
implementation of STRIPStream. In the specified problem
instance, the initial state consists of three blocks placed in
a row. The goal is to shift each of the blocks over one pose.
The Python syntax of STRIPStream intentionally resembles
the Planning Domain Definition Language (PDDL) (McDer-
mott et al. 1998). We use several common features of PDDL
that extend STRIPS. The resulting encoding is equivalent to
previously described STRIPS formulation but is more com-
pact. We use object types BLOCK, POSE, CONF instead
of static predicates IsBlock , IsPose , and IsConf . Addition-
ally, we use several Action Description Language (ADL)
logical operations including OR, EQUAL, FORALL, and EX-
ISTS. The universal quantifier (FORALL) is over BLOCK,
a finite type, and thus is a finite conjunction.
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from stripstream import Type, Param, Pred, Not, Or, And, Equal, Exists, \
ForAll, Action, Axiom, GeneratorStream, TestStream, STRIPStreamProblem

blocks = [’block%i’%i for i in range(3)]
num_poses = pow(10, 10) # a very large number of poses
initial_config = 0 # initial robot configuration is 0
initial_poses = {block: i for i, block in enumerate(blocks)} # initial pose for block i is i
goal_poses = {block: i+1 for i, block in enumerate(blocks)} # goal pose for block i is i+1

BLOCK, POSE, CONF = Type(), Type(), Type() # Object types
B1, B2 = Param(BLOCK), Param(BLOCK) # Free parameters
P1, P2 = Param(POSE), Param(POSE)
Q1, Q2 = Param(CONF), Param(CONF)

AtConf = Pred(CONF) # Fluent predicates
AtPose = Pred(BLOCK, POSE)
HandEmpty = Pred()
Holding = Pred(BLOCK)
Safe = Pred(BLOCK, BLOCK, POSE) # Derived predicates
IsKin = Pred(POSE, CONF) # Static predicates
IsCollisionFree = Pred(BLOCK, POSE, BLOCK, POSE)

actions = [
Action(name=’pick’, parameters=[B1, P1, Q1],
condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1), IsKin(P1, Q1)),
effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),

Action(name=’place’, parameters=[B1, P1, Q1],
condition=And(Holding(B1), AtConf(Q1), IsKin(P1, Q1),

ForAll([B2], Or(Equal(B1, B2), Safe(B2, B1, P1)))),
effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),

Action(name=’move’, parameters=[Q1, Q2],
condition=AtConf(Q1),
effect=And(AtConf(Q2), Not(AtConf(Q1))))]

axioms = [
Axiom(effect=Safe(B2, B1, P1), # Infers B2 is at a safe pose wrt B1 at P1

condition=Exists([P2], And(AtPose(B2, P2), IsCollisionFree(B1, P1, B2, P2))))]

cond_streams = [
GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[],

generator=lambda: xrange(num_poses)), # Enumerates all the poses
GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsKin(P1, Q1)],

generator=lambda p: [p]), # Inverse kinematics
TestStream(inputs=[B1, P1, B2, P2], conditions=[], effects=[IsCollisionFree(B1, P1, B2, P2)],

test=lambda b1, p1, b2, p2: p1 != p2)] # Collision checking

constants = []
initial_atoms = [AtConf(initial_config), HandEmpty()] + \

[AtPose(block, pose) for block, pose in initial_poses.iteritems()]
goal_formula = And(AtPose(block, pose) for block, pose in goal_poses.iteritems())
return STRIPStreamProblem(initial_atoms, goal_formula, actions+axioms, cond_streams, constants)

Figure 5: STRIPStream Python code for the example discrete domain
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Joint Perception And Planning For Efficient
Obstacle Avoidance Using Stereo Vision

Sourish Ghosh∗ and Joydeep Biswas†

Abstract

Stereo vision is commonly used for local obstacle avoidance
of autonomous mobile robots: stereo images are first
processed to yield a dense 3D reconstruction of the observed
scene, which is then used for navigation planning. Such an
approach, which we term Sequential Perception and Planning
(SPP), results in significant unnecessary computations as the
navigation planner only needs to explore a small part of
the scene to compute the shortest obstacle-free path. In this
paper, we introduce an approach to Joint Perception and
Planning (JPP) using stereo vision, which performs disparity
checks on demand, only as necessary while searching on a
planning graph. Furthermore, obstacle checks for navigation
planning do not require full 3D reconstruction: we present
in this paper how obstacle queries can be decomposed
into a sequence of confident positive stereo matches and
confident negative stereo matches, which are significantly
faster to compute than the exact depth of points. The
resulting complete JPP formulation is significantly faster
than SPP, while still maintaining correctness of planning.
We also show how the JPP works with different planners,
including search-based and sampling-based planners. We
present extensive experimental results from real robot data
and simulation experiments, demonstrating that the JPP
requires less than 10% of the disparity computations required
by SPP. The significant computational cost savings further
allow JPP to run on higher resolution input images, thus
further improving accuracy and robustness.

Introduction
Existing approaches to local obstacle avoidance using stereo
vision (Murray and Little 2000; Sabe et al. 2004) perform
sequential perception and planning (SPP), where input
stereo images are first processed to compute the disparity
at each pixel. Such dense disparity is then used to infer
depth for all image points, and hence obstacles in the world.
However, the input images often include visual information
that is irrelevant to the planning task at hand, thus wasting
computational time at the perception step in SPP.
∗Sourish Ghosh is with the Department of Mathematics, Indian

Institute of Technology, Kharagpur, West Bengal 721302, India.
Email: sourishg@iitkgp.ac.in
†Joydeep Biswas is with the College of Information and

Computer Sciences, University of Massachusetts, Amherst, MA
01003, USA. Email: joydeepb@cs.umass.edu

(a) The red edge is not traversable because of an invalid confident
positive match on the projections of the red point.

(b) The yellow obstacle is absent in this scenario. The green edge
is hence traversable since the projection of the green point yields
a confident positive match and the subsequent blue points above it
yield confident negative matches indicating empty space points.

Figure 1: Given a graph (grey lines) for planning, JPP checks
exploration edges for reachability by disparity match confidence
between projected points on the left and right image. In (a) further
verification of empty space points above the ground plane is
not required since the ground plane is not reachable. Confidence
matching is defined in Section On-demand Stereo.

In this paper, we introduce a novel approach to joint
perception and planning (JPP) for obstacle avoidance
using stereo vision that eliminates unnecessary disparity
computations. JPP treats traversability queries by the
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obstacle avoidance planner as on-demand disparity checks
for perception. Thus, the only disparity computations
performed by perception are those necessary for planning
for the obstacle avoidance task. We further simplify the
problem of identifying reachable configurations of the
robot by verifying confident positive disparity matches
for the ground plane around the configuration pose, and
by verifying confident negative disparity matches for all
points within the robot’s safety radius and height of that
pose. Verifying confident positive and negative checks
are significantly computationally faster than evaluating the
exact depth: while a confidence check requires only a
single disparity comparison, evaluating the exact depth
requires multiple disparity comparisons along the epipolar
line. The confident checks are still exact: reachable and
unreachable configurations of the robot are still correctly
identified, albeit at a significantly lower computational
cost. Figure 1 illustrates the decomposition of JPP into
on-demand confidence disparity checks.

The JPP formulation is applicable to a wide range of
planners for navigation, as long as the planner performs
obstacle checks in the configuration space of the robot. We
demonstrate JPP with an A* planner, and an RRT planner
for local obstacle avoidance. Over extensive experimental
evaluations, we show that JPP requires less than 10% of the
disparity comparisons required by SPP. The contributions
of this paper are thus three-fold: 1) We contribute a
JPP formulation to integrate obstacle avoidance planning
with on-demand stereo perception; 2) We present an exact
simplification of the configuration-space obstacle check into
a sequence of confidence checks over disparity; and 3)
We empirically show that the JPP formulation results in
substantial computational cost savings on a real robot, as
well as an extensive set of simulated environments.

Related Work
Obstacle avoidance, as an essential ability of autonomous
mobile robots, has been researched in great detail, and
there exist a number of approaches, with various planning
algorithms (e.g., (Borenstein and Koren 1990; Simmons
1996; Tang et al. 2010)), sensor modalities (e.g., (Arras et
al. 2002; Biswas and Veloso 2012)) and efficient collision
detection based on adaptive cell decomposition of the robot
configuration space (Zhang et al. 2008). We thus focus on
the related work most relevant to our own, covering existing
approaches to obstacle avoidance using vision.

Vision based obstacle avoidance approaches can be
broadly classified into monocular and stereo approaches.
The two main approaches for obstacle detection using
monocular vision are learning based methods (Michels
et al. 2005) and using optical flow (Souhila and Karim
2007). Appearance-based obstacle detection (Ulrich and
Nourbakhsh 2000) and visual sonar (Lenser and Veloso
2003) have also been shown to be effective for indoor ground
robots.

Most stereo vision based approaches (Sabe et al. 2004;
Simmons et al. 1996) perform either local epipolar matching
or full scene reconstruction. Recognizing the significant
computational cost of dense stereo reconstruction, a few

recent methods (Kumano et al. 2000; Barry and Tedrake
2015) have tried to reduce computation time by doing sparse
disparity checks. In Pushbroom Stereo (Barry and Tedrake
2015), obstacles are detected only at a constant disparity
level, and by integrating this information with an onboard
IMU and state estimator, position of obstacles at all other
depths are recovered.

For a different problem of affordance based planning and
a different sensor modality of LIDAR, joint perception and
planning (Pryor et al. 2016) has been shown to successfully
reduce combined planning and perception time.

While there have been partial informative
approaches (Barry and Tedrake 2015) to obstacle avoidance
using stereo vision, and joint perception and planning
in other domains and with sensor modalities (Pryor et
al. 2016), in this paper we contribute a joint perception
and planning approach for the task of obstacle avoidance
using stereo vision, where we avoid unnecessary full 3D
reconstruction, and further relax the problem of checking
reachable configurations into confidence disparity matching.

Epipolar Geometry and Stereo Vision
We use the left camera of the stereo pair as the sensor
reference frame. Any visible 3D point X in space in the left
camera reference frame has corresponding image points x
and x′ in the left and right camera images. The space point
X , the image points x and x′, and the camera centres are
coplanar. The triangulation of these points is known as the
epipolar constraint. For an image point x in the left image,
there is a corresponding epipolar line l′ in the right image
and x′ is constrained on l′. Similarly l is the epipolar line in
the left image corresponding to the right image point x′. The
epipolar geometry is algebraically encapsulated in a 3 × 3
matrix F known as the fundamental matrix. In homogeneous
coordinates, l′ = Fx and l = F>x′. The image points x and
x′ are constrained as x′>Fx = 0. Hence, when only one of
the two image points is known, the corresponding point in
the other image can be found by scanning along its epipolar
line, resulting in a 1-D search.

Stereo camera calibration yields the left and right camera
matrices, K and K′ respectively. They constitute the
intrinsic camera parameters. Let R and t denote the rotation
and translation matrix from the left camera frame to the right
camera frame, also known as the extrinsic parameters. The
3× 4 projection matrices P and P′ are defined as

P = K [ I 0 ] P′ = K′ [ R t ] (1)

where I denotes the 3 × 3 identity matrix. Then x = PX
and x′ = P′X (in homogeneous coordinates).

The obstacle avoidance path planning is performed in the
reference frame of the robot, where the origin coincides
with the center of rotation of the robot projected on to the
ground plane. Hence we find a transformation from the
sensor reference frame to the robot reference frame. Let
Rw and tw denote the rotation and translation matrices of
that transformation respectively. Therefore X in the robot
reference frame is expressed as Xw = RwX + tw. We find
Rw and tw experimentally.
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In sequential perception and planning, the depth of an
image point is estimated by finding its correspondence along
an epipolar line in the other image. In a rectified image
coordinate system, the epipolar lines become horizontal scan
lines. The horizontal shift or the difference in x-coordinate
of two corresponding points in rectified coordinates is
termed as disparity. Depth and disparity are related as

d =
fB

z
(2)

where d denotes disparity, z denotes depth, f denotes
the focal length of the camera, and B denotes the stereo
baseline. Methods for generating disparity maps has been
studied extensively (Scharstein and Szeliski 2002). The
methods can be broadly classified into local and global
methods. In local (window-based) methods the disparity
computation only depends on the information of a finite
window around the pixel under consideration. Global
methods on the other hand make explicit smoothness
assumptions and solve an optimization problem that
minimizes a global cost function combining data and
smoothness terms. Global methods are ideal for generating
dense disparity maps whereas local methods are useful for
generating sparse disparity maps.

Joint Perception and Planning
Unlike Sequential Perception and Planning (SPP), Joint
Perception and Planning (JPP) performs a series of
sparse stereo corresponding checks based on queries
from the local path planner. The queries are to check
if a robot pose is reachable. We explore two types of
graph-based path planning algorithms: (1) search-based
planning algorithms (Stentz 1994; Koenig and Likhachev
2002) (2) sampling-based algorithms (Karaman and Frazzoli
2011).

Let X ⊂ R2 denote the robot configuration space, which
is a set of robot poses (x, y) ∈ R2. We partition X into
two sets Xfree and Xobs, where Xfree denotes the set of poses
reachable by the robot and Xobs denotes the set of poses
not reachable by the robot. We define points belonging to
the ground plane as those points (x, y, z) ∈ R3 such that
z = 0. All other points are classified as obstacles. Let l and
w denote the robot length and width respectively. Then we
define the robot safety radius as r = max( l2 ,

w
2 ). Any pose

(x, y) ∈ Xfree if all the points in the set Pr = {(x′, y′, 0) :
(x − x′)2 + (y − y′)2 < r2} are classified as ground plane
and additionally the set Ph = {(x′, y′, z) : 0 ≤ z ≤
h, (x′, y′, 0) ∈ Pr} contains only empty space points, where
h is the robot height. Otherwise (x, y) ∈ Xobs. Algorithm 1
outlines the procedure to check if a pose is reachable
or not. The verification of space points belonging to the
ground plane is done using confident positive matching
while verification of points which are empty in space is done
using confident negative matching.

Let xinit denote the initial pose of the robot and
Xgoal ⊂ Xfree be the set of final goal positions. Then the
planning problem can be formally defined as the triplet
(Xfree, xinit,Xgoal). The local path planner explores a directed
graph G = (V,E) on the configuration space, where V ⊂

Xfree denotes the set of vertices and E denotes the set of
edges.

Search-based Planning. The configuration space is
discretized into a square grid of size s. The neighbours of
any node v = (x, y) are Nv = {(x + s, y + s), (x +
s, y), (x+s, y−s), (x, y−s), (x, y+s)}. Any pose p(x, y)
is added to V if p(x, y) ∈ Nv for some v ∈ V and
REACHABLEPOSE(p) outlined in Algorithm 1 is true. We
have presented results for JPP with A* search in this paper.

Sampling-based Planning. We have implemented JPP
with RRT to represent sampling-based planning. A uniform
sampler with a goal bias b samples a new pose x ∈ X
in the configuration space. From V we find a pose y such
that ‖x− y‖ is minimum (‖ · ‖ denotes Euclidean distance).
Then a steering function STEER : (x, y) 7→ z returns a pose
z ∈ X in the direction of x from y at distance of step
size s. Let L(y, z) denote the set of all poses lying on the
edge joining y and z. z is added to the set of vertices V if
L(y, z) ⊂ Xfree. Formally, (y, z) is a valid edge if for all
k ∈ L(y, z), REACHABLEPOSE(k) is true.

We check for valid edges in both the types of planning
algorithms by performing on-demand stereo correspondence
checks using a sum of absolute differences (SAD) of DAISY
descriptors (Tola et al. 2010) of stereo image points.

On-demand Stereo
Since the stereo cameras are well calibrated we know the
projection matrices P and P′ (Equation 1) in the rectified
coordinate system of the left and right images respectively.
Therefore any space point X (represented as a 3× 1 matrix)
in the robot reference frame is first transformed into the left
camera reference frame as

Xl = R−1w (X − tw) (3)

and then Xl is projected as image points p and p′ in the
rectified stereo images I and I ′, where p = PXl and
p′ = P′Xl (in homogeneous coordinates). Given two image
points p(u, v) and p′(u′, v′) in the rectified stereo images I
and I ′, we define the SAD cost function as

C(p, p′, w) =
∑

q∈τ(p,w)
q′∈τ(p′,w)

|D(q)−D(q′)| (4)

where τ(p, w) is a window of pixels of size w × w centered
around the point p and similarly τ(p′, w) is defined around
p′. D denotes the DAISY descriptor of any image point.
The descriptor parameters are characterised by 4 variables:
R (radius), Q (radius quantization number), T (angular
quantization number), H (histogram quantization number).
The descriptor size is calculated as (QT+1)H . For an image
resolution of 320 x 200, the values of these parameters are
given in Table 1.

Given any point p in the the left image I , its disparity level
d is determined by finding the best corresponding match in
the right image I ′ by scanning along the epipolar line and
finding a point q such that C(p, q, w) is minimum over the
epipolar line. Formally

d = argmin
d∈D

C(p(u, v), q(u− d, v), w) (5)
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where D = [0, dmax − 1] is the set of possible disparity
values of p. Disparity refinement is done using left-right
consistency checks, and low confidence matches are
neglected using a threshold on the ratio of cost of the top two
disparity candidates. This local disparity matching method
is implemented to generate dense disparity maps on high
resolution images and is used to compare paths generated
by this method and JPP.

Confident Positive Matching
A visible space point X ∈ R3 under consideration of
the obstacle avoidance planner is first projected on to its
corresponding rectified image coordinates p and p′. The
confident positive match verifies that X belongs to the
ground plane i.e., it verifies that the z-coordinate of X is
zero. To do this we need to verify that p and p′ are valid
stereo correspondences. A function L+(X) used to label
point X is defined as

L+(X) =

{
1, if C(p, p′, w) ≤ εg
0, otherwise

(6)

where εg is a constant associated with space points classified
as ground plane. εg = 1.1 is found experimentally, and
it depends on the length of the DAISY descriptors, and
the SAD window size. X is classified as ground plane if
L+(X) = 1 and as an obstacle if L+(X) = 0. Sometimes
X is wrongly classified as an obstacle when it is actually
ground plane. Hence we apply a spatial filter around X
to remove noisy estimates. We select a discretized window
W with grid size wx around X and count the number of
points X ′ ∈ W such that L+(X

′) = 1. Formally let nx =∑
X′∈W L+(X

′). If nx > cxn(W ), where cx denotes the
spatial filter threshold and n(W ) denotes the cardinality of
the set W , then we let L+(X) = 1 otherwise L+(X) = 0.
Experimentally, for best results we set W = 5 cm × 5 cm,
wx = 10 mm, cx = 0.75.

Confident Negative Matching
Confident negative matching is used to verify that a space
point X ∈ R3 is empty. The procedure is almost similar
to that of confident positive matching. First X is projected
into corresponding rectified image point coordinates p and
p′. Then a function L−(X) used to label point X is defined
as

L−(X) =

{
1, if C(p, p′, w) ≥ εo
0, otherwise

(7)

where εo is a constant associated with empty space points.
εo = 0.5 is found experimentally, and it also depends on the
length of the DAISY descriptors, and the SAD window size.
X is classified as empty if L−(X) = 1 and as non-empty if
L−(X) = 0. We use the confident negative checks to verify
that a column of points above a space point (classified as
ground plane) is empty i.e., it does not contain any obstacle.
The column of points will be empty if for all points X
belonging to that column, L−(X) = 1. If for some X ,
L−(X) = 0 then it is not an empty column. It is important
to note here that εg 6= εo.

Reachable Poses
Using the definitions of confident positive and negative
matching we can classify any pose (x, y) ∈ X as reachable
or not reachable by the robot. Algorithm 1 outlines the
procedure for the classification. The general idea of this
algorithm is that for any pose (x, y) to be reachable by the
robot, the set of space points points {(x′, y′, 0) : (x−x′)2+
(y − y′)2 < r2} (in the robot reference frame) need to be
verified as points belonging to the ground plane by confident
positive checks. Additionally, the column of points starting
from (x′, y′, 0) up to the robot height h i.e., up to (x′, y′, h)
should be empty by using the confident negative matching.
r denotes the safety radius of the robot.

We consider two scenarios of the world: (1) convex
world (2) non-convex world. In a convex world if any point
P (x, y, z) is not empty then the set of points {P ′(x, y, z′) :
0 ≤ z′ ≤ z} are also not empty. So in that case lines 11-16
in Algorithm 1 are not required i.e., the confident negative
matching is omitted. Omitting those extra confident negative
checks would speed up our algorithm but accuracy may be
lost. Convex world assumptions can be made for indoor
environments where obstacles are mostly convex shaped,
whereas it is reasonable to assume a non-convex world for
outdoor environments.

Table 1 lists some important parameters crucial for joint
perception and planning.

Algorithm 1 Check if pose p is reachable by the robot

1: procedure REACHABLEPOSE(p(x, y))
2: w ← robot width
3: l← robot length
4: h← robot height
5: r ← max(w2 ,

l
2 ) . robot safety radius

6: Pr ← {(x′, y′, 0) : (x− x′)2 + (y − y′)2 < r2}
7: for each P ∈ Pr do
8: if L+(P ) == 0 then
9: Xobs ← Xobs ∪ {p}

10: return false
11: else
12: Ph ← {(Px, Py, z) : 0 ≤ z ≤ h}
13: for each P ′ ∈ Ph do
14: if L−(P ′) == 0 then
15: Xobs ← Xobs ∪ {p}
16: return false
17: Xfree ← Xfree ∪ {p}
18: return true

Experimental Results
We performed two sets of experiments to 1) evaluate the
computational cost of the JPP compared to SPP, and 2) to
compare the path length of obstacle avoidacne as evaluated
by online JPP compared to an offline, high-resolution
dense SPP as a reference baseline. In both experiments
we compared results using obstacle avoidance planning
using both A* as well as an RRT planner. The first set of
experiments were perfomed in simulation as well as on a real
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Table 1: Thresholds and physical constants

Name Symbol Domain Value
State space grid size s > 0 5 cm
RRT goal bias b (0, 1) 0.6
Conf. positive threshold εg > 0 1.1
Conf. negative threshold εo > 0 0.5
Spatial filter window size wx > 0 10 mm
Spatial filter threshold cx (0, 1) 0.75
DAISY radius R > 0 7
DAISY radius quantization Q > 0 3
DAISY angular quantization T > 0 3
DAISY histogram quantization H > 0 1

robot, a Clearpath Jackal UGV (Figure 2), equipped with
two PointGrey Blackfly IMX 249 cameras, Kowa LM6HC
lenses, and an Intel NUC for onboard processing. Over all
experiments, the rectified stereo image resolution was scaled
to 320× 200 pixels. The grid/step size was set to 5cm.

Figure 2: Clearpath Jackal UGV robot used for real-world
experiments.

Computational Efficiency
Simulation Tests. We created a simulator that spawns
random obstacles in front of a robot equipped with stereo
cameras. The obstacles were in the shape of cylinders with
a fixed radius and height. We assumed a world size of 6m
x 6m. 100 obstacles with base radius of 8cm and height
of 40cm were spawned randomly in each simulation. In
each simulation we set an end waypoint of 2m ahead of
the robot center. We ran around 46,000 simulations each
for RRT and A*, and logged the total number of disparity
cost computations (SAD checks) for both convex and
non-convex world scenarios. The goal of this experiment
was to compare JPP with SPP and evaluate the number
of disparity cost computations. This experiment was also
designed to find experimental bounds on the number of
computations required for different planners. The number
of computations required by SPP is a constant for every
simulation since it reconstructs a dense 3D scene by a local
cost aggregation method (2560000 for an image resolution
of 320 x 200 with a maximum allowable disparity of
40 pixels). The computations required by the planner is
negligible compared to computations for full reconstruction.
We plotted the number of computations taken by JPP as a
fraction of computations by SPP with the x-axis as the path
length. Figure 3 shows that for A* in simulation, the fraction
of computations is less than 0.9% for the non-convex
scenario, and less than 0.2% for the convex scenario. For
RRT the numbers are 10% and 2% respectively. Figure 4
shows a cumulative histogram of the fraction of the
computations. We thus verify our hypothesis from these

figures and also conclude that the complexity of JPP is a
function of the complexity of the path planner.
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Figure 3: Fraction of total SAD computations of JPP compared to
SPP, vs. Path Length. Top: A* planner. Bottom: RRT planner. Red
and blue points are from real world data while purple and green
are from simulation. The number of computations is expressed
as a fraction of that required by SPP. CW: convex world. NCW:
non-convex world. S: simulation. R: real world.

Real World Tests. We used the Jackal to verify the
bounds found in simulation, and test robustness on detecting
and avoiding obstacles in real world. The tests were
done both for non-convex and convex world assumptions.
Figures 3 and 4 clearly show that the number of
computations required in real world is within the simulation
bounds. For A*, the numbers are 0.7% (non-convex world)
and 0.2% (convex world). For RRT the numbers are 7% and
2% respectively. Figure 6 shows that our method is robust
and efficient in detecting obstacles and planning safe paths
around them. Figure 6 also verifies that only sparse disparity
checks (L+ andL−) are required for obstacle avoidance. We
also deduce visually that the number of computations vary
based on the type of planner we use. From the plots we can
deduce that RRT does 10% more computations than A*.

Path Quality
To evaluate the quality of paths generated by JPP, we
compared them to reference paths generated offline by SPP
from dense 3D reconstructions on high resolution images
of resolution 1920 × 1200 pixels. Note that the reference
paths are indicative of the highest possible quality that can
be generated from stereo vision, and cannot actually be run
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Figure 4: Cumulative histogram of the fraction of disparity
cost computations compared to SPP. Top: A* planner. Bottom:
RRT planner. CW: convex world. NCW: non-convex world. S:
simulation. R: real world.

in real-time due to their significant computational cost: they
require more than 2 minutes to generate per frame. We use
the Hausdorff distance H to compare two paths P1 and P2.
H is defined as

H(P1,P2) = max
p∈P1

(min
q∈P2

(‖p− q‖)) (8)

where p and q are points that make up the paths P1 and
P2. Figure 5 shows a cumulative histogram of the Hausdorff
distances for both RRT and A*. From the histogram we see
that the paths generated by JPP and from high resolution
3D reconstruction are comparable as more than 80% of the
cases have a Hausdorff distance of less than 0.6m.

The computational complexity of JPP is invariant of
image resolution as the number of disparity checks is guided
by the path planning algorithm. Recall that we project a
space point in the robot reference frame into two image
points and perform confidence matching only. In SPP we
are forced to work with low resolution images, since 3D
reconstruction is expensive for high resolution images. We
take advantage of this fact, to perform more confident and
robust disparity checks using SAD with a bigger window
size on higher resolution images, and utilize the saved
computation time.

Conclusion and Future Work
In this paper we introduced a novel joint perception and
planning (JPP) algorithm for obstacle avoidance using stereo
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Figure 5: Hausdorff distance of paths generated by online JPP,
compared to offline high-resolution dense SPP reconstruction.

vision. We showed experimentally that the JPP requires
significantly fewer computational resources, while still
maintaining high path quality. Since the total number of
SAD disparity cost checks in JPP is invariant of the image
resolution, analysis of the number of disparity computations,
as a function of the planning problem, is a promising
direction for future work.
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Figure 6: Joint perception and planning visualizations on the real-world dataset collected at AMRL, University of Massachusetts
Amherst. Row 1: A* planner. Red curves indicate the explored planning graph, blue curve indicates the path planned. Row 2: Confident
positive/negative matching visualizations. Green points belong to the ground plane which are found by confident positive checks, red points
indicate configurations not reachable by the robot. Yellow points represent empty space points found by confident negative matching. Row 3
and 4: RRT planner. The colour coding is same as that of A*. It is evident from these visualizations that JPP performs sparse disparity checks
as compared to dense reconstruction. Note that RRT performs more dense checks than A*.
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Abstract

Automated Planning is now a mature area offering several
techniques and search heuristics extremely useful to solve
problems in realistic domains. However, its application to real
and dynamic environments as Social Robotics requires much
work focused, not only in the efficiency of the planners, but
also in tractable task modeling and efficient execution and
monitoring of the plan into the robotic control architecture.
This paper identifies the main issues that must be taken into
account while using classical Automated Planning for the
control of a social robot and contributes some practical so-
lutions to overcome such inherent difficulties. Some of them
are the discrimination between predicates for internal control
and external sensing, the concept of predicted nominal behav-
ior with corrective actions or plans, the continuous monitor-
ing of the plan execution and the handling of action interrup-
tions. This manuscript highlights the dependencies between
all the design and deployment activities involved: task model-
ing, plan generation, and action execution and monitoring. A
task of Comprehensive Geriatric Assessment (CGA) is used
as an illustrative example that can be easily generalized to any
other interactive task.

Introduction
Simple or very specialized robots can work just with reactive
behaviors, but autonomous robots that must take decisions
and change their behavior according to the context, as social
robots do, must have a deliberation process at some point.
Automated Planning (Ghallab, Nau, and Traverso 2004) is
very useful to manage this deliberation and, in particular,
classical planning is able to exploit many of the latest con-
tributions and advancements of the field. Classical planning
already has impressive results finding plans very fast in mul-
tiple domains, but it still has a low deployment in real life
applications. This manuscript tries to bring classical Auto-
mated Planning techniques closer to real social robotic sce-
narios.

Social robots (Leite, Martinho, and Paiva 2013) has to
deal autonomously with people, requiring the monitoring
of highly dynamic environments with a lot of uncertainty.
Therefore, executing a plan of actions with real social robots
is not straightforward because an action can fail or maybe
the plan can become unfeasible due to some change in the
environment. Joining planning and execution is not deeply

studied in the literature although the need has already been
pointed out (Ghallab, Nau, and Traverso 2014).

The execution must be controlled to change the plan de-
pending on the evolution of the environment. Interruptions
in the execution of the plan can interfere with a coherent so-
cial interaction, so the modeling of the domain has to take
this matter into account. This environment can be composed
of low-level information from the sensors that needs to be
abstracted to high-level data.

In this work we apply classical planning interleaved with
execution. Classical planning has several advantages over
other automated planning models as hierarchical or prob-
abilistic. It allows much more compatibility with existing
planners which can be used as black boxes. Also, the newest
heuristics are made for classical planning, so we can take
advantage of them. Uncertainty is not represented explic-
itly, but it can be controlled with existing planning architec-
tures based on replanning techniques. Regarding the repre-
sentation language we use PDDL (Edelkamp and Hoffmann
2004; Fox and Long 2003), the standard language devel-
oped by the academic community. Specifically, our model
requires types, negative preconditions and numeric fluents.
PDDL facilitates the modeling of the knowledge in our do-
main.

The main objective of this manuscript is to highlight the
issues that arise when joining classical planning and execu-
tion into a social robot.

Challenges of Social Robotics
Social Robotics is focused on all those robots that must inter-
act socially with humans. Achieving a natural and fluent in-
teraction is currently a huge challenge and an active research
topic (Tapus, Matarić, and Scasselati 2007). Human commu-
nication includes many verbal and non-verbal elements and
it is in the act of talking when this interaction becomes more
sophisticated. A social robot will be useful only if it can in-
teract socially and efficiently, so a social robot should have
many of the characteristics of conversational agents.

In general, every social interaction involves some sort of
transmission of information that can be driven by the struc-
ture of a conversation. If this structure is altered, then the
communicative act could be incoherent or difficult to fol-
low. The characteristics that a natural communication should
have are also studied by fields as Pragmatics (Warren 2006)
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and, depending on the objective, it has different phases that
must be performed in order.

Apart from microphones and speakers to allow verbal
communication, social robots can have non-verbal commu-
nication mechanisms as faces shown in a screen, robotic
faces, lights, etc. Elements as touchscreens can also be used
to circumvent current limitations of audio and image recog-
nition, for instance. A mechanism to coordinate all these el-
ements to achieve the most coherent and natural interaction
as possible is essential in Social Robotics.

Additionally, these robots must function in very dynamic
environments. In other words, they must respond coherently
to a great amount of unexpected situations which can cause
interruptions in the standard behavior. If after an interruption
the robot resumes the conversation abruptly, if the response
time is too high or if the robot does not respond to evident
stimuli, the interaction will be negatively affected and the
user will not consider it as something natural.

Apparently subtle problems can undermine this interac-
tion and make it annoying or boring. To add more difficulty,
details of all these elements as silences, interpersonal dis-
tances, the gaze direction or the forms of address can have
very different meanings depending on the language, the cul-
ture, the sex or the specific person (Stivers et al. 2009).

Among all challenges with social robotics, this
manuscript focuses specifically in planning the behav-
ior of the robot at each moment. Since it is a social robot,
the interaction through conversation is of capital impor-
tance. The needed deliberative process to make the robot
behave coherently in one way or another depending on
the situation can be solved with techniques as classical
Automated Planning (Petrick and Foster 2013), avoiding to
create and maintain huge finite-state machines or scripts.
This manuscript also describes a real example of a social
robot which uses Automated Planning and the complexity
that these considerations can reach.

Related Work
Deciding the appropriate behavior of a social robot in
stochastic, highly dynamic environments is a task that can be
accomplished in several ways, some more convenient than
others depending on the final objective. The two main as-
pects to consider include the way knowledge about the envi-
ronment and capabilities of the robot is represented and how
the reasoning using this knowledge is performed.

Knowledge Representation
Some aspects of the environment have to be represented
somehow to reason about it. Humans gather information
from the senses and store it in the brain in a subsymbolic
way, within a neuronal network. There are robots that use
this kind of knowledge representation (Baxter, de Greeff,
and Belpaeme 2013; Prenzel, Feuser, and Gräser 2005).
However, subsymbolic models are difficult to be reused for
other solutions because they cannot be directly understand-
able by humans or machines, and usually they require a pre-
vious training process.

More commonly, the information to reason about the en-
vironment has been represented in a symbolic way. A direct

way to work with it is through finite-state machines (Suárez-
Mejı́as et al. 2013). In them, each state corresponds to a cer-
tain situation in which the robot can be during its execution,
depending on the previous actions and the information per-
ceived by its sensors. Each state is a combination of the mod-
eled parameters of the environment and has a set of applica-
ble actions. Depending on which one is executed, the robot
will transit to some states or others. For simple robots this is
a very fast mechanism to implement, but in more sophisti-
cated robots it can be very hard to identify and specify cor-
rectly all possible states that could appear. Moreover, adding
or modifying functionality afterwards can be very hard given
that all behavior is heavily hardcoded.

When there are too many states to be maintained, there
are techniques to delegate the selection of actions to an al-
gorithm, which can be used as a black box. Automated Plan-
ning techniques are useful here. They use the description of
the possible actions and the description of the initial envi-
ronment to generate a plan of actions that makes the robot to
accomplish some goals.

Classical Automated Planning
Automated Planning (Ghallab, Nau, and Traverso 2004),
in particular action-based planning, uses two different con-
cepts: actions and states. The execution of an action allows
the transition from a certain state to another state. The ob-
jective of this technique is to find a sequence of actions to
transit from an initial state to a final state in which a cer-
tain set of goals is fulfilled. A convenient way to represent
this knowledge is through the domain and the problem. On
one hand, the domain includes the catalog of possible action
schemes, each one with preconditions that must be fulfilled
in the state of the world (the modeled environment) to allow
its execution and the effects in that state after its execution.
On the other hand, the problem includes the description of
the initial state of the world and a set of goals that must
be accomplished in the final state to consider that the task is
done. The domain and the problem are introduced into an au-
tomated planner that will try to find a plan of valid actions to
transit from the initial state to the final state. There are many
domain-independent automated planners available, most of
them relying on advanced heuristic search techniques, that
can be used as a black box to find a suitable plan as fast
as possible. This allows the developers to focus on a higher
level of abstraction; just the possible actions of the robot
and the facts characterizing a state must be modeled using a
symbolic language as the Planning Domain Definition Lan-
guage (PDDL) (Fox and Long 2003). As a drawback, this
technique is slower than domain specific techniques, like
finite-state machines, so the design of the domain must be
performed with care to be suitable for the fast response time
required for social robots.

There are recent examples of Automated Planning for lan-
guage generation and dialogue control (Steedman and Pet-
rick 2007; Brenner and Kruijff-Korbayová 2008). Classical
planning is deterministic and when interleaved with execu-
tion it requires mechanisms to recover from unexpected sit-
uations. Therefore, this work uses the planning and mon-
itoring architecture PELEA (Alcázar et al. 2010) to con-
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trol the deliberation according to the results of the execu-
tion. PELEA could be versatile enough to allow the use of
learning techniques for Social Robotics (Arora et al. 2016)
and plan repairing strategies (Fox et al. 2006). This kind
of architecture also allows other improvements to minimize
the response time of the robot by planning the first actions
with precision and continue refining the final parts of the
plan while the previous actions are being executed (Martı́nez
2016).

Much of the current research about Social Robotics relies
on classical planning and replanning approaches (González,
Pulido, and Fernández 2017; Chen, Yang, and Chen 2016;
Vaquero et al. 2015; Rosenthal, Biswas, and Veloso 2010),
as is discussed in this manuscript. There are also works
about modeling social aspects of human-robot interaction
for Automated Planning (Carlucci et al. 2015). However, to
the best of our knowledge, none of them describes system-
atically the specific considerations that they had to follow
while joining planning and execution to develop a compe-
tent social robot.

Every social robotic domain is hierarchical because it can
be decomposed in subtasks, probabilistic because predic-
tions of the future are needed in order to generate a plan and
temporal because each action has a duration along it could
be interrupted. The following subsections discuss hierarchi-
cal, probabilistic and temporal planning models and moti-
vates the use of classical planning for Social Robotics.

Hierarchical Planning
In general terms, any complex enough activity has a hier-
archic structure that is composed of a set of tasks that can
be subdivided into more specific ones (Ghallab, Nau, and
Traverso 2014). For instance, a social robot could have to
do a questionnaire to a user. It will have to ask him several
questions, each question will need to be read (through a text-
to-speech mechanism) and then the answer will be heard. To
read it is needed to find what to say and then play it trough
speakers, etc. There are phases in the questionnaire and in
the whole conversation that must be accomplished in order
to finish the task correctly.

If the granularity of the deliberation is high enough then a
hierarchical planner can be used directly (Nau et al. 2003).
These planners use more domain knowledge to plan, some-
times improving planning times, but at the expenses of a
less generic solution. Hierarchical planning also does not
consider the probabilities nor the temporal aspects of Social
Robotics domains.

Often, it is not needed to take deliberation to such fine-
grain level and it is enough to plan at a higher level. The
low level actions can be performed reactively. Depending
on the robotic architecture, a component, or a reactor, could
receive an action and execute it without more deliberation,
like moving a robot from one point to another (Bandera et al.
2016). This has the advantage of distributing the robotic ar-
chitecture into several specialized components (or reactors)
for some complex reactive tasks, without having to delib-
erate with too much specific knowledge. This manuscript
also describes a real example which uses reactors to dele-
gate low-level actions.

Probabilistic Planning
Other planning techniques take directly into account the
stochastic nature of the dynamic environments (Little and
Thiébaux 2007) present in Social Robotics. A probabilis-
tic contingent planner can plan a set of different contingent
plans to be used in case that the standard plan cannot be
executed due to more or less probable unforeseen events.
The first drawback of these techniques in comparison to
classical planning is that they can be much slower. Since
the reaction time of these robots must be very fast, classi-
cal planning reaches faster planning times at the expense
of a higher number of replannings. Moreover, the biggest
advances in heuristics for planning are within the classical
planning area, so probabilistic techniques cannot take full
advantage of them.

