
27th International Conference on
Automated Planning and Scheduling

June 19-23, 2017, Pittsburgh, USA

IntEx 2017
Working Notes of the Workshop on

Integrated Execution of
Planning and Acting

Edited by:

Mark Roberts, Sara Bernardini,
Tim Niemueller, and Tiago Vaquero

Organization

Mark Roberts, Naval Research Laboratory, USA

Sara Bernardini, Royal Holloway University, London, UK

Tim Niemueller, RWTH, Aachen, Germany

Tiago Vaquero, MIT, USA

Program Committee

Ron Alford, Mitre Corporation, USA

J. Benton, NASA Ames, USA

Mark Boddy, Adventium Labs, USA

Michael Cashmore, King’s College London, UK

Jeremy Frank, NASA Ames, USA

Andy Hertle, University of Freiburg, Germany

Nir Lipovetzky, University of Melbourne, Australia

Julie Porteous, Teesside University, UK

Wheeler Ruml, University of New Hampshire, USA

Scott Sanner, University of Toronto, Canada

Vikas Shivashankar, Knexus Research, USA

ii

Foreword

Automated planners are increasingly being integrated into online execution systems. The integration may, for example, embed a
domain-independent temporal planner in a manufacturing system (e.g., the Xerox printer application) or autonomous vehicles.
The integration may resemble something more like a ”planning stack” where an automated planner produces an activity or
task plan that is further refined before being executed by a reactive controller (e.g., robotics). Or, the integration may be a
domain-specific policy that maps states to actions (e.g., reinforcement learning). Online learning may or may not be involved,
and may include adjusting or augmenting the model, determining when to repair versus replan, learning to switch policies,
etc. A specific focus of these integrations involves online deliberation, bringing to the foreground concerns over how much
computational effort planning should invest over time.

In any of these systems, a planner generates action sequences that are eventually dispatched to an executive, yet taking
action in a dynamic world rarely proceeds according to plan. When planning assumptions are challenged during execution, it
raises a number of interesting questions about how the system should respond. Is the ”acting” side of the system responsible for
a response or the ”planning” side? Or do the two need to cooperate and how much? When should the activity planner abandon
or preempt the current goals? Should the task planner repair a plan or replan from scratch? Should the executive adjust its
current policy, switch to a new one, or learn a new policy from more relevant experience?

This set of working notes consolidates the papers to be presented at IntEx 2017.
These notes will be updated after the workshop is held with details of the workshop discussions.

Mark Roberts, Sara Bernardini, Tim Niemueller, and Tiago Vaquero
June 2017

iii

Contents

k-Robust Multi-Agent Path Finding
Dor Atzmon, Roni Stern, Ariel Felner, Roman Bartak, Neng-Fa Zhou and Glenn Wagner 1

Integrating Execution and Rescheduling
Jeremy Frank 10

Autonomous Search-Detect-Track for Small UAVs
Bob Morris, Anjan Chakrabarty, Joshua Baculi, Xavier Bouyssounouse and Rusty Hunt 19

An Architecture for Integrated Timeline Planning and Model-based Execution
Tiago Nogueira and Simone Fratini 27

Goal Reasoning as Multilevel Planning
Alison Paredes and Wheeler Ruml 36

Automated Planning with Goal Reasoning in Minecraft
Mark Roberts, Wiktor Piotrowski, Pyrce Bevan, David Aha, Maria Fox, Derek Long and Daniele Magazzeni 43

Towards Planning With Hierarchies of Learned Markov Decision Processes
John Winder, Shawn Squire, Matthew Landen, Stephanie Milani and Marie desJardins 50

iv

k-Robust Multi-Agent Path Finding

Dor Atzmon, Roni Stern, Ariel Felner and Roman Bartak and Neng-Fa Zhou
Ben Gurion University of the Negev Charles University in Prague City University of New York

Be’er Sheva, Isreal Prague, Czech Republic New York City, NY, USA

Abstract

In the multi-agent path-finding (MAPF) problem a
plan is needed to move a set of agents from their initial
location to their goals without collisions. In this paper
we introduce and study the k-robust MAPF problem,
where we seek a plan that is robust to k unexpected
delays per agent. We show how to convert a popular
optimal MAPF solver – Conflict-Based Search (CBS) –
to solve the k-robust MAPF problem. To handle cases
where there are more than k unexpected delays, we
analyze several execution policies that can complement
using a k-robust plan. The proposed algorithms and ex-
ecution policies are evaluated experimentally, and we
discuss their pros and cons. In particular, finding a k-
robust solution is shown to reduce the overall number
of replans needed when executing a plan.

Introduction and Overview
The Multi-Agent Path Finding (MAPF) problem is de-
fined by a graph, G = (V,E) and a set of n agents
labeled a1 . . . an, where each agent ai has a start posi-
tion si ∈ V and a goal position gi ∈ V . At each time
step an agent can either move to an adjacent location
or wait in its current location. The task is to find a
sequence of move/wait actions for each agent ai that
moves it from si to gi such that agents do not conflict,
i.e., occupy the same location at the same time. MAPF
has practical applications in video games, traffic con-
trol, and robotics (see Sharon et al. 2013a; 2015a for a
survey).

In many cases there is also a requirement to mini-
mize some cumulative cost function such as the sum of
costs incurred by all agents before reaching their goals.
Solving MAPF optimally is NP-Hard (Yu and LaValle
2013b; Surynek 2010). Nonetheless, efficient optimal al-
gorithms exist, some are even capable of finding op-
timal plans for more than a hundred agents (Wagner
and Choset 2015; Boyarski et al. 2015; Surynek 2012;
Yu and LaValle 2013a).

In practice, unexpected events may delay some of
the agents, preventing them from following their pre-
determined plan. Thus, it is desirable to generate a plan
that can withstand such events. Such robust MAPF
plans are needed especially in safety-critical settings or

when re-planning (due to unexpected events) is very
costly or even impossible, for example due to lack of
communication between the agents. Practical applica-
tions include air traffic control (where safety is criti-
cal) and multi-robot settings, where re-planning is often
costly. To this end, we introduce the k-robust MAPF
(kR-MAPF) problem, where we seek a plan that is ro-
bust to k delays per agent during plan execution. In
a k-robust plan, if an agent occupies location l at time
step t then no other agent may occupy location l at time
steps {t . . . t+k}. Obviously, MAPF is a special case of
kR-MAPF with k = 0. We present an adaptation of an
A∗-based MAPF solver to kR-MAPF, showing that the
underlying state space grows exponentially with k. We
then present and analyze several ways to implement
a k-robust solver based on the Conflict-Based Search
(CBS) optimal MAPF solver.

Since an agent may experience more than k delays,
even a k-robust plan may need to be modified during
execution. To this end we follow the framework of Ma
et al. (2017) in which a plan is coupled with an execu-
tion policy to handle delays online, possibly modifying
the original plan. Finding and using a k-robust plan
integrates naturally in this framework. The result is a
complete and robust solution that significantly reduces
the number of times that modifications to the plan
are needed during execution. Moreover, we introduce
several novel execution policies with different tradeoffs
between CPU time, number of required plan modifi-
cations, and total cost of the executed plan. Our kR-
MAPF algorithms and new execution policies are evalu-
ated empirically on standard MAPF benchmarks, show-
ing that finding k-robust plans is feasible, that their so-
lution costs are not much larger from the baseline (non
k-robust) plans and that using them as input for any of
the execution polices is beneficial.

Prior work addressed similar MAPF settings where
agents move according to known probabilistic dynam-
ics, e.g., getting delayed with some known probabil-
ity (Wagner and Choset 2017). They proposed an al-
gorithm based on M* (Wagner and Choset 2015) that
minimizes the sum-of-costs while keeping the probabil-
ity of collisions below some threshold. Our constraint
is stricter as we aim to avoid any collisions that re-

1

sult from k delays. In addition, they modified M* while
we work with CBS, which outperforms M* in many
cases (Boyarski et al. 2015). Ma et al. (2017) also pro-
posed a MAPF algorithm that handles unexpected de-
lays. Their algorithm was also based on CBS, but they
aimed to minimize the solution makespan while we aim
to minimize the sum-of-costs. Moreover, their algorithm
did not provide any guarantee on the robustness of the
solution generated.

Problem Definition

A solution to a MAPF problem is a plan π consisting of
n sequences π1, . . . πn of move/wait actions such that πi
moves agent ai from si to gi, for every i ∈ [1, n]. πi(t)
denotes the location that agent ai would occupy after
executing the first t move/wait actions in π without
experiencing any delays. Each agent can perform one
of five actions each time step. Either the agent moves
to one of the four sides of his current location on the
grid or the agent waits and stays at the same location.

Definition 1 (Conflict) A conflict 〈ai, aj , t〉 in a plan
π occurs iff agents ai and aj are located in the same
location at time step t, i.e., when πi(t) = πj(t).1

We say that π is a valid plan if it is conflict free. A
MAPF solver is sound if it outputs a valid plan. Mul-
tiple valid plans may exist for a given MAPF prob-
lem instance. Global cost functions that assign costs to
plans are common; naturally, plans with lower costs are
preferred. This paper focuses on a common cost func-
tion called the sum of costs, which is the summation
of the number of time steps required by each agent to
reach its goal (Standley 2010; Standley and Korf 2011;
Sharon et al. 2013b; 2015b). A plan is optimal if it is
a valid of minimal cost.

k-Robust MAPF

Definition 2 (k-delay Conflict) A k-delay conflict
〈ai, aj , t〉 in a plan π occurs iff there exists ∆ ∈ [0, k]
such that agents ai and aj are located in the same lo-
cation in time steps t and t+ ∆, respectively, i.e, when
πi(t) = πj(t+ ∆).2

We say that a plan π is k-robust if it does not have
any k-delay conflicts. Informally, this means that no
conflicts will occur even if some of the agents are de-
layed by up to k time steps. The problem we address in
this paper is how to find optimal sum-of-costs k-robust
plans.

1Conflicts can also occur on edges, where agents traverse
the same edge in different directions. We focus on conflicts
on vertices for ease of presentation.

2Notice that setting k > 0 also prevents conflicts on edge
of the form mentioned in the previous footnote. Also, it dis-
allows a “train”-like motion where an agent moves to a lo-
cation that is was occupied by another agent in the previous
time step. This “train”-like motion is not allowed in some
MAPF formulation.

s1

A

B

g1

g2

s2

(a)

C

D

s1,s2

A,C

B,g2

C,g2

A,D

(b)

(s1,s2)
(A,C)

C,g2

(s1,s2)
(A,D)

(A,D)
(B,g2)

(A,C)
(B,g2)

(B,g2)
(C,g2)

(C,g2)
(g1,g2)

s1,s2

(c)

Figure 1: A MAPF problem (a) its search tree (b), and
its k-robust search tree (c). The red lines show k-delay
conflicts.

A∗-based Solutions

The A∗ family of algorithms are natural solvers for
MAPF (Silver 2005; Standley 2010; Goldenberg et al.
2012; Wagner and Choset 2015). They search in a n-
agent state space which includes all the possible ways
to place n agents into |V | vertices, one agent per vertex.
The start and goal states are (s1, . . . sn) and (g1, . . . gn),
respectively. An action in this state space represents n
move/wait single-agent actions, one single-agent action
per agent. An action is applicable if the single-agent ac-
tions do not create conflicts. Clearly, a path from the
start state to the goal state corresponds to a valid plan.

One way of adapting A∗ solvers to return k-robust
plans is to modify state generation to prevent combi-
nations of single-agent actions that lead to k-delay con-
flicts. However, this may lead to the solver returning
non-optimal plans. For example, consider the problem
in Figure 1(a), and assume we want a 2-robust plan. The
initial configuration at time step 0 is (s1, s2). Note that
the optimal plan (s1, A,B,C, g1) for a1 and (s2, D, g2)
for a2 is 2-robust. Let’s follow A* on this problem.
First, A∗ expands state (s1, s2), generating two chil-
dren (A,C) and (A,D). Assume that (A,C) was ex-
panded first, generating state (B, g2) with cost 4 (2 per
agent). Next, (B, g2) is expanded. Since a2 was in C at
t = 1, state (C, g2) will not be generated due to the 2-
robustness constraint. Next, state (A,D) is expanded.
It will not generate (B, g2), as this state was already
reached via state (A,C) with the same cost (see Fig-
ure 1(b)). Thus, while there is a plan in which state
(B, g2) generates state (C, g2), this specific run of A∗

will not find it. Indeed, in this case this will result in
finding a suboptimal plan.

To remedy this, we need to modify the n-agent state
space so that it records in each state the last k steps
of each agent. Thus, in this state space a state repre-
sents a possible way to place n agents into |V | vertices,
one agent per vertex, over k− 1 consecutive time steps.
Figure 1(c) shows the search tree of this extended state
space. This state space, however, is exponentially larger
than the n-agent state space because the same configu-
ration at time step t might have many different possible
configurations in the preceding k − 2 time steps.

2

Conflict-Based Search Solutions
Conflict-based search (CBS) (Sharon et al. 2015a) is a
state-of-the-art MAPF solver that does not explicitly
search the n-agent state space. In CBS, agents are asso-
ciated with constraints of the form 〈ai, v, t〉, represent-
ing that agent ai is prohibited from occupying vertex v
at time step t. A consistent path for agent ai is a path
that satisfies all of ai’s constraints, and a consistent
plan is a plan composed only of consistent paths. Note
that a consistent plan can be invalid if it contains con-
flicts despite each path satisfying the individual agent
constraints.

CBS works by searching a constraint tree (CT) for a
set of constraints such that a consistent plan w.r.t. this
set of constraints is optimal. The CT is a binary tree,
in which each node N contains: (1) a set of constraints
imposed on the agents (N.constraints), (2) a single
plan (N.π) consistent with these constraints, and (3)
the cost of N.π (N.cost).The root of the CT contains an
empty set of constraints (thus, every plan is consistent
with the root). A successor of a node in the CT inherits
the constraints of the parent and adds a single new
constraint for one agent. Generating a successor node
N means finding a plan consistent with N.constraints
and identifying the conflicts in this plan, if they exist. A
CT node N is a goal node when N.π is valid. To search
the CT for a goal node CBS runs a best-first search
where nodes are ordered by their costs (N.cost).

Next, we describe three key components of CBS: how
it finds a consistent plan to a given CT node N , how
it identifies conflicts in N , and how to expand N and
generate its successor CT nodes.

Finding a consistent plan. The algorithm used to
find consistent plans is referred to as the CBS low-level
solver. Any optimal single-agent path-finding algorithm
can serve as a low level of CBS. A simple and effec-
tive low-level solver used in (Sharon et al. 2015a) is A*
with the true shortest distance heuristic (ignoring con-
straints). Ties between low-level nodes were broken by
preferring paths with fewer conflicts with known paths
of other agents.

Identifying conflicts in a consistent plan. Once
a consistent path has been found (by the low-level
solver) for each agent, these paths are validated with
respect to the other agents by simulating the move-
ment of the agents along their planned paths (N.π). If
all agents reach their goals without any conflict, N is
declared as the goal node, and N.π is returned. If, how-
ever, while performing the validation a conflict is found
for two (or more) agents, the validation halts and the
node is declared as a non-goal.

Resolving a conflict - the split action: When a
non-goal CT node N is chosen in the best-first search
of the CT, we generate its successor CT nodes. This
is done by attempting to resolve a conflict in N.π. Let
〈ai, aj , t〉 be a conflict in N.π. This means N.πi(t) =
N.πj(t). Denote this location by v. We know that in
any valid plan at most one of the conflicting agents,
ai or aj , may occupy vertex v at time t. Therefore, at

least one of the constraints, 〈ai, v, t〉 or 〈aj , v, t〉, must
be satisfied. Consequently, CBS splits N and generates
two new CT nodes as children of N , each adding one
of these constraints to the previous set of constraints,
N.constraints. Note that for each (non-root) CT node
the low-level search is activated only for one agent – the
agent for which the new constraint was added.

k-Robust CBS

Next, we describe k-robust CBS (kR-CBS), an adapta-
tion of CBS designed to return optimal k-robust plans.
kR-CBS differs from CBS in how it identifies goals, and
in how it identifies and resolves conflicts.

Identifying k-delay conflicts. After the low-level
solver returned a consistent plan for a CT node N , kR-
CBS scans N.π for k-delay conflicts by simulating the
paths and checking for conflicts with the k-last loca-
tions of all other agents. Thus, finding a k-delay con-
flict 〈ai, aj , t〉 means that N.πi(t) = N.πj(t + ∆) for
∆ ∈ [0, k] . This process is easy to implement but its
runtime is larger by a factor of k from the equivalent
plan validation step in CBS. N is a goal CT node iff it
has no k-delay conflicts.

Resolving conflicts (splitting CT nodes). Let N
be a non-goal node in the CT selected to be expanded
next by kR-CBS, and let 〈ai, aj , t〉 be a k-delay conflict
in N . This means that there is a vertex v and a value
∆ ∈ [0, k] such that v = N.πi(t) = N.πj(t + ∆). Note
that there is no k-robust plan in which ai is at v at
time t while aj is at v at time t+ ∆. Therefore, at least
one of the constraints, 〈ai, v, t〉 or 〈aj , v, t+∆〉, must be
added to the CT and must be satisfied by the low-level
solvers. Consequently, kR-CBS generates two children
to N , each having one of these constraints.

Proving that kR-CBS is sound and complete is
straightforward. It is sound because it only halts when
generating a CT node that has no k-delay conflicts. It is
complete because when splitting a CT node we do not
lose any valid plans. Similarly, kR-CBS returns optimal
plans, as it searches the CT in order of the nodes’ costs,
and the cost of a node N is a lower bound on the cost
of any optimal plan consistent with N.constraints.

Example. Consider a 2-robust MAPF problem on
the graph in Figure 2(a), with two agents whose start-
goal pairs are s1-g1 and s2-g2, respectively. Figure 2(b)
shows the first two levels of the CT generated by kR-
CBS, where every node N shows N.constraints (la-
beled Con), N.π1, N.π2, and N.cost. Observe that the
plan in the root is valid, but is not 2-robust, having a
2-delay conflict 〈a2, a1, 2〉 at location B for ∆ = 1, since
π1(3) = π2(2) = B. To try to resolve this conflict, kR-
CBS adds the constraint 〈a2, B, 2〉 to the left child and
the constraint 〈a1, B, 3〉 to the right child. Both chil-
dren of the root node are also not goal nodes. In fact,
in this example we will need to generate a total of 7 CT
nodes before finding an optimal plan. As we show next,
it is possible to modify kR-CBS to find the goal sooner.

3

S1

A

B

g1

g2S2

Con: {}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 5

Con: {a2,B,2}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,s2,B,g2
Cost: 6

Con: {a1,B,3}
𝝅𝟏: s1,A,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 6

Con: {}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 5

Con: {a2,B,2-4}
𝝅𝟏: s1,A,B,g1
𝝅𝟐: s2,s2,s2,s2,B,g2
Cost: 8

Con: {a1,B,2-4}
𝝅𝟏: s1,A,A,A,B,g1
𝝅𝟐: s2,B,g2
Cost: 7

(a) (b) (c) GOAL!

Figure 2: (a) The graph (b) The CT using the original time/location constraints (c) CT using the range constraints

Improved k-Robust CBS

kR-CBS is complete because whenever it expands a CT
node N it generates two children N1 and N2 such that
any solution consistent with N.constraints will satisfy
either N1.constraints or N2.constraints. Thus, no so-
lution is lost by considering N1 and N2 instead of N .
For example, in the root CT node shown in Figure 2(b)
there is no 2-robust plan in which a1 is in B at time
2 and a2 is in B at time 3. So, in every 2-robust plan
either a1 is not at B at time 2 or a2 is not in B at
time 3 Note, that this argument can be extended: in
every 2-robust plan either a1 is not in B at time 2 or
a2 is not in B at time 4. Thus, we can impose a stricter
constraint on the left subtree by adding the constraint
〈a1, B, 4〉. Imposing more constraints per CT node can
reduce the size of the CT tree, and consequently the
overall runtime.

To exploit this understanding, we introduce the Im-
proved kR-CBS (I-kR-CBS) that resolves conflicts in
a CT node N by imposing range constraints on its
successors. A range constraint is defined by the tuple
〈ai, v, [t1, t2]〉 and represents the constraint that agent
ai must avoid vertex v from time step t1 to time step
t2. Ideally, we would like to construct range constraints
as large as possible, to minimize the size of the CT tree.
However, over-constraining CT nodes may result in los-
ing completeness and optimality. The key question is
thus which pair of range constraints can be safely used
to resolve conflicts without loosing completeness and
optimality.

Definition 3 (Sound Range Constraints) A pair
of range constraints are called sound iff all optimal k-
robust plans satisfy at least one of these constraints.

Corollary 1 A kR-CBS variant that uses range con-
straints is sound, complete, and returns optimal k-
robust plans if it resolves conflicts only with sound pairs
of range constraints.

Proof outline: For a CT node N let N1 and N2 be
its children, generated by the sound pair of range con-
straints R1 and R2, respectively. Now, π(N) denotes all
the k-robust plans that do not violate N.constraints.
Observe that π(N1) contains all the plans in π(N) that
satisfy R1 (but violate R2), and similarly π(N2) con-
tains all the plans in π(N) that satisfy R2 (but violate

R1). Thus, π(N) = π(N1)∪π(N2), since there is no plan
that violates both R1 and R2 as they are a sound pair of
constraints. Thus, splitting CT nodes by resolving con-
flicts with a sound pair of constraints does not lose any
plans and thus preserves the soundness, completeness,
and optimality. 2

Corollary 2 (Symmetric range constraints) For
any time step t, vertex v, and agents ai and aj, the
range constraints 〈ai, v, [t, t+ k]〉, 〈aj , v, [t, t+ k]〉 are
sound for solving a k-robust MAPF problem.

Proving Corollary 2 is straightforward. We call a pair of
range constraints symmetric if they constrain the same
vertex and the same time range. Note that setting a
symmetric range constraint on a range larger than k is
in general not sound. Thus, Corollary 2 gives an upper
bound on the size of the largest pair of symmetric range
constraints that is sound. Nevertheless, there is more
than one k-sized symmetric pair of range constraint for
a given k-delay conflict 〈ai, aj , t〉 over vertex v. For ex-
ample, in our implementation, we used the time range
[t, t + k], but the pair of range constraints [t − k, t] is
also sound.