In Social Robotics its impossible to know the exact prob-
abilities of each effect of the action. Learning them could
help to generate better plans, but at the end each person re-
acts in a particular way, and unpredictable interruptions can
appear in any moment (as the the user leaving the room) that
must be considered.

Thanks to the use of planning architectures as PELEA, it
is possible to use deterministic techniques as classical plan-
ning into stochastic environments.

Temporal Planning
Temporal planning (Fox and Long 2003) uses durative ac-
tions to generate plans with concurrent actions which apply
effects at the beginning or at the end of the action. Although
in a social domain, as in a conversation, it is impossible to
determine the duration of an action such as speak and the in-
teraction is made in sequential steps which normally do not
overlap among them, there are interesting features that can
be taken from temporal planning. In particular, durative ac-
tions consider three types of conditions: “at start”, “over all”
and “at end”. These conditions must be held along differ-
ent moments of the execution of the action. These reasoning
is needed to interrupt an action in the middle of its execu-
tion or at the end. It can be taken into account in PELEA
by using specific labels directly in the PDDL code, avoiding
incompatibilities between durative actions and many auto-
mated planners.

In essence, classical planning can be used along with a
planning architecture as PELEA to control the hierarchi-
cal, probabilistic and temporal nature of these domains and
also taking advantage of the ease of modeling of PDDL, ad-
vanced heuristics and high planner compatibility.

The Clarc Use Case
For the rest of this manuscript, the Clarc social robot (Ban-
dera et al. 2016) is used as an example to illustrate the con-
tributions. This section explains one of the use cases of this
robot. It uses classical planning and the monitoring architec-
ture PELEA to deliberate about its behavior.

The Clarc robot is part of an European ECHORD++ re-
search project1. Its main goal is to save clinicians’ time

1http://www.clarc-echord.eu
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by assisting elder people while performing Comprehen-
sive Geriatric Assessment (CGA) tests to measure their
general health, habits of their daily life and the ability to
perform some activities without help. Many of these are
questionnaire-based tests which usually are held in hospitals
with the assistance of a clinician. There are many different
tests to evaluate different aspects of the patients, but to bet-
ter explain the social task, this section is focused on only
two CGA tests.

Clarc 1 has a touchscreen, speakers, a microphone and a
3D sensor. CGA tests are very long and heavily based on
speech, so the conversational requirements of this robotic
platform are very demanding. The text-to-speech and speech
recognition mechanisms are implemented in internal com-
ponents of the robotic architecture, so they are out of the
scope of this manuscript. Their capabilities are enough to
reproduce the text of each question and to recognize the
needed answers. The physical embodiment of the robot can
also be used to improve the interaction, but the current proto-
type is specially focused on the development of the conver-
sation for the tests. All the robot behavior has to be modeled
within a PDDL domain.

Figure 1: The current Clarc robot prototype with a patient.

When the patient is sat in front of the robot, the clinician
selects a test and the robot starts working autonomously.
An easy test to introduce the basics of the use case is the
Barthel (Mahoney and Barthel 1965) one. It measures the
patient’s autonomy in his daily life. The flow is very straight-
forward, every question has fixed answers that must be an-
swered to finish correctly and return a final score. Figure 2
shows an extract of a possible initial plan of a Barthel test.
As it can be seen, after configuring some elements of the
test that is going to be executed, the robot introduces itself.
The first parameter is a label which identifies the speech to
be played through the speakers. All parameters starting with
“p ” indicate the amount of time to wait until starting the
next action. After introducing the test with some basic in-
structions, it starts reading the statement of each question
slowly. The parameter “first” indicates that it is the first time
that this question is read. Then it waits 10 seconds at most
(as indicated by the last parameter “dur 10s”) to receive the

patient’s answer. The executed flow of actions become more
complex when the patient does not answer some questions
or the robot cannot understand the answers. After a number
of failed trials, the robot has to repeat the question in an al-
ternative way to check if the patient can understand it. When
all questions are made, the test is finished.

configure-test barthel

introduce-robot robot_pres1 p_0s  

introduce-test intro1 p_1s

introduce-test intro2 p_0s

introduce-test intro3 p_0s

start-question q1_s1 p_0s

show-question-option q1_o1 first p_1s     

show-question-option q1_o2 first p_1s    

show-question-option q1_o3 first p_2s   

finish-question q1_e1 p_0s

ask-for-answer q1_a1

receive-answer q1_a1 dur_15s

finish-ask-answer-success q1

make-question-transition q1_t p_1s

(…)

finish-ask-answer-success q10

finish-test end1
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Figure 2: Example plan of a Barthel test.

All this process is executed assuming that the environ-
ment is suitable for the test. For instance, that the patient is in
front of the robot, the test is not paused, there is enough bat-
tery, etc. If any of these variables change, then the execution
may be interrupted and the robot must perform some cor-
rective behavior accordingly to the detected situation. The
structure of the conversation is controlled with the precondi-
tions of the actions. For instance: after resuming the test, the
robot must continue from a point which guarantees a coher-
ent interaction with the patient, repeating some previously
executed actions if needed. The timing of the conversation
is controlled with the pauses and the maximum duration in-
dicated in the parameters.

The Mini-mental test (Folstein, Folstein, and McHugh
1975) is much more complex than the Barthel one because
all questions have open answers that the robot has to de-
tect. The description provided here is to illustrate the extent
of the complexity of the required behavior. The most basic
questions are about the current day, month and season or
the current building, city and country. The robot can detect
a large set of possible answers that can be correct or incor-
rect. Sometimes an incorrect answer can be refined with an-
other question for clarification. The test continues with ques-
tions about numeric operations (taking into account possi-
ble errors carried from earlier operations), repeating a list
of words (altering the order is valid although not perfect),
writing a syntactically correct sentence, following written
commands as touching the nose and the right ear or closing
the eyes, saying tongue twisters and even drawing two inter-
secting pentagons in the touchscreen. All this is in one long
test, considering also all the corrective behaviors to manage
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unexpected events.
As can be seen, each question has different interactive

procedures that must be modeled in the domain that can be
ruined by an unexpected interruption if it is not designed
carefully. Apart from the challenges in speech recognition,
computer vision and hardware coordination, the required be-
havior is too complex to model using finite-sate machines,
so Automated Planning is useful here. However, joining the
planning and the execution of the obtained plan together can
be challenging too. In Clarc, the approach was to create a
generic PDDL domain for questionnaire-based tests, gener-
alizing each question as much as possible, and adapting the
existing monitoring architecture PELEA to fit all communi-
cation requirements with the rest of the robotic architecture.

To design this kind of tasks properly, it is necessary to
know the different issues that every developer of social
robots with classical planning will need to face sooner or
later. This manuscript focuses on describing these issues and
their solutions.

Modeling
There are several challenges identified while modeling clas-
sical planning domains for Social Robotics. This section ex-
plains these points highlighting their impact on the interac-
tion.

Island Domains
The social behavior has several rules that must be followed
to achieve a coherent interaction. This usually implies plans
that contains several ordered phases. In Clarc, for instance,
these actions are the salutation, then the introductions, then
the questions of the selected test and finally the farewell. We
refer to these kind of domains as “island domains” where
each phase constitutes a different isle.

From the planning perspective, every one of these phases
can be modeled by introducing intermediate subgoals or
landmarks and a mechanism to impose a total order among
them. Previous work on landmarks (Hoffmann, Porteous,
and Sebastia 2004) assumes that neither the landmarks nor
their order are known a priori. They should be determined
while planning. In “island domains” the challenge is how
to build good and efficient models given that both the land-
marks (phases) and their order are known.

Island domains would be very fast to plan because they
are very sequential. This is important when planning for so-
cial robots, in which high planning time could undermine
the interaction. However, depending on the size of problems
and on how they have been modeled, planners can spend too
much time on instantiation and preprocessing.

Nominal Behavior Prediction
While modeling a PDDL domain (Ghallab, Nau, and
Traverso 2014) it is necessary to make some assumptions
or predictions about the effects of the actions. In a real en-
vironment, these effects are stochastic because the actions
can fail or an external event can change the environment. To
deal with this uncertainty when planning, a “nominal behav-
ior” can be assumed in the effects of each action, as shown

in Figure 3. In the case of Clarc, this is the behavior which
produces shorter plans because it is assumed that the patient
will answer correctly to every question at the first try.

configure-test

introduce-robot

introduce-test

start-question

show-question-option

finish-question

ask-for-answer

receive-answer

finish-ask-answer-success

make-question-transition

finish-test

interrupt

restore-from

Nominal behavior

Corrective

actions

Figure 3: Possible plan of actions with the nominal behavior
to perform a Barthel test in Clarc.

While executing this plan, it is very probable that the pa-
tient will fail at some point to answer a question. However,
it is impossible to decide the amount of fails nor the precise
questions in which they will occur. The design of this nom-
inal behavior is at the developers’ criteria. They could, for
instance, to model a nominal behavior in which the patient
fails each and every question, but this is less probable than
answering correctly to all of them. As this is a design deci-
sion, developers could consider statistics, user preferences,
etc. to increase the quality of the prediction.

Some kind of predicted behavior is needed in order to gen-
erate a valid plan. The nominal behavior can be seen as a
guideline of the needed actions that are left to be executed
to reach the goals.

Obviously, if the previous plan is no longer valid, another
one must be generated, so replanning is considered part of
the whole deliberative process even while modeling the do-
main.

State Decomposition
The execution of a plan requires a certain control of the ex-
ternal environment to check if the actions are correctly exe-
cuted or not. When modeling the interaction it is important
to represent both the robot internal state and the state of the
environment. In Clarc, this state includes also the results of
the interaction with the patient. Changes in the current state
can be due to actions of the robot or to what is usually known
as external or exogenous events. These external predicates
can sometimes be predicted, but not always. We distinguish
three different types of predicates in the state:

Internal predicates: These are used to control the do-
main and to organize the plan of actions. They can appear
in the effects or preconditions of any action and will al-
ways have the expected value because they do not depend
on anything external depending on the course of the execu-
tion. Internal predicates can represent a piece of information
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as the predicate (testIntroduction ?speech) that
indicates one of the speeches that has to be played during the
introduction of a test, or they can be control predicates that
denote the points of the interaction already planned (flags).
Internal predicates are never changed externally during the
execution.

Predicted predicates: Their value must be predicted in
the nominal behavior in order to generate a complete plan,
but the actual values depend only on external elements of the
environment. For instance, a predicate as validAnswer,
that represents the fact that the patient provided a valid an-
swer to a question, needs to be predicted in the effects of an
action like CheckAnswer to continue with the plan, fol-
lowing the nominal behavior. These predicates can be part
of the effects and preconditions of any action, although the
predicted values in the effects may differ from the actual
ones obtained through the sensors.

Unpredictable predicates: These will never be part of
the effects of the actions involved on the nominal behav-
ior, although they will in the preconditions. Predicates as
pauseActivated, representing the pause button was ac-
tivated, are completely unpredictable because there is not
any explicit action in the nominal behavior to change their
value. A change in the value of these predicates is only trig-
gered externally and in any moment of the execution.

This differentiation creates two types of world states, one
in which the values of its predicates will be always as ex-
pected and another in which their predicates can change in
any moment, invalidating the current plan in the middle of
its execution.

Corrective Actions
When the expected state of the world differs from the ac-
tual state, a replanning may be needed. The new plan must
contain some actions to correct the unexpected issue and to
return to the normal flow of the nominal behavior. These are
corrective actions which are never included in the initial plan
for the nominal behavior.

For instance, Clarc must interrupt the execution of the
plan if the patient leaves the test area. The new replanned
plan should start calling the patient and searching for him
before continuing with the rest of the test. After the execu-
tion of these corrective subplans, the nominal behavior can
continue.

Modeling these corrective actions is important because it
endows the system with much more responsiveness to the
environment and a more coherent interaction. There is no
need to increase the number of preconditions in the PDDL
actions of the nominal behavior to check every considered
issue. Only one unpredictable predicate in the preconditions
indicating if the situation requires a corrective subplan is
enough for most interactive applications. Then, the specific
corrective subplan will be planned depending on the precon-
ditions of the corrective actions.

Replanning in Interactive Steps
In any fluid social interaction there are several steps that
must be followed in order. This is ensured by the nominal
behavior, but when there are interruptions, the interaction

can be compromised. For instance, in the Barthel test, Clarc
must enumerate the options of a question to the patient im-
mediately after reading the statement.

Suppose that the robot finishes reading the second option
of a question and then, suddenly, there is an interruption that
requires a replanning. The nominal behavior flow is devi-
ated to fix the situation with a corrective subplan. After that,
the execution returns to the nominal behavior, but in which
point? Should the robot repeat the second option, none at all,
start again from the first option or directly from the state-
ment? Depending on the granularity of the actions, these de-
cisions must be made thinking only in terms of interaction.
Modeling them in the domain is somewhat special because
the corrective plan must reset the values of internal predi-
cates to repeat one or more previously executed actions to
achieve a coherent interaction.

The number of actions to execute again after a replanning
depends only in the moment in which the interruption oc-
curs, so the execution is divided in interactive steps of dif-
ferent number of actions. An interactive step must be com-
pletely finished or then it has to be repeated again from its
beginning. An example of these interactive steps can be seen
in the sets of actions of Figure 2 like presentation, read ques-
tion and receive answer.

Numerical Information

Socially interactive applications must be rich enough to be
believable by their users. For instance, repeating too many
times the same sentence can expose design problems in the
social robot. Randomizing sentences can be easily done in
a low level, but when the repetition involves a more com-
plex behavior it should be taken into account in the planning
domain.

Repetitions are only an example to illustrate the need of
counting in domains for social interaction and in many other
real world applications. In Clarc, especially for the Mini-
mental test, the domain contains many numeric fluents to
represent the order of the current question, the number of
attempts for a question, the consecutive and total number of
failed questions and so on. The use of numeric precondi-
tions also saves much preprocessing time and simplifies the
code of the domain. Modeling numbers or order relations
with predicates would increase preprocessing time in Clarc
to unbearable values, given that its current planning and re-
planning time is just below the limit for a fluid reaction in a
social robot.

Using numeric fluents in big, real world domains, is easier
to model, with less parameters in the actions (which implies
less preprocessing time and less memory used) and there is
no need to know the range of levels. Their downside is that
many planners are not yet compatible with them nor have
too many heuristics to ease the planning task.

For the modeling part, it is also important to note that the
value of a numeric fluent could not appear in the standard
output of the automated planner because it is not part of the
parameters of the actions. This can be relevant while execut-
ing the plan and it is discussed later in this manuscript.
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Execution
There are several specific aspects that must be taken into ac-
count to execute the generated plans into a real and dynamic
environment. Some of these aspects have been already
pointed out in the literature (Ghallab, Nau, and Traverso
2014), but others are more specific to Social Robotics. In
fact, the application of Automated Planning in dynamic en-
vironments has not been studied that much, so the mecha-
nism to join planning and execution is up to each developer.
This section describes the main points that must be taken
into account while executing the generated plans of actions
in a social robot.

Continuous Monitoring
The first need that arises when executing plans in dynamic
environments like a social robot is the ability to replan when
something in the actual state of the world invalidates the
current plan. This can happen, for instance, when the ac-
tual state differs from the expected state during or after the
execution of each action. In fact, the model of the nominal
behavior and corrective actions must take replannings into
account, so monitoring is of capital importance.

Monitoring the execution continuously ensures that the
robot can react when something unexpected happens. For
this purpose, a mature planning framework as PELEA (Plan-
ning, Execution and Learning Architecture) (Alcázar et al.
2010) can be used. Figure 4 shows the main modules of this
architecture. In essence, the working flow of PELEA is as
follows. The Executive module has the domain and the prob-
lem with the initial internal state of the robot in PDDL. Then,
it completes the predicted and unpredictable predicates of
the state with the actual ones provided by the low-level sen-
sors of the robot (steps 1, 2 and 3). This complete high-level
state is sent to Monitoring (4) to check if it is compatible
with the expected state of the world. If it is the first plan
or if the previous plan is not valid anymore, Monitoring re-
trieves a plan from Decision Support which runs a certain
automated planner (5, 6). This plan is stored in Monitoring,
which returns the next action to Executive (7). If, in con-
trast, the actual state of the world is compatible with the ex-
pected one, then Monitoring just returns the next action of
the previously planned plan (skips steps 5 and 6). Finally,
Executive transform this high-level action into a set of low-
level actions (8, 9) and sends it to the robot (10). Then it
waits until the execution is finished. After that, it completes
the expected state with the information of the sensors and
the cycle starts again. In this scheme, the Executive has full
control of the execution, timing the maximum duration of an
action, pauses, etc. to control the pace of the interaction.

The compatibility criteria of the actual and expected states
of the world depend on the developer or the application. Al-
ways replanning after a single change of a predicate could
lead to unnecessary replannings due to this change could not
affect to any precondition of the following actions. A more
relaxed comparison could be much more interesting in cases
when there is much information in the state and only a part
of it is relevant to interrupt the nominal behavior. For in-
stance, the criterion in Clarc is to check if the actual state of
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Figure 4: Basic planning and monitoring scheme of the Clarc
robot with the PELEA architecture. Numbers indicate the
communication flow between each module.

the world fulfills the preconditions of the next action. This
criterion could not be suitable for other applications.

Also, as a side note, in these domains the goals should
not be unexpectedly accomplished before finishing the exe-
cution of the nominal behavior.

Interrupting Actions
A true interactive system must be responsive in any moment
of its execution. This is especially important while it is ex-
ecuting an action but it has not finished yet. A system that
simply waits for the action to finish and then checks the state
of the world is not realistic. For instance, if Clarc is execut-
ing a Say action, which involves a 20 seconds speech and
the patient leaves the room in the 5th second, the robot must
be able to interrupt the speech in the middle of its execution.
If not, Clarc would continue speaking to nobody during the
next 15 seconds before realizing that it has to call the patient
to return to the test area.

To do this, the robot sends asynchronously the actual state
of the world to Executive and then asks to Monitoring if the
actual state is compatible with the action that is currently
being executed. It is important to remark that the compati-
bility criteria after or during the execution of an action can
be different. Clarc interrupts the execution if the new state
violates any precondition of the action that is currently be-
ing executed. Tagging the parameters of each action in the
PDDL code could easily indicate to PELEA if the value of
a parameter must be the expected one only at the start of an
action or during its whole execution. This is similar as tem-
poral planning with its durative actions, but in Clarc these
conditions are directly managed by PELEA because it is not
needed to plan with overlapping actions.

All this indicates that it is important to pay attention to the
granularity of the actions. Plans have a hierarchical nature,
in which an action is later executed and refined by a compo-
nent or “reactor” of the robotic architecture. More granular-
ity of actions implies shorter ones and more autonomy for
these reactors, and vice versa. Moreover, with shorter ac-
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tions the domain will be more complicated in order to main-
tain the coherence of the interactive steps between replan-
nings.

After the execution of an action, the robot must commu-
nicate to Executive that it has finished and that it is idle now.
Then, Executive retrieves the last received actual state of the
world and gives it to Monitoring to obtain the next previ-
ously planned or newly replanned action.

Planning Time Restrictions
Stochastic environments cause unpredictable situations that
must be managed in these interactive systems. This means
that replannings will appear, so it is very important to keep
replanning times as low as possible to achieve a fluid inter-
action. After an interruption, the robot is going to stop in the
middle of the interaction while it is replanning because it
does not know the next action until it has the new plan. This
means that in Social Robotics, planning must work in a way
that there are not any detectable delay in the interaction.

For Clarc, a replanning time of 3 seconds is the maximum
acceptable amount to achieve a fluid social interaction. In-
terestingly, almost all of its planning time is consumed on
instantiation and preprocessing due to the large amount of
different objects in the PDDL states of the world. Numeric
fluents are useful to reduce the total planning time by de-
creasing the branching factor because they do not appear in
the parameters of the actions.

Clarc, instead of stopping immediately after the triggering
of an interruption, waits until the replanning is done. The
previous action is interrupted only when Monitoring already
has the new plan with the next action. This method avoids
idle moments of the robot, allowing longer replanning times,
but at the cost of slower reactions. The idea behind this is to
keep the user engaged while planning proceeds.

Abstraction Levels in States and Actions
As it can be seen in Figure 4, actions and states are the main
elements of information in a monitoring system as PELEA.
But there are important differences in the abstraction level of
these elements because the robot only works at low level and
the planning system at high level. A conversion is needed to
translate these actions to the robot and states from the robot.
Figure 4 also shows the HighToLow and LowToHigh mod-
ules connected to Execution to manage this. This subsection
expands the previous explanations detailing these abstrac-
tions:

• High-level states: PELEA uses them to plan. The actual
state of the world is maintained by Execution and the ex-
pected state is maintained by Monitoring.

• Low-level state: The robot sends only a part of its low-
level state to the Executive. This state always contains the
latest information retrieved by the sensors and the robot.
Executive sends this partial low-level state to the LowTo-
High module, which abstracts this information into high-
level predicates to complete the actual high-level state.

• High-level actions: These are the actions returned di-
rectly by the automated planner of Decision Support.

Monitoring sends these high-level actions, one by one, to
Executive.

• Low-level actions: When Executive receives a high-level
action, it sends it to HighToLow to obtain a decomposi-
tion into a set of low-level actions. Then, Executive sends
this set to the robot to execute these low-level actions.
When all these actions are finished, the robot will com-
municate to Executive that it has finished the execution
of the last low-level action set. Clarc considers that every
low-level action in the set has to be executed in parallel,
instead of sequentially. Each high-level action is modeled
taking this into account because all of them have to be
decomposed into a parallel set of low-level actions.
The HighToLow and the LowToHigh modules are ad hoc

programmed for each domain because PDDL code cannot
handle these decompositions and transformations between
abstraction levels.

Retrieving the Value of Numeric Fluents
There are also some issues with the standard output of the
automated planners. Numeric fluents are useful to model or-
der relations. They do not appear in the parameters of the
PDDL actions, reducing the branching factor, but this causes
that their value is never shown through the output of the
planner.

In Clarc, numeric values like the question number or the
duration are needed when executing the actions and they are
only in the expected state of the world, as the internal predi-
cates. It uses the automated planners as black boxes, as PE-
LEA does, so its solution to retrieve these values is generic,
but inefficient. Its PDDL domain uses functions to relate the
discrete values of the needed numeric fluents to predicates,
inserting them into parameters in the actions to make them
appear in the output of the planner. This cancels the benefits
of using numeric fluents in such particular cases.

There are better solutions than increasing the number of
parameters in the actions. Tagging the effects of actions in
the PDDL code could be useful in this case too, and some-
what generic. It could be used to indicate that the value of
certain numeric fluents must be printed after the action di-
rectly in the output plan.

Another solution could be, given the expected state, the
domain and the plan, to recalculate the value of the needed
numeric fluents in polynomial time. This could be done eas-
ily by parsing the output of the VAL application (Howey and
Long 2003), which can be used to check the actual validity
of the generated plans.

Main Performance Results with Clarc
The first prototype of Clarc included all previously discussed
design considerations. The first evaluations were carried out
with 24 senior end users. The main result is that the Clarc
prototype finished 3 standard tests correctly, including the
Barthel and Mini-mental, and reacted very fast to several
unexpected events like calling the patient when he leaves
the test area, offering clarifications to the patient when he
suddenly asks for help or asking the patient to wait when the
battery is discharged to a critical level.
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Planning times increase as the length of the plan becomes
longer. However, they are much lower than preprocessing
times, which always remain the same for any length of the
resulting plan. Figure 5 shows an example of the average
times that Pelea needs to send a new planned or replanned
action to Clarc. The average planning time is never higher
than 3 seconds, which makes it suitable for the fast deliber-
ations needed in this domain of Social Robotics. In the eval-
uation, all senior users interacted smoothly with Clarc and
declared that they did not felt apprehension or discomfort
with the robot.
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Figure 5: Average time to send a new planned or replanned
action to the Clarc robot.

The next steps in the Clarc project include adding more
than 10 standard geriatric tests and also customized ones
by the clinician. This will require to modify and expand
the Clarc domain taking the considerations described in this
manuscript and check how generalizable is this solution.

Conclusions
One of the reasons behind the low impact of classical plan-
ning in real applications is the need of more research joining
planning and execution. This manuscript contributes with
the list of important aspects that must be taken into account
while modeling a classical and deterministic PDDL domain
for Social Robotics and executing the resulting plan in their
highly dynamic and stochastic environments.

Constant monitoring of the execution and action interrup-
tions are needed to be able to react to unexpected events,
but fast replannings times are needed in order to achieve a
fluid interaction. Numeric fluents are very important in many
real problems with many objects to represent order relations
without unneeded increments of the branching factor and
preprocessing times.

As we have discussed here, planning, sensing and execu-
tion are interleaved tasks very dependent among them. All
of them must be considered in each task when developing a
complete social robotic platform.
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[Tapus, Matarić, and Scasselati 2007] Tapus, A.; Matarić,
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Abstract

In this paper, we present an extension to roadmap based path
planners that allows for finer control over motions near dy-
namic obstacles. We utilize the fact that we know the shape
of the dynamic obstacles offline and the location of the obsta-
cles online. We supplement the roadmap graph by adding pre-
defined graphs around obstacles, known as scaffold graphs.
These graphs are inserted at query time and updated as the
obstacles move throughout the environment. We performed a
preliminary evaluation of our approach in the RoboCup SSL
domain and show similar average case performance and im-
proved performance in the case where there are obstacles be-
tween the start and the goal.

Introduction
The ability to find a collision free path between two points is
required for the vast majority of tasks in robotics, regardless
of the hardware those tasks are run on. A variety of solu-
tions to this problem have been developed over the years,
but we have chosen to focus on domains that have strict tim-
ing constraints, require high quality paths, where the shape
of the dynamic obstacles is known offline and the locations
of the dynamic obstacles are known online. The RoboCup
Small Size League (SSL) is a good example of a domain
with these properties.

RoboCup SSL is a RoboCup domain that focuses on
multi-agent planning and coordination. Teams consist of 6
robots and a golf ball is used as a soccer ball. The game
state evolves rapidly from one moment to the next, so a plan
generated in the previous time step might not be valid. It is
also desirable to update the robot control commands at the
same rate new data is received; thus all processing and plan-
ning should be performed within 16 milliseconds. Finally,
because RoboCup is a competitive domain, it is important to
produce high quality paths within the time limit.

In order to improve path planning in domains with these
properties, we propose a method of supplementing roadmap
based path planners by constructing roadmaps, called scaf-
folds, around our obstacles offline and inserting them into
the graph when updating the obstacle positions. We build on
the framework introduced by Leven and Hutchinson to apply
a roadmap path planner in a dynamic environment (Leven
and Hutchinson 2002). Path planning is split into two steps:
offline and online. In the offline step, a roadmap of the static

environment is constructed. During the online step, the scaf-
folds around the moving obstacles are inserted and the edges
blocked by obstacles are invalidated. In order to generate the
initial roadmap, we utilize an existing sampling based path
planner such as Probabilistic Road Map (PRM) (Kavraki
et al. 1996), sPRM (Kavraki, Kolountzakis, and Latombe
1998), or PRM* (Karaman and Frazzoli 2011).

We begin with a brief review of the related literature. We
then discuss the specific modifications to PRM introduced in
this work. We discuss the formalisms for PRM graphs and
scaffold graphs, review the primitive functions used in the
construction of PRM graphs, and finally introduce a set of
algorithms used for integrating scaffold graphs with exist-
ing roadmaps. Finally, we evaluate the performance of our
scaffold approach in a variety of situations.

Related Work
PRM was introduced in 1996 as a method of path plan-
ning for robots working in static workspaces (Kavraki et al.
1996). In 1998, Kavraki, Kolountzakis, and Latombe intro-
duced sPRM, which was shown to be asymptotically opti-
mal (Kavraki, Kolountzakis, and Latombe 1998). In 2011,
PRM* was introduced, which created an asymptotically op-
timal version of PRM with a reduced query time (Karaman
and Frazzoli 2011).

Most PRM variant algorithms assume the workspace is
static; however, a number of approaches exist for applying
PRM in a dynamic environment. An early framework for
doing so was proposed by Leven and Hutchinson (Leven
and Hutchinson 2002). The key insight is to partition the
workspace into the static and dynamic environments. An-
other approach to using PRM in dynamic environments is to
use an RRT-like local planner to reconnect edges that have
become invalid due to obstacles (Jaillet and Siméon 2004).
van den Berg et al. place assumptions about the motion of
obstacles in the environment, restricting them to a fixed set
of configurations known a priori (van den Berg et al. 2005).

Within the RoboCup domain, it is common to use the ex-
ecution extended RRT (ERRT) algorithm (Bruce and Veloso
2002). This extends RRTs to allow for re-planning in many
situations. ERRT is used due to its fast planning, replanning
and query times. Other approaches are typically not used
as they often take too long to converge to a solution. There
are a few exceptions however. For example, one team, SSH,
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places four points around each of the obstacles and connects
them to the start and goal points. They then use Dijkstra’s
Algorithm to find a path between the start and the goal. This
is similar to a scaffold graph with four points and one layer;
however, they do not add any additional points and it is un-
clear from the paper how well their algorithm would allow
for routing around multiple robots (Emmerink et al. 2015).

PRM and Scaffold Definitions
In this section, we define the formalisms used in our ap-
proach. First, we review the definitions of graphs used in
PRM and introduce the definition of a scaffold graph. Then,
we discuss the primitive functions used in the construction
of PRM graphs. Finally, we discuss the scaffold structure for
circular obstacles and n-sided polygons.

Planning Graph
We start by defining a PRM Graph G as a set of edges E
and vertices V . Each edge consists of a tuple e = 〈v1, v2, a〉
where v1, v2 ∈ V and a is a boolean that indicates if the edge
is active. For brevity of notation, ae references that boolean
for edge e. The default value of a is True, and a needs to
be updated whenever the graph is queried as it depends on
the positions of the moving obstacles.

A scaffold graph Si is defined in a manner similar to a
PRM graph with a set of edges Ei and vertices Vi. A par-
ticular scaffold Si is associated with a particular obstacle
oi ∈ O where O denotes the set of all obstacles in the en-
vironment. The positions of the vertices are defined relative
to the obstacle. A transform Ti is defined that maps points
from the obstacle reference frame to the planning frame.

This transform must consist solely of rotation and transla-
tion and is defined relative to the center of the obstacle. We
define ci to be the center of oi

We also define a radius ri which defines the bounding cir-
cle around the obstacle. For the sake of convenience, we re-
fer to the kth point of the jth layer of scaffold i as vi,j,k.

Each scaffold consists of a number of layers with the layer
closest to the obstacle being defined as layer 1 and the outer-
most layer being defined as layer N , where N is the number
of scaffold layers and and N ≥ 1. We define a subset of the
full scaffold graph Si,j to be the the set of edges and vertices
on the jth level of scaffold i. We also define the number of
points per scaffold layer to be m.

A scaffold layer Si,j defines a convex polygon enclosing
the associated obstacle at a fixed distance di,j . Each point
within that layer must be di,j away from the closest point on
obstacle.

Scaffolds From Geometric Primitives
Circle In order to define a scaffold around a circle, we be-
gin by defining the distance from the obstacle to the lowest
scaffold layer. As mentioned above, we define the distance
between the obstacle and the vertices on the jth layer of the
scaffold as di,j . For a circular obstacle, the closest point of a
scaffold edge to the obstacle is the scaffold edge’s midpoint.
Thus, if we set this midpoint to be on the obstacle edge, we
can derive an equation for the di,1:

di,1 =
2ri

(2cos
(
2π
m

)
+ 2)

1
2

− ri (1)

Subsequent layers must have distances larger than di,1.
We can then define the kth point of the jth layer as:

vi,j,k =

[
(di,j + ri) ∗ cos(θi,j,k)
(di,j + ri) ∗ sin(θi,j,k)

]

θi,j,k = (k − 1) ∗ 2π
m

+ ((j − 1) mod 2) ∗ 2π

2m

(2)

The second term of the angle computation is used to give
each point a slight offset from those on the previous layer.
We can then define the set of edges to and from a given point.
We use the ⇀↽ operator to show that an edge exists. We con-
nect the points as follows:

When j is even:
vi,j,k ⇀↽ ∀v ∈ {vi,j−1,k, vi,j+1,k, vi,j−1,k+1,

vi,j+1,k+1, vi,j,k+1, vi,j,k−1}
(3)

When j is odd:
vi,j,k ⇀↽ ∀v ∈ {vi,j−1,k, vi,j+1,k, vi,j,k+1,

vi,j+1,k−1, vi,j,k−1, vi,j−1,k−1}
(4)

In all cases:
vi,j,0 = vi,j,m, vi,j,m+1 = vi,j,1 (5)

Edges to vertices where j = 0 and j = N + 1 are ob-
viously ignored as those vertices do not exist. A completed
circle scaffold is shown in Figure 1a. Note the circular obsta-
cle is inflated such that a robot can sit on any of the scaffold
points without colliding with the obstacle.

(a) Circular Scaffold (b) Rectangular Scaffold

Figure 1: Example scaffolds for geometric shapes. The num-
ber of layers is fixed to be 4 and the number of points per
layer is fixed to be 16.

Convex Polygon In order to define a scaffold around a
convex polygon, we first define the number of sides to be
s. We impose the constraint that the number of points per
scaffold layer, m, must be a multiple of s. We define the
corner points of the polygon to be p1, p2, . . . ps. The corners
of the ith edge are defined to be pi and pi+1 with the corners
of edge s being ps and p1. We also define the unit normals
of the sides and corners with n̂i representing the normal of
side i and n̂pi representing the normal vector at corner pi.
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In order to space the points evenly throughout the scaf-
fold, we divide the points evenly between the sides of the
polygon. There arem/s−s scaffold vertices associated with
each side and s vertices associated with the corners. For ex-
ample, a rectangle with 16 points per layer would have one
point on each layer associated with each corner and 3 points
per layer associated with each side.

If we associate vi,j,1 with p1, vertices are associated with
corner points when (k−1) mod (m/s) = 0 and with sides
otherwise where mod is the modulus operator. In order to
define the position of the vertices associated with the corners
or side, we first need to derive an expression for determining
which side a vertex is associated with based on its index k.
We will define the index of the side as κ. The corner points
associated with side κ are then pκ and pκ+1. The value of κ
is defined as follows:

κ = b(k − 1) ∗ s
m
c mod s+ 1 (6)

Where bc is the floor operator. The vertices associated
with a corner points have their positions defined as follows:

vi,j,k = pκ + di,j n̂pκ (7)

Where di,j is the distance of that layer from the obstacles
and the di,1 = 0. We also define the position of the points
associated with each side as follows:

λi,j,k =
k − 1−m(j − 1)− m

s (κ− 1)

m/s

vi,j,k = λi,j,k||pκ+1 − pκ||+ pκ + di,j n̂j

(8)

Where λi,j,k represents the fraction along the line that the
vertex covers. Using this notation, we can define set set of
edges to and from a given scaffold vertex. We connect each
vertex to the adjacent vertices.

vi,j,k ⇀↽ ∀v ∈ {vi,j−1,k, vi,j+1,k, vi,j+1,k−1,

vi,j+1,k+1, vi,j,k−1, vi,j,k+1, vi,j−1,k−1, vi,j−1,k+1}
(9)

As before, in all cases:
vi,j,0 = vi,j,m, vi,j,m+1 = vi,j,1 (10)

Again edges to vertices where j = 0 and j = N + 1 are
ignored. A completed scaffold for a rectangle is shown in
Figure 1b. Note the obstacle is inflated such that a robot can
sit on any of the scaffold points without colliding with the
obstacle.

Navigation and Planning with Scaffolds
In this section, we examine how to incorporate scaffold
graphs into path planning algorithms. As with other PRM
approaches designed to be used in dynamic environments,
we partition the obstacles into two sets, static obstacles and
dynamic obstacles. The static obstacles, those with a fixed
location, are the only ones taken into account when generat-
ing the initial roadmap. Up until this point, we have only dis-
cussed using this approach with PRM. In practice, the scaf-
folds can be added to any roadmap based graph. This initial
graph could be generated using a PRM variant, or it could
be generated using a different roadmap approach such as a
fixed grid or a Voronoi decomposition. Because the method
used to generate the roadmap does not affect the application

of the roadmap, we instead focus on defining an algorithm
for updating the graph with the scaffold points. In order to
define an initial approach to combining the graphs, we first
review the primitive functions used in RRT and PRM and
we then define a naı̈ve graph update algorithm.

Primitive Functions
The existing PRM and RRT approaches rely on several prim-
itive functions. These are sampling, nearest neighbor, near
vertices, steering, and a collision test. These are well de-
scribed in the literature but we will review the two used in
the scaffolding approach.

Near Vertices: The Near(G, p, r) method returns the set
of vertices that are within a given distance of a particular
point. It takes as input a graph G, a point in space p, and a
positive real number r. It returns the set of all vertices v ∈ V
that are within r of the specified point p.

Collision Test: The CollisionFree(p1, p2) method
returns a boolean that indicates if the line segment between
p1 and p2 does not collide with any obstacles.

Graph Update
We separate the graph update into two steps. First, the scaf-
fold points and edges are added to the static graph, then any
edges that are blocked are invalidated.

The scaffold points are inserted into the graph in the same
way new points are added when generating a roadmap us-
ing sPRM. Each point is connected to all of the other points
within a certain range of it as long as the line between the
two points does not collide with an obstacle. Algorithm 1
presents the procedure for inserting a scaffold into the static
graph.

Algorithm 1 SCAFFOLD INSERTION

1: procedure INSERTSCAFFOLD(G,Si)
2: Input: Roadmap Graph G and scaffold graphs Si
3: Output: Updated graph G that contains the scaffold

points and edges
4: for all v ∈ Vi do
5: neighbors← Near(G, v, Max Edge Length)
6: for all vnear ∈ neighbors do
7: if CollisionFree(v, vnear) then
8: Add edge from v to vnear
9: Append Vi to V

10: for all e ∈ Ei do
11: Add e to E

Finally, we define the method that invalidates the blocked
edges. We perform this invalidation by setting the a indica-
tor for edges that are blocked by dynamic obstacles. As men-
tioned above, an edge is defined by a tuple e = 〈v1, v2, a〉.
We use v1,e, v2,e and ae to refer to the tuple values for a par-
ticular edge e. In order to update the graph, we check each
edge to see if it collides with an obstacle. This is done by
calling the CollisionFree primitive for each edge.

Note this approach can be further optimized and is part of
our ongoing research.
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(a) Path Quality, Open Box (b) Path Quality, Wall (c) Path Quality, Narrow Passage

Figure 2: Path quality over the number of vertices in the base graph for the fixed configurations.

Experimental Methodology
In order to evaluate our approach, we compare it against
an existing PRM approach, specifically sPRM. We evaluate
performance in a number of specific obstacle configurations
as well as random field configurations. These configurations
consist of a partial box, a narrow opening and a wall. While
these configurations are not going to occur during the course
of a RoboCup match, they are used to showcase the behavior
of the scaffolds in traditionally challenging configurations.
In each case, we evaluated each algorithm with randomly
generated goal locations. We used a standard size RoboCup
SSL field (6m by 9m) and standard sized robots (15cm in
diameter) for all of our experiments. Note, robots are con-
sidered dynamic obstacles. The static obstacles considered
in these experiments are the edges of the field. The fixed
configurations are shown in Figure 3.