A pair of sound range constraints can also be asym-
metric, i.e., constrain one agent to a longer time range
than the other agent. For example, consider a conflict
〈ai, aj , t〉 over vertex v and pair of range constraints
R1 = 〈ai, v, [t− k, t+ k]〉 and R2 = 〈aj , v, [t]〉. R1 and
R2 are a sound pair of constraints, because a solution
must satisfy either R1 or R2, since violating both results
in a k-delay conflict. R1 and R2 are extremely asymmet-
ric, but one can imaging asymmetric range constraints
that are more balanced. An open question for asymmet-
ric range constraints is how to choose which agent to
impose the more restricted constraint upon. In our ex-
periments below we implemented the symmetric range
constraints and the aforementioned extreme asymmet-
ric constraints (of one time point and a 2k time range)
with arbitrary choice of the more constrained agent.

Improvements of CBS A number of improvements
to CBS have been introduced. In Meta-agent CBS (MA-
CBS) (Sharon et al. 2012) agents with many mutual
conflicts are merged into a meta-agent. Meta-agents are
then treated as a joint composite agent by the low-level
solver. A k-robust version of MA-CBS requires that the

4

low-level solver is also k-robust for meta-agents con-
sisting two or more agents. Otherwise, the meta-agent
might end up having internal k-delay conflict.

Improved CBS (ICBS) (Boyarski et al. 2015) adds
three technical enhancements to CBS. First, it splits
conflicts with high likelihood to cause increase in the
f -cost below the corresponding node. Second, it pro-
vides a way to “bypass” some conflicts and avoid adding
nodes to the CT. Finally, it restarts the search from
scratch when merging actions occur in MA-CBS. These
improvements apply directly to a k-robust MA-CBS
solver and no further adjustments need to be done.

Experimental Results

Next, we experiment with kR-CBS and I-kR-CBS using
symmetric and asymmetric pairs of range constraints.
Random MAPF problem instances were generated in
an open 8x8 grid. Then a kR-MAPF solver for k = 0, 1,
and 2 was executed and the resulting plan cost and the
CPU runtime were measured.

Table 1 shows the average plan cost and average CPU
runtime when finding k-robust solutions using kR-CBS
(labeled KR) and I-kR-CBS with the asymmetric and
with the symmetric range constrains (labeled IKR(A)
and IKR(S), respectively) for 4, 6, 7, 8, 9, and 10 agents
(different rows). Note that the plan cost was identical
for all solvers, so we only show this once,. Note also that
k = 0 is standard CBS.

First, consider the plan costs. As can be seen, the k
robust plans are not much more costly than a plan for
the basic definition of MAPF (i.e., for k = 0). This sug-
gests that searching for k-robust plans is advisable if one
needs a safety zone or expects delays. Next, as expected,
both I-kR-CBS variants runs much faster than kR-CBS
and this improvement increases when increasing k and
when more agents exist. When comparing the symmet-
ric and the asymmetric range constraints, we see a clear
advantage for the symmetric range constraints. We con-
juncture that this is due to the arbitrary way in which
we choose which agent to constrain more when using
the asymmetric range constraints. Future work may in-
vestigate a more intelligent way of doing so.

We also performed some experiments on a larger map
from the Dragon Age Origins video game, which is
available in the movingai repository (Sturtevant 2012).
Specifically, we generated 90 randomly generated in-
stances with 30 agents on the brc202d map, which
has 43,151 vertices. This map is very large, so that a k-
robust plan often has the same cost as a plan that is not
robust. When averaging over 50 random instances, the
average plan cost was 3,818.35, 3,818.43, and 3,818.53
for k = 0, 1, and 2, respectively. Indeed, the plan cost
grows with k, but negligibly. This emphasizes the use-
fulness of finding a k-robust plan, as one can be found
in such a domain without wasting too much of the plan
cost. That being said, finding k-robust plans is more
time consuming. In the above experiments, finding the
k-robust plans required 213, 284, and 381 seconds, for
k = 0, 1, and 2, respectively.

Cost Planning time (ms)
0 1 2 0 1 2

Obs Picat CBS Picat CBS Picat CBS Picat
12 33.06 35.12 36.72 77 1,523 1,627 3,464 559 5,293
16 36.78 39.07 40.49 4,003 2,008 4,883 5,243 7,227 7,524
19 36.38 39.17 43.07 696 2,025 2,122 4,672 6,836 9,012
22 30.66 34.39 36.77 587 1,197 6,594 3,959 14,073 7,464
25 24.42 28.86 30.30 1,700 912 12,878 3,489 20,902 5,443
32 14.46 16.26 18.57 5,609 156 107 526 1,582 1,213
38 9.33 11.20 12.38 553 111 2,179 313 387 446

Table 2: Experimental results comparing the Picat-
based kR-MAPF solver and kR-CBS. The table shows
the average plan cost and running time, for different
values of k and different number of obstacles.

A Constraint Programming Solution

An alternative approach to solve MAPF problems is
to compile them into other known NP-hard prob-
lems that have mature and effective general purpose
solvers (Surynek 2012; Yu and LaValle 2013a; Erdem
et al. 2013; Surynek et al. 2016). In particular, Surynek
and others have developed effective optimal MAPF
solvers that are based on encoding the MAPF prob-
lem to Boolean Satisfiability (SAT) and then apply-
ing a state-of-the-art SAT solver. Indeed, modern SAT
solvers are known to be very effective and these SAT-
based solvers have shown to be comparable and some-
times even better than other MAPF solvers.

Generally speaking, these compilation-based ap-
proaches express a set of constraints that define the
MAPF problem and then call a general purpose solver,
e.g., a SAT solver or a Mixed Integer Linear Program
(MILP) solver, to obtain the solution. Adapting such
solvers to be k-robust is relatively simple, requiring
a simple modification to these constraints. To demon-
strate this, we implemented a MAPF solver using the
Picat (Zhou, Kjellerstrand, and Fruhman 2015), a logic-
based programming language that is based on Prolog.
The encoding we used follows Surynek’s SAT-based
MAPF solver (Surynek et al. 2016), in which there is a
Boolean variable for every triplet (a, t, v) of agent (a),
time (t), and location (v), where this variable is true iff
agent a is planned to be at location v in time t. A set
of constraints are imposed on these variables, namely:

1. Each agent occupies exactly one vertex at each time
step.

2. No two agents occupy the same vertex at any time.

3. In every time step an agent may only transition be-
tween two adjacent locations.

For producing k-robust solutions, the second constraint
is extended such that No two agents occupy the same
vertex in time steps that are closer than k from each
other. The exact Picat model we developed is avail-
able at https://tinyurl.com/kRobust. The ad-
vantage of using Picat to encode MAPF is that it can
compile to SAT, to a constraint program (CP), or to a
Mixed Integer Linear Program (MILP). In our experi-
ments we only run a SAT compilation.

5

Plan cost Plan time (ms)
k=0 k=1 k=2

m k=0 k=1 k=2 All KR IKR(A) IKR(S) KR IKR(A) IKR(S)
4 21 22 22 6 15 14 15 193 110 67
6 31 32 32 5 28 26 20 990 388 94
7 36 37 39 7 31 26 17 1,618 826 184
8 41 41 43 6 29 23 20 2,625 1,051 229
9 48 49 51 9 379 218 76 20,006 4,408 556
10 49 51 53 41 162 124 78 22,464 7,097 875

Table 1: Average plan cost and planning runtime for different CBS-based
k-robust solvers, on an 8x8 open grid

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

2 4 6 8 10 12

R

ep
la

n
s

Agents

Optimal
1-Robust
2-Robust
3-Robust
4-Robust

Figure 3: KR-MAPF for
MCP

Experimental Results

We evaluated experimentally our Picat-based kR-
MAPF solver in a similar 8x8 grid problems as de-
scribed above. Our aim in these experiments is to
demonstrate that a Picat-based solver for kR-MAPF
is feasible and comparable with kR-CBS. A more com-
prehensive comparison between Picat-based and CBS-
based approaches includes evaluating on a range of
MAPF domains and is beyond the scope of this paper.

Table 2 shows the average plan cost and planning
runtime for problem instances with 6 agents and k =
0, 1, and 2. The experiments in Table 1 was on open
grids with no obstacles. Here, we experimented with
problem instances with a different number of randomly
allocated obstacles (the “Obs.” column). As expected,
increasing k results in plans of higher cost, and, higher
runtime. For both algorithms, the impact of varying
the number of obstacles on the planning time follows
a classical easy-hard-easy pattern: with either a few or
many obstacles is easy, and it becomes harder for the
middle-ground, where the problem is not under- or over-
constrained. Note that the plan cost is small for the
over-constrained setting (where the number of obstacles
is 32 – half the cells in the 8x8 grid) since we only
experimented with solvable instances.

Now we compare the results of kR-CBS and the
Picat-based solver. Since both Picat and kR-CBS
solvers solve kR-MAPF optimally, their solution cost
is the same, and the comparison between them is in
the runtime of finding the optimal solution. We can see
that in general, CBS is better for the less constrained
settings – with fewer obstacles, while the Picat-based
solver is better in the denser scenarios (having more
obstacles). To explain this, observe that having more
obstacles results in higher chances for paths found by
the individual agents to have a conflict with each other,
and consequently higher kR-CBS runtime.3

3For k = 0 there is a slight difference in the problem
formulation used by kR-CBS and the Picat-based solver:
in Picat the agents could swap locations while this caused
an edge conflict in kR-CBS. Thus, the runtime results for
k = 0 are not directly comparable. However, for k > 0 both
algorithms do not allow edge conflicts and the results can
be compared safely.

Execution Policies

A k-robust plan is not enough to provide a completely
robust solution, as there may be more than k delays.
To this end, we use the two-phase framework proposed
by Ma et al. (2017) and mentioned in the introduction.
After an original (possible k-robust) plan is generated,
delays are handled online by modifying the plan accord-
ing to a given execution policy. In this section we pro-
pose several intuitive execution policies that integrate
well with having a k-robust plan.

In the following discussion on execution policies, we
consider the following setting. The agents are collab-
orative and share their location, e.g., via a central-
ized controller. So, all agents are notified whenever an
agent is delayed. If, due to unexpected delays, an agent
finds that its destination location is occupied by an-
other agent it will stay idle in its current location to
avoid a collision. In this setting, an execution policy ac-
cepts as input the plan the agents are following (π), the
current time step (t), and the set of delayed agents, i.e.,
the agents that were just delayed from performing their
planned action. An execution policy is activated when-
ever one or more agents are delayed and may decide to
modify π to take into account these delays. We classify
execution policies according to when they modify π and
how they do so.

When to Modify the Plan

We experimented with three classes of execution poli-
cies that are invoked after a delay is detected at time t.
They differ in when they choose to modify π as follows:
(1) Eager. Modify immediately when a delay occurs.
(1) Reasonable. Modify only when a delay occurs and
that delay is expected to cause a conflict later between
the delayed agent and some other agent.
(1) Lazy. Modify only if a conflict is expected to occur
in t+1 between the delayed agent and some other agent.

Checking whether a conflict is expected to occur is
done by simulating the execution of π from the current
locations of the agents. The logic behind “Reasonable”
is that if a conflict is expected occur then it is best
to modify π to avoid it as soon as possible, while the
logic behind “Lazy” is that future unexpected delays
may resolve expected conflicts even without modifying
π earlier.

6

s1 A

B

s2 g1g2
𝝅𝟐

𝝅𝟏

s1 A

B

s2 g1g2
𝝅𝟐

𝝅𝟏

Figure 4: Example where lazy repair leads to a deadlock

How to Modify a Plan

The different execution polices can also be classified by
how the plans are modified:
(1) Replan policies. These policies create a com-
pletely new plan by using the same MAPF solver used
to generate the original plan but execute it on the cur-
rent state at time t.

(2) Repair policies. These policies perform minor
modifications to π by forcing some of the agents that
were not delayed to wait at time step t+ 1. Specifically,
we experimented with two such repair policies that dif-
fer by which agents are enforced to wait at time step
t + 1: (i) MCP. Only the agents that are expected
to conflict due to the delay of agent ai at time step t.
This policy is based on the Minimal Communication
Policy (MCP) suggested by Ma et al. (2017). (ii) All.
All agents that were not delayed at time t are forced to
wait at time step t+ 1. The advantage of “All” is that
unless other delays occur, the configuration at time step
t + 1 is identical to the original configuration at time
step t. This is advisable in scenarios where preserving
the relative positions of agents during the plan is im-
portant. Obviously, there is a tradeoff. Replan policies
incur significant CPU overhead compared to repair poli-
cies, but they may end up having lower execution cost.
In particular, when there are many delays it may be
better to create a completely new plan than to modify
the original one.

Combinations of Execution Policies

The choice of when to modify π is orthogonal to the
choice of how to update it. Thus, we have 9 execution
policies: {Eager, Reasonable, Lazy} × {Replan, MCP
repair, All repair}. Some configurations are problem-
atic. Lazy-MCP and Lazy-All are ill-defined, as when
a conflict is expected to occur in the next time step,
it is not clear which of the conflicting agent should
wait. Moreover, Lazy-All is not complete and may
end up in a deadlock, as demonstrated in Figure 4.
Assume that the original 1-robust plan π is: π1 =
(s1, A,B,B,B,A, s2, g1) and π2 = (s2, s2, s2, A, s1, g2).
If a1 is delayed in s1 for two time steps, we reach a
state where a1 is at s1 and a2 is at A. At this stage, a
conflict occurs as according to π the agents will cross
paths. But, enforcing either of them to wait will not
help. Thus, we did not implement Lazy-All and Lazy-
MCP. In addition, since MCP only delays the agents
involved in an expected conflicts then Eager-MCP is in
fact equivalent to Reasonable-MCP.

Cost #Modifications Time (ms)
Delay probability = 0.001

Eager All 109.12 0.24 0.00
Reasonable All 106.64 0.03 0.00
Reasonable MCP 106.52 0.21 0.00
Eager replan 106.18 0.21 6.93
Reasonable replan 106.30 0.03 15.93
Lazy replan 106.58 0.06 2.67

Delay probability = 0.01
Eager All 127.03 1.52 0.00
Reasonable All 112.91 0.39 0.00
Reasonable MCP 109.42 2.00 0.00
Eager replan 106.18 1.06 228.34
Reasonable replan 106.52 0.76 960.85
Lazy replan 109.03 0.61 379.36

Delay probability = 0.1
Eager All 535.21 26.67 0.00
Reasonable All 268.97 9.06 0.00
Reasonable MCP 124.27 7.64 0.00
Eager replan 106.21 26.42 25802.06
Reasonable replan 111.97 10.12 10955.64
Lazy replan 128.09 3.52 2173.98

Table 3: Comparison of the different replanning polices

Experimental Results: Repair vs. Replan

We compared the different execution polices on an
8x8 open grid with 20 agents. Delays were inserted
randomly, with probability p per each move of each
agent, where p is a parameter. We experimented with
p = 0.1, 0.01, and 0.001. In this set of experiments the
original plan was optimal but 0-robust. Table 3 presents
our results, averaged over 32 instances. The columns re-
port the execution costs (i.e., the overall sum-of-costs
incurred until all agents reached their goals), the num-
ber of times the plan was modified, and the CPU run-
time in ms required by the execution policies.

A few observations are learned. First, the replan po-
lices achieve significantly better execution costs than
the repair polices (All and MCP). On the other hand,
replanning is significantly more costly in terms of
CPU overhead while repairing is done instantaneously,
thereby establishing a tradeoff between execution cost
and (re)planning time. Second, the CPU time and exe-
cution costs increase with the delay probabilities. Third,
within the repairing policies Reasonable MCP achieves
the minimal execution cost. This is because its repair
policy forces only a subset of the agents to wait in-
stead of all of them. On the other hand, the resulting
executed plan of Eager-All reverts back to the original
plan as soon as possible (losing one time step) and this
may be desirable in several circumstances (Felner et al.
2007). Forth, as expected, Eager required more modifi-
cations then Reasonable, and Lazy required the fewest.
The number of modifications directly contributes to the
overall CPU time spent in replanning (the “Time” col-
umn). On the other hand, Eager replanning achieved
better execution cost, as it replans earlier. Neverthe-
less, the execution costs of all the replanning polices
were not far from each other. To summarize, there are
tradeoffs and each policy has pros and cons. One should

7

Cost #Modifications
0-robust 1-robust 0-robust 1-robust

Eager All 89.10 91.76 6.50 6.40
Reasonable All 55.22 54.00 0.78 0.23
Reasonable MCP 50.94 52.14 0.90 0.19

Table 4: Repair policies for 0- and 1-robust input plan

choose the policy that is best suited for the given cir-
cumstance.

Figure 3 shows the results of using a k-robust plan as
the input plan π to the Reasonable-MCP policy, which
provided a good balance between execution cost, num-
ber of modifications, and replanning time (see Table 3).
The x-axis corresponds to number of agents while the
y-axis shows the average number of modifications. The
different curves represents different values of k. The re-
sults show the benefit of using a k-robust plan: by in-
creasing k we reduce the number of modifications. In-
deed, when k = 4 the number of modifications is close
to zero, even for 12 agents, while it increases to almost
3.5 when using the optimal plan (where k = 0).

Finally, Table 4 compares the different repair polices
for 9 agents on the 8x8 grid when the input plan was
0-robust and 1-robust. Reasonable All and Reasonable
MCP are very close together and are much better than
Eager. In addition, we see that using an input of 1-
robust plan results in fewer replans for all polices, while
incurring minimal added execution cost.

Discussion and Conclusion
In this paper we studied how to modify MAPF plan-
ners to cause them to generate multi-agent plans that
more robust to unexpected changes. We formalized this
as the k-robust MAPF problem, where k is the number
of delays each agent can experience while still preserv-
ing the ability to follow the generated plan. Then, we
discussed several execution policies that can be coupled
with a k-robust plan to provide a completely robust so-
lution. The tradeoffs between these variants were stud-
ied, and showing that k-robust plans can be found with
relatively small overhead in plan cost.

We discussed how to create a k-robust version for A∗,
CBS, and a constraint programming approach. How-
ever, there are other optimal MAPF solver that are also
successful. Future work can adapt them to find k-robust
plans as well. For example, the ICTS algorithm (Sharon
et al. 2013b) can be adapted to find k-robust plans in a
similar manner as A* based solvers, , but its tree prun-
ing heuristic will be more costly, requiring comparison
with the last k time steps. Another direction for future
work is to develop MAPF solvers that generate plans
that can be followed with probability greater than a pa-
rameter (Wagner and Choset 2017), and to study more
reactive execution policies.

Acknowledgments
This research was supported by the Israel Ministry of
Science and the Czech Ministry of Education Youth and

Sports through a joint grant given to Roni Stern, Ariel
Felner Pavel Surynek, and Roman Bartak.

References
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Shimony, E.;
Bezalel, O.; and Tolpin, D. 2015. Improved conflict-based
search for optimal multi-agent path finding. In IJCAI-2015.

Erdem, E.; Kisa, D. G.; Oztok, U.; and Schueller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In AAAI.

Felner, A.; Stern, R.; Rosenschein, J. S.; and Pomeransky,
A. 2007. Searching for close alternative plans. Autonomous
Agents and Multi-Agent Systems 14(3):211–237.

Goldenberg, M.; Felner, A.; Stern, R.; and Schaeffer, J.
2012. A* Variants for Optimal Multi-Agent Pathfinding.
In Workshop on Multi-agent Path finsing. Colocated with
AAAI-2012.

Ma, H.; Kumar, S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In AAAI.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2012.
Meta-agent conflict-based search for optimal multi-agent
path finding. In Symposium on Combinatorial Search
(SOCS).

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013a.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470–495.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013b.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470–495.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2015a. Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell. 219:40–66.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2015b. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence 219:40–66.

Silver, D. 2005. Cooperative pathfinding. In Artificial In-
telligence and Interactive Digital Entertainment (AIIDE),
117–122.

Standley, T. S., and Korf, R. E. 2011. Complete algorithms
for cooperative pathfinding problems. In IJCAI, 668–673.

Standley, T. S. 2010. Finding optimal solutions to cooper-
ative pathfinding problems. In AAAI.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Computational Intelligence and AI in Games 4(2):144–
148.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT approach to multi-agent path finding under
the sum of costs objective. In ECAI.

Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In AAAI.

Surynek, P. 2012. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In PRI-
CAI. 564–576.

Wagner, G., and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. Artificial Intelligence
219:1–24.

Wagner, G., and Choset, H. 2017. Path Planning for Mul-
tiple Agents Under Uncertainty. In IROS (to appear).

Yu, J., and LaValle, S. M. 2013a. Planning optimal paths
for multiple robots on graphs. In ICRA, 3612–3617.

8

Yu, J., and LaValle, S. M. 2013b. Structure and intractabil-
ity of optimal multi-robot path planning on graphs. In
AAAI.

Zhou, N.-F.; Kjellerstrand, H.; and Fruhman, J. 2015. Con-
straint solving and planning with Picat. Springer.

9

Integrating Execution and Rescheduling

Jeremy Frank
NASA Ames Research Center

Mail Stop N269-3
Moffett Field, California 94035-1000

Abstract

Plan execution systems can represent very complex
plans with conditions, loops, sequences, and other struc-
tures. However, they cannot represent every possible or-
dering of large plans or schedules explicitly, and it is
helpful to integrate them with a planner or scheduler in
the event that complex plan synthesis tasks must be per-
formed during execution. While full-featured planners
may be needed in autonomous systems, the high com-
plexity of these planners may make them too slow, too
large (in memory), or both, to be used in applications
with limited computational resources and low latency
response time requirements. We describe how PLEXIL,
a plan execution system, is integrated with a Single Ma-
chine Scheduler (SMS) scheduler. The scheduler is not
as powerful as a planner, but it can handle unexpected
events that PLEXIL all by itself is not able to handle.
We formally describe the integration between scheduler
and executive for a fixed number of activities, then de-
scribe how the integration can be extended to more so-
phisticated problems (arbitrary numbers of tasks). This
treatment will pave the way for the formal integration
of execution with more complex scheduling tasks, and
eventually, automated planning.

Introduction
Planning and Execution have been integrated in a variety of
systems. Plan execution systems can represent very complex
plans with conditions, loops, sequences, and other struc-
tures. It is helpful to integrate plan execution systems with a
planner or scheduler in the event activity reordering, or more
complex plan synthesis tasks, must be performed. While
full-featured AI planning systems may be generally useful,
the high complexity of such planners may make them too
slow, too large (memory), or both, to be used in realtime.
Finally, while a plan execution system may (and should) be
able to load new plans or schedules, it is beneficial if the
plan execution system can receive updates from the planner
or scheduler to respond to unexpected events in real time.