(a) Open
Box (b) Wall

(c) Narrow
Passageway

Figure 3: Obstacle layouts. The start point is shown in green.
The obstacles are shown in red.

In order to directly compare scaffolding and sPRM, we
create a base random graph of varying granularity ranging
from 100 vertices to 2500 vertices. This graph is used for
both approaches. We then add a number of vertices to the
sPRM graph such that it has the same number of vertices as
the base graph with the scaffolds added. We then compare
the mean path lengths for both cases. A particular trial is
only included in the mean calculation if solutions are found
for both the scaffold PRM and sPRM graphs. For the fixed
configurations we ran 100 trials at each level of granularity.

Preliminary Results and Conclusions
Figure 2 shows the path quality over the number of vertices
for each configurations. The dotted lines and shaded areas
represent 95% confidence intervals. In all three cases, the
variance and mean starts significantly higher for the scaf-
folding approach than for sPRM but decreases as the num-
ber of vertices increases. For the open box and wall config-
urations, the found solutions for graphs with more than 700
vertices are significantly better for the scaffold approach. For
the narrow pathway configuration, the scaffolding approach
performs essentially the same as the sPRM approach. We
believe these results can be attributed to the fact that the op-
timal path for the open box and wall configurations involves
traversing obstacles whereas the optimal path for the narrow
passageway that we constructed does not.

In addition to examining the path quality, we tabulated the
amount of time it took to update the roadmap and find a path
from the start to the goal. Over all of the cases, the update
time with the scaffold took an average of 1.72 times as long
as without. We are actively working on a more computation-
ally efficient insertion algorithm that we believe will reduce
the graph update time. In addition. there are a number of
inefficiencies in our implementation and optimizations that
we can make to further reduce the difference between update
times.

We believe these preliminary results demonstrate that the
scaffold graph approach provides an advantage over simply
using a PRM graph in dynamic environments with known
dynamic obstacle shapes. If the update time can be reduced,
the scaffold approach presented here should provide benefits
in RoboCup SSL and other similar domains.

In the future, we would like to extend the scaffold defi-
nition to additional obstacle shapes. In particular, we want
to use the distance transform to define scaffolds around ar-
bitrary shapes. We would also like to extend the notion of
scaffolds to higher dimensional spaces as we believe this
approach could assist with manipulation in cluttered envi-
ronments and with multi-agent path planning in two dimen-

51



sional spaces.
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Abstract

Building large-scale, globally consistent maps is a challeng-
ing problem, made more difficult in environments with lim-
ited access, sparse features, or when using data collected by
novice users. For such scenarios, where state-of-the-art map-
ping algorithms produce globally inconsistent maps and re-
quire additional data collection, we introduce a systematic
approach to incorporating sparse human corrections, which
we term Human-in-the-Loop Simultaneous Localization and
Mapping (HitL-SLAM). Given an initial factor graph for pose
graph SLAM, HitL-SLAM accepts approximate, potentially
erroneous, and rank-deficient human input; infers the in-
tended correction via expectation maximization (EM); back-
propagates the extracted corrections over the pose graph; and
finally jointly optimizes the factor graph including the hu-
man inputs as human factor terms, to yield globally consis-
tent large-scale maps. We thus contribute an EM formulation
for inferring potentially rank-deficient human corrections to
mapping, and human factor extensions to the factor graphs
for pose graph SLAM that result in a principled approach to
joint optimization of the pose graph while simultaneously ac-
counting for multiple forms of human correction. We present
empirical results showing the effectiveness of HitL-SLAM at
generating globally accurate and consistent maps even when
given poor initial estimates of the map.

1 Introduction
Accurate metric mapping of environments is essential for
autonomous mobile robot function. For a variety of reasons,
including operator inexperience, sensor limitations, large
or time-sensitive environments, and algorithmic limitations,
generating accurate metric maps from data collected over
a single deployment may require more resources than are
available. Furthermore, it may be impossible or prohibitively
expensive to improve the map with data collected by re-
deploying the robot. In these instances, we propose a gen-
eral human-in-the-loop framework, along with a specific al-
gorithm, which dramatically improves map accuracy while
requiring limited additional compute resources and impos-
ing minimal constraints on the human.

The goal of Human-in-the-Loop SLAM (HitL-SLAM) is
to leverage a human’s ability to outperform state-of-the-art
algorithms in the data association problem, in order to con-
struct more accurate maps. Moreover, humans often have
meta-knowledge about an environment that presently far ex-

ceeds most robot learning capabilities. Allowing humans to
endow robots with this knowledge can greatly increase robot
capabilities and is necessary in certain cases where resources
are constrained. Additionally, the information sharing be-
tween robot and human necessitates a method for gathering
and evaluting human input which is robust to human error
and requires minimal user effort. Fig. 1 presents an example
of HitL-SLAM in practice.

a)

b)

Figure 1: Before and after maps of a floor in our department.
Observations are shown in orange, and poses are shown as
black arrows. a) initial map with no loop closure and no hu-
man constraints. b) the final map produced by HitL-SLAM.
Poses which are involved in one or more human constraints
are shown in blue.

In this paper we present three contributions. First, a prin-
cipled framework for dealing with human input motivated by
both functional and theoretical considerations, which allows
the human to efficiently convey their knowledge. Second,
an algorithm for constructing human factors and performing
joint factor graph optimization, which we use to solve HitL-
SLAM. And third, a 2-stage SLAM backend, which uses a
combination of analytical and numerical techniques to pro-
duce globally consistent maps with minimal distortion in the
presence of rank deficient contraints.

HitL-SLAM is an iterative process, wherein the human
and robot alternate proposing the most likely map. The robot
operates on poses in a factor graph and displays the result-
ing map, while the human operates on the observations and
those operations are translated to factors in the factor graph.
The key idea is that humans impose constraints more natu-
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rally by relating observations instead of the underlying poses
since they are more likely to be knowledgeable about the
structure of the observations rather than the poses. Our pro-
posed approach thus consists of the following steps:

1. Extract Likely Input: Use EM (Dempster, Laird, and Ru-
bin 1977) to decide the most likely parameters of human
input (Section 4).

2. Establish Initial Estimate: Use COP-SLAM (Dubbelman
and Browning 2015) to find a piece-wise optimal initial
estimate. (Section 5a)

3. Solve Optimization Problem: Construct human factors
and jointly solve a non-linear least-squares optimization
problem. (Section 5b)

To the best of our knowledge, we present the first algo-
rithm and framework for incorporating human input into the
optimization of a pose-graph. Our approach is evaluated us-
ing a series of tests designed to measure the accuracy and
scalability of HitL-SLAM. We find that HitL-SLAM is able
to produce highly accurate maps in a variety of scenarios,
and requires less time than it would take to re-deploy the
robot over the same map.

2 Related Work
Solutions to robotic mapping and SLAM have improved
dramatically in recent years, but a significant gap between
state-of-the-art fully autonomous systems and the require-
ments for robust, large-scale deployment still exists, due
in part to the difficulty of the data association problem
(Dissanayake et al. 2011; Bailey and Durrant-Whyte 2006;
Aulinas et al. 2008; Thrun and others 2002). The notion that
humans and robots can or should collaborate in map building
is not new, and has given birth to a field known as Human-
Augmented Mapping (HAM).

Most work within HAM can be thought of as belong-
ing to one of two groups, depending on whether the hu-
man and robot are conjunctive in time and space during ex-
ploration (C-HAM), or whether the human enters the loop
remotely or after the fact (R-HAM). Many C-HAM tech-
niques exist to address semantic (Nieto-Granda et al. 2010;
Christensen and Topp 2010) and topological (Topp and
Christensen 2006) mapping. A number of approaches have
also been proposed for integrating semantic and topological
information, along with human trackers (Milella et al. 2007)
and interaction models (Topp et al. 2006), into conceptual
spatial maps (Zender et al. 2007), which are typically orga-
nized in a hierarchical manner.

There are two major weaknesses implicit in these C-HAM
approaches. First, a human must be present with the robot
during exploration. This places physical constraints on the
type of environments which can be mapped, as they must
be accessible and traversable by a human. Second, these
methods are inefficient with respect to the human’s atten-
tion, since most of the time the human’s presence is not crit-
ical to the robot’s function, for instance during navigation
between waypoints. These approaches, which focus mostly
on semantic and topological mapping, also typically assume
that the robot is able to construct a nearly perfect metric map

entirely autonomously. While this is reasonable for small en-
vironments, metric mapping of large, dynamic spaces is still
an open research question.

In contrast, most of the effort in R-HAM has been con-
centrated on either incorporating humans into the loop dur-
ing deployment in order to teleoperate and gain situational
awareness such as in the Urban Search and Rescue (USAR)
problem (Murphy 2004; Nourbakhsh et al. 2005), or to
do high level decision making such as goal assignment
or coordination of multiple agents (Olson et al. 2013;
Parasuraman et al. 2007; Doroodgar et al. 2010). Some R-
HAM techniques for metric mapping and pose estimation
have also been explored, but these involve either having the
robot retrace its steps to fill in parts missed by the human
(Kim et al. 2009) or by having additional agents and sensors
in the environment (Kleiner, Dornhege, and Dali 2007), nei-
ther of which is efficient.

Ideally, a robot could explore an area only once with no
need for human guidance or input during deployment, and
later with minimal effort, a human could make any correc-
tions necessary to achieve a near-perfect metric map. This is
precisely what HitL-SLAM does, and it is worth noting that
the HitL-SLAM framework and algorithm place no restric-
tions on the temporal or spatial conjunctivity of the human
and robot.

3 Human-in-the-Loop SLAM
HitL-SLAM operates on a factor graph G defined as a set
of poses X representing estimated poses along the robot’s
trajectory, and a set of factors F = {R,H}, which encode
information about both relative pose constraints arising from
odometry and observations, R, and constraints supplied by
the human, denoted H . In this report, the initial factor graph
G0 provided by our SLAM front-end, Episodic non-Markov
Localization (EnML) (Biswas and Veloso 2014) , does not
contain any loop closure information beyond the length of
the episode specified by EnML. However, HitL-SLAM is
capable of handling constraints in G0 with or without loop
closure.

HitL-SLAM runs iteratively, with the human specifying
constraints on observations in the map, and the robot then
enforcing those constraints along with all previous con-
straints to produce a revised estimate of the map. Since hu-
mans often enter only approximately correct input given a
desired effect, some interpretation of the human input is
necessary before human constraints can be computed and
added to the factor graph. Formally, we say the robot first
proposes an initial graph Gi = {Xi, Fi}, the human then
supplies a set of correction factors Hi, and finally the robot
re-optimizes the poses in the factor graph, producing G′i =
{X ′i, Fi ∪Hi}.

Each iteration of HitL-SLAM proceeds in two steps,
shown in Fig. 2. First, the human input is gathered, inter-
preted, and a set of human correction factors are instan-
tiated. Second, a combination of analytical and numerical
techniques is used to jointly optimize the factor graph using
the human correction factors and the relative pose factors,
producing the final map.
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Figure 2: Flow of information during processing of the ith
human input. Block 1 (yellow) outlines the evaluation of hu-
man input, and block 2 (purple) outlines the factor graph
construction and optimization processes. Note that the joint
optimization process optimizes both pose parameters and
human constraint parameters.

When interpreting human input, we define hu-
man correction factors h ∈ H as tuples h =
{Pa, Pb, Sa, Sb, Xa, Xb,m}, where Pa and Pb are sets
of points in RN (for N-dimensional HitL-SLAM) specified
by the human. Sets Sa and Sb are subsets of all observations
S and contain observations which are near the features
defined by Pa and Pb, respectively. Xa and Xb are subsets
of the poses X1:t, where a given pose x ∈ Xa if there
are observations in Sa which originate from x. Xb is
defined analogously. m ∈ M defines the geometry of the
constraints the human is enforcing over the observations,
such as colocation, colinearity, perpendicularity, etc.

We frame the problem of interpreting human input as
finding the observation subsets Sa, Sb and human input sets
Pa, Pb which maximize the joint correction input likelihood,
p(Sa, Sb, Pa, Pb|P 0

a , P
0
b ,m), which is the likelihood of se-

lecting observation sets Sa, Sb and point sets Pa, Pb, given
initial human input P 0

a , P
0
b and correction mode m. To find

Sa, Sb and Pa, Pb we use the sets P 0
a , P

0
b and observations

in a neighborhood around P 0
a , P

0
b as initial estimates in an

Expectation Maximization approach, detailed in Section 4.
As the pose parameters are adjusted during joint optimiza-
tion in later iterations of HitL-SLAM, the locations of points
in Pa, Pb may change, but once an observation is established
as a member of Sa or Sb its status is not changed.

Once Pa, Pb and Sa, Sb are determined for a new con-
straint, then givenm we can find the set of posesX∗1:t which
best satisfy all given constraints. We first compute an ini-
tial estimate X0

1:t by analytic back-propagation of the most
recent human correction factor, considering sequential con-
straints in the pose-graph. Next, we construct and solve a
joint optimization problem over the relative pose factors f
and the human correction factors h. This amounts to finding
the set of poses X∗1:t which minimize the sum of the cost of
all factors,

X∗1:t = argminX1:t



|R|∑

i=1

cr(ri) +

|H|∑

j=1

cm(hj)


 , (1)

where cr : R → R computes the cost from relative pose-

graph factor ri, and cm : Hm → R computes the cost from
human correction factor hj with correction modem. Section
5 covers the construction of the human correction factors
and the formulation of the optimization problem.

4 Evaluating Human Input
Human Input Interface
Although the specifics of how Pa, Pb, and m are input
are not relevant mathematically, we outline the input inter-
face here for concreteness and clarity going forward. HitL-
SLAM users provide input by first entering the ‘provide
correction’ state by holding down a set of keys (SHIFT +
CTRL) and left clicking. Once in the ‘provide correction’
state, they enter points for Pa, Pb by clicking and dragging
along the feature (line segment) they wish to specify. The
mode m is determined by which key is held down during
the click and drag. For instance, CTRL alone maps to colo-
cation, while SHIFT alone maps to colinear. To finalize their
entry, the user exits the ‘provide correction’ state with the
same command they used to enter it. Exit from the ‘provide
correction’ state triggers the algorithm in full, and the user
must wait until a revised version of the map is presented in
order to specify additional corrections.

Human Input Evaluation
Because humans do not have perfect control of a mouse or
touch screen, what the human actually enters and what they
intend to enter may differ slightly. We formulate the prob-
lem of evaluating human input as finding the sets Sa, Sb

and Pa, Pb which the human most likely meant to identify
(Sa, Sb) and provide (Pa, Pb), given the observations S and
the initial human input P 0

a and P 0
b . To do this we use the EM

algorithm, which maximizes the log likelihood
∑

i

∑

zi

p(zi|si, θold) log(p(zi, si|θ)), (2)

where the parameters θ = {Pa, Pb} are the human input,
the si ∈ S are the observations, and the latent variables zi
are indicator variables denoting the inclusion or exclusion
of si from Sa or Sb. The expressions for p(zi|si, θold) and
p(zi, si|θ) come from a generative model of human error
based on the normal distribution,

p(zi|si, θ) =
1√
2σ2π

exp
(
− (si − f(si, θ))2

2σ2

)
. (3)

Here, σ is the standard deviation of the human’s accuracy
when specifying points with the mouse, and f(si, θ) is a dis-
tance function which evaluates the distance between a given
observation si and the feature parameterized by θ. Since all
modes m in this study can be specified by one or more line
segments and p(zi|si, θ) is convex, then if we define f(θ)
as the distance between the specified line segment and the
given observation si, the EM problem reduces to iterative
least-squares fitting over a changing subset of S which oc-
cur near the latest estimates for Pa, Pb.

Once the initial Pa, Pb have been determined, along with
observations Sa, Sb, we can find the poses responsible for
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those observations Xa, Xb, thus fully defining the human
correction factor h. To make this process more robust, a
given pose is only allowed in Xa or Xb if there exist a mini-
mum of Tp elements in Sa or Sb corresponding to that pose,
where Tp is a threshold related to observation density.

5 Solving HitL-SLAM
Initializing Human Corrections
HitL-SLAM allows three types of constraints. More compli-
cated data associations may be constructed from a combina-
tion of the following:

1. Colocation: A full rank constraint specifying that two sets
of observations are colocated.

2. Colinearity: A rank deficient constraint specifying align-
ment of two sets of observations along a single translation
direction, as well as orientation.

3. Co-orientation: A rank deficient constraint specifying
only orientation relationships.

Although the user may select sets of observations in any
order, we define Pa to be the input which selects observa-
tions Sa arising from poses Xa such that ∀xi ∈ Xa and
xj ∈ Xb, i < j, where Xb is defined analogously by obser-
vations Sb specified by input Pb. That is, all poses xi ∈ Xa

occur before all poses xj ∈ Xb.
Given Pa and Pb, we find the affine transformation A

which transforms the constellation Pb to the correct location
relative to constellation Pa, as specified by mode m. If the
correction mode is rank deficient, we force the motion of the
observations as a whole to be zero along the null space di-
mensions. For co-orientation, this means that the translation
components ofA are zero, and for colinearity the translation
along the axis of colinearity is zero. To be clear, this does
not mean that any given point pi ∈ Pb will not experience
motion along one or more null dimensions. Only the motion
of the center of mass of the constellation is constrained in
this way. Fig. 3 shows the effect of applying different types
of constraints to a set of point clouds. Note that the rank de-
ficient constraints do not produce motion of the point cloud
as a whole along the null space dimensions.

After finding A we then consider the poses in Xb to con-
stitute points on a rigid body, and transform that body by
A. The poses xk such that ∀xj ∈ Xb, k > j, are treated
similarly, such that the relative transformations between all
poses occurring during or after Xb remain unchanged.

IfXa∪Xb does not form a contiguous sequence of poses,
then this explicit change creates at least one discontinuity
between the earliest pose in Xb, xb0 and its predecessor, xc.
We define affine transformation C such that xb0 = AcbCxc,
where Acb was the original relative transformation between
xc and xb0. Given C, and the pose and covariance estimates
for poses between Xa and Xb, we use COP-SLAM over
these intermediate poses to transform xc without inducing
further discontinuities.

The idea behind COP-SLAM is essentially a covariance-
aware distribution of translation and rotation across many
poses, such that the final pose in the pose-chain ends up at
the correct location and orientation. The goal is to find a set

(a) Original Map

(c) Colinear

(d) Co-orientation (Parallel)

(b) Colocation

Figure 3: Result of transforming observation point clouds
based on different human constraints, showing (a) Original
map, (b) Colocation constraint, (c) Colinear constraint, (d)
Co-orientation constraint. In all subfigures Pa and Pb are
given by the red and blue lines, respecively. Sa and Sb are
shown as the red and blue point clouds. S \ (Sa∪Sb) appear
in orange.

of updates U to the relative transformations between poses
in the pose-chain such thatC =

∏n
i=1 Ui. An approximation

could of course be to take the nth root of C, but COP-SLAM
achieves piece-wise optimality with respect to transforma-
tion magnitude normalized by covariance, by weighting the
magnitude of the update rotations and translations according
to the inverse covariance.

COP-SLAM has two primary weaknesses. First, it re-
quires uncertainty estimates to be isotropic, which is not true
in general. Second, COP-SLAM deals poorly with nested
loops, where it initially produces good pose estimates but
during later adjustments may produce inconsistencies be-
tween observations, since COP-SLAM is not able to simul-
taneously satisfy both current and previous constraints. Be-
cause of these issues, we use COP-SLAM as an initial esti-
mate to a non-linear optimization problem, which produces
a more robust, globally consistent map.

HitL-SLAM Optimization
Without loop closure, a pose-chain of N poses has O(N)
factors. With most loop closure schemes, each loop can be
closed by adding one additional factor per loop. In HitL-
SLAM, the data provided by the human is richer than most
front-end systems, and reflecting this in the factor graph
could potentially lead to a prohibitively large number of
factors. If |Xa| = n and |Xb| = m, then a naive algo-
rithm which adds a factor between every pair (xi, xj), where
xi ∈ Xa and xj ∈ Xb, would add mn factors every loop.
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This is a poor approach for two reasons. One, the large num-
ber of factors can slow down the optimizer and potentially
prevent it from reaching the global optimum. And two, this
formulation implies that every factor is independent of every
other factor, which is incorrect.

Thus, we propose a method for reasoning about human
correction factors jointly, in a manner which creates a con-
stant number of factors per loop while also preserving the
structure and information of the input. Given a human cor-
rection factor h = {Pa, Pb, Sa, Sb, Xa, Xb,m}, we define
cm as the sum of three residuals, Ra, Rb, and Rp. The defi-
nitions of Ra and Rb are the same regardless of m:

Ra =
(∑|Sa|

i=1 δ(s
a
i , Pa)

|Sa|
) 1

2

, Rb =
(∑|Sb|

i=1 δ(s
b
i , Pb)

|Sb|
) 1

2

.

(4)
Here, δ(s, P ) denotes the squared Euclidean distance from
observation s to the closest point on the feature defined by
the set of points P . All features used in this study are line
segments, but depending on m, more complicated features
with different definitions for δ(s, P ) may be used. Ra im-
plicitly enforces the interdependence of different xa ∈ Xa,
since moving a pose away from its desired relative location
to other poses in Xa will incur cost due to misaligned obser-
vations. The effect on Xb by Rb is analogous.

Xi Xj Xk

XlXmXn

OjkOij

Omn Olm

Zij

Zik

Zjk

ZlmZmn

Zln

Zi-1,j

Zl-1,m

Zj,k+1

Zm,n+1

Ra

Rb

Rp Pa
Pb

h

Figure 4: Subset of a factor graph containing a human fac-
tor h. Factors Ra and Rb drive observations in Sa and Sb

toward features Pa and Pb, respectively. Factor Rp enforces
the geometric relationship between Pa and Pb. Note that pa-
rameters in Xa (blue poses) and Xb (red poses) as well as
Pa and Pb are jointly optimized.

The relative constraints between poses in Xa and poses
in Xb are enforced indirectly by the third residual, Rp. De-

pending on the mode, colocation (+), colinearity (−), co-
orientation parallel (‖), co-orientation perpendicular (⊥), the
definition changes:

R+
3 = K1||cmb − cma||+K2(1− (n̂a · n̂b))

R−3 = K1||(cmb − cma) · n̂a||+K2(1− (n̂a · n̂b))
R
‖
3 = K2(1− (n̂a · n̂b))

R⊥3 = K2(n̂a · n̂b)

(5)

Here, cma and cmb are the centers of mass of Pa and Pb,
respectively, and n̂a and n̂b are the unit normal vectors for
the feature (line) defined by Pa and Pb, respectively.K1 and
K2 are constants that determine the relative costs of trans-
lational error (K1) and rotational error (K2). The various
forms of Rp all drive the constellation Pb to the correct lo-
cation and orientation relative to Pa. During optimization
the solver is allowed to vary pose locations and orientations,
and by doing so the associated observation locations, as well
as points in Pa and Pb. Fig. 4 illustrates the topology of the
human correction factors in our factor graph.

6 Results
Evaluation of our method is carried out through two exper-
iments. First, we construct a data set by limiting the range
of our robot’s laser so that it sees a wall only when very
close. We then drive it around a room for which we have
ground truth. This creates sequences of “lost” poses through-
out the pose-chain which have to rely purely on odometry to
localize, thus accruing error over time. We then impose hu-
man constraints on the resultant map and compare to ground
truth, shown in Fig. 5. HitL-SLAM finds a room width of
6.31m, while our hand measurement gives a width of 6.33m.
Additionally, HitL-SLAM produces opposite walls which
are within 1◦ of parallel. Note that due to the limited sen-
sor range, at no point are both walls simultaneously visible
to the robot. Thus, correctness must come from proper ap-
plication of human constraints to the “lost” poses between
wall observations.

For larger maps where exact ground truth was not avail-
able, we introduce a different metric for evaluation. We de-
fine the inconsistency Ii,j to be the area (or volume in 3D)
which observations from pose xi show as free space and ob-
servations from pose xj show as occupied space. Although
there are cases where inconsistency is not a useful metric, for
instance a map of a long hallway without loop closure may
be consistent even if it is severely bent and does not corre-
spond well to ground truth, it is often what humans look at
when evaluating a map and allows us to monitor the progress
of HitL-SLAM over multiple iterations. On average, the in-
consistency of the final map was reduced to 9% of its initial
value. This makes a compelling argument for the use of in-
consistency as a metric for evaluating maps, as well as a tool
to guide robots and humans when deciding what constraints
to impose on a given map to increase accuracy. Fig. 6 offers
some qualitative examples of our algorithm’s performance.

All maps shown in Fig. 6 were completed by the human
in under 15 mins, well within the time it would take to re-
deploy the robot and then run our localization algorithm on
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Figure 6: Initial and final maps from HitL-SLAM. Each map is of the same floor, and consist of between 600 and 700 poses. All
maps labeled a) are the initial maps, and all those labeled b) are the final maps. Observations are shown in orange and poses are
shown as arrows. Poses which are part of a human constraint are blue, while those which are not are in black. Note the varying
degree of degradation in each map; some took only a couple human inputs, while others required closer to 10. Our factor graph
formulation allows the optimizer to reach minima in roughly 30-40 seconds, even when there are hundreds of poses involved in
human constraints.

a) b)

Figure 5: Lost poses experiment. Observations are shown
in orange, poses are black arrows, and ground truth (walls)
is represented by the black lines. Poses involved in human
constraints are colored blue. The initial map is shown in a),
and the final map is shown in b).

both datasets to generate a new map from both deployments.
Furthermore, this data set contains 2 features which may not
be solved by re-deployment. One is a severely bent hallway,

in subfigure 1a), and the other is a sensor failure, in sub-
figure 4a) which caused the robot to incorrectly estimate its
heading by roughly 30 degrees between two poses about a
fifth of the way into its deployment. Combined, these results
show that incorporating human input into metric mapping
can be done in a principled, computationally tractable man-
ner, which allows us to solve some types of metric mapping
problems in less time and with higher accuracy than previ-
ously possible, at the expense of a small amount of human
input.

7 Conclusion

We present Human-in-the-Loop SLAM (HitL-SLAM), an
algorithm designed to leverage human ability and meta-
knowledge as they relate to the data association problem
for robotic mapping. HitL-SLAM contributes a generalized
framework for interpreting human input using the EM algo-
rithm, as well as a factor graph based algorithm for incor-
porating human input into pose-graph SLAM. Future work
in this area should proceed towards further minimizing the
human requirements, and extending this method for higher
dimensional SLAM and for different sensor types.
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Abstract

In robotics, automated task planning is still the exception
rather than the norm. While generating a plan certainly repre-
sents a crucial aspect, another often neglected one, in particu-
lar relevant to integration in robotics, is the task-level execu-
tive. It forms the coherent behavior out of the determined plan
to achieve the mission goals. This work presents first results
towards the integration of a knowledge-based plan executive.
This work is embedded in a project to generate guaranteed-
quality plans based on Satisfiability Modulo Theory (SMT) in
industrial scenarios. The initial prototype is integrated based
on the scenario of logistics robots in simulation.

1 Introduction
The goal of automated task planning is often considered
completed as soon as a plan has been generated. That no-
tion is carried, for example, by the International Planning
Competition. While this is certainly a crucial aspect, act-
ing according to the plan is another. Certainly so when it
comes to robotics scenarios where the goal is to facilitate a
certain function in a real (or simulated) environment, achiev-
ing goals according to a plan and monitoring that execution
are equally important. Furthermore, the integration of plan-
ning systems with the many other components that compose
a robotic system often proves to be challenging.

In this paper, we present two early developments in our
current research: first, we describe how to use a Satisfia-
bility Modulo Theory (SMT) solver with optimization as a
plan generator. Doing so, we intend to explore the possi-
bilities and limits leveraging the more expressive power of
SMT to solve a real-world scenario. State-of-the-art solvers
offer more features than just solving constraints expressed
in expressive theories. For instance, some solvers allow in-
cremental solving where constraints about task feasibility
can be updated; others instead offer optimization features
allowing to state and solve (multiple) optimization prob-
lems (it should be noted that SMT solvers can handle prob-
lems which cannot be handled by traditional linear opti-
mization tools, as Boolean combinations of constraints can
be present). Therefore, a crucial point is to make use of
these optimization capabilities to not only synthesize feasi-
ble plans, but guaranteed-quality solutions (i.e., optimal) for
plans involving arbitrary combinations of theories. Second,
we build on our existing incremental task-level reasoning

system (Niemueller, Lakemeyer, and Ferrein 2013) based on
the CLIPS rule-based production system and extend it into a
knowledge-based plan executive that supports concurrency,
execution monitoring and (limited domain-specific) contin-
gency mitigation. It has been used before to model the full
scenario, from world modeling, decision making, and exe-
cution. However, the previous system required an extensive
modeling covering many situations and it always made the
decision for just the next action. No look-ahead strategy was
employed to plan for cooperation and anticipate the optimal
use of multiple robots on a single task.

The general evaluation scenario is the Planning Compe-
tition for Logistics Robots in Simulation (Niemueller et al.
2016a) which is based on the RoboCup Logistics League
(RCLL). For this first prototype, we focus on the Explo-
ration Phase, where robots need to identify the positions of
machines in the environment in a limited time. The task is
then to efficiently distribute the overall task to the group of
three robots. While this phase is not part of the simulation
competition, it provides a sufficient testbed to demonstrate
the overall prototype integration.

This work is embedded into a joint project1 that strives
to explore possibilities to employ SMT for optimizing the
logistics of autonomous robots in a smart factory. We build
on previous work of both involved research groups to create
an integrated system. We model the RCLL natively in SMT
in order to explore different encoding strategies in terms of
solving efficiency and to leverage its optimization capabili-
ties. Building on and extending our proven CLIPS-based ex-
ecutive allows to off-load some crucial run-time aspects like
monitoring and failure recovery, and to reason about sub-
problems and goals to achieve to reduce the computation re-
quirements of the SMT solving process. The executive is
also used in other projects with different planners.

In Section 2 we describe some general aspects concerning
plan execution and present the evaluation scenario in Sec-
tion 3. In Section 4 we describe the SMT-based planning
approach before explaining our CLIPS-based executive pro-
totype in Section 5. After describing some initial results in
Section 6 we conclude in Section 7.

1Optimizing the Performance of Robot Fleets in Produc-
tion Logistics Scenarios Using SMT Solving: https://ths.
rwth-aachen.de/research/projects/smt4robots/
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2 Plan Execution and Related Work
Following Verma et al. (2005b), a plan is specified as a series
of actions designed to accomplish a set of goals but not vi-
olate any resource limitations, temporal or state constraints,
or other operation rules. Desirable characteristics of a plan
are that it be valid, complete and optimal (or of high qual-
ity). Algorithms that can reason about achieving goals over
a future time period and in the face of various constraints are
called planners. As the authors pointed out, a plan usually
needs further specification and a system to execute the plan.
An executive is then a software component that realizes such
plans.

While planning certainly is combinatorially and compu-
tationally the more complex problem, execution of plans
is a very intricate one. It tends to be more platform-
and environment-specific than the planning part because the
models are often more detailed. For the planning model, the
tendency is to strip details to increase planning efficiency or
because it is irrelevant for generating the task pattern achiev-
ing the goal. Particular challenges may also be slack during
execution, or uncertainty, e.g., in travel times due to other
agents in the environment. In the multi-robot case, issues of
synchronization and mutual exclusion may be relevant.

While there is the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998) as a (somewhat) unified
planning language, there is no such generally accepted lan-
guage for execution. Planners do not even output in a com-
mon output format. Even if using PDDL as a common input
language, and yielding PDDL actions to execute, there is
most often additional non-uniform information along with
the plan that requires special processing, such as planning
times or metrics output.

Several execution systems have been proposed in the past.
Most executives mentioned in (Verma et al. 2005b) are asso-
ciated with a specific modeling language. For example, the
Universal Executive (Verma et al. 2006) is a general proces-
sor for the PLEXIL (Verma et al. 2005a) language. It allows
to describe the execution flow as a number of hierarchically
structured nodes consisting of a set of conditions when to
execute and a body that describes what to execute. The Uni-
versal Executive then ties these descriptions with interfaces
to actual actors. While PLEXIL is more of a control lan-
guage, Procedural Reasoning Systems (Ingrand et al. 1996)
lean more towards a knowledge-based representation with
an explicit fact base, a notion of goals to achieve or main-
tain, and activation conditions for procedures. An advantage
here is less constrained execution flow, however, this gain in
expressiveness may easily come with unintended execution
orders without the required caution. A more recent system
integrating planning and execution is ROSPlan (Cashmore
et al. 2015). It provides a general framework where the indi-
vidual components can be exchanged (with a varying degree
of effort). One of the available dispatchers uses a represen-
tation of the plan as an Esterel (Berry and Gonthier 1992)
program. There, a plan is described as a set of modules in-
terconnected with signals and receiver slots. However, at
this point the translation and execution is opaque and no in-
fluence can be exerted on the formulation of the program.
There is currently only a limited form of concurrency avail-

Figure 1: The simulation environment used for our experiments.

able. A slightly different approach that has been compared
to Esterel is RMPL (Ingham, Ragno, and Williams 2001).
Instead of a signal flow, it models the flow more as an evolu-
tion of states. Both provide primitives for sequential or par-
allel execution of code blocks, and conditionals. An earlier
system to provide an extensible PDDL-based planning sys-
tem was TFD/M with semantic attachments (Dornhege et al.
2009). However, the executive was a C++ program which
had to be augmented each time for the respective available
actions and did not provide a flexible specification language.
A more unified approach was recently taken through inte-
grating continual planning in Golog (Hofmann et al. 2016).
The overall domain model and execution specifics are en-
coded in Golog. For planning (sub-)problems the model is
translated into PDDL and a planner is called. The specifica-
tion contains assertions to deal with incomplete knowledge
and improve planning efficiency. However, the modeling in
Golog can be somewhat tedious and it is often deeply inter-
twined with its Prolog implementation.

In this work, we propose a new formulation of the execu-
tion as a rule-based system. With the experience of model-
ing the decision making, multi-robot coordination, and task
execution for the RoboCup Logistics League (Niemueller et
al. 2016b), we intend to generalize the framework to be ap-
plicable with various planning, reasoning, and decision mak-
ing components. By this we decouple planning from execu-
tion. This comes at the cost of linking two separate models
in a consistent way. However, it provides a great flexibility
for the executive to choose the appropriate planning system
and to add domain-specific interpretations of the plan easily.
The planning system we are going to study in more detail in
this paper is based on SMT and described in the following.

3 Logistics Robots in Simulation
The example domain chosen for our first integration is based
on the Planning Competition for Logistics Robots in Simu-
lation (Niemueller et al. 2016a) and the RoboCup Logistics
League (Niemueller, Lakemeyer, and Ferrein 2015). There,
the task is to control a group of three robots to transport
workpieces among a number of machines. These machines
offer processing steps such as mounting a colored ring or a
cap. Orders that denote the products which must be con-
structed with these operations are only posted at run-time
and therefore require quick planning and scheduling. Orders
come with a delivery time window introducing a temporal
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Figure 2: The SMT solving framework.

component into the problem. Furthermore, some machines
may undergo maintenance at unknown times at which they
may not be used. These aspects make this an integrated plan-
ning and execution challenge.

The original competition’s game is structured in two
phases, the exploration and the production phase. While the
latter constitutes the main part of the game, in this work we
focus on the former as a simpler scenario for this early proof-
of-concept work.

In the exploration phase, the robots must roam the envi-
ronment and determine where the team’s own machines are
positioned. For this, the playing field is divided into 24 vir-
tual zones, of which 12 belong to each of the two teams
(operating at the same time in the environment increasing
execution duration uncertainty considerably). In 6 of these
zones will be actual machines. Therefore, the task is to ef-
ficiently assign the three robots to the 12 zones, identify the
zones which contain a machine, and the precisely determine
the position of the machine and recognize a industrial light
signal for verification.

4 SMT-based Planning and Optimization
Satisfiability Modulo Theory (SMT) is the problem of de-
ciding the satisfiability of a first-order formula with respect
to some decidable theory T . In particular, SMT general-
izes the Boolean satisfiability problem (SAT) – see (Franco
and Martin 2009) for an overview – by adding expressive
background theories such as the theory of real numbers, the
theory of integers, and the theories of data structures (e.g.,
lists, arrays and bit vectors). The idea behind SMT is that
the satisfiability of a constraint network can be decided in
two steps, as shown in Figure 2. Given an input formula ϕ
in Conjunctive Normal Form (CNF), a Boolean abstraction
is first built, e.g., the formula

x ≥ y ∧ (y > 0 ∨ x > 0) ∧ y ≤ 0

is converted as follows

A ∧ (B ∨ C) ∧ ¬B
where A,B,C ∈ {0, 1} and “¬” is the symbol for Boolean
negation. A specialized Boolean satisfiability (SAT) solver
can now be invoked to compute an assignment that satis-
fies all the constraints. In the example above, A = 1, B =

0, C = 1 satisfies all the constraints. Notice that if no such
assignment exists, then the set of arithmetic constraints is
trivially unsatisfiable. The second step is to check the con-
sistency of the assignment in the corresponding background
theory. In our example, we therefore need to check whether
the system of linear inequalities

{
x ≥ y (A)
y ≤ 0 (¬B)
x > 0 (C)

is feasible, which is clearly the case here. Checking
that the Boolean assignment is feasible in the underly-
ing mathematical theory can be performed by a special-
ized reasoning procedure, i.e., SMT solvers like Z3 (de
Moura and Bjørner 2008), SMT-Rat (Corzilius et al. 2015),
MathSAT5 (Cimatti et al. 2013) and Yices2 (Dutertre
2014). If the constraints are consistent in the theory and
the SAT solver’s assignment is already complete then, a sat-
isfying solution (also called model) is found for the input
formula. If the consistency check fails the theory solver re-
turns an explanation for the conflict (i.e., the infeasible sub-
set of input constraints), then a new Boolean assignment is
requested and the SMT solver goes on until either an theory-
consistent Boolean assignment is found, or no more Boolean
assignments can be found.

Yet, determining whether a set of constraints is satisfiable
or not might not be sufficient, especially when planning is
involved. This problem being well recognized in the SMT
community, state-of-the-art solvers have introduced the pos-
sibility to state and solve optimization objective. Back to
our working example, we may want to find solutions that,
e.g., maximize y. Given our quantifier free formula ϕ and
the objective function f , we first compute and assignment
that satisfies ϕ (say, e.g., x = 3 and y = −2). Then, use this
assignment to compute a local optimum opt for f , which is
trivial in our case as our only objective is to maximize y.
Now, we can search for the next assignment that improves
the current solutions by feeding the solver with ϕ updated as
follows

ϕ← ϕ ∧ f > opt ∧ ¬(x = 3 ∧ y = −2)
Repeating this procedure discarding all previously com-

puted assignments will eventually lead to the assignment
y = 0.