To provide motivation, let us assume the system being
managed is a robotic spacecraft. Changes to mission goals
can change action duration, e.g. duration of image acquisi-
tion tasks. Changes to a spacecraft’s communications plan or
orbit can change activities’ feasibility windows, e.g. when
to communicate and communication windows duration is

a function of orbit and ground station location. Faults can
change activity duration or conditions on activity comple-
tion. Spacecraft are notorious for having limited compute re-
sources, both time and memory, due to mass, radiation, and
other considerations, which place a premium on the com-
plexity of computations to handle unexpected events. No-
tably, the scheduler may need to make changes in the sched-
ule because of unexpected events detected at execution time,
or due to faults or unexpected events that may change the fu-
ture schedule. In addition, the executive must be designed to
invoke the scheduler at the right time, and receive updates.
Finally, in real-time applications with limited compute re-
sources, timing considerations drive when to reschedule and
what rescheduling algorithms to use.

In this paper, we describe the integration of the Plan Ex-
ecution Interchange Language (PLEXIL) executive with a
scheduler that responds to unexpected events during exe-
cution of the schedule. Our approach here is not to create
novel rescheduling algorithms, but to show formally how
scheduling and execution are integrated. We choose to in-
tegrate PLEXIL with scheduling to demonstrate small, but
significant, increases in functionality when compared with
the executive alone. A scheduler is also more likely to fit
within the limited spacecraft compute resources budget than
a full-featured AI planner.

We will first describe key features of PLEXIL. Then we
describe Single Machine Scheduling (SMS), and in particu-
lar, how unexpected events and faults can cause reschedul-
ing of SMS activities. Then we describe the PLEXIL SMS
integration in phases. The integration is first described for a
fixed size known schedule that can only be disrupted in the
future by faults or unexpected events. Next, we show how to
handle execution time uncertainty in schedules of fixed size.
Then we extend this integration to show how PLEXIL can
manage SMS schedules of arbitrary size. Finally, we con-
clude and discuss future work.

PLEXIL
PLEXIL (Verma et al. 2006) is a plan execution language
and software system. Plans in PLEXIL are written similar to
programs; PLEXIL has variables, looping, and input-output
features. Unlike other programming languages, PLEXIL has
first-class support for tasks, task ordering and concurrence,
conditions, hierarchical decomposition, and task execution

10

state. Also, since PLEXIL is meant to work in real-time
environments, there are some interface management con-
straints to ensure real-time performance. For the purposes
of this paper, we describe only a small number of important
PLEXIL features below.

• Conditions and State. PLEXIL tasks are represented by
nodes, with conditions governing when nodes start and
end. We will only use Start conditions and Repeat condi-
tions, but other conditions are supported as well. As time
proceeds, PLEXIL evaluates all conditions on nodes to
update the execution state (e.g. if an unexecuted node’s
start conditions are satisfied, the node transitions from
WAITING to EXECUTING).

• Control structures. PLEXIL supports traditional program-
ming language control. By default, PLEXIL nodes exe-
cute at most once, when their Start conditions are satis-
fied; conditions also can be used to repeat nodes.

• State references. PLEXIL nodes may refer to the execu-
tion state of sibling, children, or ancestor nodes; this is es-
pecially helpful in node conditions (e.g. Start conditions).

• Concurrence. PLEXIL allows numerous node decomposi-
tion and ordering rules. We will make use of the concur-
rent decomposition, in which all child nodes of a parent
can execute in arbitrary order, including ‘simultaneously’.

• Lookups and queue handling. PLEXIL can look up in-
formation from external systems. Information is managed
in queues. Lookups only read queues; function calls or
commands inside PLEXIL nodes must remove informa-
tion from these queues explicitly. The exception to this
rule is time, which is continuously updated.

• Variable declarations and scoping. PLEXIL nodes use
variables and typical programming operations to assign
values to variables. Variables have scoping rules; child
nodes in decompositions can share information by read-
ing and writing the values of variables in their parents.

• Commands. PLEXIL nodes can issue function calls to ar-
bitrary code.

Single Machine Scheduling and Rescheduling
Scenarios

Single Machine Scheduling (SMS) is the problem of
scheduling activities that are mutually exclusive, i.e. they
may not overlap. While SMS comes in several varieties,
we consider a version in which activities have disjoint re-
lease times and due dates, i.e. feasibility windows, and sim-
ple temporal constraints (Dechter, Meiri, & Pearl 1991). In
general activities may have multiple feasibility windows.
We assume all activities are mandatory, i.e. they must be
performed. The traditional SMS problem is concerned with
minimizing makespan; we treat the problem as a feasibility
problem only. For more information on SMS see (Brücker
1998).

Notation: Let A be an activity. Let Ai be the ith window
A may occur in. Let Ai

s be the start time of window Ai, and
Ai

e be the end time of Ai. Let Ad be the duration of A, As

be the assigned start time of A, and Ae be the end time of A.

A B

A takes longer

 AB

Time window
change

B

Original scenario

A A

A1
s A1

e

B2
s B2

e

A

A2
s A2

e

A1
s A1

e A2
s A2

e

B1
s B1

e

A2
s A2

e

B1
s B1

e

Figure 1: A has two windows, B has one window. A1 ≺ B1

and As = A1
s.

The list of unexpected events that may disrupt the sched-
ule is as follows:

1. +Ai
s: Start time of Ai increases (Ai becomes smaller).

2. -Ai
s: Start time of Ai decreases (Ai becomes larger).

3. +Ai
e: End time of Ai increases (Ai becomes larger).

4. -Ai
e: End time of Ai decreases (Ai becomes smaller).

5. +Ad: activity A duration increases (includes +Ae).
6. -Ad: activity A duration decreases (includes +As, -Ae).

These events may occur either prior to the start of exe-
cution, or (in the case of +As, -Ad +Ad) after the start of
execution, with different consequences, as discussed further
below. The results of a disruption of the schedule could be:
• Activity order is unchanged, but activity start or end times

may change (e.g. propagating constraints is sufficient to
handle rescheduling).

• Activity time window assignment may change.
• Activity order may need to change.

Several scenarios are described in figures 1 and 2. Sce-
narios are limited to two activities with one or two win-
dows each. They illustrate cases in which activity order
changes, or time window assignments change, or both. Sup-
pose w.l.o.g. that A1

s ≤ B1
s and that A is scheduled first.

Then As + Ad ≤ Bs. For brevity we will denote this A1 ≺
B1. When actions have multiple windows, this notation al-
lows us to specify a combination of window assignment and
action ordering, e.g. Ai ≺ Bj indicates A is contained in Ai,
B is contained in Bj , and As + Ad ≤ Bs.

A rigorous analysis of the impact of all of the changes is
outside the scope of this paper. However, it is worth mak-
ing some points about the timing of unexpected events and
their impact on rescheduling. If an unexpected event takes
place prior the start of activity execution, the scheduler has
the flexibility to reorder the activity or move it to a later win-
dow. However, if an activity starts or ends late, the scheduler
is limited in the response it can take. Since the focus of our

11

B

B takes longer

Time window
change

Original scenario

A

A

A1
s A1

e A2
s A2

e

B1
s B1

e

A1
s A1

e A2
s A2

e

B1
s B1

e

A1
s A1

e A2
s A2

e

B1
s B1

e

 A

A B

B AB

Figure 2: A has two windows, B has one window. A1 ≺ B1

and As = A1
s.

work is on the interface between the scheduler and the ex-
ecutive, especially when rescheduling is needed, we will as-
sume that the change results in a new feasible schedule, even
if activities must move to new windows. This precludes han-
dling changes after A has started that cause A to end after the
end of the window, or elimination of all feasible windows.

Scheduling and Execution with a Fixed
Number of Activities

We now show how to write a PLEXIL plan that manages a
fixed, known set of activities using a unary resource. First,
we will write the PLEXIL assuming that activities start and
end as scheduled, but that the future schedule is subject to
disruption because of faults or unexpected events. We as-
sume events make a single change as noted above, leading
to a single new constraint. We then will rewrite the PLEXIL
to allow activities to start or end late.

The PLEXIL plan for activities that are well behaved
(start and end on time) but in which the future schedule is
subject to new or changed constraints due to unexpected
events, is shown below:

ManageSpacecraft:Concurrence {
Constraint NewConstraint;
...
DoActivityA: {

Start
(As == Lookup(t)) &&
(ScheduleOnEvent.state!=EXECUTING)

CmdA: a();
};
DoActivityB: {

Start
(Bs == Lookup(t)) &&
(ScheduleOnEvent.state!=EXECUTING)

CmdB: b();
};
...

ScheduleOnEvent: {
Repeat TRUE;
Start

(Lookup(Event))
NewConstraint=pop(Event);
reschedule(NewConstraint);
As=getstart(A);
Bs=getstart(B);
...

};
};

This plan appears quite simple, but uses a number of fea-
tures of PLEXIL, and also shows how we will formally de-
fine the interface between PLEXIL and the scheduler. While
this plan does not depend specifically on the scheduling
problem being an SMS problem, this restriction will become
more important in the next part of the paper.

The first feature to note is that the PLEXIL plan has one
node for each activity. The second feature is that all of the
nodes are declared concurrent. Strictly speaking, only one
of the PLEXIL nodes is intended to be EXECUTING at any
time, because all of the activities are mutually exclusive, and
no activities should be started while rescheduling is taking
place. However, PLEXIL must be able to execute the activi-
ties in arbitrary order (due to rescheduling). Declaring them
as concurrent ensures that arbitrary execution order is possi-
ble. Third, note that ScheduleOnEvent has a Repeat condi-
tion. An unknown number of events may lead to reschedul-
ing, so PLEXIL may need to repeat this node an arbitrary
number of times. Fourth, the interface between PLEXIL and
the scheduler is the set of function calls retrieving the vari-
ables in the activity start conditions. For this simple case,
all that PLEXIL needs is the new activity start times, As,
as recomputed by the scheduler. These values in PLEXIL
are retrieved by synchronous get() commands that provide
access to the As variables, which are maintained internally
in the scheduler. The scheduler is a command called by
PLEXIL, as opposed to an external function communicating
with PLEXIL over a message bus, which requires Lookups.
Finally, the scheduler is invoked explicitly only when new
constraints arise from events, be they faults or otherwise.
The Start condition in each node ensures that PLEXIL will
not start new activities while rescheduling is taking place.

We now assume an arbitrary sequence of unexpected
events, including start time delay and increases of duration.
However, we assume every activity has at least one win-
dow, and that no sequence of unexpected events eliminates
all windows for an activity. These assumptions certainly do
not hold in practice, but let us show how the SMS scheduler
and PLEXIL interact without the complications of handing
an unsolvable scheduling problem. We revise the PLEXIL
as follows:

ManageSpacecraft:Concurrence {
Constraint NewConstraint;
date Aest=getest(A);
date Alst=getlst(A);
boolean ADone;

12

...
boolean Reschedule;
date now;
StartActivityA: {

Start
(Aest ≤ Lookup(t) ≤ Alst) &&
(Other Conditions) &&
(ScheduleOnEvent.state!=EXECUTING) &&
(ScheduleOnTimepoint.state!=EXECUTING)

CmdA: a();
now =Lookup(t);
NewConstraint = eq(As,now);
Reschedule=TRUE;

};
EndActivityA: {

Start
(Lookup(ADone))

pop(ADone);
now =Lookup(t);
NewConstraint = eq(Ae,now);
Reschedule=TRUE;

};
...
ScheduleOnTimepoint: {

Repeat TRUE;
Start

(Reschedule==TRUE)
reschedule(NewConstraint);
Aest=getest(A);
Alst=getlst(A);
...
Reschedule=FALSE;

};
ScheduleOnEvent: {
...
}

};

The SMS scheduler builds a total ordering of the activities
by choosing activity windows, and when necessary, order-
ing activities within windows. The resulting schedule can be
interpreted as a Simple Temporal Network, or STN 1; the re-
sulting STN can also be made dispatchable (Morris, Muscet-
tola, & Tsamardinos 1998) to reduce propagation costs. Let
Aest denote the propagated earliest start time of A, Alst de-
note the propagated latest start time of A, Aeft denote the
propagated earliest finish time of A, and Alft denote the lat-
est finish time of A. The plan uses these bounds in the start
conditions, instead of the fixed times As and Ae.

When the activity can start late or end late, we must in-
troduce explicit PLEXIL nodes for managing activity start
and end. In our previous PLEXIL plan, only one PLEXIL
node for each activity is needed; the Start condition of this
node only needs the scheduled start time of each activity,
because we assumed the activities ended ‘on time’. In the
new PLEXIL plan the ‘other conditions’ may not be satis-
fied at the activity’s earliest start time. We assume the com-

1In fact every timepoint is uncontrollable meaning that the
schedule is really an STNU (Muscettola, Morris, & Vidal 2001).

A not started
t > Aest

Other conds? LU(ADone)?

t > Alft
or t > n(A)est?

t > Alst
or t > n(A)est?

N

Y

Y

N

StartActivityA:
ScheduleOnTimepoint

(Propagate)

RescheduleWhenAStartsLate:
ScheduleOnTimepoint

(Reschedule)

N

A not finished

N

Y

EndActivityA:
ScheduleOnTimepoint

(Propagate)

RescheduleWhenAEndsLate:
ScheduleOnTimepoint

(Reschedule)

Y

+t

+t

A not started
t < Aest

n(A) not started
t < n(A)est

Figure 3: State machine description of PLEXIL plan with all
four nodes showing the ’lifecycle’ of an activity.

mand starting the activity, a(), asynchronously starts a pro-
cess that sets a boolean ADone signaling that the activity
is completed. This variable is looked up by PLEXIL and
used in the condition for node EndActivityA. When activ-
ities start or end late, either propagation or rescheduling
is needed. We need a new node, ScheduleOnTimepoint, to
reschedule once event times are known. This node passes
new constraints to the scheduler based on observed start or
end times. This node’s start condition, the boolean Resched-
ule, is effectively a semaphore set by each activity node, and
unset by ScheduleOnTimepoint. The constraints are simple;
for example, execution of EndActivityA results in the con-
straint eq(Ae,now) being passed to the scheduler. This node
also moves all updated bounds back into the nodes for each
activity using the get() interface functions.

There are still some problems with the PLEXIL as writ-
ten. Even though we have Lookup(t) ≤ Alst as part of the
Start condition for StartActivityA, there is no guarantee that
A will start before Alst. As written, PLEXIL would not
start A if it is delayed past this time. Further, the sched-
uler will not be invoked to reschedule A if it is delayed
past Alst. Worse yet, it is possible that A and A’s successor,
n(A), suddenly start executing at the same time, violating the
unary resource constraint. This can happen if A ≺ n(A), but
both are in a large time window. In order to protect against
this, we need to identify milestones at which time proactive
rescheduling is necessary to prevent these undesirable con-
sequences from happening.

The first milestone is Alst, the latest time when A can start
without violating some constraint. This bound could be due
to the end of Ai (A’s assigned window), or due to an STN
constraint between A and some future activity. The second
milestone is n(A)est; if A has not started by this time, there is
a risk that A and n(A) could both start. Thus, PLEXIL needs
to reschedule when A has not started and t = min(Alst,
n(A)est). To address this, a new PLEXIL node, Resched-
uleWhenAStartsLate, is added for each activity; the mile-
stone above is part of this node’s Start condition. When exe-
cuted, this node records the new start time constraint for A,

13

then invokes the scheduler. We must add a similar PLEXL
node, RescheduleWhenAEndsLate, to cover the case where
an activity ends late, i.e. after Alft, which might prompt
rescheduling due to an STN constraint with some future ac-
tivity. Similarly, the activity could end after n(A)est, which
introduces the danger of n(A)est starting while A is still ex-
ecuting. Both of these nodes invoke the ScheduleOnEvent
node, which must retrieve the earliest start time of A’s suc-
cessor, n(A)est, for each activity, as well as the bounds on
activity start and end.

These new nodes are shown in the PLEXIL below: the
behavior of the PLEXIL plan controlling an activity’s life
cycle is shown in Figure 3.

ManageSpacecraft:Concurrence {
Constraint NewConstraint;
date Aest=getest(A);
date Alst=getlst(A);
date Alft=getlft(A);
date n(A)est=getsucest(A);
boolean ADone;
...
date milestone;
StartActivityA and EndActivityA
RescheduleWhenAStartsLate: {

Repeat TRUE;
milestone=min(Alst,n(A)est);
Start

(StartActivityA.state==WAITING) &&
(Lookup(t) > milestone)

now =Lookup(t);
NewConstraint = geq(As,now);
Reschedule=TRUE;

};
RescheduleWhenAEndsLate: {

Repeat TRUE;
milestone=min(Alft,n(A)est);
Start

(StartActivityA.state==FINISHED) &&
(Lookup(t) > milestone)

now =Lookup(t);
NewConstraint = geq(Ae,now);
Reschedule=TRUE;

};
ScheduleOnTimepoint and ScheduleOnEvent
...

};

Finally, we describe the scheduler in pseudocode. Recall
that the scheduler is effectively a function call, resched-
ule(NewConstraint). The parameter NewConstraint is up-
dated by the PLEXIL node that invokes it. The scheduler
may need to relax duration constraints after event times are
fixed to ensure consistency, in addition to relaxing order-
ing and window commitments. At a minimum, we have
to propagate if there are any execution time delays to en-
sure rigid STN constraints are obeyed by subsequent ac-
tivities. If activities start or end too late, rescheduling is
needed. This is detected in the scheduler and propagation or

rescheduling is performed accordingly. Now, StartActivityA
and EndActivityA will always have up-to-date bounds if a
preceding activity starts or ends after a milestone, because
rescheduling will be triggered by RescheduleWhenAStart-
sLate or RescheduleWhenAEndsLate. Similarly, the unary
resource constraint is enforced; two activities will not start at
the same time. The scheduler maintains variables Aest Alst

Aeft Alft n(A)est that are retrieved by the PLEXIL get()
interface functions.

reschedule(NewConstraint) {
VarId var;
Domain val;
...
while (TRUE){

var=getvar(NewConstraint);
val=getval(NewConstraint);
if ((var == As) && (Aest ≤ val ≤ Alst)) {

propagate();
}
else if ((var == Ae) && (Aeft ≤ val ≤ Alft)) {

propagate();
}
else {

do-reschedule(NewConstraint);
propagate();

}
Aest Alst Aeft Alft n(A)est updated

}
}

Rescheduling could be required multiple times when an
activity starts or ends late. To see why, consider some activ-
ity A starting late with k other activities scheduled to start
in its window. The rescheduling operation may move some
activity scheduled later than A to a later window, rather than
rescheduling A; this can happen at most k times. Similarly,
multiple STN constraints on A can conspire to create a suc-
cession of Alst bounds that cause rescheduling. This is why
RescheduleWhenAStartsLate requires a Repeat condition.

In summary:
• There are now 4 PLEXIL nodes per activity, managing

activity start, end, rescheduling when starting late, and
rescheduling when ending late.

• The interface between PLEXIL and the scheduler requires
retrieving the STN bounds, plus the earliest start time of
the successor of the currently executing activity, or the
next activity to be executed, as mediated by the get() com-
mands.

• Propagation or re-scheduling is done as needed by eval-
uating the situation. To ensure activities never execute
at the same time, proactive rescheduling steps may be
needed, perhaps multiple times, as noted in the previous
discussion.

Scheduling and Execution with an Arbitrary
Number of Activities

14

ManageSpacecraft:Concurrence {
Constraint NewConstraint;
date Sest=getest(S);
date Slst=getlst(S);
date Slft=getlft(S);
date n(S)est=getsucest(S);
boolean SDone;
date now;
...
StartUsingSystemS: {

Repeat TRUE;
Start

(Sest ≤ Lookup(t) ≤ Slst) &&
(Other Conditions) &&
(ScheduleOnEvent.state!=EXECUTING) &&
(ScheduleOnTimepoint.state!=EXECUTING)

CmdA: s();
now =Lookup(t);
NewConstraint = (Ss = now);
Reschedule=TRUE;
};

};
EndUsingSystemS: {

Repeat TRUE;
Start

(Lookup(SDone))
pop(SDone);
now =Lookup(t);
Reschedule=TRUE;
};

};
...

};

The PLEXIL plan and scheduler integration shown above
is limiting because, in general, automated systems like
spacecraft require schedules of large size. Large schedules
require considerable memory allocations for the scheduler
and PLEXIL, which may be precluded on embedded proces-
sors. Also, the set of activities may not be known up front;
new activities may be needed during the mission. Ideally,
we would like a finite sized PLEXIL structure that can ex-
ecute an arbitrary number of activities, allowing the sched-
uler to schedule new activities when they arrive, and purge
completed ones. We assume each activity uses only one re-
source, but arbitrary temporal constraints are allowed. We
can use almost the same PLEXIL structure we created in
the previous section. The key changes are to write PLEXIL
nodes that manage a unary resource instead of an activ-
ity, and to change the semantics of the scheduler interface
get() functions. Instead of returning the bounds for a fixed
activity, these functions now feed this node the bounds for
the next unexecuted activity using the resource. The revised
PLEXIL is shown below; we have replaced the activity name
A with resource S in the node names. Since the nodes Star-
tUsingSystemS and EndUsingSystemS now execute an ar-
bitrary number of times, they must have a Repeat condi-
tion. We omit repeating the nodes RescheduleWhenSStart-
sLate, RescheduleWhenSEndsLate, ScheduleOnTimepoint

and ScheduleOnEvent, because they are almost identical; the
function call is now reschedule(NewConstraint, S, SDone)
to indicate which resource needs rescheduling. If the re-
source is free (SDone==TRUE), the calling node must set
SDone=FALSE.

As before, the scheduler waits to hear that activities are
completed, or that other constraints have been added. We
assume rescheduling places the bounds in queues sorted by
activity order. Now, the scheduler need only return the activ-
ity bounds for the next unexecuted activity on each resource
S, e.g. getest(S)=est.top(). When the scheduler is notified an
activity is completed, the appropriate bounds are removed
from the queues. We write the scheduler as non-PLEXIL
pseudocode:

reschedule(NewConstraint, System, Done) {
VarId var;
Domain dom;
Constr constraint;
queue estS;
queue lstS;
queue eftS;
queue lftS;
queue sucestS;
...
while (TRUE){

#Previously described logic for reschedule vs propagate
#Scheduler reorders bounds in queues
if (System == S && Done==TRUE)) {

estS.pop();
lstS.pop();
eftS.pop();
lftS.pop();
suceftS.pop();

}
...

}

One advantage of this representation compared to the pre-
vious one is that the size of the PLEXIL plan shrinks dramat-
ically; we now need 4 PLEXIL nodes per unary resource,
as compared to 4 nodes per activity. The new design also
reduces the amount of data that must move between the
scheduler and PLEXIL. Not only is the amount of data to
be moved limited by the number of resources; the scheduler
also only must move the next activity’s propagated bounds,
instead of every activity’s bounds. (To be fair, the activity
based PLEXIL plan could be written to move a minimum
of data as well, exploiting the dispatchabililty of the STN
and completed activities.) This is accomplished at a modest
increase in complexity on the scheduler; the scheduler must
maintain queues and reimplement the get() accessors.

The PLEXIL plan above can manage multiple unary re-
sources at the same time. Similarly, the PLEXIL represen-
tation is able to handle scheduling problems in which tasks
can be rejected prior to the start of execution, which in turn,
allows handling of activities with priorities.

15

Discussion
In this section we take a step back and look at the integration
of scheduling and execution.

PLEXIL provides direct support for starting the scheduled
activities, via its Start conditions. These conditions can re-
fer to variables representing the start times, or bounds, for
each activity. PLEXIL also provides commands to invoke
the scheduler to change the values of those variables when
unexpected events or faults occur. Finally, PLEXIL can de-
tect the conditions when rescheduling is needed, and invoke
the scheduler. Designing the PLEXIL to have the right be-
havior takes some work; however, some of this complexity
is driven by the problem (desired behavior when a sched-
ule is disrupted by unexpected events) and not PLEXIL it-
self. The PLEXIL plan can, however, be written in differ-
ent ways. For instance, Start conditions for each activity
could include a shared Boolean mutual exclusion variable
(e.g. semaphore) to prevent two activities from executing at
the same time. This design protects against some, but not
all, violations of the mutex constraint; it does not facilitate
scheduling when activities are late. The specific get() com-
mands must be designed to move propagated time bounds
from the scheduler into the right local PLEXIL variables,
and the scheduler must manage the bounds. PLEXIL does
not provide any direct support for different scheduling al-
gorithms; the scheduler must determine whether propaga-
tion is sufficient, or whether a complete rescheduling activ-
ity is needed. Put another way, the integration of scheduling
and execution requires an up-front investment in determin-
ing what information moves between the scheduler and the
executive, and the milestones in the execution state of each
activity drive propagation or rescheduling. While to some
extent this is based on the scheduling problem and the al-
gorithms used to respond to changes, the elementary pieces
are the current activity schedule bounds, scheduling mile-
stones, functions to move the information out of the sched-
uler and into the executive, and functions to invoke the cor-
rect rescheduling procedures when milestones are reached.

Previous Work
As noted, the focus of this work is on the integration of
scheduling and execution, and not on scheduling algorithms.
Clearly the success of an integrated approach requires incre-
mental rescheduling and, eventually, replanning, either di-
rectly or by using formalisms such as dynamic constraint
satisfaction, will be needed. Given that automated planning
has already been demonstrated for applications such as high-
speed manufacturing (Ruml, Do, & Fromhertz 2005) and
low Earth orbit satellite planning (Tran et al. 2004), it is
plain that this can be accomplished; however, these previ-
ous efforts have largely been engineering exercises.

PLEXIL is one of a number of executives that have been
integrated with planners and schedulers. At one end of the
spectrum, SMACH (Bohren & Cousins 2010) is a state-
based executive (as compared to PLEXIL, which is a com-
mand driven executive). Each state contains local variables;
states can be hierarchical and concurrent. SMACH states can
execute arbitrary Python code, and SMACH has been inte-

grated with Robot Operating System (ROS). While general
and flexible, there is little first-class support for planning
and execution. TREX (McGann et al. 2008) and CASPER
(Chien et al. 1999) represent the other end of the spectrum.
These systems represent plans explicitly as timelines, and
planning and execution are processes that interact with the
same timeline data structure. In the case of T-REX there may
be different specialized planners that perform specific func-
tions that are hand-tuned for performance. CASPER’s plan-
ner, ASPEN (Fukunaga et al. 1997), achieves low compu-
tational time through the use of local search. Executing di-
rectly off of the timelines maintained by the planners is an
advantage; CASPER and TREX do not need to move data
from the scheduler into the executive’s data structures. How-
ever, timelines are heavy-weight data structures, with the im-
plied speed and memory penalties, integrated tightly in the
core of the execution system.

T-REX and CASPER represent point engineering designs.
More recently, ROSPlan (Cashmore et al. 2015) provides
a general framework for PDDL-based planners integrated
with ROS. ROSPlan allows integration of a wide variety of
planning algorithms that operate on PDDL domains with
ROS, allowing these planners to control a wide variety of
real and simulated robot platforms. The detection of condi-
tions for replanning is semi-formally described, and is sim-
ilar to the integration described in this paper. However, re-
planning in ROSPlan still requires re-invocation of a PDDL
planner; not all such planners are suitable for embedded pro-
cessors and high-speed low-latency applications.

PLEXIL has previously been integrated with a PDDL
planner to control a hexapod robot (Muñoz, R-Moreno,
& Castaño 2010). The specific semantic integration of the
PDDL plan and PLEXIL plan is not fully described, making
it difficult to compare to ROSPlan. Regardless, integration
of PLEXIL with a PDDL planner suffers from the same dif-
ficulty we point out for ROSPlan; it may not be suited to
embedded processors and high-speed low-latency applica-
tions. PLEXIL has also been extended to include decision
logic queries, also to control a robot (Moser et al. 2009).
This increases the flexibility of the knowledge, and there-
fore behavior, a PLEXIL plan can exhibit during execution,
but falls short of the kind of flexibility needed to reschedule
actions in the presence of uncertain events.

We have deliberately taken a ‘classical’ rescheduling and
replanning approach, as opposed to an approach based on
MDPs or POMDPs, so we do not cover this fascinating area
in our previous work survey. We do discuss the Simple Tem-
poral Network with Uncertainty (STNU) as an alternative
foundation for rescheduling and execution. The most im-
portant property of an STNU is whether it is dynamically
controllable, that is, whether there exists a strategy for exe-
cuting its time-points that will guarantee that all of its con-
straints will be satisfied no matter how the durations of the
uncontrollable durations or event separations turn out. The
problem checking whether an STNUs is dynamically con-
trollable was first described in (Muscettola, Morris, & Vidal
2001); the problem of executing dynamically controllable
STNUs is analyzed in (Hunsberger 2016). Writing PLEXIL
for an STNU is a worthwhile next step; using these ap-

16

proaches require synthesizing the STNU to be executed, e.g.
by solving some harder planning or scheduling problem. An
alternative classical approach would use Disjunctive Tempo-
ral Network (DTN) solvers (Tsamardinos & Pollack 2003)
and execution (Shah & Williams 2008). While guarantees
such as strong controllability may eliminate the need for
rescheduling an STNU, and reduce rescheduling, the pres-
ence of resource constraints means rescheduling will still be
needed as unexpected events occur.

Philosophically, we compare the integration of planning
(well, scheduling) and execution with the recently intro-
duced notions of Planning and Acting (Ghallab, Nau, &
Traverso 2016). Viewed broadly, our chosen executive,
PLEXIL, may be considered an actor. It provides sup-
port for handling activity start and stop and invocation of
rescheduling in the presence of execution-time uncertainty.
Scheduling serves the acting function; the actor, encoded in
PLEXIL, is in charge. However, a more hard-nosed attitude
is that the philosophical argument is not important, and that
it is better to crisply define the problem (if an unexpected
event breaks the schedule, what is to be done?) and focus on
the solution. This is the approach taken in our work.

Conclusions and Future Work
We have described how to integrate PLEXIL, a plan execu-
tion system, and a scheduler. Our motivation is the manage-
ment of systems in which fast response time precludes using
fully functioned, but high complexity, AI planners. We have
assumed that PLEXIL manages activities with time win-
dows, temporal constraints, and unary resource constraints;
the scheduler, therefore, solves a variant of the Single Ma-
chine Scheduling (SMS) problem. Our focus is on formally
defining what information passes between the scheduler and
the execution system, and when rescheduling is needed. We
developed two integrated systems, one assuming a known
and fixed number of activities to be scheduled, and a sec-
ond one assuming a fixed number of unary resources but an
arbitrary number of activities.

Implicit in our discussion above is that computation time
and resource performance of the integrated scheduler and
executive are at a premium. Specifically, even for SMS,
rescheduling may end up taking a significant amount of
time. Characterization of the computation time (in real wall-
clock time terms, not algorithmic complexity analysis) is
generally needed to ensure that rescheduling happens in a
timely manner. This will vary CPU to CPU, and problem to
problem.

As noted above, we reschedule (reorder tasks, move them
to other windows) only when temporal constraints are vi-
olated. Further, we propagate when possible, and resched-
ule when needed. Other policies could be implemented to
reschedule earlier, reschedule instead of repeating propaga-
tion, and heuristics used to guide the rescheduling of tasks
more likely to fail and need a second attempt. If, for exam-
ple, an activity A is starting late, and waiting would push
many other activities out of a shared set of windows, it may
be better to simply move A later. Similarly, if later windows
are not ideal for activities, waiting until the latest start times
for activities may lead to worse schedules. On a related note,

since computing on spacecraft is often a significant power
draw, characterizing the amount of time spent rescheduling
is of more than theoretical interest. As noted in previous
work, the runtime (and hence power consumption) of exe-
cuting STNUs has been analyzed. In the very general setting
we describe in this paper, it may be much more difficult to
analyze the runtime of rescheduling during execution com-
pletely. Certain limited cases can be analyzed directly. For
example, if A is continually delayed until it must be sched-
uled in a later window, the number of successor activities
k in the current window can be counted, and the amount
of rescheduling quantified; similarly, if A is constrained by
STN constraints to k successors, each of which imposing a
different value of Alft in isolation, the amount of reschedul-
ing in this case can also be quantified. Notably this depends
on both the schedule and the set of unexpected events.

In the SMS problem, determining the milestones when
rescheduling is needed is straightforward. When we move
to more complex scheduling problems with multi-capacity
resources, deciding when to reschedule becomes more com-
plex. Consider, for instance, rescheduling activities with
power and energy constraints, as described in (May et al.
2014). Activities now use and return a multi-capacity re-
source such as energy. Relaxing the times at which events
occur leads to a Resource Temporal Network (Laborie
2003). New algorithms are needed to determine the mile-
stones at which rescheduling must be done if activities do
not occur when they are scheduled. Another avenue of inves-
tigation must address activities that use multiple resources.
Arguably, if all resources are unary resources, the proposed
integration still holds (windows indicate when all resources
are available) but activities using heterogeneous resources
may pose a challenge.

As noted, rescheduling will generally not be sufficient to
address all the complexities of autonomous systems; eventu-
ally, we will need planning. Introducing the idea of a sched-
uler tightly integrated with the execution system leads to
an interesting design question for traditional AI planning
systems: these planners now only need to make enough
decisions to induce a scheduling problem to feed to the
fast-response scheduler-execution system. This is a differ-
ent style of planning than the AI community is accustomed
to solving.

We have short-circuited the issue of co-development of
the PLEXIL plan and representation used in the scheduler.
From a theoretical point of view, the key issue is ensuring
that PLEXIL activity node representation matches the vari-
ables retrieved by the scheduler’s get() functions. It should
be straightforward to auto-generate the PLEXIL from some
higher-order language description that, in turn, configures
the scheduler. As the problems get more complex, this is no
longer an obvious conclusion, and should be investigated.

Acknowledgements We are grateful for fruitful discus-
sions and contributions of Chuck Fry, Richard Levinson, J
Benton, Michael Iatauro, Thomas Stucky, and Paul Morris
to this paper. This work was funded by the NASA Advanced
Exploration Systems program.

17

References
Bohren, J., and Cousins, S. 2010. The SMACH high-level
executive. In IEEE Robotics and Automation Magazine.
Brücker, P. 1998. Scheduling Algorithms. Springer.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Rid-
der, B.; Carreraa, A.; Palomeras, N.; Hurtós, N.; and Car-
reras, M. 2015. ROSplan: Planning in the Robot Operat-
ing System. In Proceedings of the 25th International Con-
ference on Artificial Intelligence Planning and Scheduling
(ICAPS).
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 1999. Integrated planning and execution
for autonomous spacecraft. In Proceedings of the IEEE
Aerospace Conference.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–94.
Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
Toward an application framework for automated planning
and scheduling. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Hunsberger, L. 2016. Efficient execution of dynamically
controllable simple temporal networks with uncertainty.
Acta Informatica 53(2):89 – 147.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in ai planning and scheduling: Existing approaches
and new results. Artificial Intelligence 143:151–188.
May, R.; Soeder, J. F.; Beach, R. F.; George, P. J.; Frank, J.;
Schwabacher, M. A.; Wang, L.; and Lawler, D. 2014. An
architecture to enable autonomous control of spacecraft. In
AIAA Propulsion and Energy Conference.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2008. A deliberative architecture for
AUV control. In Proceedings of the International Confer-
ence on Robotics and Automation (ICRA).
Morris, P.; Muscettola, N.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Pro-
ceedings of the 15th National Conference on Artificial In-
telligence.
Moser, H.; Reichelt, T.; Oswald, N.; and Förster, S. 2009.
PLEXIL-DL: Language and runtime for context-aware
robot behaviour. 179 – 186.
Muñoz, P.; R-Moreno, M. D.; and Castaño, B. 2010. In-
tegrating a PDDL-based planner and a PLEXIL-executor
into the ptinto robot. In Proceedings of the 23rd interna-
tional conference on Industrial engineering and other ap-
plications of applied intelligent systems.
Muscettola, N.; Morris, P.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proceedings
of the 17th International Joint Conference on Artificial In-
telligence.
Ruml, W.; Do, M. B.; and Fromhertz, M. 2005. On-line
planning and scheduling for high speed manufacturing. In

Proceedings of the 15th International Conference on Auto-
mated Planning and Scheduling, 30 – 39.
Shah, J., and Williams, B. 2008. Fast dynamic scheduling
of disjunctive temporal constraint networks through incre-
mental compilation. In Proceedings of the 18th Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (ICAPS).
Tran, D.; Chien, S.; Sherwood, R.; Castaño, R.; Cichy, B.;
Davies, A.; and Rabbideau, G. 2004. The autonomous
sciencecraft experiment onboard the eo-1 spacecraft. In
Proceedings of the 19th National Conference on Artificial
Intelligence, 1040 – 1045.
Tsamardinos, I., and Pollack, M. 2003. Efficient so- lu-
tion techniques for disjunctive temporal reasoning prob-
lems. Artificial Intelligence 151(1-2):43–90.
Verma, V.; Jónsson, A.; Pasareanu, C.; and Iatauro, M.
2006. Universal executive and PLEXIL: Engine and lan-
guage for robust spacecraft control and operations. In Pro-
ceedings of the AIAA Space Conference.

18

Autonomous Search-Detect-Track for Small UAVs

Robert Morris1, Anjan Chakrabarty1, Joshua Baculi2, Xavier Bouyssounouse1 and Rusty Hunt1
1 Intelligent Systems Division

NASA Ames Research Center, Moffett Field, CA 94035
2. Department of Mechanical Engineering, Santa Clara University

Abstract

A system is described for autonomously searching, detect-
ing, and tracking an object of interest with a small unmanned
aerial vehicle (sUAV). The vehicle is given one or more areas
to search. If the object is detected, the sUAV follows the target
while maintaining a fixed distance and centered on its image
plane. If the object is lost, the sUAV reverts to search. This
problem presents many challenges in integrating planning ca-
pabilities with sensing and control. This paper describes an
architecture for autonomous search and track for sUAVs. The
components of the architecture include planning, image clas-
sification and image-based control for tracking. The system
has been implemented in the Robot Operating System (ROS)
framework using the Parrot ARDrone platform, using ROS-
Plan for goal planning and re-planning.

Introduction
The role of planning in autonomous robotic systems has
been extensively documented. Planning frameworks allow
for representing actions and goals at multiple levels of
abstraction, enabling modularity and hierarchical control.
Task planning is needed to transform mission goals into se-
quences of tasks that will accomplish them and keep the sys-
tem safe. Task planners must be combined with motion plan-
ners, manipulation planners, and sensing and control sys-
tems for actuation. In this manner deliberative systems are
integrated with reactive systems for dealing with noisy sen-
sors and dynamic environments.

One major challenge in developing autonomous robotic
systems is to ensure an effective interaction between the de-
liberative and reactive sub-systems. Specifically, the deliber-
ative level needs to be always ’doing the right thing’, given
the information it currently possesses about the state of the
robot and the world it inhabits. This is a core capability of
autonomy and one that offers challenges in design and de-
velopment.

The main contribution of this paper is a framework that
provides an interface between high level planning and low
level sensing and control for solving the problem of au-
tonomously searching, detecting, and tracking (henceforth
SD&T) an object of interest by a small UAV (sUAV). To mo-
tivate, consider the problem of finding, locating and track-

Copyright c� 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing poachers of rare white rhinos in Africa(SaveTheRhino
2016). sUAVs with night and day sensors are deployed to
search over a large area and locate poachers in a timely man-
ner so that rangers can be dispatched to stop poachers be-
fore they strike. Some of the technical challenges in sensing,
navigation and decision-making for this application include
choosing where to search, distinguishing poachers from an-
imals based on movement, and tracking an unfriendly target
trying to elude capture. Uncertainty of target location makes
it necessary to plan a path that guarantees sufficient cov-
erage of an area while using data such as previous known
target location to focus the search, and does not violate re-
source constraints. At execution time, the vehicle must rely
on robust, real time image classification to detect a potential
target, as well as rely on an image-based visual controller to
keep the target in view. The integrated SD&T system will
also involve precise communication of location to operators,
a ground control system to enable human supervision and
situational awareness of the sUAV activities, and potentially
more than one sUAV in a coordinated operation.

The following sections of this paper describe an architec-
ture, component capabilities, and implementation of an in-
tegrated autonomous SD&T system for a sUAV, as well as
highlighting tests in simulation and in indoor field tests.

Autonomy Architecture and Component
Capabilities

An operational SD&T system for a sUAV will consist of a
strategic combination of human and machine intelligence. A
’fully’ manual SD&T system might consist of a human sit-
ting at a console. The search stage would consist of the hu-
man using a joystick to navigate a path for the sUAV through
a promising area for search. The vehicle sensors would al-
low the human to identify the target of interest, and tracking
could then also be performed manually.

The focus here is an integrated system where capabili-
ties of search, identify and track are automated. The require-
ments for autonomous SD&T encapsulate a sort of ’set it
and forget it’ approach: at the most abstract level, the sUAV
is provided with a goal to locate an object (candidate rhino
poacher) and then track it until some terminating event oc-
curs (the poacher is captured) or the sUAV is close to con-
suming its power resources and is required to return to base.

19

There are of course many variations of an SD&T problem,
but this is the nominal scenario we will use here.

No assumptions are made here about whether the machine
autonomy resides on the sUAV or on a ground computer
(we assume here that human autonomy resides fully on the
ground). Constraints on platform size and payload weight
will to a large extent determine whether the component ca-
pability can be on board. It suffices here to assume that to
some degree the autonomy architecture is distributed: the ca-
pabilities for autonomy reside partly on the vehicle itself and
partially on a ground computer.

Figure 1 summarizes the components of the framework
for autonomous SD&T described in this paper. A high level
task planner alternates between two mission goals: search
and track. The search goal triggers a trajectory-based con-
trol system combined with a detection system for identify-
ing an object of interest. The track goal triggers a combined
image-based visual servoing system (IBVS) and a tracker for
following the target. The high level plan dispatcher ensures
that the system will continuously alternate between search-
ing as long as the object is not in view and tracking as long
as it is.

The figure also shows the components of the implementa-
tion of the framework. Building upon previous work by the
authors and others, the IBVS and CMT tracker are imple-
mented as modules with ROS (Quigley et al. 2009). ROS
provides the middleware for building robotic applications
(primarily, in the ability to publish or subscribe to ”topics”
that provide state information or control lower-level behav-
iors). A Parrot AR.Drone quadrotor is commanded from a
computer via WiFi link using the AR.Drone Autonomy ROS
package (Monajjemi 2012), or in simulation using Gazebo
(Koenig and Howard 2004). All simulations are run under
Ubuntu 14.04 LTS 64-bit and an Intel Xeon E5-2630 @
2.60 GHz x 17 CPU, a NVIDIA Quadro K5000 GPU, and
32 GB of RAM. Software components include ROSPlan for
task planning and execution; the integrated CMT tracker and
image-based controller; and the HOG-HAAR detector com-
bined with a simple path planner. These components are de-
scribed in more detail below.

Previous Work
The relevant literature on the component capabilities re-
quired for integrated SD&T is too large to adequately sur-
vey here. Rather we briefly summarize the relevant sub-
problems and key elements of major approaches to solving
the problems.

Planning for Search
Planning for search and track (and variants such as search
and rescue (SAR)) is one of the oldest problems in Opera-
tions Research. The foundations of the theory of search are
Koopman’s formulation (Koopman 1957) which divides the
problem into two sub-problems: optimal allocation of effort
(i.e. what percentage of time to spend in a given subregion);
and optimal rescue track. From this core formulation mod-
els of how a target can move in an environment (e.g. a lost
swimmer drifting at sea) and other environmental models,

such as weather forecasts, are added, that aid in generat-
ing an optimal search path. Search trajectories are evalu-
ated based on maximizing the probability of finding a tar-
get of interest at minimum cost (including time, manpower
expended, fuel or other resources, etc.).

Planning for search is potentially challenging because it
is assumed that the target is located within an area that is
too large to search exhaustively; the target’s location is rep-
resented as a probability distribution over subregions of the
search area; and the target may or may not be moving. A
typical planning cycle involves the production of a proba-
bility distribution for the object’s location at the time of the
next search. A trajectory uses this distribution along with a
list of assigned search assets to produce operationally fea-
sible search plans that maximize the increase in probability
of detecting the object. If the search is unsuccessful, a pos-
terior probability map for object location that accounts for
the unsuccessful search and the possible motion of the ob-
ject is generated, providing the basis for planning the next
increment of search (Kratzke, Stone, and Frost 2010).