Planning with SMT Solving
Over the last decade, SMT solvers have emerged as a core
technology in many areas that require analysis of large state
spaces – see (Ábrahám and Kremer 2016) for an overview.
This is because large, even infinite, sets of system states can
be compactly represented as formulas in first-order logic,
which may lead to improvements in the scalability of state
space analysis. Moreover, compared to traditional SAT
solvers, SMT solvers provide a more expressive interface
with useful features for expressing constraints in robotics
domains. For instance, Nedunuri et al. (2014) and Wang
et al. (2016) use an SMT solver to generate task and mo-
tion plans from a static roadmap, employing plan outlines to
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guide the planning process. Dantam et al. (2016) propose
an algorithm to perform task and motion planning which
leverages incremental solving in Z3 to update constraints
about motion feasibility. (Saha et al. 2014) present a motion
planning framework where SMT solving is used to combine
motion primitives so that they satisfy safety requirements
specified in linear temporal logic (LTL). SMTPlan (Cash-
more et al. 2016) takes a PDDL-based model for a hybrid
task and translates it into a SMT problem through a generic
transformation. In contrast, we aim to directly model prob-
lems using SMT. Especially when using optimization, more
direct control and possibly other ways of formulation that
are not action-based might allow for more tuning and better
results. SMTPlan could be used as a pre-processor to gen-
erate a SMT formulation which can then be modified and
improved , e.g., enriching it with more (potentially domain-
specific) constraints to increase efficiency.

The key differences between the works listed above and
ours are that i. we do not use additional knowledge (i.e., mo-
tion primitive, plan outlines) to seed the search performed by
the SMT solver ii. we exploit the optimization features of-
fered by solver to synthesize plans that are not only feasible,
but also optimal with respect to some criteria.

Encoding
Formal Description The planning task introduced in Sec-
tion 3 can be formalized as follows. For each robot i ∈
{1, 2, 3} and each step j ∈ {−3,M} belonging to the path
of robot i, posi,j = k states that robot i visits a potential
machine k in the j−th step of his plan. Note that loca-
tions −3,−2,−1 are used to represent the initial location
of each robot and 0 the start position. Furthermore, we in-
troduce a stop location −4 to represent the moment when a
robot does not move anymore, and di,j ∈ R to store the dis-
tance traveled by each robot until step j. Finally, let mi be
a Boolean variable used to represent the maximum over dis-
tances di,M ∀i. As our task is to identify all machines in
the environment within a time limit, we start by specifying
the optimization objectives as

minimize
3∑

i=1

mi ∗ di,M

minimize
3∑

i=1

di,M

so as to minimize the total traveled distance, while mini-
mizing the maximum distance traveled by each robot at the
same time. Our problem is then initialized according to the
following constraints:

posi,0 = 0 ∀i = 1, 2, 3

posi,−1 = −1 ∀i = 1, 2, 3

pos1,−3 = pos1,−2 = pos1,−1

pos2,−2 = pos2,−3 = pos3,−2 = −2
pos3,−3 = −3

di,0 = 0 ∀i = 1, 2, 3

The above constraints simply fix an order on the way
robots can start moving considering physical constraints

coming from their initial locations. Also, the cost of reach-
ing the start location is assumed to be 0. Once reached the
start location, each robot will start the exploration phase.
The choice of the first machined to be visited is modeled
according to

∀i = 1, 2, 3

M∨

k=1

[
posi,1 = k ∧ di,1 = dist(0, k)

]

meaning that for all robots i, the destination of the first
visit can be chosen among all k machines and the individual
cumulative distance needs to be updates accordingly. Suc-
cessive steps are modeled as follows

∀i = 1, 2, 3 ∀j = 2, ...,M

[ M∨

k=1

M∨

l=1
l 6=k

posi,j−1 = k ∧ posi,j = l ∧ di,j = di,j−1 + dist(k, l)

]

∨
[
posi,j = −4 ∧ di,M = di,j−1

]

where for all robots i and planning steps j (starting from
the second) a robot can either decide to move from machine
k to machine l and update the cumulative distance accord-
ingly, or to stop moving at all. In the latter case, the robot is
set to stop and the cumulative is not increased anymore.

In order to speed up the search for an optimal solution, we
enforce that each machine can be visited only once using

∀k = 1, ...,M

3∨

i=1

M∨

j=1

[
posi,j = k ∧

3∧

u=1

M∧

v=1

((i = u ∧ j = v) ∨ posu,v 6= k)

]

In short, this constraint encodes that if a robot i is visit-
ing a machine k in its j−th step, then for all other robots
u 6= i and respective planning steps v 6= j, machine k can-
not be visited. In order to encode max

i
di,M we specify the

following constraints

∀i = 1, 2, 3

[
mi = 0 ∨ (mi = 1 ∧

3∧

l=1
l6=i

dl,M < di,M )

]

which enforces that variable mi be set to true only if the
corresponding distance di,M is greater than other robots’.

Practical notes on the encoding The problem as de-
scribed above can be written in SMT-LIB format (Barrett,
Stump, and Tinelli 2010) and later fed to a solver. Variables
can be declared as follows

(declare-fun d_1_1 () Real)
(declare-fun pos_1_1 () Int)

while constraints can be asserted using prefix notation as

(assert (= (* pos_1_1 d_1_1) 3))

The optimization objectives introduced before can be
specified as

(minimize (+ (* m_1 d_1_12) ...))
(minimize (+ d_1_12 d_2_12 d_3_12))
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Notice that multiple optimization objectives are handled
differently by different solvers. Z3, the solver we used,
solves objectives in lexicographical order by default (other
strategies are allowed). This means that objectives are
solved in the order they are specified in the SMT-LIB file.
We can finally ask the solver to check whether the con-
straints are satisfiable by stating (check-sat).

If a model can be found, we can traverse it so as to collect
all variable assignments relevant to our plan. In our case, the
solution obtained will have elements of the form (pos 1 1
5). Converting such solution into a plan is now an easy task
as a result of how the problem was originally formulated.
Recall that the assignment posi,j = k states that robot i
visits machine k at the j−th step of its plan. Given that the
only action considered in this problem is move, the sample
solution above can be read as “the j−th action executed by
robot i is move to machine k”.

5 CLIPS-based Execution and Monitoring
The goal of our executive is to allow for a flexible formu-
lation of the plan execution that can work completely auto-
matic given a plan, but can be extended for monitoring the
execution and listening for events. The overall architecture
is depicted in Figure 3. The CLIPS executive controls the
overall execution. At a suitable time (when the game en-
ters the appropriate phase indicated by the referee box), it
triggers the SMT solving process to come up with a plan to
explore the machines and encodes the available knowledge
in a message. The solver queries travel times of the position
for exploration from a navigation graph and uses a domain
model phrased suitably for SMT. The result is then repre-
sented as a plan and sent to the CLIPS executive, which
must translate it into a native representation for execution.
This is then synchronized with all robots as part of the world
model. The robots then execute their respective partial plans
by invoking the appropriate basic behaviors through the be-
havioral and functional components of the Fawkes software
framework (BE represents the Lua-based Behavior Engine
that provides the basic skills to execute the plans, for details
see below). Only through this framework do the reasoning
systems interact with the simulation (which would make it
easy to replace this with actual robots later).

In the following, we are going to describe the CLIPS rules
engine which is used to implement the executive before de-
scribing the plan translation and execution in more detail.

CLIPS Rules Engine
CLIPS (Wygant 1989) is a rule-based production system
using forward chaining inference based on the Rete al-
gorithm (Forgy 1982). It has been used before for au-
tonomous robot reasoning (Niemueller, Lakemeyer, and
Ferrein 2013), knowledge-based instrumentation and con-
trol (Niemueller et al. 2016c), and inspired other systems
such as Jess (Friedman-Hill 1999). CLIPS consists of three
building blocks (Giarratano 2007): a fact base or work-
ing memory, the knowledge base, and an inference engine.
Facts are basic forms representing pieces of information in
the fact base. They usually adhere to structured types. The

CLIPSSMT

travel times

Model

RefBox

Robots

Simulator

TranslationRepresentation

BE ... ...

Fawkes

Figure 3: The overall architecture.

knowledge base comprises heuristic knowledge in the form
of rules, and procedural knowledge in the form of functions.
Rules are a core part of the production system. They are
composed of an antecedent and consequent. The antecedent
is a set of conditions, typically patterns which are a set of
restrictions that determine which facts satisfy the condition.
If all conditions are satisfied based on the existence, non-
existence, or content of facts in the fact base the rule is acti-
vated and added to the agenda. The consequent is a series of
actions which are executed for the currently selected rule on
the agenda, for example to modify the fact base. Functions
carry procedural knowledge and may have side effects. They
can also be implemented in C++. In our framework, we use
them to utilize the underlying robot software, for instance
to communicate with the reactive behavior layer described
below. CLIPS’ inference engine combines working mem-
ory and knowledge base performing fact updates, rule acti-
vation, and agenda execution until stability is reached and
no more rules are activated. Modifications of the fact base
are evaluated if they activate (or deactivate) rules from the
knowledge base. Activated rules are put onto the agenda.
As there might be multiple active rules at a time, a conflict
resolution strategy is required to decide which rule’s actions
to execute first. In our case, we order rules by their salience,
a numeric value where higher value means higher priority.
If rules with the same salience are active at a time, they are
executed in the order of their activation.

Planning and Plan Translation
To start planning, the information relevant to the planning
procedure must be encoded in a way accessible to the plan-
ning system. In this work, we have used Google Proto-
col Buffers2 (protobuf) to represent both, the initial plan-
ning situation as well as the resulting plan. Protobuf defines
a schema for messages (for an example cf. Listing 2, ex-
plained in more detail below) for which code can be gen-
erated for a variety of languages. It provides a convenient
transport, exchange, and storage representation that is easy
to create and read. It also has powerful introspection ca-
pabilities which are particularly useful for generic access
from typical reasoning systems, for example, the CLIPS-
based access requires only the definition files and not any

2https://developers.google.com/
protocol-buffers/
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1 (defrule production-call-clips-smt
2 (phase PRODUCTION)
3 (team-color ?team-color&CYAN|MAGENTA)
4 (state IDLE)
5 (not (plan-requested))
6 (test (eq ?*ROBOT-NAME* "R-1"))
7 =>
8 (bind ?p
9 (smt-create-data

10 (smt-create-robots ?team-color)
11 (smt-create-machines ?team-color)
12 (smt-create-orders ?team-color)
13 )
14 )
15 (smt-request "explore-zones" ?p)
16 (assert (plan-requested))
17 )

Listing 1: CLIPS rule to trigger planning.
1 message ActorGroupPlan {
2 repeated ActorSpecificPlan plans = 1;
3 }
4 message ActorSpecificPlan {
5 required string actor_name = 1;
6
7 oneof plan {
8 SequentialPlan sequential_plan = 2;
9 TemporalPlan temporal_plan = 3;

10 }
11 }
12 message SequentialPlan {
13 repeated PlanAction actions = 1;
14 }
15 message PlanAction {
16 required string name = 1;
17 repeated PlanActionParameter params = 2;
18 }
19 message PlanActionParameter {
20 required string key = 1;
21 required string value = 2;
22 }

Listing 2: Plan representation in protobuf.

pre-generated code. The rule to initiate the planning process
in shown in Listing 1. Here, once the game is started (ll. 2–
4), the first robot (l. 6) will create the data structure with the
relevant information (ll. 8–14, the smt-create-* calls are
functions) and request a plan from the SMT solver (l. 15).

The SMT side notifies the executive once the plan is ready
for retrieval. An excerpt of the message specifications for
plan representation is shown in Listing 2. First, a list of plans
that name a specific actor (robot) is defined in ll. 1–3. Lines
5–12 define such a plan. It names the actor for the plan and
either a sequential or a temporal plan (oneof clause). For
reasons of brevity, we focus on the sequential plan consisting
of a series of actions (ll. 14–16). An action is defined by
an operator name and a number of key-value pairs for the
arguments (ll. 18–26). An example plan for two robots with
two movements commands in shown in Listing 3.

Once the plan has been retrieved, it must be translated into
the native CLIPS representation, that is as facts in the work-

1 plans[0]:ActorSpecificPlan {
2 actor_name: "R-1"
3 sequential_plan:SequentialPlan {
4 actions[0]:PlanAction {
5 name: "move"
6 params[0]:PlanActionParameter {
7 key: "to"
8 value: "C-BS-I"
9 }

10 }
11 actions[1]:PlanAction {
12 name: "move"
13 params[0]:PlanActionParameter {
14 key: "to"
15 value: "C-DS-I"
16 }
17 }
18 }
19 }
20 plans[1]:ActorSpecificPlan {
21 actor_name: "R-2"
22 sequential_plan:SequentialPlan {
23 actions[0]:PlanAction {
24 name: "move"
25 params[0]:PlanActionParameter {
26 key: "to"
27 value: "C-CS1-I"
28 }
29 }
30 actions[1]:PlanAction {
31 name: "move"
32 params[0]:PlanActionParameter {
33 key: "to"
34 value: "C-RS2-I"
35 }
36 }
37 }
38 }

Listing 3: Plan represented through the messages from Listing 2
(shown in augmented JavaScript Object Notation).

ing memory. This translation in general is a straight-forward
one. But it may require a domain-specific mapping from ac-
tion names and parameters in the planner’s representation to
actions understood by the underlying base system. For ex-
ample, in our system the “move” skill is called “drive to”.
This conversion must be performed during translation of the
plan. Likewise, differences in action parameters might have
to be translated. Example facts for the translation of the plan
is shown in Listing 4.

The CLIPS representation denotes tasks as a number of
consecutive steps that must be executed sequentially. There
may be only a single task active per robot at a time. A step
then triggers the execution of a basic behavior. If it com-
pletes successfully, the next step is executed, until all have
been processed and the task is complete. If any of the steps
fails the task is considered to have failed.

Plan Distribution and Execution
Once the plan has been added to the working memory, it has
to be distributed to the robots for execution. In the current
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1 (task (task-id 1910) (robot "R-1") (name explore)

2 (state proposed) (steps 1911 1912))

3 (step (id 1911) (name drive-to) (state inactive)

4 (machine C-BS) (side INPUT)

5 (sync-id (next-sync-id)))

6 (step (id 1912) (name drive-to) (state inactive)

7 (machine C-DS) (side INPUT)

8 (sync-id (next-sync-id)))

Listing 4: Task representation in CLIPS.

version, we rely on the communication infrastructure other-
wise used to share world model updates among the robots.
It encapsulates fact base updates in protobuf messages and
broadcasts them to the other robots. A (dynamically elected)
master generates a consistent view and distributes it to the
robots. We deem the plans as being part of the world model.

On each robot, the CLIPS executive has rules that auto-
matically start new tasks. This happens once the plans have
been received as world model updates. Since the actor is
named in these plans, a robot will only ever execute its own
plan. Updates to the tasks (e.g., that a certain task is cur-
rently in progress) is again distributed in the world model
and hence the planning and execution instance remains in-
formed of the state of the plan execution.

Basic behaviors in the current framework are provided
by the Lua-based Behavior Engine (Niemueller, Ferrein,
and Lakemeyer 2009), but could principally be provided by
other sources, for example through ROS actions or the ROS-
Plan action dispatching mechanism. A step is executed by
triggering the start of the execution of a behavior, i.e., ex-
ecuting a skill is an instant non-blocking operation. Then,
information about the execution of the state is read and as-
serted in the working memory. Once it completes, a rule
fires that denotes a step to be finished.

Execution Monitoring
Especially in robotics, execution often does not go as
planned. Some actions may (and eventually some will) fail
or not entirely give the expected result, e.g., by misplacing
an object, or slack during execution could render a plan in-
valid, for example if a specified deadline cannot be made.

As described earlier, plans are translated into tasks and ac-
tions into steps of the task. Steps are invoked non-blocking,
i.e., rule evaluation continues normally. This can be used to
implement execution monitoring. Rule can be phrased iden-
tifying specific situations of interest where a step should be
skipped or a task being aborted.

6 Preliminary Results
Even though this work is in an early stage of development,
we have an initial fully integrated prototype. It is based on
the planning competition reference architecture and extends
it by a plugin to integrate the SMT-based planning function-
ality. Then, the existing code has been modified to call an
SMT component with the relevant information. This com-
ponent will generate a formula (according to Section 4), call
the Z3 solver, and translate and execute the resulting plan
with multiple robots in simulation. So far, we have used only

the generic capabilities of the executive and do not have, for
example, specific execution monitoring rules to react to un-
expected (yet foreseen) situations.

We have also integrated the executive with other reason-
ing system based on Answer Set Programming and PDDL-
based planning systems. However, work there is still in
an earlier stage preventing a comparison between the ap-
proaches at this time.

7 Conclusion
We have shown two bodies of work and their integration:
first, the CLIPS rules engine has been used to create a flex-
ible and expressive executive for plans. Second, an SMT-
based approach has been used to model and execute the task
planning and optimization in an explorative setting. These
two elements have been combined by exchanging informa-
tion through well-structured protobuf messages. The work
is in an early stage, but a fully working prototype has been
developed and the full system has been run and tested. The
executive is in control of the overall system and triggers the
planning process as necessary. Then, the resulting plan is
translated into a native representation, distributed among the
robots, and executed concurrently by the individual robots.

Future work will deal with extending the executive model
to be more flexible, complete and thoroughly test the inte-
gration with other reasoning approaches, and optimize and
compare the SMT-based planning approach with these.
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Deep Spatial Affordance Hierarchy: Spatial Knowledge Representation for
Planning in Large-scale Environments

Andrzej Pronobis, Francesco Riccio, Rajesh P. N. Rao∗

Abstract

Domain-specific state representations are a fundamental com-
ponent that enables planning of robot actions in unstructured
human environments. In case of mobile robots, it is the spatial
knowledge that constitutes the core of the state, and directly
affects the performance of the planning algorithm. Here, we
propose Deep Spatial Affordance Hierarchy (DASH), a prob-
abilistic representation of spatial knowledge, spanning mul-
tiple levels of abstraction from geometry and appearance to
semantics, and leveraging a deep model of generic spatial
concepts. DASH is designed to represent space from the per-
spective of a mobile robot executing complex behaviors in
the environment, and directly encodes gaps in knowledge and
spatial affordances. In this paper, we explain the principles
behind DASH, and present its initial realization for a robot
equipped with laser-range sensor. We demonstrate the ability
of our implementation to successfully build representations
of large-scale environments, and leverage the deep model of
generic spatial concepts to infer latent and missing informa-
tion at all abstraction levels.

1 Introduction
Many recent advancements in the fields of robotics and ar-
tificial intelligence have been driven by the ultimate goal of
creating artificial agents able to perform service tasks in real
environments in collaboration with humans (Aydemir et al.
2013; Hanheide et al. 2016). While significant progress have
been made in the area of robot control, largely thanks to the
success of deep learning (Levine et al. 2016), we are still far
from solving more complex scenarios that require forming
plans spanning large spatio-temporal horizons.

In such scenarios, domain-specific state representations
play a crucial role in determining the capabilities of the
agent and the tractability of the solution. In case of mobile
robots operating in large-scale environments, it is the spatial
knowledge that constitutes the core of the state. As a result,

∗A.Pronobis and R. Rao are with Computer Science &
Engineering, University of Washington, Seattle, WA, USA.
A. Pronobis is also with Robotics, Perception and Learn-
ing Lab, KTH Royal Institute of Technology, Stockholm,
Sweden. F. Riccio is with Dept. of Computer, Control, and
Management Engineering, Sapienza University of Rome,
Rome, Italy. {pronobis,rao}@cs.washington.edu,
riccio@diag.uniroma1.it. This work was supported by
the Swedish Research Council (VR) project SKAEENet.

the way in which it is represented directly affects the actions
the robot can plan for, the performance of the planning algo-
rithm, and ultimately, the ability of the robot to successfully
reach the goal. For complex tasks involving interaction with
humans, the relevant spatial knowledge spans multiple lev-
els of abstraction and spatial resolutions, including detailed
geometry and appearance, global environment structure, and
high-level semantic concepts. Representing such knowledge
is a difficult task given uncertainty and partial observability
governing real applications in human environments.

In this work, we propose Deep Spatial Affordance Hier-
archy (DASH, ref. Fig. 1), a probabilistic representation of
spatial knowledge designed to support and facilitate plan-
ning and execution of complex behaviors by a mobile robot.
The representation encodes the belief about the state of the
world. However, more importantly, it also provides infor-
mation about spatial affordances, i.e. the possibilities of ac-
tions on objects or locations in the environment. It does so
by leveraging a hierarchy of sub-representations (layers),
which directly correspond to a hierarchical decomposition of
the planning problem. The layers represent multiple spatial
knowledge abstractions (from geometry and appearance to
semantic concepts), using different spatial resolutions (from
voxels to places), frames of reference (allo- or ego-centric),
and spatial scopes (from local to global). The goal is to rep-
resent spatial knowledge in a way that directly corresponds
to how it will be utilized by the robot and its planning algo-
rithm.

DASH includes both instance knowledge about the spe-
cific robot environment as well as default knowledge about
generic human environments. The latter is modeled us-
ing a recently proposed Deep Generative Spatial Model
(DGSM) (Pronobis and Rao 2017). Specifically, DGSM
leverages recent developments in deep learning, provid-
ing fully probabilistic, generative model of spatial concepts
learned directly from raw sensory data. DGSM unifies the
layers of our representation, enabling upwards and down-
wards inferences about spatial concepts defined at different
levels of abstraction. Finally, DASH is designed to explic-
itly represent and fill gaps in spatial knowledge due to un-
certainty, unknown concepts, missing observations or unex-
plored space. This brings the possibility of using the rep-
resentation in open-world scenarios, involving active explo-
ration and learning.
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Semantic

Topological

Peripersonal

Perceptual

Fig. 1: The multi-layered architecture of Deep Spatial Af-
fordance Hierarchy. The perceptual layer integrates percep-
tual information from the robot sensors. The peripersonal
layer represents object and landmark information and af-
fordances in the space immediately surrounding the robot.
The topological layer encodes global topology and coarse
geometry and navigation action affordances. Finally, the se-
mantic layer relates the internal instance knowledge to hu-
man semantic concepts. The four layers are connected by
the probabilistic deep default knowledge model (shaded pur-
ple columns), which provides definitions of generic spatial
concepts and their relations across all levels of abstraction.

In this paper, we describe the general architecture of
DASH and present an initial realization of the representa-
tion for a mobile robot equipped with a laser range sensor.
We perform a series of experiments demonstrating the abil-
ity of the representation to perform different types of infer-
ences, including bottom-up inferences about semantic spa-
tial concepts and top-down inferences about geometry of the
environment. We then showcase its ability to build semantic
representations of large-scale environments (e.g. floors of an
office building).

We begin the presentation of DASH with a description of
the scenario, an analysis of roles and desired properties of a
spatial knowledge representation (Sec. 2). Then, we describe
the architecture of DASH (Sec. 3), present its initial realiza-
tion (Sec. 4) and describe the details of the deep generative
model of default spatial knowledge (Sec. 5). We follow with
the experimental evaluation in Sec. 6.

2 Analysis of the Problem
We recognize that the ultimate purpose of a spatial knowl-
edge representation for an autonomous mobile robot is to
enable and facilitate successful planning and execution of
actions in the robot environment. Here, we focus specifi-
cally on scenarios involving large-scale, dynamic, human
environments, such as office buildings, homes, and hospi-
tals. We assume that a mobile robot is physically capable of
sensing the environment using on-board sensors. The sen-
sors are likely to have limited field of view, and might be
attached to actuators, such as pan-tilt units. Furthermore, the
robot is capable of moving around the environment and per-
forming basic manipulation tasks (e.g. grasping objects or
pushing buttons). Finally, we assume that the robot can in-
teract and collaborate with humans in order to accomplish its
tasks (e.g. by asking for additional information or requesting
help when a task cannot be accomplished by the robot itself).
We follow with an analysis of roles of a spatial knowledge
representation in the context of the considered scenarios as
well as a discussion of its desired properties.

Role of a Spatial Knowledge Representation
Referring to the discussion of roles of a knowledge represen-
tation in (Davis, Shrobe, and Szolovits 1993), and a more
specific analysis for spatial knowledge in (Pronobis et al.
2010b), we formulate a set of roles of a domain-specific
spatial knowledge representation for a mobile robot. Such
a representation can be seen as:

a) A substitution (surrogate) for the world that allows the
robot to reason about actions involving parts of the environ-
ment beyond its sensory horizon. The surrogate can either
represent the belief about the state of the world (what the
world looks like), or more directly, the belief about affor-
dances (what the robot can do at a specific place or involving
a specific spatial entity). It is important to note that it is in-
herently imperfect, i.e. it is incomplete (some aspects of the
world are not represented), inaccurate (captured with uncer-
tainty), and likely to become invalid (e.g. due to dynamics
of the world).

b) A set of commitments that determine the terms in
which the robot thinks about space. The representation de-
fines which aspects of the world are relevant, and specifies
the formalism used to represent and relate them. To this end,
it defines the levels of abstraction at which spatial entities
exist, spatial frames of reference used to relate them (ab-
solute or relative, allo- or ego-centric) as well as their per-
sistence. It is worth noting that these commitments signif-
icantly affect the ability of the robot to plan and execute
specific actions. Furthermore, the representation does not
have to be more expressive than required to successfully act.
Therefore, we can think of the commitments in the represen-
tation as defining part of the action space of the robot.

c) A set of definitions that determine the reasoning that
can be (and that should be) performed within the framework.
This includes reasoning about the location of the robot with
respect to the internal frames of reference (whether metric,
topological or semantic), inferring more abstract concepts
from observations (e.g. affordances, semantic descriptions),
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or generating missing lower-level information from high-
level descriptions (e.g. expected position of occluded objects
in rooms of known functional category).

d) A medium of communication between the robot and
humans. In scenarios involving human-robot collaboration,
spatial knowledge provides a common ground for commu-
nication and knowledge transfer. The representation must
therefore be capable of relating human spatial concepts to
those internal to the robot.

e) A way of structuring the spatial information so that it
is computationally feasible to perform inferences and action
planning in a specified time (e.g. in real time) despite limited
resources.

Desired Properties of the Representation
Having in mind the specifics of the scenario, the roles of a
representation, practical limitations, and experience result-
ing from existing approaches and robotic systems (Thrun
et al. 1998; Kuipers 2000; Marder-Eppstein et al. 2010;
Hanheide et al. 2016), we identify several desired properties
of a spatial knowledge representation for mobile robots.

Spatial knowledge in realistic environments is inherently
uncertain and dynamic. Given the local nature of the robot’s
sensing, it is futile to represent the environment as accurately
as possible. A very accurate representation is likely to be
intractable and will require a substantial effort to be kept
up-to-date. Moreover, its usability will remain constrained
by robot capabilities. Hence, our primary assumption is that
the representation should instead be minimal and the spatial
knowledge should be represented only as accurately as it is
required to support the functionality of the robot.

Planning is a computationally demanding process and its
complexity increases exponentially with the size of the en-
vironment and number of considered spatial entities. How-
ever, due to the way real-world environments are structured
and limitations of robot sensors and actuators, decomposing
the planning problem hierarchically can greatly reduce its
complexity while maintaining highly optimal results. This
naturally leads to a hierarchy of higher-level, long-term,
global plans involving lower-level short-term, local behav-
iors. In fact, hierarchical planners are used in the majority
of existing robotic systems (Marder-Eppstein et al. 2010;
Aydemir et al. 2013; Hanheide et al. 2016) due to their
tractability. Moreover, behavioral analyses found hierarchi-
cal spatial planning in humans (Balaguer et al. 2016). In or-
der to support such strategies, a spatial representation should
perform knowledge abstraction, providing symbols corre-
sponding to spatial phenomena of gradually increasing com-
plexity, anchored to reference frames of increasing spatial
scope and decreasing resolution. This leads to discretization
of continuous space, which significantly reduces the num-
ber of states for planning (Hawes et al. 2009) and provides a
basis for higher-level conceptualization (Zender et al. 2008).

Due to the dynamic properties of the real world, ab-
stracted knowledge is more likely to remain valid over time.
At the same time, high-resolution up-to-date spatial infor-
mation is required for executing actions in the robot periper-
sonal space. Yet, it can also be re-acquired through percep-
tion. Therefore, the representation should correlate the lev-

els of abstraction with the persistence of information, em-
ploying local working-memory representations for integrat-
ing high-resolution spatial information (visual servoing be-
ing the extreme example). In other words, the robot should
use the world as an accurate representation whenever possi-
ble.

Representing uncertainty in the belief state is crucial for
the robot to make informed decisions in the real-world, in-
cluding planning for epistemic actions and anticipating fu-
ture uncertainty. In this context, decision-theoretic planning
algorithms rely on probabilistic representations of uncer-
tainty, therefore, it is desirable for a knowledge represen-
tation to also be probabilistic in nature.

Furthermore, a representation should not only represent
what is known about the world, but also what is unknown.
This includes explicit representation of missing evidence
(e.g. due to occlusions), unexplored space (e.g. exploration
frontiers) or unknown concepts (e.g. unknown object cate-
gories). Representing knowledge gaps can be exploited to
address the open-world problem (in the continual planning
paradigm (Hanheide et al. 2016)), trade exploration vs ex-
ploitation, or drive learning.

3 Deep Spatial Affordance Hierarchy
(DASH)

As a result of the problem analysis, we propose Deep Spa-
tial Affordance Hierarchy (DASH). A general overview of
the architecture of the representation is shown in Fig. 1.
DASH represents the robot environment using four sub-
representations (layers) focusing on different aspects of the
world, encoding knowledge at different levels of abstraction
and spatial resolutions as well as in different frames of ref-
erence of different spatial scope. The characteristics of the
layers were chosen to simultaneously support both action
planning and spatial understanding for the purpose of local-
ization and human-robot interaction. In particular, the for-
mer objective is realized by directly representing spatial af-
fordances, which we define as the possibilities of actions on
objects or locations in the environment relative to the ca-
pabilities and state of the robot. The characteristics of the
layers are summarized in Table 1.

DASH is organized as a hierarchy of spatial concepts, with
higher-level layers providing a coarse, global representation
comprised of more abstract symbols, and lower-level layers
providing a more fine-grained representation of parts of the
environment anchored to the higher-level entities. The lay-
ers are connected by a crucial component of the representa-
tion, the probabilistic deep default knowledge model, which
provides definitions of generic spatial concepts and their re-
lations across all levels of abstraction.

The hierarchy directly relates to a similar, hierarchical de-
composition of the planning problem. A global planner can
derive a navigation plan relying only on the top layers for
representing its beliefs, a local planner can be used to plan
specific manipulation actions using intermediate layers, with
a controller realizing them base on knowledge in the lowest-
level representation. Below, we provide details about each
component of the representation.
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Perceptual Peripersonal Topological Semantic
World Aspects

Captured
Detailed geometry

and appearance
Object/landmark info,
coarse local geometry

Large-scale topology,
coarse global geometry

Human semantic
descriptions

Reference Frame Metric (allo-centric,
sliding window)

Collection of:
Metric (epi-centric)

Topological (allo-centric)
Metric (allo-centric) Relational

Spatial Scope Sensory horizon Local Global Global

Spatial Entities Voxels Objects/landmarks Places, paths, views Relations to
human concepts

Affordances — Manipulation and
epistempic actions

Navigation and
epistemic actions

Human interaction actions
Tasks involving human concepts

Robot Pose Center of the window Relative to
objects/landmarks Place/view ID Described semantically

Knowledge Gaps Missing observations Missing evidence
Unknown objects

Unexplored space
Unknown places Novel semantic concepts

Table 1: Characteristics of the four layers of DASH.

Perceptual Layer
At the bottom level of the representation is the percep-
tual layer. The layer maintains an accurate representation
of the geometry and appearance of the local environment
obtained by short-term spatio-temporal integration of per-
ceptual information from (possibly multiple and directional)
sensors with finite horizon. Spatial information in percep-
tual layer is represented in an allo-centric metric reference
frame, which facilitates integration of perception from mul-
tiple viewpoints and sensors. However, the representation
is always centered at the current location of the robot, and
spans a radius roughly corresponding to the maximum range
of the robot sensors (essentially a sliding window). Infor-
mation outside the spatial scope is forgotten, which makes
the layer akin to a working memory, and enables consistent
large-scale higher-level representations without the need to
maintain low-level global consistency. The layer provides a
more complete input for further abstractions with reduced
occlusions and noise. It enables tracking of the relative
movements of the robot, and forms a basis for deriving low-
level control laws for manipulation and obstacle avoidance.
Missing observations (e.g. due to unresolved occlusions) are
explicitly represented.

Peripersonal Layer
Above the perceptual layer is the peripersonal layer, which
captures spatial information related to object and landmark
instances from the perspective of an agent performing ac-
tions at different locations in the environment. To support
planning, the layer represents object affordances related to
actions that can be performed directly by the robot. This in-
cludes manipulation (e.g. possibility of reaching/grasping an
object or pressing a button), interaction in relation to objects
(e.g. possibility of pointing at an object), and epistemic af-
fordances (e.g. possibility of observing an object). Further-
more, the layer captures object and landmark descriptors that
are internal to the robot as well as spatial relations between
objects and landmarks in relation to the robot (and therefore
coarse local geometry). Finally, it serves as an intermediate

layer of the deep default knowledge model, used to generate
descriptions of locations in terms of higher-level concepts
(e.g. room categories or place affordances).

To reflect the local and robo-centric nature of the captured
information, the peripersonal layer relies on a collection of
ego-centric, metric reference frames, each focusing on the
space immediately surrounding the robot at a different lo-
cation in the environment (see Fig. 1). The spatial scope
of each of the reference frames is defined primarily by the
peripersonal space of the robot, within which objects can
be grasped and manipulated. However, to support epistemic
affordances, interaction about objects, and higher-level con-
ceptualization, the scope can be extended to include con-
text in the form of knowledge about objects that directly
relates to the functionality of the location. For instance, a
reference frame centered in front of a desk might include in-
formation about shelves and books in the room, even beyond
the reach of the robot. While recent results from neuropsy-
chology suggest existence of local, body-centered represen-
tations in animals and humans (Holmes and Spence 2004),
our motivation for such decomposition is primarily the effi-
ciency of the planning problem.

The peripersonal layer explicitly represents gaps in
knowledge about the local space due to missing evidence
(e.g. resulting from occlusions) and unknown objects. The
latter occurs when the default knowledge model is not fa-
miliar with an object, and cannot produce a certain object
descriptor or affordance information.

Topological Layer
The topological layer provides an efficient representation of
large-scale space, including coarse geometry and topology,
and serves several key roles in DASH. First, it provides a
way to express the global pose of the robot. Second, it cap-
tures navigation and exploration action affordances associ-
ated with locations in the environment. Third, it is a global
counterpart to the local peripersonal representations and an-
chors them in the large-scale space. Finally, it captures inter-
nal descriptors of places and serves as an intermediate layer
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of the deep default knowledge model used to derive seman-
tic place descriptions.

To this end, the layer performs a bottom-up discretization
of continuous space into a set of locations called places.
Places correspond to locations in the environment previ-
ously visited by the robot, and are meant to represent space
at a resolution sufficient for action execution, while main-
taining efficiency and robustness to dynamic changes. In
other words, the resolution is selected to ensure that high-
level navigation can be planned using the topological layer
only, with local behaviors planned using the knowledge in
the peripersonal layer at the destination. Places are spatially
related to other, neighboring places, which encodes coarse
global geometry of the environment and allows for path in-
tegration.

For each place, the topological layer maintains a set of
discrete headings, called views. Together with places, views
can be used to efficiently represent the complete global pose
of the robot. Moreover, views and places are used to anchor
knowledge in the representation. First, the topological layer
captures robot-internal descriptors of each view and place.
The descriptors are derived from lower-level representations
using the deep default knowledge model and serve as an in-
termediate layer of the model. Second, each visited place
anchors a peripersonal representation describing the place
in more detail.

Besides places and views, the layer also defines paths con-
necting neighboring places into a topological graph. The se-
mantics of a path between two places is the possibility of
navigating directly from one place to the other. Thus, essen-
tially, paths represent navigation place affordances, which
can be associated with probability indicating uncertainty es-
timated based on the current, detailed information in the
peripersonal layer (e.g. based on visible obstacles). Further-
more, the topological nature of the graph of places and paths,
enables planning of complex navigational tasks, such as in-
volving elevators. The place in the elevator might afford nav-
igating to places on different floors, depending on the in-
formation captured in the peripersonal layer (e.g. displayed
floor number) or additional state information.

Existence of a path in the graph does not necessarily im-
ply that it has previously been traveled by the robot. In fact,
a path can indicate the possibility of navigating towards un-
explored space. To this end, the topological layer utilizes the
concept of placeholders (Pronobis et al. 2010b), which can
be seen as candidate places, and are used to explicitly repre-
sent unexplored space. As a result, paths that lead to place-
holders express the possibility of epistemic exploration ac-
tions. This can be used to address the open world problem,
for instance, in the continual planning paradigm (Hanheide
et al. 2016).

Semantic Layer
On top of DASH is the semantic layer, a probabilistic rela-
tional representation relating the spatial entities in the other
layers to human semantic spatial concepts defined in the
deep default knowledge model. This includes such concepts
as object categories and attributes, place attributes, room cat-
egories, or the concept of a room itself. It is the semantic

layer that captures the knowledge that an object is likely to
be a cup, or that certain places are likely to be located in
a kitchen. Furthermore, the layer plays an important role in
planning complex tasks, by representing place affordances
related to human interaction as well as actions characterized
in terms of human concepts. For instance, it is the sensory
layer that defines the affordance expressing the possibility
of asking a person for help with making coffee or the pos-
sibility of finding a cup at a certain place. Finally, the layer
enables transfer of knowledge from humans to the robot (e.g.
capturing object category information provided by the user).
Such knowledge can be utilized by the default knowledge
model to generate lower-level information stored in other
layers.

Deep Default Knowledge
The four layers representing knowledge about the specific
robot environment are linked by the deep default knowledge
model. The model provides definitions of generic spatial
concepts, valid for typical human environments, and their
relations across all levels of abstraction (from sensory input
to high-level concepts). This includes robot-internal models
of objects in terms of low-level perception, places in terms of
objects, place and object affordances, or models of seman-
tic categories and attributes of objects and places. In other
words, the four layers can be seen as defining the traditional
ABox of our spatial knowledge base, while the deep default
knowledge model represents its TBox.

The role of the default knowledge model is to permit in-
ferences about missing or latent aspects of the environment
in each layer, based on the knowledge available in other lay-
ers. This includes bottom-up inferences (e.g. about semantic
descriptions based on perception) and top-down inferences
(e.g. about object presence or place affordances based on se-
mantic descriptions). The resulting knowledge base consti-
tutes a more complete (albeit uncertain) belief state for the
planner. In this work, we implement this component using a
deep generative probabilistic model based on Sum-Product
Networks (see Sec. 5).

4 Realization of DASH for Laser-Range Data
In order to evaluate the architecture of DASH in practice,
we provide its initial realization for a mobile robot equipped
with a laser-range sensor. We utilize laser-range data to sim-
plify the initial implementation, however the proposed al-
gorithms can be easily extended to include 3D and visual
information.

Perceptual Layer
To integrate local laser-range observations in the percep-
tual layer, we use a common occupancy grid representation.
Specifically, we utilized a grid mapping approach based on
Rao-Blackwellized particle filters (Grisetti, Stachniss, and
Burgard 2007). We crop the resulting grid map to only re-
tain a rectangular fragment of size 10x10m, centered at the
current position of the robot. Consequently, we do not re-
quire global consistency of the grid map, as long as the local

72



(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Fig. 2: Visualization of spatial knowledge represented in the
peripersonal layer for sample places of different semantic
categories, expressed as both Cartesian and polar occupancy
grids.

environment is mapped correctly. This will still result in par-
tial maps (especially when the robot enters a new room), but
it will help to accumulate observations over time. During our
experiments, the robot was exploring the environment driv-
ing with a constant speed, while continuously gathering data
and performing inferences based on the current state of the
perceptual layer.

Peripersonal Layer
The peripersonal representation for each place is constructed
from the current local occupancy grid in the perceptual layer.
However, since the scope of the peripersonal representation
is limited to the space immediately surrounding the robot
and relevant context, we only retain information about the
parts of the environment visible from the robot (grid cells
that can be raytraced from the robot location). As a result,
walls occlude the view and the resulting grid will mostly
contain objects present in a single room. In order to in-
clude a more complete appearance of the objects, we ad-
ditionally include observations behind small obstacles, and
a small vicinity around every occupied cell visible from the
robot (e.g. corners of furniture). Examples of such local oc-
cupancy grids can be seen in Fig. 2.

Next, every local grid map is transformed into an ego-
centric polar representation (compare polar and Cartesian
grids in Fig. 2). This encodes high-resolution information
about the geometry and objects nearby, and complements it
with less-detailed context further away from the robot. En-
coding spatial knowledge closer to the robot in more detail is
important for understanding the semantics of the exact robot
location (for instance when the robot is in a doorway). How-
ever, it also relates to how spatial information is used by a

robot when planning and executing actions. It is in the vicin-
ity of the robot that higher accuracy of spatial information is
required. The polar grids in our implementation assumed ra-
dius of 5m, with angle step of 6.4 degrees and resolution de-
creasing with the distance from the robot. It is worth noting
that lack of evidence resulting from occlusions is explicitly
represented in the cells of the polar representation. Such rep-
resentation of peripersonal layer is clearly a simplification,
however one that results from the nature of the laser-range
data.

Topological Layer
The topological layer is maintained by a mapping algorithm
discretizing continuous space into sets of places, placehold-
ers, views, and paths. The goal is to generate an efficient
discretization, which supports all the roles of the topolog-
ical layer, including expression of the global robot pose,
representation of affordances related to navigation and ex-
ploration, and anchoring of local spatial knowledge to the
global space.

The mapping algorithm expands the topological layer in-
crementally, adding placeholders at neighboring unexplored
locations, and connecting them with paths to existing places.
Then, once the robot performs an exploration action associ-
ated with a specific path, a new place is generated to which
a peripersonal representation, as well as place and view de-
scriptors are anchored. At this point, the path between the
two places signifies navigation affordance, and is associated
with probability based on current, up-to-date information.
In order to choose the location for a new placeholder, the al-
gorithm relies upon information contained in the perceptual
layer, including detailed local geometry and obstacles.

Similarly to (Chung et al. 2016), we formulate the prob-
lem of finding placeholder locations using a probability dis-
tribution that models their relevance and suitability. How-
ever, instead of sampling locations of all places in the en-
vironment at once, we incrementally add placeholders as
the robot explores the environment, within the scope of the
perceptual layer. Specifically, the probability distribution is
modeled as a combination of two components:

P(E | G) =
1
Z ∏

i
φI(Ei)φN(E ), (1)

where Ei ∈ {0,1} determines the existence of a place at a
location i in the perceptual layer, G is the perceptual occu-
pancy grid, and E is a set of locations of all existing places
within the scope of the perceptual representation.

The potential function φI models suitability of a specific
location, and is defined in terms of three potentials calcu-
lated from G:

φI(Ei) = φO(Ei)(φV (Ei)+φP(Ei)−φV (Ei)φP(Ei)), (2)
where:
• φO ensures that placeholders are created in areas that are

safe from collisions with obstacles. It depends on the dis-
tance do to the nearest obstacle and is calculated simi-
larly to the cost map used on our robot for obstacle avoid-
ance (Marder-Eppstein et al. 2010). φo equals 0 for dis-
tance smaller than the radius r of the robot base and
1− exp(−α(do − r)) otherwise.
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Fig. 3: Visualization of generated places and paths on top of
the knowledge in the perceptual layer. The highlighted re-
gion corresponds to the spatial scope of the perceptual rep-
resentation and displays the value of the potential φI . The
low-resolution lattice is illustrated using yellow points, and
red points indicate the final, optimized locations of places.
Paths highlighted in green afford navigability throughout the
environment.

• φV = exp(−γdc) depends on the distance dc to the nearest
node of a Voronoi graph of the 2D map. This promotes
centrally located places that are often preferred for navi-
gation.

• φP promotes places inside narrow passages (e.g. doors).
The potential is generated by convolving the local map
with a circular 2D filter of a radius corresponding to an
average width of a door.

Overall, φI ensures that placeholders are located only in
areas that are safe and preferred for navigation, and consti-
tute useful anchors for information stored in other layers of
the representation. The potential φN , models the neighbor-
hood of a place and guarantees that places are evenly spread
throughout the environment. To this end, the potential func-
tion promotes positions at a certain distance dn from existing
places:

φN(Ei) = ∑
p∈E

e− (d(i,p)−dn)2

2σ2 ,

where d(i, p) is a Euclidean distance between the potential
new place and an existing place.

Final location of new placeholders is chosen through MPE
inference in P(E | G). However, before adding a new place-
holder to the map it is important to verify whether the robot
will be able to navigate to it. To this end, we perform an
A* search directly over the potential function, and quantify
the navigability based on the accumulated potential. Only
then, a path is created between an existing place and a place-
holder. Similarly, the accumulated potential is used to quan-
tify navigability of paths between existing places.

In order to incorporate knowledge about coarse global ge-
ometry into the topological representation, we further relate
placeholders and places to a global low-resolution lattice
(0.8m distance between points in our experiments), as illus-
trated in Fig. 3. As the robot moves through the environment,
the lattice is extended, while preserving consistency with ex-
isting points. We assume that a place must be associated with
a point of the lattice, and each lattice point can be associated
with only one place. As a result, when performing MPE in-
ference using P(E | G), we assume that only one place might
exist in a cell of a Voronoi tessellation established by the
points of the lattice. The resulting set of placeholders (and
eventually places) will uniquely correspond to lattice points,
yet be created only in locations which are suitable, and can
serve as navigation goals for the lower-level controller.

For each place that is created from a placeholder, we gen-
erate a set of eight views. The views are a discrete represen-
tation of the heading of the robot when located at a place,
and are assumed to be vectors pointing from a point of the
lattice to the eight immediately neighboring points. Since,
places are associated uniquely with lattice points, each view
will naturally point in the direction of only one neighboring
place. As a result, each path connecting a place to another
place or placeholder will be associated with a specific view.

Semantic Layer
In our initial implementation, the semantic layer captures
the information about semantic categories of places in the
topological map. This includes categories of rooms in which
places are located, such as an office or a corridor, but also a
functional place category corresponding to places located in
a doorway. The layer is implemented as a simple relational
data structure assigning place instances to semantic cate-
gories in the ontology of the deep default knowledge model.
Each such relation is associated with probability value. Ad-
ditionally, for each place, the layer captures the likelihood of
the peripersonal representation of the place being observed
for any of the semantic categories. That likelihood is used
to detect and explicitly represent that a place belongs to a
novel category, i.e. one that is not recognized by the default
knowledge model.

5 Representing Default Knowledge
In our implementation, default knowledge is modeled us-
ing a recently proposed Deep Generative Spatial Model
(DGSM) (Pronobis and Rao 2017), a probabilistic deep
model which learns a joint distribution over spatial knowl-
edge represented at multiple levels of abstraction. We apply
the deep model to capture generic spatial concepts and rela-
tions between knowledge represented in peripersonal, topo-
logical, and semantic layers. Once learned, it enables a wide
range of probabilistic inferences. First, based on the knowl-
edge in the peripersonal layer, it can infer descriptors of
views and places, as well as semantic categories of places.
Moreover, it can detect that a place belongs to a novel cate-
gory, not known during training. Inference can also be per-
formed over the contents of the peripersonal representation.
The model can infer missing geometry information resulting
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Fig. 4: An SPN for a naive Bayes mixture model P(X1,X2),
with three components over two binary variables. The bot-
tom layer consists of indicators for each of the two variables.
Weights are attached to inputs of sums. Y1 represents a latent
variable marginalized out by the top sum node.

from partial observations and generate prototypical periper-
sonal representations based on semantic information.

To this end, DGSM leverages Sum-Product Networks
(SPNs), a novel probabilistic deep architecture (Poon and
Domingos 2011; Peharz et al. 2015), and a unique structure
matching the hierarchy of representations in DASH. Below,
we give a primer on Sum-Product Networks and describe the
details of the architecture of the DGSM model.

Sum-Product Networks
Sum-product networks are a recently proposed probabilis-
tic deep architecture with several appealing properties and
solid theoretical foundations (Peharz et al. 2015; Poon and
Domingos 2011; Gens and Domingos 2012). One of the
primary limitations of probabilistic graphical models is the
complexity of their partition function, often requiring com-
plex approximate inference in the presence of non-convex
likelihood functions. In contrast, SPNs represent probabil-
ity distributions with partition functions that are guaranteed
to be tractable, involve a polynomial number of sums and
product operations, permitting exact inference. While not
all probability distributions can be encoded by polynomial-
sized SPNs, recent experiments in several domains show that
the class of distributions modeled by SPNs is sufficient for
many real-world problems, offering real-time efficiency.

SPNs model a joint or conditional probability distribu-
tion and can be learned both generatively (Poon and Domin-
gos 2011) and discriminatively (Gens and Domingos 2012)
using Expectation Maximization (EM) or gradient descent.
They are a deep, hierarchical representation, capable of rep-
resenting context-specific independence. As shown in Fig. 4
on a simple example of a naive Bayes mixture model, the
network is a generalized directed acyclic graph of alternat-
ing layers of weighted sum and product nodes. The sum
nodes can be seen as mixture models, over components de-
fined using product nodes, with weights of each sum rep-
resenting mixture priors. The latent variables of such mix-
tures can be made explicit and their values inferred. This
technique is often used for classification models where the
root sum is a mixture of sub-SPNs representing multiple
classes. The bottom layers effectively define features react-
ing to certain values of indicators for the input variables.

Not all possible architectures consisting of sums and prod-
ucts will result in a valid probability distribution. How-
ever, following simple constraints on the structure of an
SPN will guarantee validity (see (Poon and Domingos 2011;
Peharz et al. 2015) for details).

Inference in SPNs is accomplished by an upward pass
through the network. Once the indicators are set to represent
the evidence, the upward pass will yield the probability of
the evidence as the value of the root node. Partial evidence
(or missing data) can easily be expressed by setting all indi-
cators for a variable to 1. Moreover, it can be shown (Poon
and Domingos 2011) that MPE inference can be performed
by replacing all sum nodes with max nodes, while retaining
the weights. Then, the indicators of the variables for which
the MPE state is inferred are all set to 1 and a standard
upward pass is performed. A downward pass then follows
which recursively selects the highest valued child of each
sum (max) node, and all children of a product node. The in-
dicators selected by this process indicate the MPE state of
the variables.

In this work, we learn the SPN using hard EM, which
was shown to work well for generative learning (Poon and
Domingos 2011) and overcomes the diminishing gradient
problem. The reader is referred to (Pronobis and Rao 2017)
for details about the learning procedure.

Architecture of DGSM
The architecture of DGSM is based on a generative SPN
illustrated in Fig. 5. The model learns a probability dis-
tribution P(C,DP

1 , . . . ,DP
Np

,DV1
1 , . . . ,DV8

Nv
,X1, . . . ,XNx), where

C represents the semantic category of a place, DP
1 , . . . ,DP

Np

constitute an internal descriptor of the place, DV1
1 , . . . ,DV8

Nv
are descriptors of eight views, and X1, . . . ,XC are input vari-
ables representing the occupancy in each cell of the polar
grid of the peripersonal layer. Each occupancy cell is repre-
sented by three indicators in the SPN (for empty, occupied
and unknown space). These indicators constitute the bottom
of the network (orange nodes).

The structure of the model is partially static and partially
generated randomly according to the algorithm described
in (Pronobis and Rao 2017). The resulting model is a sin-
gle SPN, which is assembled from three levels of sub-SPNs.
First, we begin by splitting the polar grid of the peripersonal
layer equally into eight 45 degree parts, corresponding to
the views defined in the topological layer. For each view,
we randomly generate a sub-SPN over the subset of Xi rep-
resenting the occupancy within the view, as well as latent
variables DVi

1 , . . . ,DVi
Nv

serving as an internal view descriptor.
The sub-SPN can be seen as a mixture model consisting of
14 components in our implementation. In the second level,
we use the distributions defining the components from each
view (8 ∗ 14 in total) as inputs, and generate random SPNs
representing each of the semantic place classes in the ontol-
ogy. Each of such SPNs is itself a mixture model with the
latent variable DP

i being part of the place descriptor. Finally,
in the third level, the sub-SPNs for place classes are com-
bined by a sum node (mixture) forming the root of the whole
network. The latent variable associated with the root node is
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Fig. 5: The structure of the SPN implementing our spatial
model. The bottom images illustrate a robot in an environ-
ment and a robocentric polar grid formed around the robot.
The SPN is built on top of the variables representing the oc-
cupancy in the polar grid.

C and is set to the appropriate class label during learning.
Overall, such decomposition allows us to use networks of
different complexity for representing lower-level features of
each view and for modeling the top composition of views
into place classes.

6 Experimental Evaluation
Our experimental evaluation consists of two parts. First, we
evaluated the ability of the deep default knowledge model
implemented with DGSM to perform both top-down and
bottom-up inferences across the layers of the representation.
Then, we deployed our complete implementation of DASH
in order to build representations of large-scale environments.

Experimental Setup
Our experiments were performed on laser range data
from the COLD-Stockholm database (Pronobis and Jensfelt

(a) (b)

Fig. 6: Results of experiments with bottom-up inference:
(a) normalized confusion matrices for semantic place cate-
gorization; (b) ROC curves for novelty detection (inliers are
considered positive, while novel samples are negative).

2012). The database contains multiple data sequences cap-
tured using a mobile robot navigating with constant speed
through four different floors of an office building. On each
floor, the robot navigates through rooms of different seman-
tic categories. Four of the room categories contain multiple
room instances, evenly distributed across floors. There are 9
different large offices, 8 different small offices, 4 long corri-
dors (1 per floor, with varying appearance in different parts),
and multiple examples of observations captured when the
robot was moving through doorways. The dataset features
several other room categories: an elevator, a living room, a
meeting room, a large meeting room, and a kitchen. How-
ever, with only one or two room instances in each. There-
fore, we decided to use the four categories with multiple
room instances for the majority of the experiments and des-
ignated the remaining classes as novel when testing novelty
detection.

To ensure variability between the training and testing sets,
we split the samples from the four room categories four
times, each time training the model on samples from three
floors and leaving one floor out for testing. The presented
results are averaged over the four splits.

Bottom-up Inference
First, we evaluated the ability of DGSM to infer semantic
place categories given information in the peripersonal layer.
As a comparison, we used a well-established model based
on an SVM and geometric features (Mozos, Stachniss, and
Burgard 2005; Pronobis et al. 2010a). The features were ex-
tracted from laser scans raytraced in the same local Cartesian
grid maps used to form polar grids of the peripersonal layer.
We raytraced the scans in high-resolution maps (2cm/pixel),
to obtain 362 beams around the robot. To ensure the best
SVM result, we used an RBF kernel and selected the kernel
and learning parameters directly on the test sets.

The models were trained with peripersonal representa-
tions obtained for locations on three floors in places belong-
ing to four place categories, and evaluated on the fourth floor
or using data from rooms designated as novel. The classifica-
tion rate averaged over all classes (giving equal importance
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Corridor Doorway Small Office Large Office

Fig. 7: Prototypical peripersonal representations inferred
from semantic place category.

(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Fig. 8: Examples of completions of peripersonal represen-
tations with missing data grouped by true semantic category.

to each class) and data splits was 85.9%±5.4 for SVM and
92.7% ± 6.2 for DGSM, with DGSM outperforming SVM
for every split. The normalized confusion matrix for DGSM
is shown in Fig. 6(a). Most of the confusion exists between
the small and large office classes. Offices in the dataset of-
ten have complex geometry that varies greatly between room
instances.

Additionally, we evaluated the quality of the uncertainty
measure produced by DGSM and its applicability to detect-
ing novel concepts. To this end, we thresholded the likeli-
hood of the test peripersonal representations produced by
DGSM to decide whether the robot is located in a place be-
longing to a class known during training. We compared to a
one-class SVM with an RBF kernel trained on the geometric
features. The cumulative ROC curve for the novelty detec-
tion experiments over all data splits is shown in Fig. 6(b). We
see that DGSM offers a significantly more reliable novelty
signal, with AUC of 0.81 compared to 0.76 for SVM.

Top-down Inference
In the second experiment, we used DGSM to perform infer-
ence in the opposite direction, and infer values of cells in
the peripersonal representation. First, we inferred complete,
prototypical peripersonal representations of places knowing
only place semantic categories. The generated polar occu-
pancy grids are shown in in Fig. 7a-d. We can compare the
plots to the true examples depicted in Fig. 2. We can see that
each polar grid is very characteristic of the class from which
it was generated. The corridor is an elongated structure with

walls on either side, and the doorway is depicted as a nar-
row structure with empty space on both sides. Despite the
fact that, as shown in Fig. 2, large variability exists between
the instances of offices within the same category, the gener-
ated observations of small and large offices clearly indicate
a distinctive size and shape.

Then, we used DGSM to generate missing values in par-
tial observations of places. To this end, we masked a random
90-degree view in each test polar grid (25% of the grid cells).
All indicators for the masked polar cells were set to 1 to in-
dicate missing evidence and MPE inference followed. Fig. 8
shows examples of peripersonal representations filled with
predicted information to replace the missing values. Overall,
when averaged over all test examples and data splits, DGSM
correctly reconstructed 77.14%±1.04 of masked cells. This
demonstrates its generative potential.

Representing Large-Scale Space
In our final experiment, we deployed the complete imple-
mentation of DASH and evaluated its ability to build compre-
hensive, multi-layered representations of large-scale space.
Specifically, we tasked it with representing the 5-th and 7-
th floor of the office building in the COLD-dataset, which
measure respectively 298 and 435 square meters. In each
case, we incrementally built the representation based on the
sensory data captured as the robot navigated through the
environment. We relied on the perceptual layer to perform
low-level integration of observed laser scans, on periper-
sonal layer to capture local place information, the topologi-
cal layer to maintain a consistent topological graph express-
ing navigability and knowledge gaps related to unexplored
space, and finally on the semantic layer to encode informa-
tion about semantic categories of places, including detec-
tions of novel semantic categories.

Fig. 9 illustrates the state of the representation after two
completed runs over the 5-th floor. The figure presents the
final topological graph of places visited by the robot, paths
expressing navigability between them, as well as paths lead-
ing to placeholders representing possibility of further explo-
ration. For each place, we use color to illustrate the inferred
semantic category, or detection of a novel category. First,
we can observe that places are evenly distributed across
the environment and exist in locations which are relevant
for navigation or significant due to their semantics (e.g.
in doorways). Moreover, the graphs created during differ-
ent runs are similar and largely consistent. Second, the se-
mantic place categories inferred by DGSM agree with the
ground truth when the category of the place was recognized
as known. To detect novel classes, we again thresholded the
estimates of the likelihood of the peripersonal representa-
tions provided by DGSM. On the 5-th floor, the novel cate-
gory was “meeting room” and two meeting rooms are shown
in the bottom part of the map. Although both false positives
and false negatives exist, places in both meeting rooms are
largely correctly classified as belonging to novel categories.

Fig. 10 shows results for a different environment, the 7-th
floor. Similar observations can be made as for the 5-th floor.
However, here the novelty detection is less accurate. DGSM
correctly detects the places in the elevator as novel (marked
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(a) Run #1 (b) Run #2

Fig. 9: Contents of the topological and semantic layers after two different runs over 5-th floor. Gray nodes represent placehold-
ers, while blank nodes indicate places detected as belonging to novel categories. Colors indicate recognized semantic place
categories: blue for a corridor, green for a doorway, yellow for a small office, and magenta for a large office. The two large
bottom rooms belong to a novel category: “meeting room”.

Fig. 10: Contents of the topological and semantic layers after a single run over the 7-th floor. Gray nodes represent placehold-
ers, while blank nodes indicate places detected as belonging to novel categories. Colors indicate recognized semantic place
categories: blue for a corridor, green for a doorway, yellow for a small office, and magenta for a large office. The rooms marked
with letters A and B belong to novel categories: “living-room” and “elevator”.

with “B” in the figure), but fails to detect novelty in the liv-
ing room (“A” in the figure), which instead is misclassified
as “large office”. While not a desirable outcome, it is not
surprising, given the similarity between the living room and
large offices in the dataset when observed solely using laser
range sensors.

7 Conclusions and Future Work
This paper presented Deep Spatial Affordance Hierarchy, a
representation of spatial knowledge, designed specifically to
represent the belief about the state of the world and spatial
affordances for a planning algorithm on a mobile robot. We
demonstrated that an implementation following the princi-

ples of DASH can successfully learn general spatial concepts
at multiple levels of abstraction, and utilize them to obtain
a complete and comprehensive model of the robot environ-
ment, even for a relatively simple sensory input. The natu-
ral direction for future work is to extend our implementa-
tion to include more complex perceptions provided by vi-
sual and depth sensors. Additionally, we intend to train the
deep model of default knowledge to directly predict com-
plex place affordances related to human-robot interaction.
Finally, we are working to integrate our implementation of
DASH with a deep hierarchical planning approach to eval-
uate its capacity to support autonomous robot behavior in
complex realistic scenarios.
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Hanheide, M.; Göbelbecker, M.; Horn, G. S.; Pronobis, A.;
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Abstract

Collision avoidance is a key capability for autonomous
ground vehicles and must respect the dynamic constraints of
the vehicle. Many recent approaches for avoiding collisions
with dynamic obstacles respect the dynamic constraints of the
vehicle. However, as the terrain changes, dynamic constraints
imposed on the vehicle also change. A common practice is to
assume conservative dynamics constraints that work on all
terrains. This reduces overall mission performance. In this
paper, we present a real-time dynamics-aware reactive tra-
jectory generator which produces trajectories that avoid col-
lisions with dynamic obstacles under varying dynamic con-
straints. The trajectory generator considers modifications to
the intended path, generating alternatives in real-time. It also
considers regulating speed along the various modified paths,
finding a trajectory that avoids collision while minimizing de-
viation from the intended trajectory. It accounts for uncer-
tainty in the obstacle position and velocity while evaluating
the alternative trajectories and uses conservative estimates of
the vehicle’s dynamic constraints to ensure collision risk is
minimized. It also uses “deferred value binding”, to exploit
more accurate estimates of the dynamic obstacle states as ob-
stacles approach the vehicle. It automatically adjusts the num-
ber of options being evaluated based on the estimated time to
collision. In order to ensure real-time performance, the tra-
jectory generator handles multiple dynamic obstacles by ei-
ther grouping them into a single composite obstacle in the
configuration space or deals with them sequentially by prior-
itizing obstacles based on the estimated time to collision. We
present simulation results to show that the planner is able to
effectively deal with the dynamic obstacles on terrains with
varying slopes.

1 Introduction
The ability to successfully avoid collisions with dynamic
obstacles is a fundamental capability needed to realize au-
tonomous unmanned ground vehicles (UGVs). The colli-
sion avoidance approach must take into account vehicle’s
performance constraints, such as maximum achievable ve-
locities, accelerations, braking distances, and turning radii.
Collision avoidance with dynamic obstacles on uneven ter-
rains is challenging because a vehicle’s performance con-
straints change based on the vehicle state, terrain character-
istics, terrain slope, and vehicle’s orientation with respect to
the terrain slope. Consider the stopping distance constraint
as an example. The stopping distance constraint cannot be

defined just based on the vehicle characteristics alone. The
stopping distance changes based on vehicle’s velocity. It also
depends on the traction available on the terrain. The slope of
the terrain affects this as well. Finally, the stopping distance
is shorter if the vehicle is traveling uphill compared to the
same vehicle traveling downhill. Thus, the planner must be
dynamics-aware and use accurate estimates of vehicle’s dy-
namic constraints based on the current state of the vehicle
and the terrain.

Using overly conservative dynamics constraints can avoid
collisions by stopping or steering the vehicle far from the ob-
stacles, but lead to significant deviations from the intended
trajectories and compromise mission performance. By con-
trast, using constraints that overestimate vehicle’s capabili-
ties leads to an increased risk of collision. Therefore, using
accurate constraints is important during the generation of re-
active plans to avoid collision with dynamic obstacles.

In order to avoid collision with dynamic obstacles, the ve-
hicle must consider modifications to the intended path by
generating path alternatives and consider regulating speed
along the alternative paths to find a trajectory that avoids
collision and minimizes deviations from the planned nomi-
nal trajectory. This trajectory modification must be done in
real-time. Based on the available time, the planner should
then automatically adjust the number of options that it eval-
uates to ensure that computation time is tractable and does
not reduce the reaction time available to the vehicle.

Finally, the reactive planner needs to account for uncer-
tainty in the obstacle position and velocity when evaluating
trajectories for collision risks. The uncertainty in obstacle
position and velocity reduces as obstacles approach the ve-
hicle. The planner should delay committing to a specific tra-
jectory until the last possible moment to fully exploit the
reduction in uncertainty in obstacle position and velocity.

Dynamic obstacle collision avoidance is a well-studied
problem (please see Section 2 for a detailed discussion).
Popular methods include Generalized Velocity Obstacles
(GVO) (Wilkie, van den Berg, and Manocha 2009) and its
variants. In this paper, we present a method that is real-time,
dynamics-aware and generates trajectories which avoid col-
lision with dynamic obstacles. It works by blending the path
selection and the speed profile selection. Conceptually, our
method can be viewed in the same family as GVO. Our
method differs from GVO in the way control/input space is
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partitioned. In GVO, control-space sampling and collision
detection determines the available feasible control actions.
These control actions impart changes to both the path and
speed of the UGV. So, a dense control-space sampling is re-
quired to explore a variety of trajectories. In addition, one
way time-varying dynamics constraints can be incorporated
into the selection of control actions is to use costly forward
simulations of at least a low-fidelity UGV dynamics model
to verify feasibility of the control actions. Otherwise, it is
customary to assume an overly conservative UGV capability
and use conservative control actions resulting in degradation
in mission performance in some cases. In our method, we
decouple trajectory generation using the standard approach
of geometric path selection followed by speed profile se-
lection. As a result, the geometric paths can be more spa-
tially focused for collision avoidance avoiding the need for
dense control-space sampling. Furthermore, the variation in
dynamics constraints along these paths is easier to incorpo-
rate as a function of the position of the UGV on the path. For
example, a path crossing a slippery or sloped region imposes
acceleration constraints that can easily be incorporated into
the spatio-temporal configuration space of the path along
with the dynamic obstacles. These paths are chosen with the
curvature and velocity limits of the UGV.

Our trajectory generator accounts for uncertainty in the
obstacle position and velocities when evaluating alternative
trajectories for collision risks and uses conservative values
of estimated dynamics constraints to ensure that the risk of
collision is minimized. It also uses deferred value binding to
utilize improved estimates of obstacles’ states as they come
closer to the vehicle. Finally, it automatically adjusts the
number of options being evaluated based on the estimated
time to collision. A vehicle may encounter multiple dynamic
obstacles. In order to maintain real-time performance, the
approach presented in this paper either groups multiple ob-
stacles into a single composite obstacle in spatio-temporal
configuration space or deals with them sequentially (i.e. pri-
oritizing obstacles based on the estimated time to collision).
This approach works well for both cases when obstacles are
too close or too far apart.

2 Related Work
Trajectory planning for unmanned ground vehicles (UGVs)
is an extensively studied problem in robotics. This paper will
be focusing on trajectory planning approaches that deal with
dynamic obstacles.

Local obstacle avoidance paradigms such as potential
field method, vector field histogram (Borenstein and Koren
1991) and nearness diagram method (Minguez and Mon-
tano 2000) primarily consider the instantaneous position of
the obstacles while computing collision avoidance strate-
gies. Using just instantaneous position and purely reactive
strategies result in undesirable oscillatory behavior. These
methods are termed as zero-order methods as they only con-
sider position and not the velocity of obstacles.

Inevitable collision states (ICS) (Fraichard and Asama
2003) is an ideal method that provides provable zero colli-
sion guarantees. In this method, states of the robot in which
no feasible action may be performed to avoid collision are

identified and deliberately avoided. Variants of ICS such
as (Martinez-Gomez and Fraichard 2009) and (Blaich et al.
2015) differ in how much the three criteria for motion safety
(Fraichard 2007) is relaxed (i.e. knowledge of vehicle dy-
namics, future environment/obstacles and ability to reason
over infinite time horizon). The precise characterization of
ICS is computationally expensive even for low-dimensional
dynamics and hence, prohibitive for real-time applications.

Other methods such as Dynamic Window Approach
(DWA) (Fox, Burgard, and Thrun 1997) and Velocity Ob-
stacle (VO) (Fiorini and Shiller 1998) directly work in the
velocity space (VS). Hence, these methods are able to in-
corporate first-order behavior of obstacles and vehicle dy-
namics to yield viable velocity vectors that avoid obstacles.
The original VO formulation models obstacles moving in
piece-wise constant velocities between planning windows.
Assumptions are relaxed in recent developments of VO such
as (Shiller, Large, and Sekhavat 2001; J. van den Berg 2011;
Fulgenzi, Spalanzani, and Laugier ; Bareiss and van den
Berg 2015). They differ in the representation of obstacles,
assumptions related to obstacle trajectories and how they re-
act to impending collision.

Deliberative lattice-based methods used for dynamic ob-
stacle avoidance compute trajectories using a lattice of vi-
able alternatives. This lattice structure is computed using the
kino-dynamic model of the vehicle. The approach presented
in (Brock, Trinkle, and Ramos 2009) plans the trajectory in
a 4D lattice structure. Computational efficiency is retained
by adaptive variation of lattice resolution and by using the
Anytime Dynamic A* (AD*) (Likhachev et al. 2005) algo-
rithm for graph search and by using environment constrained
heuristics to guide the search. Similar methods have been de-
veloped for unmanned surface vehicles in (Shah et al. 2015),
where the motion primitives used during the graph search
are scaled proportionate to the congestion in the environ-
ment.

While dynamics constraints are respected in GVO, ICS
and some of the recent approaches (Shimoda, Kuroda, and
Iagnemma 2005; Spenko et al. 2006; Howard and Kelly
2007; Iagnemma, Shimoda, and Shiller 2008; Werling et al.
2010), they do not explicitly consider (1) reference trajec-
tory deviation, (2) time-varying dynamics constraints due to
uneven terrain. Collision avoidance alone without regard to
reference path deviation may compromise mission perfor-
mance. In this work, an obstacle avoidance approach that
explicitly reasons about reference trajectory deviation, vary-
ing dynamics constraints while minimizing collision risk is
presented.

3 System Architecture
Autonomous operation of an Unmanned Ground Vehi-
cle (UGV) requires a path and trajectory planner that re-
spects both the vehicle’s kinematic and dynamic constraints
(LaValle 2006). Typical UGV missions may span several
kilometers and computing the entirety of a dynamically fea-
sible trajectory over such large distances is time consuming
and impractical in the face of dynamic obstacles. Thus, a
hierarchical planning architecture is used.
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Our hierarchical planning architecture is composed of
three layers: (i) the Global Path Generator (GPG), (ii)
the Trajectory Generator respecting Kinematic Constraints
(TGKC) and (iii) the reactive Trajectory Generator respect-
ing Dynamics Constraints (TGDC). Each layer in the archi-
tecture has its own planning horizon defined by distance or
time. And, each layer sets up a reference trajectory for the
layer below. In the case where a reference trajectory imposed
by a upper layer is found to be infeasible by the lower layer,
the lower layer raises an exception that is handled by the
upper layer. In this paper, we employ the GPG described
in (Shah and Gupta 2016). It produces a globally optimal,
any-angle, geometrically feasible path on a planning hori-
zon which spans several hundred kilometers.

The TGKC computes trajectories respecting the vehicle’s
kinematic constraints while tracking the geometric path laid
out by the GPG. It employs a planning horizon spanning
hundreds of meters. This relatively short planning horizon
enables it to re-compute plans at higher frequency than the
GPG. The TGKC computes a trajectory consisting of a refer-
ence path and a reference speed profile along the path. Only
static obstacles are taken into consideration in TGKC while
the dynamic obstacles are delegated to the TGDC.

The focus of this paper is the development of the third
layer of the planning architecture: Trajectory Generation re-
specting Dynamics Constraints (see Section 5). The TGDC
computes trajectories that respect the dynamics constraints
of the vehicle and avoids moving/dynamic obstacles over
uneven terrains, planning trajectories with a horizon of up
to several seconds. Its re-planning frequency is significantly
higher than that of the TGKC, which is essential in the pres-
ence of dynamic obstacles. While avoiding dynamic obsta-
cles, the TGDC also attempts to follow the trajectory pro-
vided by the TGKC as closely as possible, altering the ve-
locity profile on the reference path. Where appropriate, the
TGDC also locally alters the reference path prescribed by
the TGKC. These alterations are performed in view of vehi-
cle capabilities on uneven terrain. An example is presented
in Section 4 to briefly illustrate the trajectory generation pro-
cess in TGDC.

4 Preliminaries and Notations
Let us assume that TGKC layer has commanded a UGV to
reach the top of the ramp in Figure 1. The UGV is on the
ramp, attempting to climb it. A dynamic obstacle is poised to
cross the intended path of the UGV. In this situation, it is cru-
cial to know if the UGV is capable of accelerating (against
gravity) to pass the on-coming obstacle. On the same note,
if the UGV happens to be facing down the slope, it is cru-
cial to know if the UGV is capable of slowing down (against
gravity) to avoid on-coming obstacles.

Suppose the UGV’s throttle actuator is already close to
saturation. If we simply assume that the UGV is capable of
high acceleration and go full throttle ahead, the UGV may
not able to speed up fast enough to avoid the dynamic obsta-
cle and end up colliding with it. Conversely, assuming overly
conservative acceleration bounds for the UGV and not ac-
celerating when it is in fact doable results in reference tra-
jectory deviation. This means future commands to the speed

Static obstacle

Ramp

Dynamic obstacle

Reference path given by TGKC

UGV

Figure 1: An illustrative example showing the need for
vehicle-dynamics aware planning

3 alternative paths 1 2 3

Speed profile on path

Time

Path 1
Path 2
Path 3

Figure 2: Alternative paths choices are shown. For each path,
there can be many associated speed profiles that can circum-
navigate the dynamic obstacle in the face of dynamics con-
straints. Only one speed profile is shown for each path. On
each path, a few speed profiles are evaluated in TGDC to
yield the best path and speed profile.

of UGV have to be selected carefully. Broadly, the selected
speed profiles perform one of three strategies: pass obstacles
(by rushing ahead along the path before the obstacle crosses
the path), yield to obstacles (by waiting for obstacles to cross
the path) or continue along path with no change to speed.

Given that the UGV is already throttle-saturated, what
other options are there to reach the top of the ramp quickly
and safely? Instead of accelerating, the UGV could try mod-
ifying its path slightly to “buy” some time for maneuvering
around the dynamic obstacle at the same speed. This means
alternative future paths (see Figure 2) have to be selected
opportunistically while minimizing the deviation from the
reference path provided by TGKC.

The rest of the paper covers the technical details behind
the TGDC. Symbols and terms used in the following sec-
tions are briefly described below.

• s 2 R : Parameter variable in the arc-length parameteri-
zation of a curve in 3D space.

• K(s) : A curve K : R 7! R3 in 3D space parameterized
by s.

• lK : Total length of curve K.

• t 2 R : Time.

• v 2 R : Speed on a curve K.

• Speed profile : This refers to various speeds the UGV
travels at along the path. Note that this is slightly mis-
represented in the figures as a position vs time function
(instead of speed vs time function).

• CK (or s � t space) : A configuration space CK defined
over s and t. Each point p0 = (s0, t0) 2 CK ⇢ R2 in this
space represents a particular position s0 on a certain curve
K(s) at a particular time t0. The subscript K denotes the
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association of the space with the curve K. (see Chapter
7.1.3 (LaValle 2006))

• PWK(s0, t0, l, th) (or planning window) : A rectangu-
lar subset of CK defined by the rectangle’s two diag-
onal points plower left = (s0, t0) and pupper right =
(s0 + l, t0 + th) where th is the horizon (look-ahead) time
and l is the total length of the curve K.

• ⌧K(t) (or s � t trajectory) : A trajectory ⌧K : R 7! R
defined over a planning window PWK with time t as the
independent variable. In other words, this trajectory is a
specification of position on the curve K as a function of
time t.

• UGV state : A tuple of numbers consisting of the bound-
ing circle radius, position, velocity, orientation and direc-
tion ( , see Figure 1) with respect to the slope of the ter-
rain.

• ⌧accel,K(t) : The s � t trajectory on the curve K as a
function of time as the UGV accelerates under full throttle
along the curve. This function also depends on UGV state.

• ⌧decel,K(t) : The s�t trajectory on the curve K as a func-
tion of time as the UGV decelerates under full braking
along the curve. This function also depends on UGV state.

• DO : A tuple of numbers consisting of the bounding circle
radius, position and velocity of a dynamic obstacle.

• x � y � t obstacle : This is a projection of a dynamic
obstacle onto the local terrain plane (i.e. discarding the z
components)

• CK,DO (or s � t obstacle) : This is the set of all points
CK,DO ⇢ PWK corresponding to a particular x � y � t
obstacle moving across the curve K. These points mark
the position and time at which the UGV will be in colli-
sion with the dynamic obstacle DO. The UGV is in col-
lision if the position of the UGV on the curve is sugv at
tn and the point (sugv, tn) 2 CK,DO. Thus, CK,DO can
computed by sampling points in PWK and checking if
the sampled point corresponds to a collision between the
UGV and a dynamic obstacle.

• UL vertex (or upper left vertex) : This is the upper
left vertex of a s � t obstacle CK,DO. UL(CK,DO) =
(sUL, tUL) 2 CK,DO where sUL = max

(s,t)2CK,DO

(s) and

tUL = min
(s,t)2CK,DO

(t)

• LR vertex (or lower right vertex) : This is the lower
right vertex of a s � t obstacle CK,DO. LR(CK,DO) =
(sLR, tLR) 2 CK,DO where sLR = min

(s,t)2CK,DO

(s) and

tLR = max
(s,t)2CK,DO

(t)

• Velocity tuning (or speed regulation) : The process of
finding a s � t trajectory ⌧K over CK such that the tra-
jectory does not pass through any s � t obstacle CK,DO.
(see Chapter 7.1.3 (LaValle 2006))

5 Problem Formulation
Given:

(a) A kinematically feasible, collision free reference path
Kr(s) 2 R3 parameterized by the arc-length parameter
s and a reference speed profile vr(s) over the path Kr(s)

(b) The current time tstart

(c) UGV state consisting of:
• pugv 2 R3 : The current position of the UGV
• vstart 2 R : The current velocity in direction of mo-

tion
• ✓ : The average slope angle of the terrain under foot-

print of the UGV
•  : The yaw angle with respect to the slope

(d) A look-up table of speed, acceleration and deceleration
constraints indexed by ✓ and  

(e) A set of ndo dynamic obstacles D = {DOk}ndo

k=1 sensed
by the perception system, each defined by:
• Instantaneous position measurement pdo 2 R3 and

the associated perception variance �p 2 R following
the Gaussian distribution N (pdo, I3⇥3 · �p)

• Instantaneous velocity measurement vdo 2 R3 and
the associated perception variance �v 2 R following
the Gaussian distribution N (vdo, I3⇥3 · �v)

• Distance between obstacle and the UGV perception
system d

• Noise saturation threshold dt

• Position uncertainty parameter

– �p(d) =

(
�p,max · d

dt
, d < dt

�p,max, d � dt

• Velocity uncertainty parameter

– �v(d) =

(
�v,max · d

dt
, d < dt

�v,max, d � dt

(f) A set of kinematically feasible paths (computed offline)
A, which locally modify Kr(s) by connecting pugv to a
common point Kr(send) on the path Kr

• An alternative path: Km of length lKm
where

Km(0) = pugv and Km(lKm
) = Kr(send)

• A(pugv, send) = {Km(s)}nalt
m=1

(g) Full-throttle acceleration trajectory for the current UGV
state ⌧accel,K(t, t0, v0, s0, ✓(s), (s)) and full braking
deceleration trajectory ⌧decel,K(t, t0, v0, s0, ✓(s), (s))
defined over CK space. s0 denotes the current position
of the UGV on K(s). t0 denotes the current time. Addi-
tionally, the tuple (t0, v0, s0) defines an initial condition
over s� t space. ✓(s) is the local slope angle of the ter-
rain at the point K(s) and  (s) is the angle the tangent
at K(s) makes with the slope.