The work that most resembles the over all approach to
search presented here is found in (Bernardini, Fox, and Long
2014). The work described in that paper is mostly compli-
mentary to the work here. There the problem to be solved
requires a search over the space of possible patterns to find
one that has the best chance of finding a target. By contrast,
for this paper patterns are provided as inputs to the problem
being solved, and the effort here is on applying continuous
re-planning to enable hierarchical control.

Vision and Control for Search and Track
SD&T is an application of object detection systems. The
goal of object detection is to detect all instances of objects
from a known class, such as people, cars or faces in an im-
age. Each detection is reported with some form of pose in-
formation; here, we assume the system returns a bounding
box around the object.

Object detection systems build a model from a set of
training examples. Methods for inferring models are either
generative or discriminative. The former create probabilistic
models of pose variability and appearance; the latter create
classifiers that can distinguish between images that contain
an object from those that do not. Here we use a person de-
tector based on a classification technique using grids of his-
tograms of oriented gradients (HOG) descriptors and a linear
Support Vector Machine (SVM) to classify images as per-
son/not person; the system is described in (Dalal and Triggs
2005).

Many visual servo systems, sometimes classified as dy-
namic look-and-move (Campoy et al. 2008), use a hierar-
chical approach, in which a vision-based controller provides
set-point inputs to a lower level position controller. The re-
sult is a visual processing loop, comprised of a feature ex-
traction component and a visual controller, and an internal
loop, comprised of a state estimator and a flight controller.
The feature extractor processes the tracker data and outputs a
feature vector that provide feedback to the visual controller,
related to the location and size of the object on the image
plane. The difference between the feature vector values and

20

Figure 1: Hierarchical Autonomous Control using ROSPlan

the desired position and size of the features provides the in-
put to the visual controller, which outputs velocity informa-
tion to the flight controller. Meanwhile, an optical flow state
estimation algorithm processes internal sensor data to main-
tain stability and position. In this architecture, the internal
control cycle is on board the UAV, while the visual process-
ing is performed remotely on a laptop, and communicated
via a wifi connection.

Tracking is the problem of detecting an object of interest
in a field of view of a camera over a period of time. More
precisely, the input to the problem is a bounding box defin-
ing the set of features of an object of interest. Given a se-
quence of images, the problem is to identify a set of matches
between features defined in the bounding box and those of
the current image. These matches constitute the representa-
tion of the object of interest.

The CMT tracker (Nebehay and Pflugfelder 2015) used in
the SD&T system in this paper, represents a tracked object
as a set of feature correspondences of key points, relating
the current position of a feature to its position in the origi-
nal image. Furthermore, CMT distinguishes between static
correspondences (between the current image and the origi-
nal image) and adaptive correspondences (between succes-
sive images), and uses both kinds of correspondence to up-
date its object model. Adaptive correspondence is better at
handling different object appearances due to deformation,
whereas the static model is better at handling the reappear-
ance of the object after occlusion. Second, CMT introduces
a tolerance parameter in order to allow the set of correspon-
dences between frames to be robust to changes due to defor-
mations. The CMT tracker uses heuristic estimates to gener-
ate values related to scale and rotation of the bounding box.

These values, in addition to an estimate of the center of the
tracked object, are the outputs of CMT.

For more on the IBVS controller and tracker used in the
system described here, see (Chakrabarty et al. 2016) or (Pes-
tana et al. 2014).

SD&T Planning and Execution Using
ROSPlan

As stressed in (Nau, Ghallab, and Traverso 2015), carrying
out actions in a plan in robotic applications requires continu-
ous on-line planning and deliberation and involves a hierar-
chically ordered collection of modules to carry out special-
ized tasks. In SD&T, search, detection, tracking and navi-
gation are specialized behaviors that need to be integrated
into an autonomous system that stays safe and accomplishes
high-level mission goals.

As noted earlier, planning for search is potentially a com-
putationally challenging optimization problem involving the
efficient use of resources to maximize the probability of
finding a target of interest. To formulate a search planning
problem, the domain model must contain a way to specify
one or more subareas to be searched. In addition, the do-
main should contain a collection of actions that describe a
comprehensive search of an areas of interest, as discussed in
(Bernardini, Fox, and Long 2015).

In addition to these planning requirements, there are a
number of requirements for effective execution of plans.
When a target of interest is found, search must stop and
tracking started. From a planning perspective, this transi-
tion can be viewed as a change in plans, from one consist-
ing of following a trajectory to one consisting of keeping
a target in view (tracking). This transition from trajectory-

21

based to tracker-based control of the vehicle should be done
in a timely manner to avoid logins the object. More gen-
erally, the system should support an ”alternating behavior”
between search and track, in which the target is repeatedly
lost and found.

Planning and execution using ROSPlan
We use ROSPlan (Cashmore et al. 2015) to automate the
planning process for SD&T. ROSPlan supports PDDL ac-
tivity planning, consisting of a domain defining the actions
used for planning, and a problem file that contains a descrip-
tion of the initial state and goal(s) of the plan. ROSPlan sup-
ports different planning solvers; for this work we use the
temporal planner POPF, that is included in the ROSPlan in-
stallation. ROSPlan contains a plan executive that dispatches
plans. ROSPlan uses the ROS message passing infrastruc-
ture to dispatch actions and receive feedback from the low-
level controllers. The PDDL model and problem instance
are also stored as a ROS nodes called the Knowledge Base
(KB) and the Problem Generation nodes respectively. The
KB is continuously updated from sensor data through the
ROS interface. ROSPlan validates the current plan against
the current model and allows replanning to occur in the case
of action failure.

ROSPLan model for SD&T
The PDDL model developed for SD&T contains predicates
found and trackdone which correspond to the goals of the
stages of the activity. These goals are effects of actions
search and track. Intuitively, the goal found is true if a tar-
get is found, the area of search has been exhausted, or some
other condition holds (like running out of battery charge).
The precondition for search is airborne, and the effect is
found; conversely, the precondition for track is found and
the effect is trackdone. Following previous formulations of
the problem, the search phase is interleaved with trajectory
planning whereby the drone can be dispatched to a a region
based on predictive models of where the target might be.
This phase is accomplished through a goto-waypoint action.
(The difference between executing a search action and exe-
cuting a goto-waypoint action is that the latter does not as-
sume the detection system is turned on.)

PDDL actions map directly to ROSPlan action compo-
nents that refine the actions into low-level commands. We
use a procedure-based approach to action refinement, with
hand-written procedures written in C++, reminiscent of sys-
tems for reactive planning such as RAP (Firby 1987). The
PDDL domain actions map to the following two methods:

procedure SEARCH(path,object)
while object not detected and battery OK do

follow path
Stop and hover
Add found fact to KB
if battery not OK then

Add home waypoint goal to KB
else // object is found

Add tracked goal to KB
Re-Plan to track

procedure TRACK(object)
Start tracker
Start IBVS controller
while confidence > threshold and battery OK do

follow object
Add trackdone fact to KB
Stop IBVS controller
if battery not OK then

Add home waypoint goal to KB
else // object is lost

Add found goal to KB
Re-Plan to search

We distinguish among 4 types of low-level actions that col-
lectively implement a refinement of search and track:

• Accessing state information: the conditions on the while
loop access state information (via the implementation of
publishers or subscribers to ROS Topics) to determine
whether the object has been found or lost and whether
power resources are sufficient to continue the mission.
Specifically, two state variables PersonDetected, set by
the detector, and Confidence, set by the tracker, are moni-
tored by the action components. If PersonDetected is true
and Confidence is above a certain threshold, then the sys-
tem is in a tracking state; otherwise, the system is search-
ing.

• Initializing sub-systems for sensing or control: starting
and stopping the tracker and IBVS controller.

• Drive the sUAV: following a path constitutes a high level
trajectory planner and controller

• Re-planning: If the object is found then re-planning for
tracking is started by adding and removing goals. The
Track method is complementary.

In this way, manipulation of the knowledge base by adding
or removing goals enables continuous alternating behavior
required by SD&T.

Experiments
In this section we summarize the experiments conducted
on the ROSPlan-based SD&T system described in this pa-
per. The tests here are meant to verify the feasibility of the
ROSPlan approach to continuous planning for SD&T. The
performance metrics for feasibility include correctness (the
planner always responds properly to the presence or absence
of the target in its image plane by placing the system into a
search or track behavior mode), and timeliness (ROSPlan
responds to a change in the sUAV’s sensor outputs quickly
enough to ensure continuous, stable operations).

Experiments in simulation using Gazebo (Figure 2) and
in an indoor testing facility at Ames Research Center (Fig-
ure 3) were conducted. The simulation allowed for quick de-
bugging and adjustment of system parameters that influence
performance. Some of these parameters include the expected
size and distance of the target (used by the IBVS controller)
and the sampling rate of the state variables within the ROS-
Plan action interface code.

22

Figure 2: Simple Gazebo environment for testing SD&T in simulation. The upper middle panel shows the bounding box around
the person target maintained by the CMT tracker, and control input (orange arrow) to visual controller. The right panel shows
the bounding box constructed by the HOG detector. The black windows on the left stream the outputs of the relevant ROS
topics. The larger panel shows the sUAV and target.

Figure 3: Testing ROSPlan for SD&T in an indoor facility at NASA Ames Research Center.

23

Figure 4: Interactions between ROSPlan Action Dispatching and Sensing Outputs. ROSPlan Action Dispatch Variable (Green
Line) alternates between posting a search goal (1 on right y axis) or a track goal (0) on the ROSPlan KB, based on values
obtained by the tracker (Confidence, red line) and the detector (PersonDetected, blue line, where 1 (left y axis) = PersonDetected
true).

We deliberately chose a fairly controlled indoor environ-
ment in order to isolate the interactions between the contin-
uous planning framework and the underlying sensing and
control frameworks, thereby demonstrating the feasibility
of a hierarchical autonomy architecture based on ROSPlan.
Consequently, however, there is little in the way of assurance
that the system is robust to realistic dynamic environments
or noisy sensors. Future outdoor field tests are planned, us-
ing more powerful platforms than the AR Drone, in order to
improve robustness.

In a typical run of the system, a human target would begin
out of sight of the sUAV. The sUAV would take off and be-
gin a pattern maneuver (such as a square pattern) in search
mode. Once the human target is found, we studied the re-
sponse time of the system to transition into track mode. Once
in track mode, the target would first move in a slow lin-
ear walk to demonstrate simple tracking behavior. At some
point, the target would take evasive maneuvers until he was
out of sight of the sUAV. We then could observe the tran-
sition back into search mode, which consisted of following
another pattern search (typically a simple rotation). This al-
ternating behavior of search and track was typically repeated
many times in a single run.

Figure 4 illustrates the run time performance in the in-
door facility, illustrating the alternating search-track behav-
ior induced by ROSPlan. In the figure, changes in the state
of three ROS topic variables over time (in seconds) are
displayed: confidence, published by the tracker, person de-

tected, published by the detector, and action dispatch, used
within ROSPlan. The action dispatch variable is represented
as a step function with two values: 0 (for track) and 1 (for
search); depending on the value of this variable, one or the
other of the procedures described above are executing.

In the execution snippet in the figure, the sUAV starts
in track mode (ActionDispatch=0, green line). Recall that
ROSPlan triggers a new plan for tracking by adding a goal
to the KB, while invoking the CMT tracker and IBVS con-
troller. The CMT tracker inherits the bounding box gener-
ated by the the detector, and initializes the confidence state
variable, which it updates during tracking. If the confidence
variable goes below a certain threshold (0.6 in the experi-
ments here) ROSPlan concludes that the object has been lost,
and a new search goal is placed on the KB. For example,
at roughly the 62nd second of this run, the ActionDispatch
variable is set to 1 as a response to the confidence variable
reaching its threshold.

To aid in robustness and stable behavior, we found
through experiments that it is best to re-trigger tracking
when both the detector finds the human figure and the con-
fidence variable exceeds the desired threshold. For exam-
ple, roughly around the 95th second, the tracker has a con-
fidence value greater than the threshold, but the detector has
not found a target. The tracker has in fact falsely identified
a target to track in the image plane at this point. The plan
dispatcher, however remains in search mode, waiting for the
person detector to register the target. Conversely, there are

24

times (such as around second 135) in which the detector
shows uncertainty between target and no target, and yet the
tracker shows confidence in its target. In this case we allow
the tracker to direct the plan dispatcher.

To summarize, the experiments conducted validated the
feasibility of using ROSPlan as the basis for a hierarchical
architecture for autonomous control. We were able through
successive refinements of operational parameters to achieve
stable and correct behavior in a controlled environment us-
ing an AR Drone. SD&T is a difficult challenge for au-
tonomy because of the need for high-level management
and control of subsystems that are themselves comprised of
complex sense-control loops. We showed that a high-level
decision-maker based on continuous planning fulfills the re-
quirements for an effective system for SD&T.

Future Work
We are exploring improvements to the autonomous SD&T
framework in parallel on a number of fronts. On the platform
side, we are in the process with replacing the ARDrone with
higher-cost platforms with better flight stability and more
advanced sensing units. This would allow us to incorporate
different sensors that would allow searching in a wider range
of realistic outdoor environments. In turn, this would allow
us to pursue a more phased approach to search, whereby,
say, a motion detector is used to find a moving target, which
triggers the vehicle to move towards the object in order to
identify it.

Secondly, we are in general interested in more rigorous
testing in more realistic environments, whether actual or in
simulation. On the simulation side, we are exploring the use
of the Modular OpenRobots Simulation Engine (MORSE)
combined with the Blender Game Engine for more realis-
tic environments. An outdoor testing facility at Ames will
also be used. In general, more scenarios for demonstrating
autonomy in more realistic conditions are needed.

Finally, on the planning side, we are interested in expand-
ing the current model and planning system in a number of
ways. First, we are interested in incorporating various opti-
mization criteria into planning, following traditional meth-
ods for solving Search-and-rescue problems. Secondly, we
would like to devise ways to handle some of the uncertainty
at planning time, for example, through contingent planning,
which is supported within ROSPlan.

Conclusion
An approach was presented for combining simple task plan-
ning with sensing, motion planning and reactive control to
achieve autonomous SD&T. The developed system is based
on ROS and the ROSPlan planning framework, integrating
state-of-the-art algorithms for object recognition and object
tracking. The ability to coordinate complex components to
enable continuous search and tracking using a sUAV illus-
trates the challenges and rewards of autonomy. In both sim-
ulation and field experiments using the AR Drone the abil-
ity of deliberative and reactive systems to work together to
achieve high-level goals was demonstrated.

Analogous to the way toy problems like Blocks World
provided testbeds for the development of search algorithms

which could solve real world problems, ROS and the AR
Drone together provide a toy testbed for designing architec-
tures for robotic autonomy that have the potential for solving
real world problems like SD&T. In addition, as shown here,
ROSplan adds further infrastructure for enabling complex
behaviors through hierarchical control.

Acknowledgements
The authors thank Michael Cashmore, Sara Bernardini, Jin-
drich Vodrazk and Jesus Pestana for helpful discussions.
Also thanks to the reviewers to helping identify gaps in the
discussion in the original draft.

References
Bernardini, S.; Fox, M.; and Long, D. 2014. Planning the
Behaviour of Low-Cost Quadcopters for Surveillance Mis-
sions. In Proceedings of the 24th International Conference
on Automated Planning and Scheduling (ICAPS-14).
Bernardini, S.; Fox, M.; and Long, D. 2015. Combin-
ing temporal planning with probabilistic reasoning for au-
tonomous surveillance missions. Autonomous Robots 1–29.
Campoy, P.; Correa, J. F.; Mondragón, I.; Martı́nez, C.; Oli-
vares, M.; Mejı́as, L.; and Artieda, J. 2008. Computer vision
onboard uavs for civilian tasks. In Unmanned Aircraft Sys-
tems. Springer. 105–135.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Huros, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling, 333–341. ICAPS.
Chakrabarty, A.; Morris, R.; Bouyssounouse, X.; and Hunt,
R. 2016. Autonomous indoor object tracking with the parrot
ar. drone. In 2016 International Conference on Unmanned
Aircraft Systems (ICUAS), 25–30. IEEE.
Dalal, N., and Triggs, B. 2005. Histograms of oriented
gradients for human detection. In IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1.
Firby, R. 1987. An investigation into reactive planning in
complex domains. Proceedings of AAAI.
Koenig, N., and Howard, A. 2004. Design and use
paradigms for gazebo, an open-source multi-robot simulator.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2149–2154.
Koopman, B. 1957. The theory of search, part iii: the opti-
mum distribution of searching effort. Operations Research
5:613626.
Kratzke, T. M.; Stone, L.; and Frost, J. R. 2010. Search and
rescue optimal planning system. Proceedings of the 13th
international conference on information fusion.
Monajjemi, M. 2012. Ardrone autonomy : A ros driver for
ardrone 1.0 & 2.0.
Nau, D.; Ghallab, M.; and Traverso, P. 2015. Blended plan-
ning and acting: Preliminary approach, research challenges.
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence.

25

Nebehay, G., and Pflugfelder, R. 2015. Clustering of static-
adaptive correspondences for deformable object tracking. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2784–2791.
Pestana, J.; Sanchez-Lopez, J. L.; Saripalli, S.; and Campoy,
P. 2014. Computer vision based general object following
for gps-denied multirotor unmanned vehicles. In American
Control Conference (ACC).
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. Ros : an
open-source robot operating system. In EEE International
Conference on Robotics and Automation (ICRA 2009).
SaveTheRhino. 2016. The use of drones in rhino conserva-
tion. https://www.savetherhino.org.

26

An Architecture for Integrated Timeline Planning and Model-based Execution

Tiago Nogueira∗, Simone Fratini
European Space Agency, ESA/ESOC

Darmstadt, Germany
name.lastname@esa.int

Abstract

Integration of planning and execution, or acting, is a crucial
issue in practical applications. This paper presents a system
that integrates timeline-based planning with a model-based
executive. The executive exploits both the plan’s flexibility
and the structure of the planner’s model to robustify the exe-
cution, reducing the need for continuous interaction with the
planner. The integration extends also the planner’s modeling
language to entail the automatic generation, directly from the
planning model, of the controllers used at execution time. The
possibilities of the approach in terms of modeling, planning
and execution are exemplified in a logistic scenario where a
UAV has to be operated to move objects in a warehouse.

Introduction
Research and deployment for architectures to support au-
tonomy and automation for space missions has increased
mainly to support new generation of missions for Earth ob-
servation, space station operations and planetary robotic ex-
ploration. In fact, technology developments coupled with
more ambitious missions led to the need for autonomy ca-
pabilities for operations of spacecrafts and rovers. The rea-
sons for autonomy vary across missions, but main factors
that contributed to this escalation are technical and organi-
zational: communication delays and high environmental un-
certainty for deep space missions, operational costs reduc-
tion and need of increasing missions’ scientific return.

Design and implementation of such advanced systems
to support autonomy is an activity that involves a certain
amount of developing effort and risk. For this reason space
has been often a fertile field for the introduction of novel
AI based planning and scheduling technologies. In fact, the
AI model-based approach allows reusing of software mod-
ules across different missions because of the great flexibil-
ity introduced by the symbolic representation of goals, con-
straints, logic and parameters to be optimized, for example.
This makes the software deployment and test substantially
independent from the specific mission, reducing costs and
risks.
∗This work has been co-funded by the European Space Agency

Networking/Partnering Initiative (NPI) between ESA-ESOC and the
Center for Telematics (Zentrum für Telematik e.V.), and by the Eu-
ropean Research Council (ERC) Advanced Grant “NETSAT” under
the Grant Agreement No. 320377.

As an effect, significant efforts have been so far dedicated
to build software development environments for rapid pro-
totyping, test and synthesis of new planning and schedul-
ing applications at NASA (EUROPA (EUROPA 2008), AS-
PEN (Chien et al. 2000)). The European Space Agency (ESA)
concurs in this area of advanced research by promoting the
development of APSI (Advanced Planning and Scheduling
Initiative) and APSI-related activities (Cesta et al. 2011),
its use for on-board autonomy with the Goal Oriented Au-
tonomous Controller (GOAC) (Ceballos et al. 2011) and its
application on teleoperations (Fratini et al. 2013). Regarding
practical applications of autonomy, the flagship missions for
planning and execution technologies are still nowadays the
Remote Agent Experiment (RAX) on Deep Space 1 (DS-1)
(Muscettola et al. 1998) and the Autonomous Sciencecraft
Experiment (ASE) on Earth Observing 1 (EO-1) (Chien et
al. 2005). These two missions have pioneered and proven the
value of AI planning and scheduling for injecting autonomy
in space applications. Lately, NASA has launched the IPEX
CubeSat to validate new technologies for on-board image
processing and autonomous operations (Chien et al. 2016).

The maturity and domain independence of the planning
and scheduling engines, as well as the clear distinction made
between decision making and execution, a need driven by
the differences between the heterogeneous scenarios to be
addressed, from satellites to robotics, suggests the possible
reusability of these technologies out of the specific scope for
which they have been originally designed.

In this paper we present an integration of a model-based
executive into the ESA APSI planning platform. We have ex-
tended the planner’s modeling language to define directly
into the planner’s model the rules and procedures to apply
for monitoring and controlling the plan execution on the tar-
get system. This model is then used both by the planner and
by the executive, that exploits the knowledge in the plan’s
domain theory to cope, to some extent, with unexpected be-
havior at runtime. As an example of applicability (out of the
space segment) we use a test domain and a simulated execu-
tion environment inspired by a scenario where a UAV has to
be operated to move objects in a warehouse.

Planning Technology
The ESA APSI platform is a Java architecture for rapid pro-
totyping of planning and scheduling applications. The plat-

27

form is designed for constraint-based temporal planning and
scheduling. Constraint-based temporal planning, often re-
ferred to as “timeline-based planning”, is an approach to
temporal planning which has been applied to the solution of
several space planning problems – e.g., (Muscettola 1994;
Jonsson et al. 2000; Smith, Frank, and Jonsson 2000; Frank
and Jonsson 2003; Chien et al. 2010; Cesta et al. 2011).
This approach pursues the general idea that planning and
scheduling for controlling complex physical systems con-
sist in the synthesis of a set of desired temporal behaviors,
named timelines, for system features that vary over time. In
this approach, problem solving consists of controlling com-
ponents by means of external inputs in order to achieve a de-
sired behavior. Hence different types of problems (e.g., plan-
ning, scheduling, execution or more specific tasks) can be
modeled by identifying a set of inputs and relations among
them that, together with the model of the components and a
given initial set of possible temporal evolutions, will lead to
a set of final behaviors which satisfy the requested proper-
ties; for instance, feasible sequences of states or feasible re-
source consumption1. The APSI Framework provides a Do-
main Definition Language (DDL) and a Problem Definition
Language (PDL) based on two classes of modeling primi-
tives: state variables and resources. These components and
their possible evolutions are then “connected” by means of
temporal and logical synchronizations.