Compute: A dynamically feasible trajectory, which mini-
mizes collision risk and minimizes reference path and refer-
ence speed deviation.

6 Approach
The approach used in the TGDC to compute a dynamically
feasible plan is outlined in Algorithm 1. The approach is
described with reference to the motivational example.
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Algorithm 1 Trajectory planning with dynamics constraints

1: procedure COMPUTEDYNAMICALLYFEASIBLEPLAN
2: Depending on time to collision with the nearest obstacle, choose the number of alternative paths nalt to generate.
3: Generate the path set A(pugv, send) based on the current vehicle position and look-ahead distance.
4: Obtain the dynamic obstacle state measurements D = {DOk} from the perception system
5: for each path Km 2 A do
6: Construct a planning window PWKm

7: Compute vehicle dynamics constraints ⌧accel,Km , ⌧decel,Km based on ✓ and  along the path Km and the UGV state

8: Pre-process the reference speed profile on the path using vehicle dynamics constraints to form a dynamically feasi-
ble reference trajectory

9: for each DOk 2 D do
10: Obtain ns samples of DOk (from the Gaussian distribution) and compute the s � t obstacle samples

{CKm,DOk,n}ns
n=1

11: end for
12: If combining multiple obstacles is appropriate, coalesce s� t obstacles {CKm,DOk,n}ndo

k=1 to form ns samples of a
single composite s� t obstacle {CKm,DO,n}ns

n=1
13: for each strategy 2 {PASS, Y IELD, NO CHANGE} do
14: Compute pcoll,strategy , cstrategy using the s� t obstacle samples {CKm,DO,n}ns

n=1 using the method in Section
6.4

15: end for
16: Append the cost tuple pcoll,pass, cpass, pcoll,yield, cyield, pcoll,no change, cno change for each path option Km and

each of the strategies to the cost matrix
17: end for
18: Generate a symbolic plan (Kbest path, cbest strategy) consisting of the best path option and best strategy on that path by

using criteria in Section 6.5
19: end procedure

Generate a planning window on 
each path at the current time 𝑡𝑠𝑡𝑎𝑟𝑡

Generate a set of alternative paths 
from the current UGV position to a 

common end-point on the reference 
path

Populate the planning window with 
𝑠 − 𝑡 obstacles

Generate a 𝑠 − 𝑡 trajectory by 
making a decision to pass obstacles 

or yield to obstacles or continue 
with no change to speed

Path Collision Risk Cost Best Strategy

𝐾𝑟 0.7 0.0 No change

𝐾1 0.0 50.0 No change

𝐾2 0.1 30.0 Yield

𝐾3 0.6 40.0 Pass

𝐴 = {𝐾𝑟, 𝐾1, 𝐾2, 𝐾3}

1

2

3

4

Return a symbolic plan 
(𝐾1,𝑁𝑂 𝐶𝐻𝐴𝑁𝐺𝐸)

i.e. Use path 𝐾1and maintain 𝑣𝑠𝑡𝑎𝑟𝑡

5

𝐾𝑟

𝐾1 𝐾2
𝐾3

Figure 3: Graphical overview of the approach

6.1 Construction of a Planning Window
Line 3 of Algorithm 1: The kinematically feasible path
Kr(s) and speed profile vr(s) provided by TGKC is used
as a reference by the TGDC. They are termed reference path
and reference speed profile respectively.

Each time the TGDC is invoked, the TGDC generates a
set of paths A. This path generation can be done online or
offline. In this work, A is constructed by picking a few paths
from a library of pre-computed paths described in (Howard
and Kelly 2007). Some of the these paths may be in collision
with static obstacles when rotated, translated and placed in
front of the UGV. While some other paths may not satisfy
the curvature constraints imposed by the vehicle kinematics.

Planning window

Figure 4: (a) Path K and (b) its corresponding planning win-
dow PWK(0, tstart, lK , th) showing a reference speed pro-
file v(s) to follow

These paths are removed from A. The number of alternative
paths nalt is scaled based on the time to collision with the
next dynamic obstacle. This allows for fast reactive colli-
sion avoidance even when available reaction time is limited.
In this work, nalt ranges between 2 and 10. Each path op-
tion starts at pugv and ends at K(send). It deviates slightly
from reference path midway. Speed profile on the alternative
path could be specified using the dynamic trajectory space
(Spenko et al. 2006) or adapted from the reference speed
profile.

For example, in Figure 1 and 3, A = {Kr, K1, K2, K3}.
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Kr will not be included if the UGV happens to be signifi-
cantly away from Kr. Each path in A is such that it starts
at the current position of the UGV and ends at a common
point Kr(send) where send = sstart + ldeviation. sstart

is parameter value on Kr such that Kr(sstart) is the clos-
est point on Kr to the current UGV position. ldeviation is
the distance over Kr in which the UGV will be deviat-
ing from the reference path Kr. ldeviation typically has to
scale with the obstacle size. In this work, ldeviation was
fixed to 10 m as obstacles were of a fixed size. Note that
Km(lKm) = Kr(send). For each path Km 2 A, a planning
window PWKm(0, tstart, lKm , th) is constructed (see Fig-
ure 4b). Thus, the planning window is th wide starting at the
current time tstart and lKm

tall starting at 0.
So far, the planning windows are all blank. The next step

is to populate each window with dynamic constraints.

6.2 Construction of Dynamics Constraints
Line 7: The terrain type (i.e. the local slope at the vehi-
cle footprint) is used to compute the associated dynamics
constraints. In this work, a simple look-up table (Table 1)
is used to determine parameters describing the acceleration
and deceleration capabilities (1) of the vehicle in a partic-
ular terrain type. Acceleration and deceleration constraints
are specified via trajectories in the planning window. Terrain
parameters and the orientation of the vehicle on the terrain
affect the local acceleration and deceleration constraints. In
this work, only the local slope ✓ under the vehicle’s footprint
and the direction  with respect to the slope are used to form
equations of acceleration and deceleration. However, other
parameters affecting the powertrain can be easily incorpo-
rated into these equations (Spenko et al. 2006).

The upper bound on acceleration a+ and the up-
per bound on deceleration a� used in this work are
shown in (1) and Table 1. For a certain initial state
(s0, t0, v0) and a path K, an acceleration trajectory
⌧accel,K(t, t0, v0, s0, ✓(s), (s)) and a deceleration trajec-
tory ⌧decel,K(t, t0, v0, s0, ✓(s), (s)) can be computed (see
Figure 5) as the double integral of the equations describ-
ing upper bounds on acceleration and deceleration along the
path. Note that ✓ and  change along the path K.

Table 1: Scaling parameters for each terrain type

Parameter Slope angle ✓ (�)
-10 0 10

vmax(m/s) 2.0 1.8 1.6
k 0.3 + 0.2c 0.3 0.3� 0.2c 

amin(m/s2) �0.2 + 0.1c �0.2 �0.2� 0.1c 

a+(v) = k(vmax � v)

a� = amin

(1)

The acceleration trajectory (blue) shows the resulting s�t
trajectory if maximum throttle were to be applied from the
initial state (s0, t0, v0) onwards. Similarly, the deceleration
trajectory (red) shows the resulting s � t trajectory if maxi-
mum braking were to be applied from the initial state. Thus,
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Figure 5: Maximum speed, acceleration and deceleration
constraints are trajectories in the planning window corre-
sponding to a certain curve.

the region above the acceleration curve and the region be-
low the deceleration curve are not reachable from the initial
state. In this context, a target point in s � t space is consid-
ered reachable if there is a continuous function between the
initial state and the target point that does not pass through
s� t obstacles or the infeasible region.

At this point, planning windows have dynamic con-
straints. The next step is to populate them with dynamic ob-
stacles.

6.3 Construction of s� t Obstacles

Line 8: A given reference speed though kinematically feasi-
ble, may be dynamically infeasible when vehicle is on cer-
tain types of terrain (e.g. high-speed over uphill terrain). In
such circumstances, the reference speed profile is capped
at the maximum speeds allowed by the local terrains in the
planning window. This pre-processing step ensures that ref-
erence speed profile is reasonably altered for the terrain con-
ditions but not necessarily collision free.

Line 10: Collision avoidance using the velocity tuning
method requires dynamic obstacles to be translated from
x�y�t space to the planning window PWKm

. Dynamic ob-
stacles that cut across the reference path are termed x�y�t
space obstacles henceforth. Figures 7 and 6 collectively il-
lustrate the relationship between x � y � t space and s � t
space. For example, the s�t obstacle CK,DO corresponding
to the dynamic obstacle cutting across the path K in Figure
6 is computed by moving the inflated obstacle time step by
time step from t = t0 to t = t1 and noting the intersec-
tion between the inflated obstacle and the path. Thus, in this
case, for the path K, CK,DO is [sa, sb]⇥ [t0, t1] as shown in
Figure 7. Note that the subscript m is omitted from Km for
notational simplicity. However, it is to be understood that K
has to be replaced with each of the paths in A to yield path
specific s� t obstacles such as CKm,DO.
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Alternative paths

K(s)

Figure 6: Snapshots of an inflated (vehicle radius + obstacle
radius) x�y�t space obstacle as it passes diagonally across
a few paths at velocity v. (also see Figure 7)
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Figure 7: A planning window in which a s � t space ob-
stacle (dark red) and its bounding box approximation (light
red) are shown. The reference speed profile is infeasible
as it intersects the s � t obstacle. Two trajectories start at
(sstart, tstart) in the planning window. The passing trajec-
tory (green) accelerates in front of the obstacle using the
upper left (UL) vertex. The yielding trajectory (purple) de-
celerates and yields to the obstacle using lower right (LR)
vertex. (also see Figure 6)

6.4 Evaluating Strategies for Obstacle Avoidance
Given a s � t obstacle, a schematic view of two possible
trajectories is illustrated in Figure 7. The two possible tra-
jectories, pass and yield, are computed over the time range
[tstart, tend]. The two classes of speed profiles maneuvering
around the s � t obstacles are termed strategies. When the
UGV executes the pass strategy, the UGV passes in the front
of the dynamic obstacle before tracking reference speed.
When the UGV executes the yield strategy, it slows down to
pass the dynamic obstacle before tracking reference speed.
There is a third strategy no change that is not shown. This
strategy is applicable when reference speed profile does not
intersect with the s � t obstacle and hence, the UGV can
follow the speed profile with no changes.

Multiple dynamic obstacles cutting across the path are
either dealt with sequentially one after the other or coa-
lesced into a composite obstacle depending on how these
obstacles are spaced apart in the planning window. Figure 8
shows how two s � t obstacles are combined into one sin-
gle s� t obstacle by obtaining the bounding box of CK,DO1

and CK,DO2
. Section 7.4 specifies a condition to determine

if multiple obstacles should be merged depending on �s and
�t. Either way, multiple dynamic obstacles are reduced to a
single s � t obstacle to be dealt within a planning window.
This way, the pass and yield strategies developed so far still
work the same way even with multiple obstacles in the plan-
ning window.

UL

LR

Figure 8: An example of how two s � t obstacles CK,DO1

and CK,DO2
are merged into one single s � t obstacle

CK,DO

Before any informed decision can be made regarding the
strategy to choose, perception uncertainty associated with
the dynamic obstacle state needs to be incorporated. In order
to incorporate dynamic obstacle state (position and velocity)
uncertainty and assess the risk associated with each strategy,
the uncertainty model of a x � y � t obstacle has to be uti-
lized. Multiple realizations of the dynamic obstacle state is
sampled from the Gaussian distribution yielding samples of
position and velocity. In this work, a sample size ns of 50 is
used. For each sample pdo,n and vdo,n, a corresponding s�t
obstacle CK,DO,n can be computed. A few samples of s� t
obstacles corresponding to a dynamic obstacle is illustrated
in Figure 9. In order to circumnavigate the obstacle, there
are two strategies that can be employed - passing and yield-
ing. A passing strategy involves accelerating and passing in
front of the obstacle, which requires targeting and reaching
the upper left (UL) vertex from the initial state (s0, t0, v0).
Similarly, a yielding strategy involves decelerating and let-
ting the obstacle pass, requiring targeting and reaching the
lower right (LR) vertex from the initial state. For a passing
strategy, the risk of collision can be estimated as the ratio
of the number UL vertices that are unreachable to the total
number of UL vertices. Similarly, for a yielding strategy, the
risk of collision can be estimated as the ratio of the num-
ber of LR vertices that are unreachable to the total number
of LR vertices. For the passing strategy shown in Figure 10,
the collision risk is 1/6 since there is only one UL vertex
that is situated in the infeasible region. In other words,

R(p) =

⇢
1, if point p is not reachable
0, if point p is reachable

(2)

pcoll,pass =
1

ns

nsX

n=1

R(UL(CKm,DO,n)) (3)

pcoll,yield =
1

ns

nsX

n=1

R(LR(CKm,DO,n)) (4)
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Infeasible region

Figure 9: Qualitative example of risk assessment for a pass-
ing strategy where 6 samples of a st obstacles on a particu-
lar path are used. One of the samples has the upper left (UL)
vertex in the infeasible region. Thus, the collision risk is 1/6
for the passing strategy

For the no change strategy, the ratio of s � t obstacles in-
stances intersecting the reference speed profile to the total
number of s � t obstacle instances is taken as the collision
risk. This way perception uncertainty and satisfaction of dy-
namics constraints are taken care of. Note that the notion of
collision employed here not only involves a physical colli-
sion but also counts inability to satisfy dynamics constraints
as a collision.

In addition to collision risk, each strategy has an asso-
ciated reference trajectory deviation cost. Section 6.6 de-
scribes the cost function used to evaluate a strategy. Once
collision risk and trajectory deviation cost are computed for
each strategy, they are assembled into a 6-tuple containing
collision risk pcoll and reference deviation cost c for each of
the three possible strategies that can be attempted over the
reference path. An example of such a tuple is shown in the
first row of Table 2.

Table 2: An example of the cost matrix for 4 path choices

Path choice Strategy choice
Pass Yield No change

pcoll cpass pcoll cyield pcoll cno change

Kr 0.5 37.2 0.0 43.3 0.9 0
K1 0.1 45.2 0.0 108.6 0.1 40
K2 0.0 77.2 0.0 103.3 0.0 50
K3 0.2 63.2 0.1 93.3 0.0 60

6.5 Generating Dynamically Feasible Plans
Line 14: For each path in A, each strategy is evaluated. And,
a cost matrix is populated to form the entire table shown in
Table 2.

Line 18: A combination of path option and strategy pair
is termed as a symbolic plan. For example, (K3, Y IELD)
is a symbolic plan. The risk assessment method implicitly
handles the dynamics constraints. Hence, picking symbolic
plans with zero risk satisfies dynamics constraints. In some
scenarios, there might be multiple symbolic plans that are

risk free. In these cases, the expected cost is used to favor
one symbolic plan over the other. Conversely, in some sce-
narios, there might be no symbolic plan that is risk free. In
such cases, the symbolic plan exhibiting the least risk is cho-
sen without regard for costs. An exception is raised and fed
to the higher-level layer to trigger a replan.

Note that the symbolic plan does not specify any specific
speed or specific coordinates on the planning window that
has to be targeted and reached. Rather, it only specifies an
abstract class of trajectories over the planning window. A
value binding operation that converts the symbolic plan to a
numerical plan occurs only when the actual obstacle is ob-
served at a closer range during execution. Being at closer
range, more accurate s � t obstacles are observed and this
accuracy is exploited to minimize reference trajectory vio-
lation while retaining safety. This value binding operation is
needed because the perception system may be running at a
higher frequency and thus, provide fast updates to dynamic
obstacle measurements. During the value binding operation,
new samples of s� t obstacles are used to construct a worst
case s� t obstacle by obtaining a bounding box around the
samples (see blue rectangle in Figure 11). If the strategy de-
cision was to pass, the planner defaults to following the ref-
erence speed profile (i.e. no change strategy) till a critical
time after which value binding operation is triggered. This
critical time depends on the acceleration curve as shown in
Figure 11. For the pass strategy, the value binding opera-
tion uses the UL vertex of the worst case s � t obstacle
and computes the command velocity along the chosen path
as vcommand = sUL/(tUL � tstart). Similarly, if the strat-
egy decision was to yield, the planner defaults to following
the reference speed profile till a critical distance after which
value binding operation is triggered. This critical distance
depends on the stopping distance associated with the decel-
eration curve. For the yield strategy, the value binding oper-
ation uses the LR vertex of the worst case s� t obstacle and
computes the command velocity along the chosen path as
vcommand = sLR/(tLR� tstart). The rationale behind such
triggering is to incur as little reference trajectory deviation
as possible and wait till it is absolutely necessary to act to
avoid collision. Value binding triggered this way minimizes
reference speed deviation. After the pass or yield maneuver,
the planner resumes following the reference speed profile.

6.6 Trajectory deviation cost function

A distance based metric is used to evaluate symbolic plans
consisting of a path choice and a strategy choice. The trajec-
tory deviation cost consists of path deviation penalty cpath

incurred while using alternative paths and speed deviation
penalty incurred when passing and yielding strategies are
used . The cost of pass, yield and no change strategies on a
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Figure 10: Evaluation of strategies
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Figure 11: Triggering of value binding operation depends
acceleration/deceleration curve. (a) and (c) illustrate the sce-
nario where pass and yield strategies have been decided but
reference speed profile is followed. (b) and (d) illustrate the
scenario a little later at t1 and just after value binding has
occurred. The computed numerical plan is shown as a dot-
ted black line. The blue rectangle shows the worst-case s� t
obstacle corresponding to the red s�t obstacle samples used
in value binding process

certain path are computed as follows:

cpath =

⇢
lKm

, if path is Km

0, if path is Kr
(5)

cpass =
sUL + sLR

2

|vp � vr|
vr

+ cpath (6)

cyield =
sUL + sLR

2

|vy � vr|
vr

+ cpath (7)

cno change = 0 + cpath (8)
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Figure 12: Top view of the scenario used for generating the
results. Dynamic obstacles are poised to cut across the ref-
erence path from either the left or the right of the reference
path. Inset: a magnified view of the dynamic obstacle (red
with yellow buffer region), reference path (red) and alterna-
tive paths (blue, pink).

The cost function captures the distance over which speed
violation happens and also weights it by the degree of speed
deviation from the reference speed vr (Figure 10). Note that
the cost computed by this cost function corresponds to only
one sample of the s � t obstacle. Over ns samples selected
from a s � t obstacle distribution, an expected cost can be
computed for each of the strategies as follows:

E[cstrategy] =
1

ns

nsX

k=1

cstrategy,k (9)

7 Results and Discussion
The following performance metrics are used to evaluate the
executed trajectory:

• Number of collisions
• Execution time: the time taken in moving from start point

to end point
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Figure 13: Relationship between collision rates and speed
violation as the constraint augmentation factor is varied.

• Speed violation ratio: the ratio of execution time spent
in violation of the reference speed profile to the overall
execution time

• Path deviation distance: the distance over which reference
path was not followed.

The TGDC was implemented on the scenario shown in
Figure 12. The scenario features terrain strips with vary-
ing slopes. A point mass dynamic model of a vehicle was
used. The capability of the vehicle was artificially capped
at the limits allowed by the terrain. For example, if the ter-
rain only allowed a certain maximum speed 2.0 m s�1, any
further throttle will have no effect after the vehicle reached
2.0 m s�1. The vehicle was placed at the start point and
commanded to reach the end point. Then, a kinematically
feasible trajectory was supplied to the TGDC. Dynamic ob-
stacles were positioned along the reference path at various
points and with their trajectories crossing the path at various
angles.

Each dynamic obstacle was assigned a trigger region, as
the vehicle entered the trigger region, the dynamic obstacle
was set in motion and assigned a specific speed. This speed
was such that collision would occur if the vehicle contin-
ued traveling at the reference speed. Such triggering emu-
lates the appearance of dynamic obstacles within the vehi-
cle’s sensing radius. Once triggered, a dynamic obstacle’s
state information is available to TGDC. Dynamic obstacle
speed was also randomly varied around the nominal obsta-
cle speed.

7.1 Impact of Inexact Dynamics Constraints on
Performance

The TGDC’s sensitivity to inexact dynamics constraints was
measured by deliberately supplying a range of dynamics
constraints around the correct dynamics constraints. Each
dynamics constraint parameter in Table 1 was inflated by
constraint augmentation factor � to yield new parameters
that were either more conservative or aggressive than the
correct values. Figure 13 shows the collision rate and speed
violation as the dynamics constraints are altered. Speed vi-
olation ratio has been normalized with respect to that of the
exact dynamics constraints (� = 0). Figure 13 shows that
conservative (� < 0) dynamics constraints results in zero

(a)

(b)

Figure 14: (a) Percent increase in execution time and (b) per-
cent increase in speed violation ratio as uncertainty parame-
ters �p,max and �v,max are varied.

collision at the cost of increased speed violations. On the
other hand, aggressive (� > 0) dynamics constraints result
in lower speed violations at the cost of a higher collision
rate.

7.2 Impact of Perception Uncertainty on
Performance

To observe the effect of perception uncertainty on TGDC
performance, the dynamic obstacle noise model parameters
(position uncertainty parameter, �p,max and speed uncer-
tainty parameter �v,max) were varied, while the TGDC was
supplied conservative dynamics constraints (� = �20%).
These noise model parameters control the interval width of
the uniform distribution used in the obstacle position and ve-
locity measurement. Note that �v,max scales with the veloc-
ity of the dynamic obstacle. For each combination of noise
parameters, 50 independent experiments were performed.
The noise saturation distance threshold dt (see Section 5)
was set to 10 meters.

The normalized mean execution time and normalized
speed violation ratio are shown in Figure 14. These quan-
tities were normalized with respect to the zero noise case.
No collisions were observed in these experiments. However,
as noise increased, the execution time and speed violation
ratio increased by up to 31.7% and 88.1% respectively. This
result shows that increased dynamic obstacle state measure-
ment noise does not compromise the safety of our method.

7.3 Need for both speed-regulation and
path-variation

Relying on speed-regulation alone (with no alternative
paths) to avoid dynamic obstacles results in longer execu-
tion time and a larger reference speed deviation. This is
undesirable when dynamic obstacles stop along the refer-
ence path, which causes the vehicle to stop on the refer-
ence path indefinitely. Similarly, avoiding dynamic obstacles
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Table 3: Comparison of speed-regulation, path-variation
against the hybrid approach

(a) Pre-critical value binding (dynamic obstacles detected on time)

Normalized metric Collision avoidance approach
Path-variation only Speed-regulation only Hybrid

Collision rate 0 0 0
Execution time 0.95 1.05 1.0
Path deviation 1.89 - 1.0

Speed violation ratio - 1.3 1.0

(b) Post-critical value binding (dynamic obstacles detected too late)

Normalized metric Collision avoidance approach
Path-variation only Speed-regulation only Hybrid

Collision rate 6.34 2.65 1.0
Execution time 0.77 0.96 1.0
Path deviation 0.38 - 1.0

Speed violation ratio - 1.2 1.0

Figure 15: When handling two obstacles sequentially, colli-
sions (green) happen when s � t obstacles are spaced less
than 1.5 stopping distances and 1 stopping time

by solely relying on moving on alternative paths (without
speed-regulation) results in a larger reference path deviation.
This is especially undesirable when no alternative paths exist
(e.g. in a narrow passage). Table 3 compares the execution
time, path deviation and speed violation ratio of the path-
variation and speed-regulation approaches against the hy-
brid approach. No collisions were observed when dynamic
obstacles were sensed sufficiently early (Table 3). These re-
sults show that the hybrid approach used in TGDC, combin-
ing speed-regulation and path-variation incurs a lower path-
deviation and speed violation ratio at the cost of a marginal
increase in execution time.

The sudden appearance of dynamic obstacles impacts
collision avoidance. The value of the hybrid approach is
more apparent when dynamic obstacles appear suddenly and
hence, are sensed late (after the critical point). In such a sit-
uation, speed-regulation alone may not avoid collisions due
to the UGV’s inability to quickly decelerate or accelerate.
Similarly, swerving to the extreme left or right without mod-
ifying speed, may cause vehicle to overturn. In contrast, the
hybrid approach allows for these actions whilst decelerating.
Allowing such actions results in lower collision rate (Table
3).

Figure 16: When handling two obstacles as a single compos-
ite obstacle, speed violation ratio increases when s � t ob-
stacles are spaced apart further than 0.5 stopping distances

7.4 Sequential Processing of Dynamic Obstacles
The spacing between multiple s�t obstacles in the planning
window affects TGDC performance. If the s�t obstacles are
well spaced, it may be better for the TGDC to consider each
s� t obstacle sequentially. Otherwise, it is better to coalesce
them into a single composite s� t obstacle as shown in Fig-
ure 8. To quantitatively study the effect of spacing between
two s� t obstacles, a grid of s� t points is used (see Figure
16). Each point in the grid corresponds to the centroid-to-
centroid vector (�t,�s) between two s � t obstacles (e.g.
(0, 0) implies both obstacles are coincident, see Figure 8).
The s and t axes of Figure 15 are normalized by vehicle stop-
ping distance (corresponding to maximum speed) and vehi-
cle stopping time, respectively. Figure 15 shows collisions
when s � t obstacles separated by 1.5 stopping distances
(�s) and 1 stopping time (�t). This arises due to sequential
processing of obstacles, where overtaking one obstacle put
the vehicle on a collision course with the next. From the ex-
amination of Figure 15, s � t obstacles with centroids less
than one stopping time away from each other or less than
approximately 2 stopping distances can be safely handled
by creating a composite s� t obstacle.

However, Figure 16 shows an increase in speed violation
ratio up to a factor of approximately 3.7 when these compos-
ite s� t obstacles are used. This trade-off must be taken into
consideration while processing multiple dynamic obstacles
within a single planning window.

8 Conclusions and Future Work
A method to generate collision risk-aware, dynamically fea-
sible trajectories for a UGV operating over uneven terrain
has been presented. This method has been shown to produce
collision-free trajectories when the correct dynamics con-
straints are used even in the presence of sensor noise.

The overall trajectory generation architecture does not
make assumptions regarding sensing modalities and vehi-
cle models. Though the trajectory generation method is pre-
sented in the context of UGVs over uneven terrain, it is
widely applicable to a variety of mobile robot platforms and
with some modifications, even unmanned surface vehicles
operating in dynamic sea states encountering dynamic ob-
stacles.

For each terrain type, the dynamics constraints were as-
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sumed to be known before hand. A natural extension would
be to perform online learning of dynamics constraints, start-
ing with conservative estimates and converging to the correct
constraints. While effective, this approach has some limita-
tions. Opportunities to explore multiple homotopy classes
while navigating around s � t obstacles are eliminated due
to the way multiple obstacles are handled. Intuitively, this
limitation is not particularly crippling since robots are typi-
cally agility-constrained, thus unable to weave through s� t
obstacles.
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Abstract

Robots assisting humans in complex domains often have
to reason with different descriptions of incomplete domain
knowledge. It is difficult to equip such robots with compre-
hensive knowledge about the domain and axioms governing
the domain dynamics. This paper presents a combined ar-
chitecture that enables interactive and cumulative discovery
of axioms governing action capabilities, and the precondi-
tions and effects of actions in the domain. Specifically, An-
swer Set Prolog is used to represent the incomplete domain
knowledge, and to reason with this knowledge for planning
and diagnostics. Unexpected outcomes observed during plan
execution trigger reinforcement learning to interactively dis-
cover specific instances of previously unknown axioms and
to revise the existing axioms. Furthermore, a decision tree
induction approach based on the relational domain represen-
tation constructs generic versions of the discovered axioms,
which are then used for subsequent reasoning. The architec-
ture’s capabilities are illustrated and evaluated in a simulated
domain of a robot moving objects to specific places or people
in an indoor domain.

1 Introduction
Consider a robot1 assisting humans by finding and mov-
ing desired objects to particular locations in an office build-
ing. In such complex, dynamic, and potentially resource-
constrained environments, the robot will require a significant
amount of domain knowledge, e.g., about domain objects,
events and its own capabilities. At the same time, it will be
challenging for humans to equip the robot with comprehen-
sive domain knowledge, or to possess the time and expertise
to interpret raw sensor input and provide detailed feedback.
Domain knowledge may include commonsense knowledge,
including default knowledge such as “books are usually in
the library” that holds in all but a few exceptional circum-
stances, e.g., cookbooks are in the kitchen. The robot also
extracts information from its sensors and actuators, which
is typically associated with numerical representations, e.g.,
probabilistic representations of uncertainty such as “I am
90% sure the robotics book is on the table”. In addition, a
robot is typically equipped with axioms governing domain

1We use the terms “robot”, “agent” and “learner” interchange-
ably, although an embodied agent is not essential for the learning
task described in this paper.

dynamics. Such domain axioms typically describe the pre-
conditions and expected outcomes of actions that can be ex-
ecuted in the domain. The axioms also include knowledge
of action capabilities, also known as affordances. With ref-
erence to an action, we define an affordance as a combina-
tion of attributes of object(s) and agent(s) involved in the ac-
tion (Gibson 1986), e.g., the affordance of a person climbing
a stair is described in terms of the stair’s height with refer-
ence to the person’s leg length (Warren 1984).

A fundamental challenge with these different types of
knowledge possessed by a robot is that the knowledge is
usually incomplete, and often needs to be revised over time.
For instance, if the floor of a room has just been polished,
a robot’s movement in this room will produce unexpected
outcomes in the absence of an accurate description of the
robot’s movement on such surfaces. To truly assist humans
in complex domains, robots thus need the ability to aug-
ment and revise the different types of knowledge. Towards
addressing this challenge, the architecture described in this
paper seeks to enable interactive and cumulative discovery
of domain axioms. Although our architecture can be used
to discover both axioms governing actions performed by the
robot and axioms governing exogenous actions, we focus on
the former in this paper and assume that any knowledge of
exogenous actions is limited to that encoded a priori—we
leave the exploration of exogenous actions as a direction for
further research. We discuss the following key characteris-
tics of the architecture:

• For planning and diagnostics, an action language-based
descriptions of transition diagrams of the domain are
translated to an Answer Set Prolog (ASP) program for
non-monotonic logical reasoning, and to a partially ob-
servable Markov decision process (POMDP) for proba-
bilistic reasoning.

• Unexpected observations during plan execution are con-
sidered to indicate the existence of previously unknown
knowledge about domain axioms. The discovery of these
axioms and the corresponding action capabilities, is for-
mulated as a Reinforcement Learning problem that is in-
formed by ASP inference.

• Decision tree-based regression with the relational repre-
sentation encoded in the ASP program, and a sampling-
based approach, are used to identify candidate axioms,
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and to generalize across these candidates. These generic
axioms are included in the ASP program and used for sub-
sequent reasoning.

Given the focus on the ability to discover axioms corre-
sponding to different types of knowledge, we abstract away
the uncertainty in perception and do not describe the prob-
abilistic reasoning component of the architecture. We illus-
trate the architecture’s non-monotonic logical reasoning and
axiom discovery capabilities in a simulated domain that has
a robot assisting humans by delivering desired objects to par-
ticular locations or people in an indoor domain.

The remainder of this paper is organized as follows. We
first review related work in Section 2, and describe our ar-
chitecture’s components in Section 3. Experimental results
are discussed in Section 4, followed by conclusions and a
discussion of future work in Section 5.

2 Related Work
This section reviews some related work in logic program-
ming, probabilistic reasoning, and relational learning, in the
context of robotics.

Probabilistic algorithms are used widely for tasks such
as reasoning and learning in robotics and AI, but these for-
mulations, by themselves, make it difficult to reason with
commonsense knowledge. In parallel, research in classical
planning has provided many algorithms for representing and
reasoning with commonsense knowledge. For instance, ap-
proaches based on first-order classical logic have been used
for applications in robotics and AI, but they do not sup-
port desired capabilities such as non-monotonic logical rea-
soning and default reasoning. The logic programming com-
munity has developed many formalisms for non-monotonic
logical reasoning, e.g., ASP is used by a growing inter-
national research community (Erdem and Patoglu 2012).
These logical reasoning approaches, however, often require
complete knowledge about the domain and the agents’ capa-
bilities. Also, these approaches, by themselves, do not sup-
port probabilistic reasoning, whereas quantitative reasoning
about the uncertainty related to sensing and actuation on
robots is often based on a probabilistic representation. Ap-
proaches have been developed to support both logical and
probabilistic reasoning (Baral, Gelfond, and Rushton 2009;
Milch et al. 2006; Richardson and Domingos 2006). The
subset of these approaches based on first-order logic are of-
ten not expressive enough for certain types of knowledge,
e.g., they model default knowledge and uncertainty by asso-
ciating logic statements with numbers that may not be mean-
ingful, whereas approaches based on logic programming do
not support reasoning with large probabilistic components.
For all these approaches, interactive discovery of knowledge
continues to be an open problem.

Different approaches have been developed for represent-
ing and reasoning about action capabilities. Research in psy-
chology indicates that humans can make accurate judgments
about others’ action capabilities using simple representa-
tions, without actually observing the subject perform the ac-
tion(s) of interest (Ramenzoni et al. 2010). Many computa-
tional approaches have also been developed for represent-

ing and reasoning about affordances, often building on the
knowledge representation and reasoning algorithms sum-
marized above (Griffith et al. 2012; Sarathy and Scheutz
2016). Despite the existing research, open questions remain
regarding the suitable definition and representation of affor-
dances (Horton, Chakraborty, and Amant 2012).

In complex domains, agents often have to start with in-
complete domain knowledge, and learn from repeated in-
teractions with the environment. Different algorithms and
architectures have been developed to support this capabil-
ity. For instance, a first-order logic representation and the
observed effects of actions have been used to learn causal
laws (Shen and Simon 1989). This approach used axioms
as working hypotheses to be revised through discriminant
learning when predictions fail, but only the encoded pre-
conditions and effects of actions could be monitored. An-
other approach incrementally refined operators encoded in
first-order logic by making any unexpected observations the
preconditions or effects of operators (Gil 1994). This work
focused on augmenting existing knowledge and not on revis-
ing incorrect axioms, and did not allow for the same action
to lead to different outcomes in different contexts. Further-
more, these (and other such) approaches do not support gen-
eralization of acquired knowledge as described in this paper,
and also have the (known) limitations of approaches based
on first-order logic.

Researchers have used inductive logic with ASP to mono-
tonically learn causal rules (Otero 2003). A maximum sat-
isfiability framework has also been used with plan traces
for refining incomplete domain models (Zhuo, Nguyen,
and Kambhampati 2013). Interactive learning has also been
posed as a Reinforcement Learning (RL) problem with
an underlying Markov decision process (MDP) formula-
tion (Sutton and Barto 1998). Approaches for efficient RL
include sample-based planning algorithms (Walsh, Goschin,
and Littman 2010), and Relational Reinforcement Learn-
ing (RRL), which combines relational representations with
regression for Q-function generalization (Tadepalli, Givan,
and Driessens 2004). However, existing interactive rela-
tional learning algorithms focus on planning, only general-
ize over the states and actions corresponding to a given plan-
ning task (Driessens and Ramon 2003), or do not support the
desired commonsense reasoning.

In this paper, we present an architecture that supports
automatic, interactive discovery of previously unknown
knowledge governing action capabilities and the precondi-
tions and effects of actions. We build on and extend our
architectures that (a) combined declarative programming
and probabilistic graphical models for planning and diag-
nostics in robotics (Sridharan and Gelfond 2016; Sridha-
ran et al. 2017); and (b) integrated declarative programming
with relational reinforcement learning for interactive discov-
ery of previously unknown axioms governing action execu-
tion (Sridharan and Meadows 2016) and the agent’s action
capabilities (Sridharan, Meadows, and Gomez 2017).

3 Architecture Description
Figure 1 shows a block diagram of the overall architec-
ture. For any given goal, ASP-based non-monotonic log-
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Figure 1: Architecture combines complementary strengths
of declarative programming, probabilistic graphical models,
and relational reinforcement learning.

ical reasoning with a coarse2-resolution domain descrip-
tion provides a sequence of abstract actions. Each abstract
action is implemented as a sequence of concrete actions,
using a POMDP to reason probabilistically with the rele-
vant part of the corresponding fine-resolution system de-
scription. For complete details about representing and rea-
soning with tightly-coupled transition diagrams at these
two resolutions, please see (Sridharan and Gelfond 2016;
Sridharan et al. 2017). Here, we focus on the new compo-
nent of the architecture for interactively discovering domain
axioms. We thus abstract away the uncertainty in percep-
tion and do not discuss probabilistic planning. Instead, we
describe ASP-based reasoning for planning and diagnostics,
and relational reinforcement learning for axiom discovery.
We illustrate these capabilities of our architecture in the con-
text of the following domain.

Example 1. [Robot Assistant (RA) Domain]
Consider a robot that has to deliver objects to particular
rooms or people. Attributes include:

• Different sorts (classes) such as entity, person, robot,
ob ject, book, desk etc.

• Static attributes such as a human’s role, which can
be {engineer,manager,sales}; the robot’s armtype,
which can be {electromagnetic, pneumatic}; an object’s
sur f ace, which can be {hard,brittle}; and an object’s
weight, which can be {light,heavy}.

• Fluents such as location of humans and the robot, which
can be one of o ff ice, kitchen, library and workshop;
status of an ob ject, which can be {damaged, intact};
whether an object is being held by the robot; and whether
an ob ject has been labeled.

As a partial illustration, consider a scenario with two rooms,
three humans, one robot, three movable objects and five im-
movable objects—it has 6,946,816 physical (object) con-
figurations in a standard RL/MDP formulation and 55,296
static attribute combinations that can be explored during the
axiom discovery phase. In this domain, the robot may not
know, for instance, that:

1. A brittle object is damaged when it is put down.
2. Delivering an unlabeled object to a sales person causes it

to be labeled.
3. A damaged object cannot be delivered to a person, except

to an engineer.
4. An object with a brittle surface cannot be labeled.
5. A heavy object cannot be picked up by a robot with an

electromagnetic arm.
6. A damaged object cannot be labeled by a robot with a

pneumatic arm.

These statements correspond to different types of knowledge
encoded as causal laws, affordances etc, as described later.
The objective is to construct and include suitable axioms in
the ASP program.

3.1 Knowledge Representation
In our architecture, the transition diagrams of any given do-
main are described using an action language ALd (Gelfond
and Inclezan 2013). Action languages are formal models of
parts of natural language used for describing transition dia-
grams. Action language ALd has a sorted signature contain-
ing three sorts, namely statics, fluents and actions. Statics
are domain properties whose truth values cannot be changed
by actions, whereas fluents are domain properties whose
truth values can be changed by actions. Fluents are of two
types, basic and defined. Basic fluents obey the laws of iner-
tia and are changed directly by actions. Defined fluents, on
the other hand, do not obey the laws of inertia and may not
be changed directly by actions—they are changed based on
other fluents. Actions are defined as a set of elementary op-
erations. A domain property p or its negation ¬p is a literal.
In ALd , three types of statements are supported:

a causes lb if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and
p0, . . . , pm are domain literals.

Domain description The representation of any domain is
given by the system description D , a collection of statement
of ALd , and history H . The system description D has a
sorted signature Σ and axioms that describe the transition
diagram τ . The basic sorts in the signature Σ for the RA
domain in Example 1 include place, robot, entity, person,
ob ject, role, armtype, weight, sur f ace, cup, book etc. Sorts
that are subsorts of other sorts, e.g., cup and book are sub-
sorts of ob ject, and person and robot are subsorts of entity,
are arranged hierarchically. Furthermore, the signature in-
cludes specific instances of sorts, e.g., we have robot rob1,
places {o f f ice,workshop,kitchen, library}, and roles (of
people) {engineer, programmer,manager}.

Domain attributes and actions are described in terms of
the sorts of their arguments. The Σ of the RA domain in-
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cludes fluents such as:

loc(entity, place)
ob j status(ob ject,status)
in hand(entity,ob ject)

statics such as:

ob j sur f ace(ob ject,sur f ace)
ob j weight(ob ject,weight)
person role(person,role)

and actions such as:

move(robot, place)
serve(robot,ob ject, person)
a ff ix label(robot,ob ject)

The signature Σ also includes the sort step for temporal rea-
soning, and the relation holds( f luent,step) to state that a
particular fluent holds true at a particular timestep.

The axioms of the system description D include causal laws
such as:

move(rob1,Pl) causes loc(rob1,Pl)
serve(rob1,O,P) causes in hand(P,O)

pickup(rob1,O) causes in hand(rob1,O)

a ff ix label(rob1,O) causes has label(O)

where the second axiom implies that when the robot ex-
ecutes the serve action in the context of a specific object
and person, the object is in the person’s hand. Although we
do not describe it here, it is also possible to encode non-
deterministic causal laws (Sridharan et al. 2017).

Examples of state constraints of the RA domain include:

¬loc(O,L2) if loc(O,L1), L1 6= L2

¬in hand(E,O2) if in hand(E,O1), O1 6= O2

loc(O,L) if loc(E,L), in hand(E,O)

where the second axiom implies that any entity (robot or
person) can only hold one object at a time.

Examples of executability conditions of the RA domain in-
clude the following:

impossible move(rob1,L) if loc(rob1,L)
impossible pickup(rob1,O) if loc(rob1,L1), loc(O,L2),

L1 6= L2

impossible serve(rob1,O1,P) if in hand(P,O2),O1 6= O2

where the first axiom implies that a robot cannot pick up
an object unless the robot and the object are in the same
location.

The recorded history H of a dynamic domain is usually a
record of fluents observed to be true/false at a time step, i.e.,
obs( f luent,boolean,step), and the occurrence of an action
at a time step, i.e., hpd(action,step). We expand this notion
of history to construct a model that supports the representa-
tion of (prioritized) defaults describing the values of fluents

in their initial states. For instance, we can encode a state-
ment such as “books are usually in the library and if it not
there, it is normally in the office” as follows:

initial default loc(X , library) if textbook(X)

initial default loc(X ,o ff ice) if textbook(X),

¬loc(X , library)

We can also encode exceptions to this default statement such
as “cookbooks are in the kitchen”. Any inconsistencies in-
troduced by observations or acquired (and encoded) knowl-
edge, is addressed using consistency-restoring (CR) rules, as
described later in this section.

Affordance representation Next, consider the represen-
tation of affordances, which can be of two types. Positive
(i.e., enabling) affordances describe permissible uses of ob-
ject(s) and agent(s) in actions, whereas negative (i.e., forbid-
ding) affordances, also known as disaffordances, describe
unsuitable combinations of object(s) and/or agent(s) in the
context of specific actions. In this paper, we introduce the
following generic definition of forbidding affordances:

a ff f orbids(ID,A) if not f ails(ID,A),
f orbidding a ff (ID,A)

¬occurs(A, I) if a ff f orbids(ID,A)

where the “not” in the first statement represents default
negation (on which we provide more details later). The sec-
ond statement implies that action A cannot occur if it is
not afforded, which depends on whether suitable conditions
have been defined to arrive at this conclusion. Any action
can have one or more such relations defined with unique
IDs. For instance, if we know that a robot with an electro-
magnetic arm cannot pick up a heavy object, the following
statements may be included in D :

f orbidding a ff (id1, pickup(R,O))

f ails(id1, pickup(R,O)) if not ob j weight(O,heavy)
f ails(id1, pickup(R,O)) if not arm type(R,electromagnetic)

where the pickup action is not afforded if the object is heavy
and the robot’s arm is electromagnetic.

The representation of knowledge in our architecture
brings up some subtle issues. First, for any given action,
the axioms for both the executability conditions and the
forbidding affordances imply that, when the body of these
axioms are true, the desired outcomes (i.e., effects) will
not be achieved because not all of the action’s precondi-
tions are satisfied—the action should then not be included
in a plan. However, there are key differences in the type of
knowledge encoded by executability conditions and affor-
dances, and how this knowledge is represented. Affordance
relations, once discovered, either specify preconditions that
when true will lead to the corresponding action not having
the desired outcomes (negative affordance), or specify pre-
conditions that when true will lead to the successful execu-
tion of an action that may not have been considered possible
(so far). In other words, these relations remove or add ele-
ments from the set of actions available for consideration to
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achieve any given goal. Also, for any particular action, each
affordance is defined in terms of the attributes of the objects
operated by an agent, or of an agent and an object involved
in this action. An executability condition does not have to
meet these requirements, e.g., when an executability condi-
tion is discovered and in use, the plans computed for any
given goal are a subset of the plans obtained in the absence
of this condition. Second, the representation of affordances
as relations between domain properties and actions, similar
to the representation of actions, is distributed, e.g., we can
define multiple affordance relations for any action. The ad-
vantages of this representation, e.g., information reuse and
ease of plan explanation, are discussed in Section 4.2.

ASP-based inference The domain representation is trans-
lated into program Π(D ,H ) in CR-Prolog, a variant of ASP
that allows us to represent and reason with defaults and their
exceptions, and incorporates CR rules (Balduccini and Gel-
fond 2003). We will use the terms CR-Prolog and ASP in-
terchangeably in this paper. ASP is based on stable model
semantics and non-monotonic logics, and includes default
negation and epistemic disjunction, e.g., unlike “¬a” that
states a is believed to be false, “not a” only implies that a
is not believed to be true, and unlike “p ∨ ¬p” in propo-
sitional logic, “p or ¬p” is not tautologous (Gelfond and
Kahl 2014). ASP can represent recursive definitions, de-
faults, causal relations, and constructs that are difficult to
express in classical logic formalisms. The program Π thus
consists of causal laws of D , inertia axioms, closed world
assumption for defined fluents, reality checks, and observa-
tions, actions, and defaults, recorded in H . Every default is
turned into an ASP rule and a CR rule that allows the robot
to assume that the default’s conclusion is false, under excep-
tional circumstances, so as to restore program consistency
under exceptional circumstances. For instance, Π could in-
clude prioritized defaults encoded as ASP rules:

holds(loc(B, library),0)← #textbook(B),
not¬holds(loc(B, library),0)

holds(loc(B,o f f ice),0)← #textbook(B),
¬holds(loc(B, library),0),
not¬holds(loc(B,o f f ice),0)

and the CR rules:

−holds(loc(B, library),0) +← #textbook(B).

−holds(loc(B,o f f ice),0) +← #textbook(B),
¬holds(loc(B, library),0).

where the first CR rule implies that under exceptional cir-
cumstances, to restore program consistency, the robot can
assume that a textbook is not in the library in the initial
state. For planning, Π also includes the definition of a goal,
a constraint stating that the goal must be achieved, and a
rule generating possible future actions of the robot. Further-
more, although we do not discuss it in this paper, Π includes
relations and axioms for explaining observed outcomes and
partial scene descriptions.

Algorithms for computing the entailment, and for plan-
ning and diagnostics, reduce these tasks to computing the
answer sets of the program Π(D ,H ). The ground literals
in an answer set represent the beliefs of an agent associated
with program Π. An ASP solver is used to compute the an-
swer sets of any given program Π. We use SPARC, a lan-
guage that expands CR-Prolog to provide explicit constructs
for specifying objects, relations, and their sorts (Balai, Gel-
fond, and Zhang 2013).

In the absence of comprehensive domain knowledge, ap-
propriate plans may not be found and the execution of plan
steps may have unexpected outcomes. In the RA domain, a
robot moving a brittle cup to the kitchen may not know that
putting the cup down is going to damage it—the unexpected
outcome will only be observed after the action is completed.
In this paper, we focus on discovering such axioms that en-
code knowledge corresponding to causal laws, executability
conditions, and forbidding affordances. Including these ax-
ioms in Π will improve the quality of plans computed for
achieving any given goal.

3.2 Axiom Discovery
This section describes the steps of the axiom discovery pro-
cess. We begin with the formulation of axiom discovery
as a reinforcement learning (RL) problem, followed by the
decision-tree regression approach to construct a relational
representation of the experiences obtained during RL. We
then describe the construction of candidate axioms from the
tree, and the validation of the candidate axioms to produce
generic axioms to be included in the CR-Prolog program.

RL and Tree Induction When executing an action pro-
duces an unexpected transition, i.e., it does not produce the
expected observations and/or produces new unexpected ob-
servations, the state description described by the action’s ef-
fects becomes the goal state in a relational reinforcement
learning (RRL) problem. The objective of this formulation
is to find state-action pairs that are likely to lead to analo-
gous “error” states. First consider the standard RL formu-
lation and the underlying Markov decision process (MDP)
defined by the tuple 〈S,A,Tf ,R f 〉:
• S is the set of states;
• A is the set of actions;
• Tf : S×A×S′→ [0,1] is the state transition function;
• R f : S×A×S′→ℜ is the reward function.
In the RL formulation, functions Tf and R f are unknown to
the agent. Each element in S grounds the domain attributes,
and whether the last action to be executed had the expected
outcome(s). Such a formulation mimics the experiences that
a robot acquires incrementally and interactively as it per-
forms the assigned tasks, and provides a principled approach
to assign credit to current or previous state-action combina-
tions for the observed transition(s). Note that the definition
of the reward functions used in this approach has to be differ-
ent when discovering axioms corresponding to the different
types of knowledge. For instance, high immediate reward is
to be provided:
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• When an action’s expected effects are not observed, if the
focus is on discovering executability conditions.

• When effects in addition to those expected for an action
are observed, if the focus is on discovering causal laws.

• When the expected and unexpected effects of an action
are observed, if the focus is on discovering affordances.

One key benefit of ASP-based reasoning is that we can de-
fine and automatically compute the states and actions rel-
evant to a given (unexpected) transition, eliminating parts
of the search space irrelevant to the discovery of the de-
sired knowledge. This identification of the relevant search
space is equivalent to constructing the system description
D(T ), which is the part of D relevant to the transition T
of interest. To do so, we first define the object constants
relevant to the unexplained transition—this is a revised
version of the definition in (Sridharan and Gelfond 2016;
Sridharan et al. 2017).

Definition 1. [Relevant object constants]
Let atg be the target action that when executed in state σ1
did not result in the expected transition T = 〈σ1,atg,σ2〉.
Let relCon(T ) be the set of object constants of signature Σ
of D identified using the following rules:

1. Object constants from atg are in relCon(T );
2. If f (x1, . . . ,xn,y) is a literal formed of a domain prop-

erty, and the literal belongs to σ1 or σ2, but not both, then
x1, . . . ,xn,y are in relCon(T );

3. If body B of an executability condition of atg contains
an occurrence of a term f (x1, . . . ,xn,Y ) whose domain is
ground, and f (x1, . . . ,xn,y) ∈ σ1, then x1, . . . ,xn,y are in
relCon(T ).

Constants from relCon(T ) are said to be relevant to tran-
sition T . For instance, if the target action in RA domain
is atg = serve(rob1,cup1, person1), with loc(rob1,o f f ice),
loc(cup1,o f f ice) and loc(person1,o f f ice) in state σ1, the
relevant object constants will include rob1 of sort robot,
cup1 and person1 of sort thing, and o ff ice of sort place.

Once we know the relevant object constants, we can define
the relevant system description D(T ) as follows.

Definition 2. [Relevant system description]
The system description D(T ) relevant to the transition T =
〈σ1,atg,σ2〉 that resulted in the unexplained transition, is de-
fined by the signature Σ(T ) and axioms. The signature Σ(T )
is constructed as follows:

1. Basic sorts of Σ that produce a non-empty intersection
with relCon(T ) are in Σ(T ).

2. For basic sorts of Σ(T ) that correspond to the range of a
static attribute, all domain constants are in Σ(T ).

3. For basic sorts of Σ(T ) that correspond to the range of a
fluent, or domain of a fluent or a static, domain constants
that are in relCon(T ) are in Σ(T ).

4. Domain properties restricted to the basic sorts of Σ(T ) are
also in Σ(T ).

The axioms of D(T ) consist of those of D restricted to the
signature Σ(T ). Building on our example of a state transi-
tion with atg = serve(rob1,cup1, person1), D(T ) would not
include other robots, cups or people that may exist in the do-
main. It can be shown that each transition in the original sys-
tem description D maps to a transition in the system descrip-
tion D(T ) relevant to the unexpected transition of interest—
see (Sridharan et al. 2017) for complete details about estab-
lishing this relationship between transition diagrams. States
of D(T ), i.e., literals formed of fluents and statics in the an-
swer sets of the corresponding ASP program, are states in
the RL formulation for axiom discovery. Actions included
in the RL formulation are (in a similar manner) the ground
actions of D(T ). Furthermore, it is possible to pre-compute
or reuse some of the information used to construct the sys-
tem description relevant to any given transition.
Coming back to our example of the target action atg =
serve(rob1,cup1, person1), the relevant system description
D(T ) (with a small set of domain objects) includes thirteen
atoms formed of relevant fluents:

in hand(rob1,cup1), item status(cup1,damaged),
item status(cup1, intact), labelled(cup1, f alse),
labelled(cup1, true), loc(person1,kitchen),
loc(person1, library), loc(person1,o f f ice),
loc(person1,workshop), loc(rob1,kitchen),
loc(rob1, library), loc(rob1,o f f ice),
loc(rob1,workshop)

eight possible (relevant) ground actions:
a f f ix label(rob1,cup1), move(rob1,kitchen),
move(rob1, library), move(rob1,o f f ice),
move(rob1,workshop), pickup(rob1,cup1),

putdown(rob1,cup1), serve(rob1,cup1, person1)

and nine atoms formed of relevant static attributes:
arm type(rob1,electromagnetic), sur f ace(cup1,hard),
ob j weight(cup1,heavy), ob j weight(cup1, light),
role(person1,engineer), role(person1,manager),
role(person1,sales), sur f ace(cup1,brittle),
arm type(rob1, pneumatic)

The system can then restrict its discovery process to focus
on the possible combinations of relevant domain attributes.

Restricting exploration to just the relevant system descrip-
tion still leaves some open problems. For instance, Defini-
tions 1 and 2 may not capture deeper relationships in the
construction of the axioms. Also, in domains with complex
relationships between objects, the space of relevant states
and actions may still be so large that exploration may need
to be limited to a fraction of this space during the RL tri-
als. Furthermore, Q-learning (by itself) does not generalize
to relationally equivalent states, making it computationally
expensive to conduct RL trials in complex domains.

We exploit the relational representation encoded in the
ASP program to address some of these problems. Specifi-
cally, we use a relational representation to generalize to re-
lationally equivalent states. After one or more episodes of
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Q-learning, all visited state-action pairs and their estimated
Q-values are used to incrementally update a binary deci-
sion tree (BDT)—the motivation for constructing this tree
is to relationally represent the robot’s experiences. The path
from the root to a leaf node corresponds to a partial de-
scription of a state-action pair (s,a). Internal nodes corre-
spond to boolean tests of specific domain attributes or ac-
tions, and determine the node’s descendants. The remainder
of the state description is stored at the leaf—some of this
may be transferred to a new node (for variance reduction)
when the BDT is updated. The revised tree is used to com-
pute a new policy, eliminating the need to completely rebuild
the tree after each episode. The incremental inductive learn-
ing of the BDT draws on the algorithm by Driessens and Ra-
mon (2003). In each Q-learning episode, the system stochas-
tically decides to attempt either a random action or the one
preferred by the current policy, ignoring actions currently
invalidated by known axioms. Each action application also
updates the information stored at a relevant leaf. Over time,
the system assigns a higher value to outcomes perceived to
be similar to the originally encountered unexpected transi-
tion. Since these errors may appear in the context of differ-
ent combinations of domain attributes, these combinations
are varied during RL trials, and the BDT reflects the explo-
ration of different, but similar, MDPs. Q-learning episodes
terminate when the Q-values stored in the BDT converge.
For large, complex domains, we assume that when the num-
ber of explored attribute-value combinations reaches a frac-
tion of the total number of possible combinations, the RL
trials will be halted.

Constructing Candidate Axioms The next step con-
structs candidate axioms for causal laws, executability con-
ditions and forbidding affordances, each of which has a
known structure, as described in Section 3.1. For instance,
any executability condition has the non-occurrence of an ac-
tion in the head, with a body of (pre)condition(s) that prevent
this action from being included in a plan. In a similar man-
ner, causal laws have the occurrence of an action in the body
and specific effects of executing the action in the head.

To construct these axioms, the system examines each leaf
from the induced BDT, extracts a partial state-action de-
scription using its path to the root, and aggregates the stored
information about domain attributes from this description.
Branches with low Q-values or corresponding to an action
that did not result in the observed transition are eliminated.
The resulting structures include information on the mean
and variance of the stored Q-value, based on the different
samples clustered under each leaf. Each structure’s state-
ments about specific attributes holding or not holding are
partitioned into two subsets, and all possible pairwise com-
binations of those subsets are elicited, producing unique tu-
ples, each of which is the basis of a candidate. These store
(a) the amassed Q-value; (b) the total variance; and (c) the
number of training samples that influenced the candidate.

The system estimates the quality of the candidate from the
Q-values of relevant samples it has experienced. It makes
a number of random sample draws from the BDT, propor-

tional to the size of the tree and the number of attributes
not used as tests, without replacement. Each sample is a full
state description of information at the leaf and along the path
to the root. Each such state description that matches a candi-
date axiom adds to its Q-value, variance and count. Consider
the axiom corresponding to a disaffordance relation in the
RA domain, which prevents a robot with an electromagnetic
arm from trying to pick up a heavy object. Assume that a
candidate axiom has been constructed from an example leaf
whose path to the root represents a partial state description
that includes:

loc(book1,workshop), loc(rob1,workshop),
ob j weight(book1,heavy), arm type(rob1,electromagnetic)

and that a Q-value of 9.5 is associated with this example.
One resulting candidate can be written as:

positive:[ob j weight(book1,heavy),
arm type(rob1,electromagnetic)]
negative:[]
Q-sum: 9.5, Count: 1, Mean: 9.5

Of the random samples drawn during candidate quality es-
timation, only some will match the candidate’s partial state
description, e.g.:

positive:[loc(book1,workshop),
ob j weight(book1,heavy), ob j status(book1, intact)]
negative:[]
Q: 9.9

The system uses this sample to update the candidate:

positive:[ob j weight(book1,heavy),
arm type(rob1,electromagnetic)]
negative:[]
Q-sum: 19.4, Count: 2, Mean: 9.7

When all the candidates have been found, the system can
then choose the final set of axioms to be added to the system
description, i.e., the CR-Prolog program.

Filtering Candidate Axioms The final step of the axiom
discovery process is generalization, i.e., the identification
of the most generic form of candidate axioms with a suf-
ficiently high likelihood of representing correct knowledge
about the domain. First, candidates not refined by additional
training samples after their construction are removed. Then,
the candidates are ranked by the number of samples used to
adjust them, and any candidates that elaborate other, higher-
ranked candidates are removed. For instance,

The remaining candidates undergo validation tests in sim-
ulation. For instance, a candidate executability condition, if
true, should describe a case where an action will not provide
the desired effects. If we can find a case that should imply
a “failure” (i.e., unexpected transition) based on this axiom,
but meets with “success” (i.e., expected transition) when the
action is executed, the candidate axiom is incorrect. To this
end, the simulation takes a random state where the target ac-
tion is known to succeed, and makes minimal changes to the
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domain attributes necessary to make the state match the par-
tial state description of the candidate axiom. If executing the
action only provides the expected outcomes in this adjusted
state, the candidate axiom is discarded. Note that these vali-
dation tests are guaranteed not to retract any correct axioms,
but are not guaranteed to retract all incorrect ones. The re-
maining candidate axioms, after suitably replacing the ob-
ject constants with variables, are included in the CR-Prolog
program that is used for reasoning in the subsequent steps.

4 Experimental Setup and Results
In this section, we first state the claims about our architec-
ture’s capabilities (Section 4.1). Next, we illustrate some of
these capabilities using an execution trace, and discuss some
key advantages of the representation of knowledge in our
architecture (Section 4.2). We then summarize and discuss
the results of experimental evaluation in a simulated domain
(Section 4.3).

4.1 Claims
We posit and evaluate the following six central claims about
our architecture’s capabilities:

1. The distributed representation of affordances and other
types of knowledge supports efficient inference, informa-
tion consolidation and information reuse;

2. The architecture can learn symbolic knowledge structured
as affordances, executability conditions, and causal laws;

3. During axiom discovery, automatically limiting search to
the space relevant to any given unexpected transition im-
proves computational efficiency;

4. Our approach to discovering different types of knowledge
is robust to perceptual noise;

5. Introducing validation tests in the loop of learning, plan-
ning, and execution, significantly improves the accuracy
of the discovered axioms; and

6. The discovered axioms help improve the quality of plans
generated for any given goal.

We discuss the first claim qualitatively, and evaluate the
other five claims quantitatively. We consider six target
axioms—two each of affordances, executability conditions,
and causal laws—including those discussed in Example 1.
We conducted trials of 1000 repetitions apiece, providing
them to the domain but removing them from the system’s
domain model. We examined the output axioms which the
system discovered in each trial. Although each of these tests
focused on a single target axiom, we have demonstrated the
ability to discover axioms simultaneously elsewhere (Srid-
haran, Meadows, and Gomez 2017). We also conducted tri-
als in which we explored different fractions of the search
space, ignoring relevance, comparing 300 trials for each of
these explorations (50 repetitions for each of the six target
axioms). We used precision and recall as measures of accu-
racy. Furthermore, we allowed the system to test each dis-
covered axiom in simulation, and report the resulting effects
of this checking on initial accuracy.

4.2 Execution Trace and Discussion
As an illustration of the architecture’s working, con-
sider the robot in the RA domain that does not know
that a brittle object will be damaged if it is put
down. Suppose also that ob j sur f ace(cup1,brittle) and
ob j status(cup1, intact), and that the domain characteristics
are otherwise as described earlier. Let the initial state there-
fore include the following literals:

in hand(cup1,rob1)

loc(cup1,workshop)
ob j sur f ace(cup1,brittle)
ob j status(cup1, intact)

and let the goal state description include:

loc(C,kitchen)

where C is a variable of sort cup, i.e., the objective is to
deliver a cup to the kitchen. One possible plan to achieve
this goal has two actions:

move(rob1,kitchen)
putdown(rob1,cup1)

However, if this plan is executed, the second action results in
an unexpected outcome, potentially triggering the discovery
process. Over a period of learning, the robot is able to add
the following generic axiom to its system description:

putdown(R,O) causes ob j status(O,damaged)
if ob j sur f ace(O,brittle)

preventing the robot from (in the future) including a
putdown action in a plan involving a brittle object.

Let us now also consider the first claim about the benefits of
the representation of knowledge in our architecture. Recall
that action capabilities, and the preconditions and effects of
actions, are encoded in a distributed manner using one or
more axioms, which provides the following advantages:

• First, it will be possible to provide more meaningful ex-
planations of plans and inferences. Recall that affordances
are statements about an action with respect to the at-
tributes of object(s) and/or agent(s) involved in the action.
Each affordance also relates a partial state description to
the actions that can (or cannot) be performed in states that
build on this state description. When grounded, such a
representation is close to language structures likely to be
used for responses, for instance in diagnostics and plan
explanation. It will thus be easy to translate and use this
knowledge to make statements of the form “lifting this
large cylinder with this small robot could work as long
as the cylinder is not heavy”, or “Affixing a label to the
coffee cup will not work when the cup is known to be
brittle and the label applicator is known to work on hard
surfaces”.

• Second, it will be possible to efficiently respond to queries
that require consolidation of knowledge across attributes
of robots or objects, by directing attention to the relevant
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knowledge. For instance, assume that the domain knowl-
edge includes affordance relations that describe the abil-
ity of individual robots, with different strength levels, to
pick up (or not pick up) objects of different weights and
surfaces. Questions of the form “what objects can weak
robots pick up?”, or “which robots can pick up cups?”
can be answered quickly by expanding Definition 2 to
automatically consider only the affordance relations and
attributes relevant to such questions. Furthermore, it will
also be possible (although we do not consider it here) to
develop composite affordance relations, e.g., a hammer
may afford an “affix objects” action in the context of a
specific agent because the handle affords a pickup action
and the hammer affords a swing action, by the agent.

• Third, the distributed representation will simplify infer-
ence and information reuse. For instance, if a hammer has
a graspable handle, this relation also holds true of the par-
ent object class and for all other objects with graspable
handles. In a similar manner, a forbidding affordance (i.e.,
disaffordance) that prevents the pickup action when the
type of the robot’s arm does not match the weight of the
object, can also be used to infer the robot’s inability to per-
form similar actions such as opening a heavy door or clos-
ing a large window. This relates to research in psychology
which indicates that humans can judge the intent and ac-
tion capabilities of others without actually observing them
perform the target actions (Ramenzoni et al. 2010).

Initial results of experimental evaluation do support the ben-
efits listed above—future work will design and conduct ex-
tensive experimental trials to gather quantitative results in
support of the first claim.

4.3 Experimental Results
Our prior work proposed different architectures for dis-
covering forbidding affordances (Sridharan, Meadows, and
Gomez 2017) and for executability conditions (Sridharan
and Meadows 2016). Here, we evaluated whether a single
architecture can discover these forms of knowledge as well
as the knowledge of causal laws.

Discovering different types of knowledge: In our exper-
iments, the average recall and precision over the entire set of
target axioms, were 0.98 and 0.72 respectively. The system
took a mean 5.95 time units to perform decision tree induc-
tion and a mean 0.35 time units to extract a set of axioms.
We found that axioms with more clauses were more diffi-
cult to learn. Also, if axioms were structured to include spe-
cific exceptions, there were more logical over-specifications,
e.g., an axiom stating that “a light, brittle object cannot be
labeled” was discovered instead of “a brittle object cannot
be labeled”. We treat these over-specifications as false posi-
tives, and the (overall) worst case recall and precision were
0.91 and 0.64 respectively. This supports our second claim,
that our architecture can discover knowledge corresponding
to affordances, executability conditions, and causal laws.

Effect of directed exploration: Next, we conducted tri-
als to examine the benefit of limiting exploration, for any

given unexpected transition, to just the relevant portion of
the search space. The mean time required to compute this
relevant space was 533 time units, and the mean time to dis-
cover the axioms in this reduced search space was 6.3 time
units, resulting in a mean total time of 539.3 units for discov-
ering axioms in the search space relevant to any given tran-
sition. It is possible to precompute and cache the relevant
space to be explored in response to any given unexpected
transition in a given domain. Recall that the RA domain has
55,296 static attribute combinations and 6,946,816 physi-
cal (object) configurations. For our target axioms, this space
can be reduced to 8−128 static combinations (mean = 54)
that are relevant to any given action.

Next, we conducted trials that explored only a fraction of
the original space, ignoring relevance, to discover the target
axioms. At 0.01% exploration of the original space, a mean
total time of 608.4 units was required to discover the axioms;
the corresponding precision and recall were 0.28 and 0.86
respectively. The time taken to explore 0.01% of the original
search space is therefore similar to the length of time taken
to explore just the space relevant to any given transition.
However, exploring only the relevant search space provides
significantly higher values of recall and precision. Next, at
0.1% exploration of the search space (again ignoring rel-
evance), the discovery of axioms took a mean total time
of 800.4 units; the corresponding precision and recall were
0.53 and 0.99 respectively. In this case, although the recall is
similar to that obtained when only the relevant search space
is explored, the precision is still significantly lower and the
computation time requirement is significantly higher. Fur-
thermore, our implementation of the construction of the rel-
evant search space can also be made more efficient. These
results thus support the third claim, that limiting exploration
to the space relevant to any given unexpected transition im-
proves the computational efficiency of axiom discovery.

Robustness to perceptual noise: Next, we evaluated the
fourth claim, i.e., whether axiom discovery is robust to per-
ceptual noise, which we interpreted as the noise having a
negative but non-catastrophic impact on performance. We
introduced noise in the form of a fixed chance for an action
to have an unexpected outcome in the form of the removal
or addition of a single literal formed of a random fluent of
the desired resultant state. We performed 500 repetitions for
each of the six target axioms in the RA domain, and repeated
this for 10 different levels of noise between 0− 20%. The
corresponding recall and precision scores are summarized
in Figures 2 and 3. We observe that the addition of noise
affects both precision and recall, with a more significant ef-
fect on precision. However, note that errors were predom-
inantly false positives corresponding to over-specifications
of the target axioms, e.g., they included executability con-
ditions that would correctly prevent an action from being
considered during planning but were not in the most general
form possible. In addition, these false positives were incre-
mentally eliminated as the robot performed a series of vali-
dations tests on the discovered axioms, as described below.
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Condition Causal laws Executability conditions (Dis)Affordances
Axiom 1 Axiom 2 Axiom 3 Axiom 4 Axiom 5 Axiom 6

Without axioms 101.4 0 37.9 164.4 29.7 121.3
With axiom 110.7 11.2 24.8 75.7 23.0 86.5

Table 1: Number of plans found without and with each of the target axioms (see Example 1) under consideration. On average,
discovering causal laws increases the number of feasible plans to achieve any given goal, whereas discovering executability
conditions and disaffordances decreases the number of plans that can be used to achieve any given goal.

Figure 2: Recall scores as a function of added noise; al-
though added noise reduces accurate recall of axioms, many
errors correspond to over-specifications that are filtered by
validation tests.

Effect of validation tests: Our recent work showed that
precision increased with the number of tests conducted to
validate the discovered axioms (Sridharan, Meadows, and
Gomez 2017). In our current work, we observed that there is
a similar improvement in precision with our architecture that
supports the discovery of axioms corresponding to different
types of knowledge in a more complex domain. These vali-
dation tests improved precision by filtering incorrect axioms.
For instance, when only the search space relevant to any un-
expected transition is explored, precision improved (on aver-
age) from 0.72 to 0.91 after ten validation tests. Even for the
0.01% and the 0.1% exploration of the original space (i.e.,
ignoring relevance), ten validation tests improved precision
from 0.28 to 0.90 and from 0.53 to 0.95 respectively. These
results support our fifth claim, that including validation in
the loop of planning, execution, and learning, improves the
accuracy of the discovered knowledge.

Effect on plan quality: Finally, we explored the effect of
the discovered axioms on the quality of plans generated. We
conducted 1000 paired ASP-based planning trials for each
axiom, and for all the axioms, with and without the corre-
sponding target axiom(s) in the system description. Table 1
summarizes the results for each of the six axioms, and dis-
plays some interesting trends. For instance, the set of plans
found after including axioms that represent knowledge cor-

Figure 3: Precision scores as a function of added noise;
although added noise affects precise discovery of axioms,
many errors correspond to over-specifications that are fil-
tered by validation tests.

responding to a causal law (e.g., axiom 1 or 2 in this study)
was a superset of the plans found without including these
axioms in the system description. In other words, discov-
ering previously unknown knowledge corresponding to a
causal law (on average) increases the number of possible
plans that can be constructed to achieve an assigned goal.
On the other hand, the set of plans found after including ax-
ioms that represent knowledge of an executability condition
or a forbidding affordance (axioms 3−6 in this study) was a
subset of the plans found without including these axioms. In
other words, discovering knowledge corresponding to a pre-
viously unknown executability condition or forbidding af-
fordance (on average) reduces the number of plans that can
be executed to achieve an assigned goal. However, when ax-
ioms corresponding to different types of knowledge are con-
sidered together, the set of plans found after including these
axioms is no longer a subset or superset of the plans found
without including the axioms. For instance, when all six tar-
get axioms are considered together, all we can say is that
29.2 is the average magnitude of the difference in the num-
ber of plans found with and without including these axioms.
Furthermore, we verified that all the plans that were com-
puted after including all the target axioms were correct.
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5 Conclusions and Future Work
This paper described an architecture for interactive and
cumulative discovery of axioms corresponding to causal
laws, executability conditions and forbidding affordances.
We used Answer Set Prolog to represent and reason with
incomplete domain knowledge for planning and diagnos-
tics, and used decision tree induction and relational rein-
forcement learning to identify specific candidate axioms and
generalize across these specific instances. Experimental re-
sults (in the context of a robot assisting humans in an indoor
domain by moving particular objects to particular places or
people) indicate that our approach:

• Supports reliable and efficient reasoning and discovery of
the axioms corresponding to different types of knowledge,
especially when search is limited to the space relevant to
the unexpected transition that triggered axiom discovery;

• Provides some robustness to perceptual noise—although
noise degrades the accuracy of axiom discovery, includ-
ing validation tests in the loop of planning, execution and
learning helps recover from these errors; and

• Results in the discovery of axioms that when included in
the system description, improves the quality of the plans
found for any given goal.

The architecture opens up multiple directions for research
that we seek to investigate in the future. More specifically:

• We will explore the problem of automatically determin-
ing when to discover different types of knowledge, and
thoroughly investigate the benefits of the underlying dis-
tributed representation;

• We will investigate the discovery of affordance relations
that enable the execution of specific actions by specific
agents;

• We will explore active interactive discovery of axioms in-
stead of limiting discovery to situations corresponding to
unexpected state transitions during plan execution; and

• We will evaluate the architecture on physical robots,
which will require the use of the component of the ar-
chitecture that reasons about perceptual inputs probabilis-
tically.

The long-term objective is to enable robots assisting humans
to represent, reason with, and interactively revise different
descriptions of incomplete domain knowledge.
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Abstract

We propose an algorithm called σ-approximation that com-
presses the non-zero values of beliefs for partially observable
Markov decision processes (POMDPs) in order to improve
performance and reduce memory usage. Specifically, we
approximate individual belief vectors with a fixed bound
on the number of non-zero values they may contain. We
prove the correctness and a strong error bound when the σ-
approximation is used with the point-based value iteration
(PBVI) family algorithms. An analysis compares the algo-
rithm on six larger domains, varying the number of non-zero
values for the σ-approximation. Results clearly demonstrate
that when the algorithm used with PBVI (σ-PBVI), we can
achieve over an order of magnitude improvement. We ground
our claims with a full robotic implementation for simultane-
ous navigation and localization using POMDPs with σ-PBVI.

Introduction
Automated planning domains have been steadily growing in
complexity, especially for partially observable Markov de-
cision processes (POMDPs) (Kaelbling, Littman, and Cas-
sandra 1998). They now encapsulate problems ranging from
water reservoir control (Castelletti, Pianosi, and Soncini-
Sessa 2008) to autonomous driving (Wray and Zilberstein
2015a; Wray, Pineda, and Zilberstein 2016). The growing
number of possible states and observations in these problem
domains requires POMDP solvers to handle a large space of
agent’s beliefs over domain states. The complexity of plan-
ning has inspired the development of numerous approximate
planning algorithms.

One approximation method that proved particularly effec-
tive is point-based value iteration (PBVI) (Pineau, Gordon,
and Thrun 2003), which restricts value function computa-
tions to a subset of the belief space, thereby accelerating
value iteration techniques (Smith and Simmons 2004; Spaan
and Vlassis 2005; Pineau, Gordon, and Thrun 2006; Shani,
Brafman, and Shimony 2007; Poupart, Kim, and Kim 2011;
Shani, Pineau, and Kaplow 2013). We propose an algorithm
called σ-approximation that exploits a bounded quantity of
zero-values over the set of beliefs to greatly improve belief
operations in POMDP algorithms.

The σ-approximation method addresses an orthogonal
issue from PBVI; both methods can, in fact, be used together
or separately. PBVI concerns itself with the number of

Figure 1: Example POMDP navigation in a real world
laboratory map (2914 states; „28m-by-8.8m). The black
circle is the robot. Gray and black cells are free space and
obstacles, respectively. Blue and white cells visually depict
a single belief point; their opacity is a log-probability of the
robot’s location. Blue highlights the top k“3 probability
masses in the belief. For planning, the σ-approximation uses
the fixed top k weights for each belief.

reachable beliefs and the selection of an approximate subset.
Our algorithm focuses on the number of non-zero values
within each belief point. Specifically, we construct a new
set of beliefs to use for updates given a non-zero value
constraint rz (e.g., rz« logn, where n is the number of
states). For each belief, we sort the belief values and select
only the top rz values, then normalize these values to create
a new belief. These are then used in update equations,
allowing for dot products with beliefs to be computed much
faster based on this constraint rz . We formally show that
this simple routine is the optimal projection given the rz
constraint. Then, we prove a strong bound on the error
for the σ-approximation used in point-based algorithms.
Finally, we demonstrate its vast performance gains with low
error in six larger domains.

To our knowledge, this is a new form of belief compres-
sion for POMDPs, with theoretical guarantees in conjunc-
tion with PBVI. A similar method was briefly suggested for
the separate Bayes-adaptive POMDP model (Ross, Chaib-
draa, and Pineau 2008). They did not, however, provide
any theoretical or empirical analysis, nor the general algo-
rithm presented here. Value directed belief state compres-
sion (Poupart and Boutilier 2003) performs intelligent state
space compression to only discard (mostly) irrelevant parts
of the belief state, yielding the smallest invariant Krylov
subspace. They use a distinct linear lossy compression
method that approximates the original POMDP. Exponential
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family principle components analysis (E-PCA) has also
been used to compress beliefs into a low-dimensional belief
space (Roy, Gordon, and Thrun 2005). They instead solve
the compressed POMDP, then map the policy back to the
original POMDP. This operates over all beliefs at once,
whereas ours operates on individual beliefs. Both compres-
sion methods and their numerous variants differ markedly
from our fixed non-zero values, sort-based algorithm.

The σ-approximation exploits sparse beliefs. While few
algorithms leverage this fact, such as sparse stochastic finite
state controllers (Hansen 2008), it has been suggested as a
measure of POMDP complexity (Lee, Rong, and Hsu 2008).
Other related work includes algebraic decision diagrams
(ADDs) used to solve large factored POMDPs, and approx-
imate belief points in the process (Shani et al. 2008), albeit
in a very different manner from our approach.