State Variables State variables represent components that
can take sequences of symbolic states subject to various
(possibly temporal) transition constraints. This primitive al-
lows the definition of timed automata as the one represented
in Figure 1. Here the automaton represents the constraints
that specify the allowed logical and temporal transitions of
a timeline. A timeline for a state variable is valid if it rep-
resents a timed word accepted by the automaton. In the ex-
ample in Figure 1, P(?x), Q(?y) and R(?z) are the set
of possible symbolic states. Transition between the states
is subject to value constraints (?x>?z) or temporal con-
strains (@t<2), requiring in the latter that the transition from
R(?z) to P(?x) is allowed only if R(?z) has been main-
tained for less than 2 time units

Figure 1: State variable.

1A detailed description of the planning approach, state of the
art and basic concepts is out of the scope of this paper. More
information can be found, for example, in (Muscettola 1994;
Frank and Jonsson 2003; Fratini and Cesta 2012).

Resources The second APSI primitive is the resource. This
can be used to model any physical or virtual entity of lim-
ited availability, such that its timeline (or profile) represents
its availability over time whereas a decision on the resource
models a quantitative use/production/consumption of the re-
source over a time interval. Three types of resources are cur-
rently available in the APSI Framework: reusable resources
abstract any real subsystem with a limited capacity, where
an activity uses a quantity of resource during a limited in-
terval and then releases it at the end. Consumable resources
abstract any subsystem with a minimum and a maximum ca-
pacity, where consumptions and productions consume and
restore a quantity of the resource in specific time instants.
Reservoir resources do not have a stepwise constant profile
of consumption like reusable and consumable ones, but the
activities specify the amount of production and consumption
per time, namely slope, resulting in a profile of resource that
is linear in time. As a consequence the amount of resource
available at each transition of the timeline depends on the
duration of the time intervals over which this production or
consumption has been performed. This distinguishes reser-
voir from the other type of resources where the profile of
the resource availability at each transition depends only on
when and how much is produced/consumed and not on the
duration of the production/consumption.

Synchronizations In timeline-based modeling the physi-
cal and technical constraints that influence the interaction
between subsystems (modeled either as state variables or
resources) are represented by means of temporal and log-
ical synchronizations among the values taken by the au-
tomata and/or resource allocations on the timelines. Lan-
guages for timeline-based planning have constructs, called
synchronization in DDL, to represent the interaction among
the different timelines that model the domain. Conceptually
these constructs define valid schema of values allowed on
timelines and link the values of the timelines with resource
allocations. Despite the syntactic differences, they allow the
definition of Allen’s relations (Allen 1983) like quantitative
temporal relations among time points and time intervals as
well as constraints on the parameters of the related values.

Problem Solving An application in the APSI framework,
being a generic planner and/or scheduler or a domain spe-
cific deployed application is designed as a collection of
solvers. Based on the constraint-based paradigm, the search
space of an APSI solver is made of planning and schedul-
ing statements on timelines and temporal and data rela-
tions among them. Available solvers and applications in-
clude state-of-the-art binary and multi-capacity schedulers
as well as integrated planners and schedulers like PLASMA
(PLAn Space Multi-solver Application) (Fratini et al. 2015).

PLASMA is a planner designed as a collection of solvers
implementing a flaw-based solving process. Solvers are cho-
sen and activated on a flaw detection base. When a flaw is
detected on a timeline the planner activates the correspond-
ing solver to fix the problem. A flaw is any type of viola-
tion in a plan. It can be a logical flaw, when unsupported
actions are added to the plan, or a resource violation flaw,
when a resource is over or under used, or any other impair-

28

ment of temporal allocation on the values over a timeline.
PLASMA incorporates the principles of Partial Order Plan-
ning (POP, (Weld 1994)), like plan-space search and the least
commitment approach. Starting from an initial partial plan
only made of partially specified timelines and goals to be
achieved, the planner iteratively refines it into a final plan
that is compliant with all the requirements expressed by the
goals.

The set of solvers currently available in PLASMA include:
(a) a Partial Order Scheduler (POS), supporting the schedul-
ing process resulting from planning to guarantee temporal
flexibility2; (b) a resource activity generator that makes sure
that linear resources can be adequately managed by avoid-
ing any over-consumption; (c) a MaxFlow resource profile
bounder whose task is to bound position and duration of
activities to assure that all the resource constraints and/or
requirements are consistent; (d) an FF-type (Hoffman and
Nebel 2001) PDDL planner (JAVAFF (Pattison 2017)) to
solve agent-centric combinatorial task allocation problems
and (e) a path planner based on the RRT algorithm (LaValle
1998).

A plan produced by PLASMA is composed of a set of flexi-
ble timelines. A flexible timeline is defined by means of a se-
quence of values occurring at ordered transition points. Both
the transition points and associated values are not grounded,
but only bounded by the planning process. Flexible plans
represent then an envelope of possible plans instead of a
single completely specified plan. This flexibility can be ex-
ploited by an executive system for robust on-line execution.

Integrated Planner and Executive
Planning encompasses the capabilities required to expand
high-level mission goals into sequence of actions (a plan)
while respecting system and environment constraints. Exe-
cution, on the other hand, deals with the problem of putting
a plan into practice while guaranteeing real-time response.

In space applications these two processes are typically
separated into two different applications (or engines). Such
split is usually driven by the need to run the executive in-
dependently from the planner to execute commands directly
issued from ground, or oversee failure detection, identifica-
tion and recovery activities. Also, the planner and executive
are, most of the times, developed by separate groups and rely
on different modeling and implementation technologies.

If this separation on the one hand simplifies the design and
increases the independence of the executive from the plan-
ning technology, on the other hand it can pose problems of
controllability when not all the planned event are under the
control of the executive (Vidal and Fargier 1999). In fact, in-
tegration of planning and execution engines is still nowadays
a crucial issue in practical applications.

In our proposal we exploit the structure of the planner’s
model to derive the architecture of an executive based on the
distinction between system and component controllers. Fig-
ure 2 depicts the integrated planning and execution model

2The POS (Policella et al. 2007) is a set of activities partially or-
dered such that any possible complete order that is consistent with
the initial partial order is a resource and time feasible schedule.

where a batch planner receives goals as input and pro-
duces time-flexible plans. An executive, composed of a sys-
tem controller, component controllers and observers, ingests
flexible plans and issues low-level commands and monitors
the components on the target system so as to execute the
plan. To close the loop, the planner interfaces with the exec-
utive to monitor the execution status and to derive the current
system state as input to the planning process.

The rationale behind this architecture is given by the prop-
erties of the timeline-based model. Being the system mod-
eled as a set of subsystems evolving in time as parallel
threads, with internal evolution constraints and external oc-
casional synchronizations with each other, the model itself
identifies the control structure. Each subsystem is operated
by an independent controller that knows only its private con-
trol law. A system controller, then, supervises the individual
subsystem (or component) controllers by monitoring and re-
stricting their behavior such as to enforce the plan synchro-
nization points. In the next sections we describe in more de-
tail the control approach, architecture and implementation.

Model-based Executive
The flexible plan is executed in a dynamic environment with
hard real-time constraints and some level of uncertainty. Un-
certainty at execution time can usually be attributed to either:
(a) incomplete domain modeling, when for example an ac-
tivity takes longer or a resource is consumed faster than an-
ticipated or (b) unexpected changes to the domain, including
for example failures in the system and unexpected changes
to the environment in which the system operates. As plan-
ning, and in particular batch planning as used in our system,
is a computationally expensive process, the executive should
try to explore the inherent flexibility of the plan to minimize
the need for replanning.

Robustness and effectiveness are two typical properties
desired in an executive (Tsamardinos, Muscettola, and Mor-
ris 1998). Robustness reflects the ability to manage uncer-
tainty such as to control the plan to the desired state in the
presence of perturbations. A perturbation, in this context, is
any deviation to the initially modeled domain or problem. To
be robust a plan must be flexible, in that it must encompass
a set of possible alternative behaviors. This is provided by
the plan’s inherent time flexibility. To be effective an exec-
utive should only have to process constraints in the vicinity
of the current execution step. That is, we don’t want the ex-
ecutive to have to propagate, at runtime, over the full set of
constraints to decide which action to take next, as this could
introduce considerable delays in execution.

As depicted in Figure 2, we distribute the control respon-
sibility among two types of controllers:
• System Controller (SC), that controls the state of the sys-

tem, by enforcing inter-component constraints and ensur-
ing that state transitions are triggered at the correct time.

• Component Controller (CC), that controls the state of a
component (or subsystem), by guiding its behavior to
match the one of the corresponding timeline.

Observers provide an estimate of the state of the system or
of a given component from acquired telemetry.

29

Planner
System

controller n

commands

observations

plan +

Observers
current state

errorSET goals

MONITOR goal

execution status

telemetry

execution status

Timeline

controllers
Timeline

controllers
Component

controller k

+
target state, forbidden states

error

Sub system nSub system nComponent k

Figure 2: Goal-based integrated planning and execution model.

Splitting the concerns between system and component-
level controllers rather than following a centralized approach
is mainly driven by two factors. First, the need to simplify
the implementation and reduce the memory footprint. Sec-
ond, the possibilities such an approach offers to distribute
the actual deployment and execution of the individual com-
ponent controllers across various subsystems. This split,
however, introduces a problem. Full knowledge about the
domain is only held by the system controller. Knowledge
within a component controller is local, in that it is limited to
the component it controls. This implies that we need to de-
fine clear boundaries within which the component controller
can operate, such as to guarantee that the decisions it takes
do not interfere with the other timelines being controlled.
To guarantee that the plan remains sound we must make
sure that the component controller can only cross states that
are either not synchronized at all to any other states of the
timelines being controlled or, if synchronized, are only syn-
chronized to a state currently being controlled for. In other
words, the component controller cannot cross states that
would move the other timelines away from their target states.
This is addressed by, at each transition and for each com-
ponent controller, introducing a set of forbidden states that
cannot be traversed by the local component controller. This
set of forbidden states is automatically derived from the syn-
chronizations in the planning domain model and added to
the logic of the system controllers. For a detailed definition
of the system and component controller algorithms refer to
(Nogueira, Fratini, and Schilling 2017).

System Controller The SC is responsible for monitoring
and controlling the state of the whole system by guarantee-
ing that all timelines reach and maintain the required state
while respecting the planning constraints. The SC continu-
ously monitors the state of all timelines and triggers the cor-
responding CC if the state of the timeline deviates from the
desired. The SC is the guardian of time flexibility. Rather
than instantiating a plan as a sequence of fixed-time actions

or commands, the planning temporal constraints are kept at
execution time. These constraints are encoded as a Simple
Temporal Network (STN) which is used by the SC to lookup
and propagate temporal constraints. By propagating the STN
the controller can infer the current validity of the plan and
abort its execution in case it becomes invalid. If this happens
the SC will then trigger the planner to produce a new plan.

Component Controller A CC is responsible for monitor-
ing and controlling the behavior of a particular component
type, as defined by the corresponding timeline. Several time-
lines can share the same controller. A CC can be defined as
either a Weighted Finite State Automaton (WFSA) or a user-
defined script. The states modeled by a component controller
are a superset of the states allowed by the corresponding
component model used by the planner. Extra states can be
added such as to monitor and control failure scenarios and
unexpected states, making the state of the component fully
observable. This inherently provides the capability to model
failure identification and recovery mechanisms together with
nominal behavior, allowing thus to embed part of the Failure
Detection Isolation and Recovery (FDIR) logic directly in
the executive layer. The option to specify a controller using
a user-defined script is there to allow to model controllers
whose behavior cannot be encoded as a WFSA. This is typ-
ically the case for many domain-specific controllers like an
attitude controller in a satellite, for example. By encoding
the behavior of the components as WFSA that extend the
planning state variable primitives, we are able to bring into
the executive the component-level planning constraints used
at planning time. This makes it possible for the controller to,
at runtime, choose between alternative paths between any
two states (as long as this is allowed by the model). Once
a CC is given a target value (i.e. state) by the SC, the con-
troller will try to achieve the target state using all the avail-
able nominal and recovery paths modeled in its WFSA. If,
and after exhausting all allowed attempts, the current state
still deviates from the target one the CC returns an error. If

30

Temporal

network

Tinytus script engine

Executive manager

Shared

database

Onboard

storage

SC1

post monitor

System

telemetry

telecommandsSCn

CC1

CC2

CCn

set lb/ub get lb/ub

flexible plan

execution status

current state

postmonitor

load and monitor

controllers

controllers

temporal constraints

flexible plan

update

Figure 3: Tiny Executive (TEX) main components and interfaces.

the timeline value being controlled to by this CC temporally
or causally constraints other timelines, then the SC triggers a
replan, as the plan has become invalid. If, on the other hand,
the timeline is completely independent then the SC will con-
tinue with the execution. Note that it is up to the modeler,
and when designing a particular controller, to guarantee that
in case of component-level failure the component will be
placed in a safe configuration.

TEX Architecture and Implementation
The Tiny Executive, or TEX, is an implementation of the
control model described in the previous section. Our target
deployment platform is the 16 bit MSP430 microcontroller,
with very limited memory and processing power. Figure 3
depicts TEX’s main components and interfaces.

Executive Manager The executive manager oversees the
overall execution, interfaces with the planner to receive new
plans and report the execution status, and interfaces with the
onboard storage to store newly received plans and to load
controllers as required.

Shared Database A database is used to share runtime in-
formation among all running controllers and the executive
manager. Such information includes the current plan origin
and horizon, the current execution elapsed time, the current
active transition and the status of the current system state
(achieved / not achieved). The database is also used to post
and monitor event messages, if any, that need to be passed
between controllers.

Tinytus Script Engine The system and component con-
trollers run in a sandbox environment, the Tinytus script
engine, and interact with the underlying system by issuing
commands and monitoring telemetry. Tinytus is a script lan-
guage and interpreter for embedded systems that provides

an onboard sandbox environment for safe software execu-
tion (Dombrovski and Bangert 2015). The Tinytus script lan-
guage uses Polish prefix notation and offers the basic con-
structs and expressiveness typical of imperative program-
ming language. This includes: (a) arithmetic and logic op-
erations; (b) flow control primitives; (c) declaration, access
and casting of numerical variables and arrays; (d) function
calls.

Temporal Network The temporal network holds the plan
temporal information. The controllers use the network to re-
trieve the lower and upper temporal bounds for their tran-
sitions, and to update the temporal network with the actual
transition time once it occurs. The temporal information is
encoded as a Simple Temporal Network (STN) formulated
as a distance graph. The vertices correspond to the (tempo-
ral) events and the edges to the temporal constraints between
events. The edges are labeled with the lower and upper
temporal bounds for the duration constraint between events
(Dechter 1991). At runtime the network must be checked for
consistency to ensure the plan’s validity. Once a transition is
confirmed, the corresponding lower and upper bounds in the
STN are updated with the actual execution time. The STN is
then propagated to adjust the temporal constraints of future
events accordingly, while maintaining a consistent network.
If, after a propagation, the network is found inconsistent the
plan is considered invalid, triggering a replan. If the STN is
consistent than it is guaranteed that it is possible to pick any
time point within the allowed time range for an event, and
still find valid times for all other events such that the plan is
valid (Muscettola, Morris, and Tsamardinos 1998).

The component controllers, the system controllers and the
temporal network are autogenerated at the end of the plan-
ning process and stored in the onboard storage.

31

Related Work
While our approach has some similarities with existing and
past systems used in space applications, it deviates from
those in some key aspects. Contrary to Apex (Freed 1998),
PROPEL (Levinson 2005) or PRS (Ingrand et al. 1996) that
are based on procedures, we use declarative monitoring and
control (action) representations. In this aspect our imple-
mentation is closer to the IDEA (Muscettola et al. 2002) sys-
tem. Also on the control approach we share some similarities
with the IDEA system and with the RAX executive (Rajan et
al. 2000), in that we implement a limited internal (reactive)
planning at component (subsystem) level coupled with de-
liberative planning implemented by an external planning en-
gine. On the modeling side, and contrary to systems like the
RAX executive (Rajan et al. 2000) or ASE SCL (Chien et al.
2005) that use dedicated executive languages, our approach
combines modeling for planning and execution. This allows
us to explore the information in the planning models when
generating the execution logic.

Warehouse Domain and Execution
Environment

Our approach is being tested in a scenario where a UAV has
to be operated to move objects in a warehouse. This domain,
first presented in (Nogueira, Fratini, and Schilling 2017), in-
troduces several planning and execution problems that are
common to other domains in space robotics, and we use it
as a representative scenario to test our implementation.

Domain and Problem Definition
We take the Blocks World (BW) problem as the basis to de-
vise a more realistic domain that, while maintaining most of
BW’s original features, extends it with new ones relevant for
a scenario where the plan has actually to be executed:

• Time. We need to take into account the time we need to
process the boxes and we want to specify temporal win-
dows within which we want a box to be processed.

• Resources. We have a battery on the UAV, that discharges
as the UAV moves and that has to be recharged from time
to time.

• Navigation. The UAV must take into account the 3D po-
sitions of the boxes and any obstacles in the warehouse
when flying around.

• Uncertainty at runtime. The plan needs temporal flexibil-
ity to handle uncertainty at execution time.

The domain, depicted in Figure 4, is composed of one ware-
house of finite dimensions containing: (a) one storage area
with a number n of boxes of the same shape and size; (b)
one loading dock; (c) one UAV with a rechargeable battery
and an arm that can carry one box at a time; (d) one charging
station.

The warehouse storage area has pre-defined finite dimen-
sions, constraining the maximum number of boxes that can
be placed on the floor and the maximum number of boxes
that can be stacked. A UAV is used to move the boxes from
the storage area to the loading dock, for posterior loading

for distribution. The UAV has a battery of limited capacity
and an arm with a grip to pick up the boxes. The battery
discharges as the UAV moves and picks up boxes. The ware-
house has a charging station used by the UAV to recharge
its battery as required. Finally, the warehouse has in store a
number n of boxes up to a maximum number limited by the
warehouse dimensions disposed in an initial configuration

The task at hand involves moving a given set of boxes
from the storage area to the loading dock for transport within
a given time window. As they arrive in the warehouse the
boxes are first placed in the storage area. The boxes must
then be moved to the loading dock and arranged in a specific
configuration such as to facilitate their posterior loading and
delivery. The initial number of boxes, their starting and fi-
nal positions as well as the time window allotted to move
the boxes are given by the initial problem. The UAV initial
position and battery state-of-charge are also set at the start.

We have modeled this domain using 5 timelines (see Fig-
ure 5):

• The timeline WAREHOUSE encapsulates an octree repre-
sentation of the spatial configuration of the warehouse
with the position of the boxes and any obstacles.

• The timeline ACTIONS represents the actions being per-
formed by the UAV. This timeline can take the value
CHARGE(?s), when the UAV is at the charging sta-
tion ?s, and two values UNSTACK(?box, ?position) and
STACK(?box, ?position) when the UAV is picking or
putting down a box.

• The timeline ARM represents the status of the UAV arm.
The timeline can take the values ARM-EMPTY(), when the
arm is not holding any box, and HOLDING(?box), when it
is holding a box.

• The timeline BATTERY models the UAV battery level as a
reservoir resource.

• The timeline PATH models the actual position of the UAV
and the path being followed.

A similar domain but limited to planning and using grunts
and no battery resources was introduced in (Hamilton 2009).

Execution Environment
We implemented a simulation environment for the Ware-
house domain that allow us to jointly evaluate the planner
and the executive. The environment is implemented using
the Unity game engine (UNITY 2016) that interfaces with
the executive through a UDP/IP socket (Figure 6).

The initial domain was extended to allow to inject the fol-
lowing perturbations at runtime: (a) add and remove a box;
(b) move a box to a different position; (c) switch the tag
between two boxes and (d) modify the battery charge or dis-
charge rates. By adding and removing boxes we can simulate
scenarios where activities are added or removed as a plan is
being executed. We can evaluate, among other things, how
the executive handles changes to the plan, how it interfaces
with the planner and replanning algorithms. By moving a
box from its initial position we introduce delays in execution
and unplanned battery depletion. As the boxes are placed in
the loading dock they are checked to verify that the correct

32

(a) Planning domain. (b) Overlaid octree mesh. (c) UAV path.

Figure 4: Warehouse planning domain and execution environment: (4a) Planning domain showing the storage area with the
stacked boxes, the loading dock on the top left, and the UAV on the charging station on the right; (4b) Octree used for path
planning overlaid on the domain; (4c) UAV path on the way to pick up a box.

time

Warehouse

c00
1

2 3
7 4

56

c20
1

2 3
7

4
5

6c10
1

2 3
7

4

6

(a)

Arm

arm empty holding(b6) arm empty(c)

Path

(e)

Battery

min

max

(d)

EQUALS

CONSUMEM

EQUALS

CONSUME H

EQUALS

CONSUMEM

EQUALS

CONSUME H

EQUALS

CONSUMEM

EQUALS

CONSUME H

Actions

charge(s0) charge(s0)
BEFORE

unstack(b6,b1) stack(b6,b2)(b)

STARTS DURING MEETS STARTS DURING MEETS

ENDS AT ENDS AT
DURING

PRODUCE C
DURING DURINGDURING

p0

at(p0)

p1

p1 = path(p0,p2)

p2

at(p2)

p3

p3 = path(p2,p4)

p4

at(p4) p5 = path(p4,p6)

p5 p6

at(p6)

Figure 5: Timeline-based plan.

box has been collected and that it has been put in the cor-
rect place for loading. By switching the tags on the boxes
we can simulate scenarios where the outcome of an action
is not as intended. By modifying the battery charge and dis-
charge rates we can simulate scenarios where resources are
not consumed or produced as modeled.

For interfacing with the executive, the simulation environ-
ment provides a set of telemetry in real-time, including the
current simulation time, the UAV battery state-of-charge, the
UAV position and arm status, the current position of each
of the boxes and the currently assigned tag for each of the
boxes. The executive controls the UAV and its arm by issu-
ing commands, including: go-to(x,y,z) to command the UAV
to move from its current position to a new position given by
the coordinates (x,y,z) (component controller for the time-
line PATH in the model), arm-open() to open the UAV arm
grip such as to release a block and arm-close() to close the
UAV arm grip such as to pick up a block (component con-
troller for the timeline ARM in the model).

telecommands

telemetry

execution status

current state
flexible plan

perturbations

udp/ip

Warehouse

(Unity)
TEX executive

APSI based

planner

Figure 6: Planning and execution setup.

Modeling for Planning and Execution
Modeling for planning and execution has traditionally been
handled separately. In this work we try to harmonize the
two models by extending APSI’s DDL. The execution model
is specified together with the planning model, by defining
the set of rules to monitor and control the behavior of a
given component in the target system. At runtime the do-
main model is used, together with the planner’s output in the
form of a time-flexible plan, to autogenerate the controllers,
the observers and the temporal network required to execute
the plan.

We extended DDL with an executive grammar, the Tiny-
tus Executive Language (TEL), that builds on the constructs
provided by DDL and the Tinytus script language, pro-
viding added capabilities to model component and system
controllers, observers, actions, telemetry checks, telecom-
mands, guards and mathematical and logical expressions.

Component Controller A component controller is mod-
eled as a WFSA. The automaton encodes the monitoring and
control logic needed to move a component (or subsystem)
between states. This controller extends the DDL’s state vari-
able with execution logic. The user defines: (a) the input pa-
rameters; (b) a set of allowed states (values) with the corre-

33

sponding expressions allowing to evaluate the current com-
ponent state (the automaton is in a given state if the corre-
sponding expression evaluates to true); (c) a set of transi-
tions with the corresponding edges. An edge is any combi-
nation of actions and guards that tells the controller how to
move between states. The values and transitions are a su-
perset of the ones used by the planner. An additional UN-
KNOWN() state is added to the original model used by the
planner as a catch all for any behavior that is inconsistent
with all known/modeled behavior. Other states to handle
non-nominal behavior could also be defined.

In our warehouse domain we use, for example, a state
variable to model the behavior of the UAV arm. This sim-
ple model used by the planner describes whether or not the
arm is holding a box, and if yes, which.

COMP TYPE IMPULSIVE STATE VARIABLE arm
VALUES
{

arm empty () ;
h o l d i n g (box ? b) ;

}
TRANSITIONS
{

arm empty () TO
{

h o l d i n g (? b) ;
}

h o l d i n g (? b) TO
{

arm empty () ;
}
}

So that the executive can then monitor and control the UAV
arm, we need to define the corresponding controller. The
controller model attaches expressions to the values and ac-
tions to the transitions. In addition, it adds extra INIT() and
UNKNOWN() values to mirror the physical component be-
havior and to make its state fully observable.

CONTROLLER COMPONENT TIMELINE arm . t l
PARAMETERS
{

t a r g e t : U8 ;
}
VALUES
{

arm empty () : s t a t u s a r m () == 0 ;
h o l d i n g (? b) : s t a t u s a r m () == 1 ;
i n i t () : s t a t u s a r m () == 2 ;
unknown () : s t a t u s a r m () != 0 &&

s t a t u s a r m () != 1 &&
s t a t u s a r m () != 2 ;

}
TRANSITIONS
{

arm empty () TO h o l d i n g (? b) : c l o s e () ;
h o l d i n g (? b) TO arm empty () : open () ;
unknown () TO i n i t () : r e s e t () ;

}

Where STATUS ARM() is an observer that returns an integer
that is then used as part of an expression to derive the current
status of the arm, and CLOSE(), OPEN() and RESET() are
the actions used by the controller to control the transitions.
Note that in this particular example, and once the arm ini-
tialization procedure (triggered by the transition to INIT())
has finished, the component will automatically transition to
either ARM-EMPTY() or HOLDING(?box). These automatic
transitions are not explicitly modeled.

System Controller A system controller simply defines the
component timelines that need to be actively monitored and

controlled.
CONTROLLER SYSTEM TIMELINE

VALUES
{

p o s i t i o n . t l ;
arm . t l ;

}

Observer A state observer provides an estimate of the
state of the component or system. An observer is any valid
expression and wraps the logic required to derive the state
of a component from telemetry. In its simplest form an ob-
server simply wraps a telemetry check.

OBSERVER U8 s t a t u s a r m () {
tm (ARM STATUS) ;

}

OBSERVER FLT p o s i t i o n e r r o r (x , y , z) {
s q r t ((tm (POSITION X) - x) ˆ2 +

(tm (POSITION Y) - y) ˆ2 +
(tm (POSITION Z) - z) ˆ 2) ;

}

Action An action implements a control directive. It is any
valid expression and wraps the logic required to implement
the control directive in the target system. In its simplest form
an action simply wraps a telecommand.

ACTION open () {
t c (ARM OPEN) ;

}

Telemetry Check A telemetry check allows a user to re-
trieve telemetry values from within the model. This could be
used within an expression to check the value of a parameter,
or within a guard to implement a value constraint.

Telecommand A telecommand allows the user to invoke
a command on the target system from within the model.

Guard A guard is used to model temporal and value guard
conditions. Guards are used to dynamically enable or disable
actions in a transition.

Expression An expression is any combination of arith-
metic and logical expressions and can include observers,
telemetry checks, actions and telecommands.

Conclusions and Future Work
This contribution addresses the problem of integrating plan-
ning and execution at three levels. First, we describe a sys-
tem that integrates timeline-based planning with a model-
based executive that explores the plan’s time flexibility and
the component-level models to minimize the need for re-
planning. Second, we introduce a new domain and execution
environment, representative of a robotics domain, that we
use to jointly evaluate planning and execution engine imple-
mentations. Finally, we describe an extension to APSI’s DDL
planning language as an attempt to bring planning and ex-
ecution modeling closer together. The proposed approach,
though initially conceived for space robotics, could see ap-
plications in other domains.

Controllability, and in particular dynamic controllability,
is a problem that we have addressed only partially so far. In
the current implementation all temporal information is en-
coded as an STN. To properly handle situations where the

34

duration of certain activities or the timing of certain events
cannot be controlled, we are in the process of extending our
approach to make use of the formalisms provided by the
Simple Temporal Network with Uncertainty (STNU) (Mor-
ris and Muscettola 2005).

References
Allen, J. 1983. Maintaining Knowledge about Temporal Intervals.
Communications of the ACM 26(11):832–843.
Ceballos, A.; Bensalem, S.; Cesta, A.; de Silva, L.; Fratini, S.; In-
grand, F.; Ocón, J.; Orlandini, A.; Py, F.; Rajan, K.; Rasconi, R.;
and van Winnendael, M. 2011. A Goal-Oriented Autonomous Con-
troller for Space Exploration. In Proceedings of the ASTRA 2011,
11th Symposium on Advanced Space Technologies in Robotics and
Automation.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Bernardi, G.
2011. Deploying Interactive Mission Planning Tools - Experiences
and Lessons Learned. JACIII 15(8):1149–1158.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.;
Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins, G.;
and Tran, D. 2000. ASPEN - Automated Planning and Scheduling
for Space Mission Operations. In SpaceOps.
Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.; Cas-
tano, R.; Davis, A.; Mandl, D.; Frye, S.; Trout, B.; and Shulman,
S. 2005. Using Autonomy Flight Software to Improve Science
Return on Earth Observing One. Journal of Aerospace Computing,
Information and Communication 2(April):196–216.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.; and
Frye, S. 2010. Timeline-Based Space Operations Scheduling with
External Constraints. In ICAPS-10. Proc. of the 20th International
Conference on Automated Planning and Scheduling.
Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.; Bel-
lardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee, E.; Stan-
ton, E.; et al. 2016. Onboard Autonomy on the Intelligent Payload
EXperiment CubeSat Mission. Journal of Aerospace Information
Systems 1–9.
Dechter, R. 1991. Temporal Constraint Networks. Artificial Intel-
ligence 49(1-3):61–95.
Dombrovski, S., and Bangert, P. 2015. Introduction of a New
Sandbox Interpreter Approach for Advanced Satellite Operations
and Safe On-board Code Execution. In 66th International Astro-
nautical Congress.
EUROPA. 2008. Europa Software Distribution Web Site.
https://babelfish.arc.nasa.gov/trac/europa/.
Frank, J., and Jonsson, A. 2003. Constraint Based Attribute and
Interval Planning. Journal of Constraints 8(4):339–364.
Fratini, S., and Cesta, A. 2012. The APSI Framework: A Platform
for Timeline Synthesis. In Proceedings of the 1st Workshops on
Planning and Scheduling with Timelines at ICAPS-12 (PSTL-12),
Atibaia, Brazil.
Fratini, S.; Martin, S.; Policella, N.; and Donati, A. 2013. Planning-
Based Controllers for Increased Levels of Autonomous Operations.
In ASTRA 2013. 12th Symposium on Advanced Space Technologies
in Robotics and Automation.
Fratini, S.; Policella, N.; Faerber, N.; De Maio, A.; Donati, A.; and
Sousa, B. 2015. Resource Driven Timeline-Based Planning for
Space Applications. In Proceedings of the 9th International Work-
shop on Planning and Scheduling for Space, IWPSS15.
Freed, M. 1998. Managing Multiple Tasks in Complex, Dynamic
Environments. AAAI-98 , American Association for Artificial In-
telligence 921–927.

Hamilton, P. A. 2009. A Composite Architecture for a Realistic
Blocks World Domain. Technical report, University of Maryland,
Baltimore, Maryland.
Hoffman, J., and Nebel, B. 2001. The FF Planning System: Fast
Plan Generation Through Heuristic Search. Journal of Artificial
Intelligence Research 14(27):253–302.
Ingrand, F.; Chatila, R.; Alami, R.; Rober, F.; Prs; and A. 1996.
PRS: High Level Supervision and Control Language for Au-
tonomous Mobile Robots. in: Proc. ICRA-96 1:43–49.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and Smith, B.
2000. Planning in Interplanetary Space: Theory and Practice. In
AIPS-00. Proc. of the Fifth Int. Conf. on Artificial Intelligence
Planning and Scheduling, 177–186.
LaValle, S. M. 1998. Rapidly-Exploring Random Trees: A New
Tool for Path Planning. Technical report, Computer Science Dept.,
Iowa State University.
Levinson, R. 2005. Unified Planning and Execution for Au-
tonomous Software Repair. In Workshop on Plan Execution: A
Reality Check, number January.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic Con-
trollability Revisited. Aaai 94043:1193–1198.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. C. 1998. Re-
mote Agent: To Boldly Go Where No AI System Has Gone Before.
Artificial Intelligence 103(1-2):5–47.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and Plaunt,
C. 2002. IDEA : Planning at the Core of Autonomous Agents. In
AAAI Eighteenth National Conference on Artificial Intelligence.
Muscettola, N.; Morris, P. H.; and Tsamardinos, I. 1998. Refor-
mulating Temporal Plans for Efficient Execution. 6th International
Conference on Principles of Knowledge Representation and Rea-
soning (KR 98) 444–452.
Muscettola, N. 1994. HSTS: Integrating Planning and Scheduling.
In Zweben, M. and Fox, M.S., ed., Intelligent Scheduling. Morgan
Kauffmann.
Nogueira, T.; Fratini, S.; and Schilling, K. 2017. Autonomously
Controlling Flexible Timelines: From Domain-independent Plan-
ning to Robust Execution. In IEEE Aerospace Conference.
Pattison, D. 2017. JavaFF. JavaFF distribution site:
http://personal.strath.ac.uk/david.pattison/#software.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. F. 2007. From
Precedence Constraint Posting to Partial Order Schedules. AI Com-
munications 20(3):163–180.
Rajan, K.; Bernard, D.; Dorais, G.; and Gamble, E. 2000. Remote
Agent: An Autonomous Control System for the New Millennium.
ECAI 2000: 14th European Conference on Artificial Intelligence.
Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging the Gap Be-
tween Planning and Scheduling. Knowledge Engineering Review
15(1):47–83.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast Trans-
formation of Temporal Plans for Efficient Execution. Proceed-
ings of the 15th National Conference on Artificial Intelli-gence
(AAAI’98) 254–261.
UNITY. 2016. Unity Software Distribution Web Site.
https://unity3d.com.
Vidal, T., and Fargier, H. 1999. Handling Contingency in Temporal
Constraint Networks: from Consistency to Controllabilities. Jour-
nal of Experimental and Theoretical Artificial Intelligence 11:23–
45.
Weld, D. S. 1994. An Introduction to Least Commitment Planning.
AI Magazine 15(4):27–61.

35

Goal Reasoning as Multilevel Planning

Alison Paredes and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

alison, ruml at cs.unh.edu

Abstract

There has been much recent interest in the topic of goal rea-
soning: where do an agent’s goals come from and how is it
decided which to pursue? Previous work has described goal
reasoning as a unique and separate process apart from pre-
viously studied AI functionalities. In this paper, we argue
an alternative view: that goal reasoning can be thought of
as multilevel planning. We demonstrate that scenarios previ-
ously argued to support the need for goal reasoning can be
handled easily by an on-line planner, and we sketch a view of
how more complex situations might be handled by multiple
planners working at different levels of abstraction. By con-
sidering goal reasoning as a form of planning, we simplify
the AI research agenda and highlight promising avenues for
future planning research.

Introduction
It is widely understood that plan synthesis is only part of
the functionality that an agent needs with respect to tak-
ing intelligent action. For example, Molineaux, Klenk, and
Aha (2010) posit a capacity for goal reasoning, which cre-
ates the goals that the agent’s planner might attempt to
achieve, determines which goals the agent will pursue at any
particular moment, and monitors goal achievement. (They
also include a sophisticated component for estimating the
state of the world and updating the agent’s model, given its
actions and their observed consequences, but this is not our
concern here.) In this paper, we consider whether goal rea-
soning is best thought of as a capability distinct from plan
synthesis and action selection, or whether it might be pos-
sible to unify these two functionalities, thereby simplify-
ing the AI research agenda. After reviewing the proposals
of Molineaux, Klenk, and Aha (2010) regarding goal rea-
soning and their experimental benchmark scenarios, we in-
troduce a new benchmark domain, called Harvester World,
that captures many of the features of prior benchmarks.
We then demonstrate a relatively simple planner, called
GROH-wOW, that achieves high performance in Harvester
World. We argue that this result undercuts the empirical
support for goal reasoning claimed by Molineaux, Klenk,
and Aha (2010) on the basis of their experiments. We then
speculate about how goal reasoning functionality might be
exhibited by multiple planners working together in various
relationships.

Goal Reasoning as a Separate Module
A planner takes a model of the environment, a state and
a goal and returns either an action or an entire plan. A
goal reasoner takes a model of the environment, a current
state and a goal, and returns either the same goal or a new
one (Klenk, Molineaux, and Aha 2013). It also uses a se-
quence of expected states which should result from each ac-
tion taken in the plan and the observed result of the previous
action in the plan to: 1) detect discrepancies between ex-
pected states and the observed current state, 2) explain these
discrepancies, which may modify the current model of the
environment, 3) generate new goals which might be appli-
cable in this new understanding of the environment, and 4)
finally, decide which among the current goals and any newly
generated goals should be pursued next.

For example, in a real-time strategy game such as Bos
Wars (formally known as Battle of Survival), a game very
similar to Starcraft, a planner might be given the goal to
move a friendly harvester unit to its home base. The plan-
ner returns a sequence of actions such as, move the harvester
from point A to B to C to D around an known obstacle un-
til it reaches the base. For the use of the goal reasoner, the
planner might also return a sequence of expected states such
as after moving the harvester from point A to point B, the
harvester is at point B. After each action is executed in a
plan, the goal reasoner should get the game’s current state,
which in this case would be the observation that the har-
vester is at point B. Given this information, the goal rea-
soner might conclude that it should continue to pursue its
current goal to move the harvester to its home base. In a
partially observable environment, however, it is possible that
the goal to move the harvester to its home base is not the
best one to pursue in the long run, and it is part of the goal
reasoner’s responsibility to figure that out. For example, it
might make more sense to first deploy some kind of defenses
before sending the harvester home because we have reason
to believe that an enemy may be lurking nearby.

Klenk, Molineaux, and Aha (2013) implement a planner
with a goal reasoner and test it in comparison to planning
without one. In these experiments, the goal reasoner per-
formed better than either planning once off-line or replan-
ning to the initial goal. In their scenarios, the most success-
ful behavior involved responding to unobserved factors in
a partially observable environment. The tests used two dif-

36

ferent simulations, an instance of the open source Battle of
Survival (an older version of Bos Wars) and a proprietary
Navy training simulation; in all scenarios there was some
element of partial observability.

In this paper we focus on the three scenarios run in Battle
for Survival (BoS): 1) Resource Gathering, 2) Escort, and
3) Exploration. In all of these scenarios the current state of
the game could be described in terms of the units, such as
a friendly harvester or not so friendly enemy, and whether
harvestable things like titanium deposits have been gathered.

Actions in the BoS scenarios describe low level move-
ments of units such as moving a harvester one step in some
direction. Goals are represented as high level tasks such as
moving the harvester to its home base rather than moving the
harvester one step north. Consequently, planning involves
figuring out which low level actions to string together to ac-
complish the high level action.

In the resource gathering scenario the location of har-
vestables may be only partially known. For example, it is
possible that there could be a more conveniently located ti-
tanium deposit than the one the agent knows about. In the
escort scenario, the location of enemy units is initially un-
known until an enemy attacks, by which time it is too late
to deploy defenses. In the exploration scenario, some paths
may be impossible, making some goals unachievable. In all
of these scenarios, planning with a goal reasoner performed
better than without one. Klenk, Molineaux, and Aha inter-
preted this success as providing support for goal reasoning
as a separate functionality alongside planning.

Goal Reasoning as Planning
But we hypothesize that the right type of planner might do
just as well without an explicit goal reasoner. To test this
hypothesis, we synthesized a new domain, called Harvester
World, that captures the essential features of the benchmarks
in Klenk, Molineaux, and Aha (2013) and implemented a
planner for it. The previous benchmarks share the following
important features: 1) partial observability: the agent does
not necessarily see every aspect of the state, such as the lo-
cations of harvestables; 2) open world: the agent does not
necessarily know about all the objects that exist; 3) on-line
sensing: the agent learns more about the world as it takes ac-
tions; 4) multi-unit: the agent controls multiple moving ob-
jects in the environment which might move simultaneously;
and 5) adversarial: there may be other agents whose goals
conflict with that of the agent. Harvester World is a single
domain that captures all of these features.

Harvester World
Harvester World takes place on a two-dimensional grid sim-
ilar to BoS (see Figure 1) and supports test cases similar to
the three scenarios described in the previous section. While
both time, states and actions are discrete, the world state is
only partially observable, there may be adversaries, and the
agent may need to control multiple movable units. A sim-
ulator controls the ground truth of an instance of Harvester
World, and at each time step, the simulator requests an ac-
tion from the agent, attempts the action in the ground truth

Figure 1: An example Harvester World instance: B = base,
D = defender, E = enemy, H = harvester, F = food. Left map
represents ground truth; right map represents the agent’s cur-
rent belief state.

representation and moves other factors of the environment
forward, and returns an observation to the agent which the
agent then uses to update its belief state.

Individual grid cells can allow movement or be fixed im-
passable obstacles. The harvester’s home base (B in Fig-
ure 1) is also fixed. The grid also contains harvestable food
(F). Food can be harvested by the agent when it is in the
same cell. As soon as one food is harvested, another will
sprout somewhere else in the map (the law of conservation
of food). The agent controls the harvester (H) and a defender
unit (D), and the grid may also contain an enemy unit (E).
The agent can sense the state of the cell it is in, but cannot
see food elsewhere and cannot see an enemy further than one
cell away. For example, if an enemy is adjacent to the har-
vester then the harvester immediately discovers it without
any uncertainty about whether or not it is an enemy.1

The harvester can move in the four cardinal directions
or stay still. It may also choose whether or not a defender
should move to the location of the harvester. Hence there are
a total of eight actions which may be considered at each step.
In BoS it is possible to move a defender independently of
the harvester with the intention of strategically placing it in
a way that would prevent the harvester from taking damage
from an enemy unit. Our simplification does not preclude
this effect, it only simplifies the number of actions needed to
achieve it. Other actions were hard-wired into the agent and
do not require deliberation: if the harvester is not carrying
food and enters a cell with food, the food is harvested; if the
harvester reaches the base while carrying food, the food is
delivered.

The enemy’s policy is also hard-wired and known to the
agent. An enemy unit will immediately move out of a cell
containing the defender. Otherwise, at every timestep the en-
emy will attempt to move to the next location, either North,
South, East or West, along the shortest path toward the har-
vester’s current location, taking obstacles and the defender
into account. We compute this via Dijkstra’s algorithm out-
ward from the agent.

The objective of the game is to maximize accumulated
reward. As in BoS, the successful player should try to maxi-
mize the amount of resources it collects while minimizing

1For those familiar with BoS, we omit the scout from our do-
main because we have tried to keep our problem succinct; a scout
only increases the range at which an enemy is discovered and thus
the size of the problem needed to demonstrate interesting behavior.

37

Figure 2: An example Resource Gathering scenario

Figure 3: An example Escort scenario

the damage it takes from enemies and the amount of re-
sources it spends to play. Every move of the harvester costs
-1, even if the action does not complete because an obstacle
is in the target location. Moving a defender costs -1 for each
cell it traverses on its way to the harvester. If the harvester
delivers food to the base, this earns +50. If the harvester is
in the same location as an enemy, this penalizes the agent
-10.

Using Harvester World, we were able to reproduce the
three BoS scenarios described in the previous section by
varying which features should be hidden from our agent.
To model Resource Gathering, we configured a world that
contained a base, a harvester initially located at the base,
and two food sources located in two different locations some
distance from the base (see Figure 2 for an illustration). Ini-
tially only the base, the harvester and the location of one of
the food are known to the agent, making the current state of
the world only partially known. An efficient plan should be
able to maximize the amount of food it can collect in limited
amount of time by harvesting the food closest to the base,
including recognizing when newly discovered food is closer
than the previously known food.