Our paper begins with a review of the POMDP model
(Section 2), followed by our σ-approximation algorithm
(Section 3). Additionally, we present two main propositions
(correctness and an error bound) as well as two supporting
lemmas. Then, we present experiments on standard bench-
mark domains, and a full robot implementation for naviga-
tion and localization, that demonstrate our approximation
vastly improves performance with minor error (Section 4).
We conclude with a discussion of our approach and potential
future work (Section 5).

Background
A partially observable Markov decision process (POMDP)
is represented by a tuple xS,A,Ω,T,O,Ry. S is a set
of n states, A is a set of m actions, and Ω is a set of
z observations. T :SˆAˆSÑr0,1s is a state transition
function mapping a state s and action a to a successor state
s1 with probability T ps,a,s1q”Prps1|s,aq. It is common in
practice, however, to define T with a successor function that
returns only the non-zero valued successor states and their
probabilities. Let the maximum number of possible succes-
sor states be denoted as nsďn. O :AˆSˆΩÑr0,1s is an
observation function that stochastically emits an observation
ω given action a led to state s1 with probabilityOpa,s1,ωq”
Prpω|a,s1q. R :SˆAÑR is a reward function, denoted
Rps,aq for state s and action a.

The agent does not necessarily know the true state of the
POMDP at any given time. Instead noisy observations are
made and the agent is able to maintain a belief over the
true state. We denote a set of r beliefs as BĎ4n, with
4n denoting the standard n-simplex. The agent updates a
current belief bPB after taking an action a and making an
observation ω to a new belief b1 for a state sPS following:

b1ps1|b,a,ωq“ηOpa,s1,ωq
ÿ

sPS
T ps,a,s1qbpsq (1)

with normalization constant η“Prpω|b,aq´1. Importantly,
let rz denote the maximum number of non-zero values over
all belief vectors bPB.

Agents operate for a number of discrete time steps called
the horizon hPN. The agent’s reward is reduced by a dis-
count factor γ Pp0,1q per time step. Infinite horizon (h“8)

POMDPs can often be approximated by some finite horizon.
A policy π :BÑA describes how the agent acts based on its
beliefs. We also define the value function V :BÑR as the
expected reward at each belief, which is piece-wise linear
and convex in this space (Lovejoy 1991). This fact enables
us to represent the value function as a collection of α-vectors
Γ“tα1, . . . ,αxu with each αi“rV ps1q, . . . ,V psnqsT and
V psjq denoting the value of state sj . We record a policy
by marking an action with each α-vector, so we have the
compact notation: V pbq“α ¨b and πpbq“aα PA.

Point-Based Solution Methods
Point-based value iteration (PBVI) (Pineau, Gordon, and
Thrun 2003) and other belief point-based approaches, such
as heuristic search value iteration (HSVI2) (Smith and
Simmons 2004) and Perseus (Spaan and Vlassis 2005), do
not expand all reachable beliefs from an initial seed belief.
Instead, they operate on a different set (e.g., a subset) to
avoid the exponential growth of reachable beliefs over the
horizon. In PBVI, we have an initial expand step (denoted
as expandp¨q in Algorithm 1) which produces a set of
beliefs BĎ4n. Then, we apply value iteration over these
beliefs, producing α-vectors at each time step t denoted as
Γt. Formally, this procedure is applied h times (denoted as
updatep¨q in Algorithm 1), given Γt´1, to produce Γt, is
given by:

Γtaω“trV ts1aωα, . . . ,V tsnaωαsT ,@αPΓt´1u, @aPA,ωPΩ

Γtb“tra`
ÿ

ωPΩ
argmax
αPΓt

aω

α ¨b,@aPAu, @bPB

Γt“targmax
αPΓt

b

α ¨b,@bPBu

with variables V tsaωα“γ
ř
s1PSOpa,s1,ωqT ps,a,s1qαps1q,

ra“ř
sPS bpsqRps,aq, and initial α-vectors be αpsq“

R{p1´γq, for all sPS, with R“minsPSminaPARps,aq
guaranteeing α-vectors increase (Lovejoy 1991).

The σ-Approximation Method
Our inspiration comes from the realization that: (1) belief
dot products are nested throughout PBVI and other algo-
rithms, (2) zero-multiplied values may be skipped, (3) a sim-
ilar definition of ns for beliefs might be exploitable, and (4)
there is a significant performance improvement in practice
when rz!n as opposed to rz«n. With these insights, we
designed a variant that can be applied to any belief-based
algorithm that reduces the beliefs from an expand step to be
of size r̂zďrz for use within an update step. For the sake of
clarity, we focus here on PBVI applications only; however,
the algorithm can be easily applied to commonly used value
iteration (VI) methods such as HSVI2 or Perseus in a natural
way. We call this general algorithm the σ-approximation.
For brevity, we denote the use of our algorithm on any point-
based algorithm with the prefix ‘σ’ (e.g., σ-PBVI, σ-HSVI2,
σ-Perseus, etc.). The σ denotes the measure of approxima-
tion, a value that can be computed, with a guarantee that
σPr1{n,1s.

The algorithm separates the true set of beliefs used in
the expand step B from the (approximate) set used in the
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update step B̂. Importantly, each expand step continues to
use the true beliefs B. Since our method removes non-zero
beliefs, which are small in belief vectors, if we used B̂ for
expansions, then algorithms that explore reachable beliefs
might never explore the full set of reachable beliefs. By
preserving B for expand, we are able to explore the full
set of reachable beliefs, and then approximate these with a
bounded size of non-zero values for beliefs in B̂ for updates.
Thus, how should we best approximate beliefs inB given the
r̂z constraint?

Optimal Selection in the σ-Approximation
Let bPB be any belief point from the expanded set of beliefs
B. Let N“t1, . . . ,nu. Assume we are given a constraint
r̂zďrz PN that denotes the desired maximum number of
non-zero belief point values in any belief. Let B̂ denote the
approximated beliefs ofB given the r̂z constraint. Formally,
this constraint guarantees that for b̂PB̂:

|tiPN |b̂ią0u|ď r̂z (2)
The σ-approximation operates in the following manner.
For all beliefs bPB, b“rb1, . . . , bnsT . We sort the belief’s
values in Opn lognq time (denoted sortp¨q in Algorithm 1).
Optionally, this is much faster if: (1) we cleverly expand
so the beliefs are already sorted, and/or (2) if we sparsely
store beliefs. Let or :NÑN denote the resulting descending
ordering (rank index) of the belief vector’s indices after
sorting. Let Î“tiPN |orpiqď r̂zu be the reduced set of
indices of only the top r̂z with respect to their probabilities.
We define the new approximate belief b̂, to be added to B̂,
of the original b, for iPN as:

b̂i“
"

bi
σb
, if iP Î

0, otherwise
(3)

with σb“ř
iPÎ bi. This also ensures Equation 2 holds. We let

σ“minbPB σb denote the overall worst-case approximation
error using our method. Interestingly, the definition of Î
implies that the worst-case approximation error is bounded
to an interval σPr1{n,1s. This only arises with r̂z“1 and a
uniform belief b. The procedure is shown in Algorithm 1.

Theoretical Analysis of the σ-Approximation
First, we prove in Proposition 1 that the σ-approximation
algorithm yielding b̂ from Equation 3 returns the correct
optimal approximate belief given the fixed r̂z .
Proposition 1 (Correctness). For belief bP4n and r̂z PN ,
for all other beliefs b1 P4n with the same r̂z constraint: |tkP
N |b1ką0u|ď r̂z , we have the property that b̂P4n produced
by the σ-approximation:

}b̂´b}1ď}b1´b}1 (4)

Proof. Assume by contradiction there exists a b1 P4n with
the r̂z constraint (Equation 2) such that }b̂´b}1ą}b1´b}1.
Let K 1“tkPN |b1ką0u. By definition of 1-norm we have:

ÿ

iPÎ
|b̂i´bi|`

ÿ

iRÎ
|bi|ą

ÿ

kPK1
|b1k´bk|`

ÿ

kRK1
|bk|

Algorithm 1 The σ-Approximation Method for basic PBVI.
Require: xS,A,Ω,T,O,Ry: The POMDP.
Require: r̂z: The desired maximum number of non-zero values.
Require: b0: The initial belief.
1: BÐexpandpb0q
2: B̂ÐH
3: for bPB do
4: b̂“r0, . . . ,0sT
5: for iPt1, . . . ,nu do
6: oÐsortpbiq
7: ÎÐtiPN |orpiqď r̂zu
8: b̂iÐ

"
bi
σb
, if iP Î

0, otherwise
9: end for

10: B̂ÐB̂Ytb̂u
11: end for
12: ΓÐupdatepB̂q

By rearranging and the definition of b̂ in Equation 3:
ÿ

iPÎ

ˇ̌
ˇ bi
σb
´bi

ˇ̌
ˇ`

ÿ

kPK1
|b1k´bk|ą

ÿ

kRK1
|bk|´

ÿ

iRÎ
|bi|

By Equation 2, Î“tiPN |orpiqď r̂zu, which by the de-
scending ordering or, we guarantee b̂ selected the largest r̂z
values from b. Thus, @XĎN such that |X|ď r̂z ,

ř
iPÎ biěř

xPX bx. By rearranging and applying probability normal-
ization requirement:

ř
iRÎ biď

ř
xRX bx. With this fact and

properties of absolute values, we obtain:
ˇ̌
ˇ 1

σb
´1

ˇ̌
ˇ
ÿ

iPÎ
bi´

ÿ

kPK1
|b1k´bk|ą0

By the definition of σb, rearranging, and subadditivity:
ˇ̌
ˇ 1

σb
´1

ˇ̌
ˇσbą

ÿ

kPK1
|b1k´bk|ě

ˇ̌
ˇ
ÿ

kPK1
b1k´bk

ˇ̌
ˇ

By definition of b1 and that probabilities sum to 1:
ˇ̌
ˇ 1

σb
´1

ˇ̌
ˇσbą

ˇ̌
ˇ1´

ÿ

kPK1
bk

ˇ̌
ˇ“1´

ÿ

kPK1
bk

Rearrange, apply the definitions of Î , K 1, and σb, as well as
the properties of absolute values with σb Pp0,1s to obtain:

1ă
ˇ̌
ˇ1´σb
σb

ˇ̌
ˇσb`

ÿ

kPK1
bkď

ˇ̌
ˇ1´σb
σb

ˇ̌
ˇσb`

ÿ

kPÎ
bk“ 1´σb

σb
σb`σb

This implies that 1ă1´σb`σb“1, hence a contradiction
is reached. Therefore, b̂ is optimal following Equation 4.

Next, we would like to know how much error (in terms
of value at a belief) this approximation adds to PBVI and
the other point-based methods. First, Lemma 1 provides an
upper bound on the distance from any approximate belief
b̂PB̂ to an arbitrary belief b1 P4n. Importantly, this bound
is only in terms of the corresponding bPB for which b̂ was
an approximation and σb.
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Lemma 1. For any belief b1 P4n, and belief b̂P4n pro-
duced by the σ-approximation of belief bPB, we have:

}b1´ b̂}1ď}b1´b}1`2p1´σbq (5)

Proof. Take any belief b1 P4n and σ-approximate belief
b̂P4n for belief bPB. We apply the triangle inequality
(using bi), the definition of b̂ (Equation 3), rearrange, apply
the definition of σb, and simplify.

}b1´ b̂}1“
nÿ

i“1

|b1i´ b̂i|ď
nÿ

i“1

|b1i´bi|`
nÿ

i“1

|bi´ b̂i|

“}b1´b}1`
ÿ

iPÎ

ˇ̌
ˇbi´ bi

σb

ˇ̌
ˇ`

ÿ

iRÎ
|bi|

“}b1´b}1`
ˇ̌
ˇ1´ 1

σb

ˇ̌
ˇ
ÿ

iPÎ
|bi|`p1´σbq

“}b1´b}1` 1´σb
σb

σb`p1´σbq

which implies }b1´ b̂}1ď}b1´b}1`2p1´σbq.
We use this result in Lemma 2 and Proposition 2, which

proves a bound on σ-PBVI’s value error in terms of the den-
sity of the original belief points δB“maxb1P4n minbPB }b´
b1}1 (Pineau, Gordon, and Thrun 2003) and the worst-
case approximation error σ. The bound also utilizes R“
maxs,aRps,aq and R“mins,aRps,aq. Importantly, this
proof extends the original by Pineau et al. (Pineau, Gordon,
and Thrun 2003) and contains components of it.
Lemma 2 (σ-PBVI One Step Error Bound). The error ε
introduced in σ-PBVI when performing one iteration of
value backup over B̂ instead of B or4n, is bounded by:

εď R´R
1´γ pδB`2p1´σqq (6)

Proof. We start with the belief b1 P4n that had the largest
error after a σ-PBVI update, and the closest b̂PB̂ (which σ-
approximates belief bPB) to b1 via a 1-norm, with maximal
α-vector α1 for b1 and would be maximal α-vector α̂ at b̂.
εďα1b1´ α̂b1ď}α1´ α̂}8}b1´ b̂}1 By Pineau et al.

ď}α1´ α̂}8p}b1´b}1`2p1´σbqq By Lemma 1

ď R´R
1´γ pδB`2p1´σbqq By Pineau et al.

ď R´R
1´γ pδB`2p1´σqq By σ“min

bPB σb

Proposition 2 (σ-PBVI Error Bound). For any set of beliefs
BĎ4n, σ-approximation B̂ of B, and horizon t, the error
of the σ-PBVI algorithm εt“}V B̂t ´Vt̊ }8 is bounded by:

εtď R´R
p1´γq2 pδB`2p1´σqq (7)

with V B̂t and Vt̊ denoting the estimate and optimal value
functions, respectively.

Proof. Again by Pineau et al. we have the error εt at time t
bounded as:

εtď}H̃V B̂t´1´HV B̂t´1}8`γet´1 By Pineau et al.

ď R´R
1´γ pδB`2p1´σqq`γet´1 By Lemma 2

ď R´R
p1´γq2 pδB`2p1´σqq By geometric series

with H̃ and H above above denoting the PBVI and exact
update operators, respectively. Note that σ-PBVI has the
same value update operator just on a different belief set.

An interesting facet of this bound is the relation between
δB and 2p1´σq. Since beliefs are probabilities, δB Pr0,2s.
Similarly, σPr1{n,1s implies the other term is on the same
range 2p1´σqPr0,2pn´1q{nsÑr0,2s as nÑ8. We call
this term the σ-error. Both also measure an approximation
and are orthogonal considerations. In other words, one could
have dense beliefs with high σ-error (σ-VI), sparse beliefs
with low σ-error (PBVI), sparse beliefs and high σ-error (σ-
PBVI), or dense beliefs and low σ-error (VI).

The best-case scenario that will yield the largest perfor-
mance gains using our σ-approximation consists of domains
in which beliefs are almost all collapsed to a few states,
but have a lot of very small spread out beliefs over other
states. The σ-approximation will then replace these beliefs
and efficiently perform updates on most of the denser parts
of the belief vector’s space.

The theoretical complexity of our PBVI’s update equation
is Opn2mzr2q in the worst case with ns“ r̂z“rz“n. In
comparison, the σ-approximation has a reduced complexity
of Opmzrnpn`rr̂zqq in the worst case with ns“n. Note
that the absolute worst-case cost of sorting, Oprn lognq,
is greatly overshadowed by the update cost. Additionally,
this reduces memory requirements. PBVI requires Oprnq
space to store all belief points, whereas σ-PBVI requires
Oprr̂zq. While this may not seem like much for smaller
problems, larger problems can have beliefs that are spread
out over many states. Thus, we can approximate large belief
vectors with the σ-approximation, while maintaining the
original size of smaller ones. This largely preserves the
accuracy of PBVI with a minor modification that vastly
improves overall runtime performance, especially if r̂z«?
n or r̂z« logn. This observation is empirically supported

by our experiments, described in the next section.
Furthermore, parallel implementations of PBVI (multi-

core CPU, GPU, or cluster) eliminate the major bottle-
neck: number of belief points r (Shani 2010; Wray and
Zilberstein 2015b). With ns!n, one of the remaining major
bottleneck variable becomes rz , which a parallelized σ-
PBVI addresses. Finally, communication overhead is one of
the biggest factors for parallel algorithms, particularly on
clusters. σ-PBVI enables belief points to be transferred over
a network on a cluster much faster because of its tunable
bounded memory size Oprr̂zq.
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Domain PBVI σ-PBVI
r̂z“rz r̂z“rrz{3s r̂z“rrz{10s r̂z“rrz{30s

Name n m z r ns rz T V pb0q σ T V pb0q σ T V pb0q σ T V pb0q σ

Aloha-10 30 9 3 64 25 10 1.3 106.0 1.0 0.6 105.8 0.64 0.3 101.1 0.36 0.18 98.3 0.18
Aloha-30 90 29 3 128 27 30 82.0 787.4 1.0 34.4 787.3 0.83 13.5 784.5 0.38 7.6 769.1 0.19
Fourth 1052 4 28 256 3 1052 186.4 -60.5 1.0 187.3 -60.5 1.00 183.4 -60.5 1.00 87.3 -60.5 1.00
Hallway2 92 5 17 128 88 88 80.6 0.28 1.0 25.4 0.26 0.34 7.9 0.23 0.10 3.3 0.16 0.03
Rock Sam. 12545 13 2 512 1 256 142.0 -147.1 1.0 71.9 -148.0 0.34 50.2 -145.3 0.10 42.7 -146.9 0.04
Tag 870 5 30 256 5 841 158.7 -25.8 1.0 131.4 -27.7 0.33 131.9 -30.6 0.10 118.8 -30.2 0.03
Tiger Grid 36 5 17 64 5 36 5.04 -0.79 1.0 2.32 -1.06 0.99 0.85 -1.09 0.78 0.48 -1.11 0.69

Table 1: Computation time T (in seconds) for h“50, initial belief’s value V pb0q, and σ averaged over 10 trials for each domain.

Experimentation
We begin with a comparison of σ-PBVI over six standard
POMDP benchmark domains, varying the levels of the
approximation. Then, we experiment with σ-approximation
on a real robot performing simultaneous navigation and
localization.

Performance of σ-Approximation on Benchmarks
We implement σ-PBVI to investigate its performance im-
provements and solution quality. Table 1 shows the results
over six larger well-known domains using ranges of r̂z
values. In particular, we compute the base rz without our
σ-approximation, then vary r̂z to be rz , rz{3, rz{10, and
rz{30. Importantly, this version of PBVI is already much
more efficient than a naive implementation that stores all n
probabilities for each belief point, even with r̂z“rz .

Aloha-30, Hallway2, and Tiger Grid all obtain over an
order of magnitude improvement. Even the largest domain,
Rock Sample (7x8), results in over three times improvement
with almost zero error in value V pb0q. Results can be further
improved by the user, in terms of time or quality, using the
tunable parameter r̂z .

Overall, there is a clear trend that larger domains benefit
more from this than smaller domains. This is due in part
to large spread out belief vectors being relatively rare after
expand steps; most reachable beliefs in large domains are
actually dense with a few near-zero belief values. Thus,
these introduce very small overall error when approximated
with smaller belief vectors. Additionally, more complex
expand steps (e.g., PEMA) might improve the standard
PBVI beliefs, but recall that we are still σ-approximating
those beliefs. Thus, the σ-approximation result will also
further improve. In summary, our σ-approximation worked
well in large domains, introducing low error for greatly
reduced computation time.

Application to Robotic Navigation and Localization
We construct a real robotic navigation and localization
experiment similar to those found in the few previous real
applications of POMDPs (Brooks et al. 2006; Spaan and
Vlassis 2004; Pineau et al. 2003). Here, we define a 56 state
POMDP: an 8-by-7 abstracted grid. There are 9 actions: all
8 neighboring cells and a stop action. Furthermore, there
are 2 observations: “bump” or “no bump”. Note that this
results in the POMDP’s actions and observations allowing

for both navigation and localization. The probability of
successful forward motion is 0.9, with a slight uniform
chance of deviating left and right, as well as not moving.
The probability of observing a “bump” is proportional to
the average number of obstacles over all possible successor
states. The reward is a small -0.05 for non-goal states and 0.0
for the goal. Belief is therefore over the location of the robot
as it moves around the world. We assign the initial beliefs
to be collapsed with 1.0 probability mass over each state
and perform original PBVI expansions afterward selecting
maximally “distinct” beliefs (Pineau, Gordon, and Thrun
2003). The σ-approximation is applied on these beliefs.

Figure 2 shows the real world execution of σ-PBVI (k“
4) and PBVI in a maze on a robot platform: the base Kobuki
made by Yujin Robot Co., Ltd. with an Nvidia Jetson TX1
made by Nvidia Corporation. As we observe, the actual real-
world performance (i.e., the paths and actions taken by the
robot shown in Figure 2) is almost the same between σ-
PBVI and PBVI. The maze itself was designed to spread
belief over the straight “hallways” prior to entering each
“room”. In practice, the belief spreads out over much more
than k“4 states; however, as observed, the final perfor-
mance is quite similar.

Conclusion
We provide an approximation algorithm that compresses
the non-zero values in belief vectors, solving larger prob-
lems faster with bounded additional error. We provide two
propositions, and two related lemmas, proving that our
σ-approximation is optimal and has bounded error. This
is demonstrated in our experiments on six standard do-
mains. Additionally, we implement a POMDP on a real
robot in a simultaneous navigation and localization domain,
comparing σ-PBVI and PBVI, showing only minor policy
differences.

The main contribution of the σ-approximation its appli-
cability to all algorithms that operates over beliefs. We en-
vision its use in many other algorithms beyond σ-PBVI, in-
cluding σ-HSVI2 and σ-Perseus. Also, the σ-approximation
is much simpler to implement over other approaches, such
as value directed belief state compression (Poupart and
Boutilier 2003) or E-PCA methods (Roy, Gordon, and Thrun
2005). We plan to explore broader use of σ-approximation
in future work with this foundation established. Finally, we
will provide our source code so that others could easily build
faster approximate POMDP solvers.
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Figure 2: Demonstration of our σ-approximation used on a real robot. Each column of images denotes the ROS output (top) and
corresponding real world pictures for σ-PBVI (middle) and normal PBVI (bottom) over time (left to right). The black circle is
the robot. Blue and white denote log-probability belief regarding the robot’s physical location. Blue visually highlights only the
top three highest weights for reference. The red line denotes the σ-PBVI path. The green line denotes the normal PBVI path.
(Both paths are from odometry.) The start and goal are marked as “S” and “G”, respectively. Note the localization attempts in
the paths in which the robot intentionally “bumps” the wall to confirm its location and collapse belief.
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Abstract

Commonsense reasoning and probabilistic planning are two
of the most important research areas in artificial intelligence.
This paper focuses on Integrated commonsense Reasoning
and probabilistic Planning (IRP) problems. On one hand,
commonsense reasoning algorithms aim at drawing conclu-
sions using structured knowledge that is typically provided
in a declarative way. On the other hand, probabilistic plan-
ning algorithms aim at generating an action policy that can be
used for action selection under uncertainty. Intuitively, rea-
soning and planning techniques are good at “understanding
the world” and “accomplishing the task” respectively. This
paper discusses the complementary features of the two com-
puting paradigms, presents the (potential) advantages of their
integration, and summarizes existing research on this topic.

Introduction
Robots that operate in the real world frequently need to
work on complex tasks that require more than one action.
Two planning paradigms have been developed for robots that
work on such complex tasks: task planning and probabilis-
tic planning. Task planning algorithms focus on computing a
sequence of actions, implicitly assuming perfect action exe-
cutions in a deterministic domain. Probabilistic planning al-
gorithms aim at, in stochastic domains, computing an action
policy that suggests an action from any state under the uncer-
tainty from the non-deterministic outcomes of robot actions.
Examples of non-deterministic action outcomes include op-
ponent moves in chess and results of grasping an object us-
ing an unreliable gripper. This paper focuses on probabilistic
planning in stochastic domains.

The Markov assumption states that the next state only
relies on the current state and is independent of all previ-
ous states (the first-order case). Accordingly, Markov de-
cision processes (MDPs) and partially observable MDPs
(POMDPs) have been developed as probabilistic planning
frameworks under full and partial observabilities respec-
tively (Kaelbling, Littman, and Cassandra 1998). When the
current world state is not directly observable, the robot needs
to make observations to estimate the current state, where
the observations are frequently local and unreliable. Ac-
cordingly, a belief distribution over all possible states is
maintained as the state estimation representation. MDP and
POMDP algorithms, e.g., value iteration (Sutton and Barto

1998), Monte Carlo tree search (Kocsis and Szepesvári
2006) and SARSOP (Kurniawati, Hsu, and Lee 2008), help
compute a policy that enables planning toward maximizing
long-term rewards.

Orthogonal to planning, commonsense knowledge is used
to refer to the knowledge that is normally true but not al-
ways. Such knowledge can be represented in different forms,
e.g., as defaults and using probabilities. Commonsense rea-
soning is concerned with drawing conclusions (or generating
new knowledge) using the existing commonsense knowl-
edge. Generally speaking, all knowledge is commonsense
knowledge and can be represented in very different forms,
such as First-Order Logic (FOL) (Smullyan 1995), Markov
Logic Networks (MLNs) (Richardson and Domingos 2006),
and Answer Set Programming (Gelfond and Kahl 2014).
Such reasoning paradigms are good at drawing (determinis-
tic, probabilistic, or both) conclusions within a static world,
but is ill-equipped for planning to achieve long-term goals
in dynamic, stochastic domains.

The difficulty of solving MDP and POMDP problems
comes from the two major computational challenges of
“curse of dimensionality” (a complex robotic task generates
a high-dimensional state space) and “curse of history” (a
robot often needs to take many actions to reach the goal, re-
sulting in a long planning horizon) (Kurniawati et al. 2011).

The main objective of Integrated commonsense Rea-
soning and probabilistic Planning (IRP) algorithms
is to decompose a robot planning problem into two
sub-problems: commonsense reasoning and probabilis-
tic planning. Then a commonsense reasoner and a
probabilistic planner can be used to focus on the
sub-problems of high-dimensional reasoning and long-
horizon planning respectively. .

In what follows, we first present a state space decompo-
sition strategy that paves the way of IRP methods, and then
summarize existing research related to this topic.

State Space Decomposition
State space decomposition plays an important role in IRP
algorithms. We first define endogenous and exogenous do-
main variables for the sake of easier discussion. Endogenous
variables are the variables whose values the robot wants to
actively change or observe (or both). Exogenous variables
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Figure 1: An illustrative example: the robot needs to navi-
gate from its start location (S) to the goal (G). The hatching
area on the right is a near-window area where the robot can
be trapped (probabilistically) under sunlight.

are the variables whose values the robot only wants to pas-
sively observe and adapt to as needed.

Consider a robot navigation problem in a fully-observable
2D grid world shown in Figure 1. The robot can take actions
(North, East, South, and West) to move toward one of its
nearby grid cells, and such actions succeed probabilistically.
The hatching cell is a dangerous area to the robot, because,
in the mornings, sunlight there can blind its range-finder sen-
sor, causing it unrecoverably lost (probabilistically). In this
example, the robot’s current location should be modeled as
an endogenous variable, because its value change needs to be
modeled in the planning process, i.e., its value needs to be
actively changed. Current time (morning or not) should be
modeled as an exogenous variable, meaning that the robot
does not need to change its value in the planning process.
However, it is indeed necessary to keep an eye on (passively
observe) its value, and adjust the probabilistic planner as
needed, e.g., reducing the success rate of navigating though
the near-window cell when current time is morning.

In principle, all domain variables should be modeled in
(PO)MDPs. However, in practice, we usually do not do that,
because there is always the trade-off between model com-
pleteness and computational tractability. The goal of main-
taining two sets of variables is to enable the robot to focus on
planning over a long horizon in a relatively small state space
(partial space) and reasoning within a relatively large state
space (full space). Given full and partial state spaces where
the robot reasons and plans respectively, the question will be
how the reasoning and planning in two different spaces are
connected, which will be discussed next.

Existing Research on IRP Problems
Logical commonsense reasoning has been incorporated
into probabilistic planning to compute an informative
prior (Zhang, Sridharan, and Bao 2012; Zhang, Sridharan,
and Wyatt 2015). In that work, a target search problem was
used as the application domain. The robot’s noisy observa-
tions were modeled using a POMDP, and the belief distri-
bution of the POMDP represents the estimate of the target’s
position, as the single endogenous variable. The robot moves
to different areas in a large office domain to “uncover” the
position of the target object. A categorical tree that includes

a large number of exogenous variables (such as scanners and
printers are office electronics) was constructed using a log-
ical reasoner. As a result, the probabilistic planner is able
to focus on a very small partial space that includes only
the variable of the target’s position, while being able to rea-
son about the target’s likely positions within a much larger
state space. The gap between commonsense reasoning and
probabilistic planning was bridged by using a set of heuris-
tics (such as printers are usually collocated with scanners)
to convert deterministic conclusions into a distribution for a
POMDP.

In order to better bridge the gap between commonsense
reasoning and probabilistic planning, some IRP algorithms
have used reasoners that are able to reason about both
logical and probabilistic commonsense knowledge. These
algorithms and implementations include CORPP (Zhang
and Stone 2015) and OpenDial (Lison 2015) that use P-
log (Baral, Gelfond, and Rushton 2009) and MLN (Richard-
son and Domingos 2006) for commonsense reasoning re-
spectively. Their commonsense reasoners are able to di-
rectly output a probability distribution for the planner. For
instance, a spoken dialog problem was used as the appli-
cation domain in (Zhang and Stone 2015), where the robot
uses unreliable speech recognition to identify the human’s
request. In that work, the state space decomposition enables
the probabilistic planner to focus on only the endogenous
variables that are needed for specifying the requests (such as
delivering coffee for alice). All other variables, such as time
– people prefer buying coffee in the mornings, are modeled
as exogenous variables and handled by the commonsense
reasoner.

There are other ways of integrating commonsense rea-
soning and probabilistic planning, where full and partial
state spaces are not explicitly differentiated. A refinement-
based architecture has been developed for robot reasoning
and planning (Sridharan et al. 2015). At the high level, an ac-
tion language is used for computing a sequence of symbolic
actions to deterministically guide the robot behaviors. At the
low level, a probabilistic model (a POMDP) is used for phys-
ically implementing these actions. As a result, in that work,
the high level reasoning layer is able to conduct compli-
cated reasoning tasks, such as explaining history behaviors,
that are impossible for probabilistic planners. In another line
of research, commonsense reasoning was used for diagnos-
tic tasks and generating explanations, and a hybrid plan-
ner allows switching between deterministic and probabilis-
tic planners (Hanheide et al. 2015). POMDP-based planning
has been integrated with commonsense learning, where the
agent learns from a set of example traces and commonsense
knowledge refers to the knowledge based on which a refer-
ence policy generates the example traces (Juba 2016).

Probabilistic planning frameworks and algorithms assume
a known world model (including world dynamics and robot
capabilities). In case of an unknown world, reinforcement
learning (RL) algorithms can be used to help an agent learn
an action policy by interacting with the environments (Sut-
ton and Barto 1998). Existing research has studied the in-
tegration of commonsense reasoning and RL. For instance,
relational RL has been used for learning robot action precon-
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Figure 2: The robot navigation domain that includes four
possible navigation goals. Human pedestrians might block
the hallway (probabilistically), and sunlight can blind the
robot’s range-finder sensors (probabilistically).

ditions (affordances), as a kind of commonsense knowledge
about robot capabilities (Sridharan, Meadows, and Gomez
2017). In order to reduce the space of exploration in RL, a
commonsense reasoner has been used to help the agent to fo-
cus on only the reasonable actions, significantly increasing
the learning rate (Leonetti, Iocchi, and Stone 2016).

In what follows, we summarize our IRP algorithm called
iCORPP that dynamically constructs (PO)MDPs to shield
exogenous variables from (PO)MDPs while still enabling
probabilistic planning to adapt to the exogenous events.

A Summary of iCORPP, an IRP Algorithm
A general description of interleaved CORPP (iCORPP) is
available in our recent paper (Zhang, Khandelwal, and Stone
2017). In this section, we directly present an instantiation
of iCORPP on a robot navigation problem, and compare
it against CORPP, which is similar except that CORPP re-
quires the planner to consider any exogenous variables that
could change its transition dynamics. Figure 2 shows the
domain map, where the robot needs to visit the four loca-
tions that are connected through a corridor. However, human
pedestrians can block the way (probabilistically) in the cor-
ridor and sunlight can blind the robot’s range-finder sensors.
It is also known that sunlight only exists in near-window ar-
eas when the time is morning and the weather is sunny.

We assume the values of all domain variables are fully
observable, so we can use an MDP to construct the planner.
If we model only thirty locations in the corridor, there will
be ten states in the state space. When we consider each of the
locations can be either occupied or unoccupied by humans,
the number of states becomes 30× 230. When we further
consider each of the locations can be either under sunlight
or not, the number of states becomes 30× 230× 230, which
is a huge number. This is a small toy domain, and we still
have not considered the domain variables of time, weather,
and each area is near-window or not.

The whole idea of iCORPP in this domain is to model
only robot position as the endogenous variable for proba-
bilistic planning and all others as exogenous variables to be
considered only by the commonsense reasoner.

Next, we very briefly describe our commonsense rea-
soner, where the probabilistic transition system of MDP is

described in P-log (Baral, Gelfond, and Rushton 2009). In
case of exogenous events, our commonsense reasoner dy-
namically constructs a new MDP that captures the effects of
the exogenous variables on the transition dynamics of the
endogenous variables.

The navigation domain shown in Figure 2 is defined using
sorts row and col, and predicates belowof and leftof. We
then introduce predicates near row and near col used for
specifying if two grid cells are next to each other, where R’s
(C’s) are variables of row (column).

near row(RW1,RW2)← belowof(RW1,RW2).

near row(RW1,RW2)← near row(RW2,RW1).

near col(CL1,CL2)← leftof(CL1,CL2).

near col(CL1,CL2)← near col(CL2,CL1).

We use predicates near window and sunny to define the
cells that are near to window and the cells that are actually
under sunlight. The rule below is a default stating that: in
the mornings, a cell near window is believed to be under
sunlight, unless defeated elsewhere.

sunny(RW,CL)← near window(RW,CL), not ¬sunny(RW,CL),
curr time= morning.

While navigating in areas under sunlight, there is a large
probability of becoming lost (0.9), which deterministically
leads to the end of an episode.

pr(next term= true | curr row= RW, curr col= CL,

sunny(RW,CL), curr term= false) = 0.9.

pr(next term= true | curr term= true) = 1.0.

The robot can take actions to move to a grid cell next to its
current one: action = {left,right,up,down}. For instance,
given action up, the probability of successfully moving to the
above grid cell is 0.9, given no obstacle in the above cell.

pr(next row= RW2 | curr row= RW1, curr col= CL1,

belowof(RW1,RW2), ¬sunny(RW2,CL1),
¬blocked(RW2,CL1), curr a= up) = 0.9.

iCORPP significantly reduces the complexity of proba-
bilistic planning compared to its one-shot solution, while en-
abling robot behaviors to adapt to exogenous changes. As an
example on complexity, the MDP constructed by iCORPP
(thirty positions, five weather conditions and three times) in-
cludes only 60 states, whereas the traditional way of enumer-
ating all combinations of attribute values (Boutilier, Dean,
and Hanks 1999), produces more than 2ˆ69 states, which
cannot be solved (accurately or approximately) in practice.

Experimental Results
Experiments in simulation were conducted using
GAZEBO (Koenig and Howard 2004). We used a solver
introduced in (Zhu 2012) for P-log programs (except that
reasoning about reward was manually conducted) and value
iteration for MDPs (Sutton and Barto 1998).
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We limit the number of random walkers to be 1 and
its speed to be one fifth of the robot’s. A goal room is
randomly selected from the four flag rooms. Reasoning
happens only after the current episode is terminated (goal
room is reached). The walker’s position is the only exoge-
nous domain change (by temporarily setting the time to be
“evening”). We cached policies for both CORPP as the base-
line (4 policies) and iCORPP (56 policies).

The walker moves slowly between loc0 and loc2. Without
adaptive planning developed in this work, the robot follows
the “optimal” path and keeps trying to bypass the walker
for a fixed length of time. If the low-level motion planner
does not find a way to bypass the walker within the time, the
robot will take the other way to navigate to the other side
of the walker and continues executing the “optimal” plan
generated by the outdated model. When the robot navigates
between loc0 and loc2, iCORPP reduces the traveling time
from about 250 seconds to about 110 seconds, producing a
significant improvement.

A comprehensive description of the experimental results
is available in our iCORPP paper (Zhang, Khandelwal, and
Stone 2017) and this web page includes videos of real-robot
experiments. 1

Conclusions
In this paper, we present the motivation of Integrated
commonsense Reasoning and probabilistic Planning (IRP)
within the context of robot planning. We summarize exist-
ing research on this topic and present our recent work, called
iCORPP, that dynamically constructs MDPs and POMDPs
for adaptive robot planning. The general idea of IRP algo-
rithms is to decompose the original probabilistic planning
problems into the sub-problems of commonsense reasoning
and probabilistic planning that respectively focus on “under-
standing the world” and “accomplishing the task”. iCORPP
demonstrates that this decomposition significantly reduces
the state space where planning is conducted and enables
robot to adapt to the value change of exogenous variables
without including these variable in planning models.
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Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-carlo
planning. In Machine Learning: ECML 2006. Springer. 282–293.
Koenig, N., and Howard, A. 2004. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).
Kurniawati, H.; Du, Y.; Hsu, D.; and Lee, W. S. 2011. Motion plan-
ning under uncertainty for robotic tasks with long time horizons.
The International Journal of Robotics Research 30(3):308–323.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop: Efficient
point-based pomdp planning by approximating optimally reachable
belief spaces. In Robotics: Science and Systems.
Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis of au-
tomated planning and reinforcement learning for efficient, robust
decision-making. Artificial Intelligence 241:103–130.
Lison, P. 2015. A hybrid approach to dialogue management based
on probabilistic rules. Computer Speech & Language 34(1):232–
255.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62(1-2):107–136.
Smullyan, R. M. 1995. First-order logic. Courier Corporation.
Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. 2015. A
refinement-based architecture for knowledge representation and
reasoning in robotics. arXiv preprint arXiv:1508.03891.
Sridharan, M.; Meadows, B.; and Gomez, R. 2017. What can i not
do? towards an architecture for reasoning about and learning affor-
dances. In Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS).
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: An
introduction. MIT press Cambridge.
Zhang, S., and Stone, P. 2015. CORPP: Commonsense reason-
ing and probabilistic planning, as applied to dialog with a mobile
robot. In Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), 1394–1400.
Zhang, S.; Khandelwal, P.; and Stone, P. 2017. Dynamically con-
structed (po)mdps for adaptive robot planning. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI).
Zhang, S.; Sridharan, M.; and Bao, F. S. 2012. ASP+POMDP:
Integrating Non-monotonic Logic Programming and Probabilistic
Planning on Robots. In International Conference on Development
and Learning and on Epigenetic Robotics (ICDL-EpiRob).
Zhang, S.; Sridharan, M.; and Wyatt, J. L. 2015. Mixed logical
inference and probabilistic planning for robots in unreliable worlds.
IEEE Transactions on Robotics 31(3):699–713.
Zhu, W. 2012. PLOG: Its Algorithms and Applications. Ph.D.
Dissertation, Texas Tech University, USA.

114