To model Escort we configured a world that contained a
base, a harvester and a defender both initially located at the
base, an set of obstacles which partition the world into de-
fensible regions, and one food located some distance from
the base (see Figure 3 for an illustration). Initially only the
base, the harvester, the defender and the obstacles are known
to our agent. The belief state does not include the location of
the enemy as well as the location of food. An efficient plan
should be able to maximize the amount of food it can collect
in a limited amount of time while minimizing the damage
it takes from enemies and the resources it spends to defend
against them.

To model Explore we configured a world that contained a
base, a harvester, a set of obstacles and two food (see Fig-
ure 4 for an illustration). Initially only the obstacles are hid-
den from the planner. An efficient plan should be able to
get both food, detouring around any discovered obstacles, if
there is an open path to both, or give up on one if it turns out
all paths to it are impassable.

Figure 4: An example Explore scenario

HOP(s)
1. for i from 1 to N do
2. wi ← sample world consistent with current belief
3. foreach action a applicable in s
4. s′ ← a(s)

5. c← (
∑N

i plancost(s′, wi))/N
6. Q(s, a)← C(s, a) + c
7. return argmina Q(s, aA)

Figure 5: Sketch of hindsight optimization

A Planner for Harvester World
Harvester World exhibits partially observable state, an ad-
versary, and multiple units that need to be controlled by
the planner. This is well beyond the scope of classical
planning tasks. To handle this problem, we turn to an ap-
proximate method for planning in large partially-observable
Markov decision processes: hindsight optimization (Yoon et
al. 2008; 2010). Hindsight optimization planning has been
shown capable of performing better than reactive planning
in a partially observable environment when we are unsure if
and when new goals may arrive (Burns et al. 2012). In their
planner OH-wOW, Kiesel et al. (2013) showed that hind-
sight optimization can be used to plan on-line in open worlds
where the existence of important objects is unknown. We
extend the work of Kiesel et al. (2013), hence our planner
for Goal Reasoning with Optimization in Highsight in Open
Words is called GROH-wOW.

Fundamentally, hindsight optimization works by sam-
pling from a model of all possible realizations of the un-
certain features in the current state, and then finding the best
deterministic plan in each of these sampled world, and using
the values of these plans to estimate the value of the agent’s
possible successor states and hence determine what the best
next action is. See Figure 5 for a pseudocode sketch (C(s, a)
is the cost of taking action a in state s). Sampling avoids ex-
plicitly representing a belief distribution over a large number
of possible states, and the fully specified worlds allow con-
ventional fast deterministic planning techniques to be used.
Despite its practicality, unlike methods such as UCT (Kocsis
and Szepesvári 2006), hindsight optimization is well-known
to not be guaranteed to converge to the optimal action in the
limit of infinite sampling. We use the hindsight optimiza-
tion strategy within a receding horizon paradigm: the deter-
ministic planner looks ahead only to a limited horizon while
finding the maximum reward plan for each sampled world,
then the agent takes a single action and the cycle repeats.

38

Figure 6: Search tree

Following the algorithm sketched above, GROH-wOW
has two main parts: the agent’s action planner, which takes a
model of Harvester World, samples from it and passes these
samples on to the deterministic planner, and the determin-
istic planner subroutine, which will then find the best plan
in each of these samples and return to the action planner the
value of each. The hindsight optimization planner will then
use these values to find the expected value of each of the im-
mediate successors of the current state and return the action
that leads to the next state with the highest expected reward.
The action is executed and a set of observations is returned
which may be used to update the agent’s belief model, which
will be given to the hindsight optimization planner at the
next timestep to use when determining the next action.

Sampling over the remaining uncertainty in the belief
state given to the planner is intended to resolve all ambiguity
in the current state in order to leverage deterministic plan-
ning. In Harvester World this means resolving two different
types of uncertainty and partial observability such as where
the enemy is located and stochastic effects such as where
food may grow next. We model this uncertainty as a uni-
form distribution over unknown factors in a belief state. For
example, to model Resource Gathering the belief state given
to the sampling function might omit the location of food. It
might assume that there are at most two food in the world,
but the belief state does not provide the location of both of
them. Sampling a world from this belief would result in one
that contains both foods at a specific locations, e.g. food at
positions 2 and 3 in Figure 2. We can then plan to move the
harvester to the food at 2 and back to the base for a reward
of +50 − 3. The belief state might also contain ambiguity
about future states. Since in Harvester World the amount of
food in the world never diminishes, gathering food implies
that new food must have grown somewhere. Hence when we
sample a world, we also determine exactly where food might
grow in the future, resolving both the uncertainty regarding
where food is located now but also how its location might
possibly change. Sampling resolves all ambiguity into a set
of possible worlds to pass along to the deterministic planner.

Deterministic Planner
The deterministic planner uses a basic breadth-first search
from each of the now complete models of the current state
out to a given time horizon, enumerating all states which
can be reached within t = horizon − 1 time steps. It then
considers the plan with the highest reward among all of the
states reachable at t = horizon , and returns this value to the
hindsight optimization planner to aggregate.

To make deterministic planning faster, we note that there
are only a few ‘macro actions’ worth considering. In the
Resource Gathering scenario there are three macro actions
that it makes sense for the deterministic planner to consider:
move the harvester to the base, move the harvester to the
known food at a specific location, or move it to the unknown
food at a different location. This would have been impracti-
cal without having first sampled a world where the location
of the unknown food can be known, but in hindsight opti-
mization it becomes a simple matter of planning the shortest
path from where ever the harvester is now to the closest food
and back to the base for the optimal reward, assuming this
can be completed within the given horizon. If a goal would
take longer to complete than the remaining time, then we
consider the macro action incomplete and its result is the
state of the world up to the horizon. These macros reduce
the branching factor and search depth that the deterministic
planner must search. Additional strategies, such as design-
ing a heuristic reward-to-go function, are also possible.

In the Escort scenario the deterministic planner has four
macro actions to reason about after sampling determinizes
the unknown attributes of the model: move the harvester to
a food, move both the harvester and the defender to a food,
move the harvester to the base, or move both the harvester
and the defender to the base. Recall at each time step we
simulate the movement of the enemy. We can do this during
planning as well since we assume that, while we do not know
exactly where our enemy is, we have a reasonable model of
how it moves. (In the absence of a good model, we would
just sample possible enemy actions.) If the enemy, wherever
sampling has imagined it might be, would interrupt the com-
pletion of any of the macro actions above, then we consider
the macro action incomplete, like we do when we have run
out of time. Its result is the state of the world when encoun-
tering the enemy.

In the Exploring scenario, the deterministic planner must
reason about the same three macro actions used in Resource
Gathering but with some nuance. While the existence of ob-
stacles are initially unknown in the model given to the hind-
sight optimization planner, for simplicity we do not spec-
ulate about where they could be. Instead as obstacles are
discovered, macro actions like moving harvester to food at
position (A, 0) in Figure 4 potentially become more expen-
sive to complete. The deterministic planner is able to take
these changes into consideration when deciding if it should
first get the food at (A, 0) and drop it off at the base before
getting the food at (B, 3). If the shortest path to (A, 0) be-
comes too long or even impossible because of obstacles then
it should choose to get the food at (B, 3) first.

Experimental Results

The central empirical question at issue in this paper is
whether a planner that lacks an explicit goal reasoning com-
ponent can perform well in Harvester World instances sim-
ilar to the problems considered by Klenk, Molineaux, and
Aha (2013). We addressed this question by running GROH-
wOW on each of the BoS scenarios.

39

Figure 7: Example sequence in a Resource Gathering in-
stance

Figure 8: Example step in an Escort instance

Experiment 1: To demonstrate Resource Gathering we
ran hindsight optimization on a single instance of Har-
vester World configured for Resource Gathering as de-
scribed above for 10 time steps on a 10 x 1 grid, with a
sample size of 10 and a horizon of 20, which would allow
enough time to foresee the value of getting food located as
far away as position 9 and bringing it back to the base. Fig-
ure 7 illustrates our results. The top map describes an in-
termediate state from the perspective of the simulator; it is
perfectly known. The bottom map describes the agent’s be-
lief state at that time. In the simulation’s initial state the
harvester (H) is at the base (B) and the planner knows about
the food (F) at position 7. At each time step the simulator
gives our planner an incomplete model of the world, and the
agent returns a single action to the simulator. In this test,
the harvester discovered food at position 4 and thereafter the
planner determined it should return to base instead of con-
tinuing to the original food at position 7. Thus on-line plan-
ning can recognize an opportunity as well as a system using
a goal reasoner.

Experiment 2: To demonstrate our planner in the Escort
scenario, we configured 10 instances of the Escort scenario,
varying the initial location of the base, where the harvester
and defender start, the hidden enemy and a hidden food. The
number of obstacles in each scenario was constant and their
location was known to the planner. We ran each of these
10 scenarios for 100 time steps, allowing the hindsight opti-
mization planner to sample 10 worlds at each time step, and
gave the deterministic planner a horizon of 10 time steps.
Figure 8 illustrates one time step in one problem instance.
In this example the agent decided to move the harvester (H)
along with the defender (D) East away from the base (B)
before the location of the enemy was ever revealed, illustrat-
ing the ability of hindsight optimization to consider unob-
served factors such as the possible location of the enemy. All
problem instances exhibited similar behavior as the agent

Figure 9: Example sequence in an Explore instance

explored the map and collected food.

Experiment 3: To demonstrate hindsight optimization in
the Explore scenario, we configured an instance of Harvester
World with two food, one of which was unreachable due to
obstacles. We made the location of all of the food known but
not the location of obstacles, and allowed the deterministic
planner a horizon of 10. We did not need to sample more
than one possible world since the location of the food was
known. As figure 9 illustrates, the agent initially attempted
to get the food in the lower left corner by exploring the cells
along the left side of the grid where it discovered two obsta-
cles which precluded its ability to get the food it was initially
after; it then went for the food on the right side of the grid.
This behavior highlights the influence of the objective func-
tion in goal reasoning. Once the obstacles at (A, 1) and (B,
0) have been discovered there is no plan which sends the
harvester to the food at (A, 0) that could improve the total
expected reward measured by the objective function so the
food at (A, 0) is abandoned.

Discussion
So far we have shown that a hindsight optimization planner
can perform well in the same class of problems as was pre-
viously thought to require goal reasoning. That is not to sug-
gest that these problems do not require goal reasoning, just
that a discrete goal reasoner is not necessarily required to
achieve the desired functionality. We propose that our plan-
ner demonstrates many of the aspects of goal reasoning. We
explore this with reference to Johnson et al. (2016)’s goal
lifecycle.

In previous work goal reasoning has been organized into
discrete steps defining a goal lifecycle. A goal must be for-
mulated, selected, expanded, committed, dispatched, and
then execution and resolved (Johnson et al. 2016; Roberts
et al. 2016). We consider these in turn. If one were to in-
terpret existing food as goals for planning with low-level
actions, then we could view grounding a belief state into
a set of completely known worlds as formulating a set of
goals. For example in Figure 7, in the belief state the lo-
cation of only one food is known; there is one known goal,
retrieving the food at position 7. Sampling however could
result in a world in which there is a food at position 0, in
which case sampling generates the additional goal, retriev-
ing the food at position 0. Selection is then the process by
which our planner decides which food to pursue first; the
low-level planner will recommend the order that gets us the
most expected reward within the planning horizon. Expan-

40

sion is finding the action that best follows this longterm
plan. Goal evaluation metrics used in previous work
like principles and intensity levels (Johnson et al. 2016;
Cox, Dannenhauer, and Kondrakunta 2017) are encapsu-
lated in the idea of a reward. For example, the ordering of
macro actions in optimal plans represent the most efficient
ordering of goals as high-level tasks to achieve the best pos-
sible total reward without having to be explicitly prioritized.

In these ways, one can view our planner as engaging in
the elements of goal reasoning. However, there is also a
more subtle interpretation. One can also find goal reason-
ing in how hindsight optimization uses the objective func-
tion to estimate the expected reward and choose the next
low-level action toward this ‘estimated goal.’ Goal gener-
ation in this sense could be seen as the process of finding
the number of times we should be able to put the harvester
at the base with food within the planning horizon. Selecting
one of these goals (or abstract plans) is easy when the world
is completely known; there is only one optimal number of
times harvester can be at the base with food. Goal expan-
sion then is deciding which low-level action is the best next
step in making the harvester arrive at the base with food the
expected number of times. This is simply the next action
along the plan that puts the world in a state with the best
possible reward within the planning horizon according to the
objective function.

The selection step in the goal lifecycle becomes more in-
teresting in a partially known world because the true goal,
the number of times we can make the harvester at the base
with food true, is unknown as well, but with hindsight opti-
mization we can estimate this quantity and estimate the true
goal; the expected value of the true goal is the expected value
of the optimal plans across all possible worlds. Selection
can be interpreted as the process by which hindsight opti-
mization finds this estimate. Given the current belief state,
the selected goal is the estimated number of times we could
expect to put the harvester at the base with food. Because
each grounded version of the belief state has the potential
to change the costs involved in achieving the goal state and
so change the number of times it can be achieved within the
planning horizon, the goal in each possible world may vary,
but sampling from the belief space allows us to quickly find
an estimate of the true goal. Then in the expansion step of
the goal lifecycle we can use this estimate of the true goal
to compare how much each low level action is expected to
move the agent closer to the estimated goal.

After selection and expansion our agent immediately dis-
patches the next action with the promise of achieving the se-
lected goal. The effect of the next action, along with any new
information about the environment, is then incorporated in
the next round of goal reasoning. Because every new obser-
vation has the potential to dramatically change the expected
value of the goal, such as we saw in the Explore scenario
when the discovery of obstacles surrounding the food at (A,
0) made one of the food unreachable, an on-line planer can
be said to repeat goal reasoning at every time step, beginning
with the evaluation of the state resulting from the previous
action and possibly selecting a new goal.

Goal Reasoning as Multilevel Planning
Although we have demonstrated how an appropriate plan-
ner like GROH-wOW can handle the types of goal reason-
ing tasks present in Harvester World and simple scenarios of
its type, we do not mean to claim that a single planner can
give high performance in truly huge domains such as dealt
with by human emergency responders and battalion com-
manders. It seems clear that for planning over very long
horizons or with huge action spaces, hierarchical techniques
will be necessary. But again, it does not necessarily follow
that a separate goal reasoning component is necessary. In-
stead, we speculate that multiple levels of planning may be
appropriate. These planners might coordinate their compu-
tation in various ways — we will sketch three. In the most
classic approach, a high-level planner might generate a plan
of very high-level actions, such as establish communications
network, rescue survivors, and treat wounded, while a low-
level planner might treat just one of the high-level actions as
a goal to achieve through the generation and coordination of
many lower-level actions. In this way, subgoals are created
that allow low-level planning to be limited to subproblems
with shorter solutions, speeding search. In this sense, the
high-level plan is a form of loose guidance using landmarks
for the low-level planning.

This arrangement raises the question of domain and goal
representation for the high-level planner. Using the concept
of reward, we believe that a high-level planner can reason
about even abstract concepts such as keeping friends safe by
postulating the existence of unseen adversaries, reasoning
about their behavior, and selecting actions such as defensive
patrolling. As we have shown, there is nothing inherent in
a partially observable stochastic adversarial domain that de-
mands a goal reasoner.

This traditional concept of multi-level planning, in which
the actions of one level are goals for the next, is just one way
in which multiple planners can be coordinated to solve large
problems. A second way is by viewing a plan at the higher
more abstract level as establishing constraints on the possi-
ble state space to be considered by the lower-level planner.
The lower-level planner considers only concrete states that
project into the abstract states visited by the abstract plan. In
this way, the high-level planner specifies a kind of tunnel in
the state space that constrains the search of the lower-level
planner (Gochev et al. 2013). In this view, the states spaces
of the two planners must be similar enough to be aligned
with projection, with one just being more abstract than the
other.

Finally, a third method of coordination is to use the high-
level planner to guide the lower-level planner in a more flex-
ible way. The previous tunnel method can be seen as the
high-level planner pruning away concrete states that map
to abstract states that are not in the plan. In a sense, such
concrete states are given heuristic values of infinity (Holte
1995). A more flexible method is to use the high-level
planner directly as a heuristic function, allowing it to return
values smaller than infinity and allowing the low-level plan-
ner to eventually expand states that project outside of the
initial high-level plan if necessary. Planning in an abstract
representation of the problem has been shown to be an effec-

41

tive heuristic (Hoffmann and Nebel 2001). One can regard
our Harvester World planner as being of this type, as the de-
terministic planner finds more abstract plans, which are used
to evaluate states for the low-level action planner.

Conclusion
Despite agreement on the observable capabilities of agents,
such as dealing with multiple goals in a dynamic partially-
observable world with adversaries, it is not obvious how
those capabilities might be implemented in various compu-
tational modules. Locating goal reasoning in a specialized
module is certainly one way to go. However, our results
show that the empirical evidence presented for that archi-
tectural commitment may not uniquely support that choice.
While Harvester World is certainly beyond the classical
planning problem setting, we have demonstrated that mod-
ern planning technology can handle partially-observable
open worlds with multiple units and adversaries. We have
also speculated about three possible ways in which multiple
levels of planners might be arranged to handle more chal-
lenging domains.

Acknowledgements
We would like to thank Mak Roberts, Will Doyle, Tianyi
Gu, Jordan Ramsdell and our anonymous reviewers for their
thoughtful comments. We also gratefully acknowledge sup-
port from NSF (grant 1150068).

References
Burns, E.; Benton, J.; Ruml, W.; Do, M. B.; and Yoon, S.
2012. Anticipatory on-line planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS-12).
Cox, M. T.; Dannenhauer, D.; and Kondrakunta, S. 2017.
Goal operations for cognitive systems. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17).
Gochev, K.; Cohen, B.; Butzke, J.; Safonova, A.; and
Likhachev, M. 2013. Path planning with adaptive dimen-
sionality. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS-13).
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Holte, R. C. 1995. The tradeoff between speed and optimal-
ity in hierarchical search. Technical Report 95-19, Univer-
sity of Ottawa Computer Science.
Johnson, B.; Roberts, M.; Apker, T.; and Aha, D. W. 2016.
Goal reasoning with information measures. In Proceedings
of the Fourth Annual Conference on Advances in Cognitive
Systems (ACS-16).
Kiesel, S.; Burns, E.; Ruml, W.; Benton, J.; and Kreimen-
dahl, F. 2013. Open world planning for robots via hindsight
optimization. In Proceedings of the ICAPS Workshop on
Planning and Robotics.

Klenk, M.; Molineaux, M.; and Aha, D. W. 2013.
Goal-driven autonomy for responding to unexpected events
in strategy simulations. Computational Intelligence
29(2):187–206.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proceedings of the 17th European Con-
ference on Machine Learning (ECML-06), 282–293.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
driven autonomy in a navy strategy simulation. In Proceed-
ings of the Twenty-Fourth AAAI Conference on Artificial In-
telligence (AAAI-10).
Roberts, M.; Shivashankar, V.; Alford, R.; Leece, M.;
Gupta, S.; and Aha, D. W. 2016. Goal reasoning, planning,
and acting with actorsim, the actor simulator. In Proceedings
of the Fourth Annual Conference on Advances in Cognitive
Systems (ACS-16).
Yoon, S.; Fern, A.; Givan, R.; and Kambhampati, S. 2008.
Probabilistic planning via determinization in hindsight. In
Proceedings of AAAI.
Yoon, S.; Ruml, W.; Benton, J.; and Do, M. B. 2010.
Improving determinization in hindsight for on-line proba-
bilistic planning. In Proceedings of the Twentieth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-10).

42

Automated Planning with Goal Reasoning in Minecraft

Mark Roberts1 Wiktor Piotrowski2 Pryce Bevan3 David Aha1 Maria Fox2 Derek Long2 Daniele Magazzeni2
1Naval Research Laboratory, Code 5514; Washington, DC, USA | {first.last}@nrl.navy.mil

2Department of Informatics, King’s College London, United Kingdom | {first.last}@kcl.ac.uk
3Georgetown University, Washington, USA | pwb8@georgetown.edu

Abstract
We combine PDDL/PDDL+ planning with goal reason-
ing to leverage the strengths of both and succeed in a
limited variant of Minecraft. Automated planners have
long been able to reason about numeric fluents and ex-
ogenous events, but remain largely confined to closed
worlds with full observability. Goal reasoning can re-
spond to dynamic, open worlds and partial observability,
but must rely on an effective planner. We demonstrate
that combining goal reasoning with automated planning
reduces the overall computational effort to achieve goals
while succeeding at multiple domain specific metrics.
We highlight important design decisions in PDDL1.2,
PDDL2.1, and PDDL+, including the use of PDDL+
events to model opportunistic goals. We close with a
discussion of trade-offs associated with choosing the
modeling features and identify a number of challenges
for the next generation of planning systems.

1 Alex’s Quest
Consider an agent, Alex, at the end of a 300-meter hallway
with entries to dozens of rooms along each side containing
randomly placed resources (e.g., wood, diamonds, iron ore,
and coal), necessary crafting equipment (e.g., a workbench
for crafting and a furnace for smelting ore), and randomly
spawned zombies which can harm Alex. Alex can only ob-
serve the world directly nearby and must reach the far end of
the hallway with a crafted diamond sword in hand. After this
hallway, Alex faces a dungeon filled with enemies, therefore
it would be best to also have a full complement of armor, a
stack of torches, some ladders, etc.

This quest is derived from Minecraft, an open-world sand-
box game where players choose their own objectives such
as building structures, collecting resources, crafting, fight-
ing enemies, or exploring. The world consists of 1 meter
voxels (i.e., cubes). Minecraft has many properties of an
ideal testbed for designing planning and acting techniques.
It includes such issues as multiple agents (both cooperative
and adversarial), partial observability, complex tasks (e.g.
crafting tools, building), to name a few. The quest, and simi-
lar Minecraft challenges, can be easily solved by automated
planning systems using replanning with two additions: oppor-
tunistic goals provided by PDDL+ events and goal reasoning.

PDDL+ (Fox and Long 2006) is an extension of the stan-
dardized modeling language in automated planning, PDDL

(IPC Committee 1998). In conjunction with previous ver-
sions, PDDL+ introduces independent processes and exoge-
nous events. Processes have time-dependent continuous
effects, whereas events bring about instantaneous discrete
change. Both elements they are triggered by the environment
as soon as their preconditions are satisfied; the planner does
not control processes/events. Events are ideal to model the
appearance of entities and resources and enable the modeling
of opportunistic goals.

Goal reasoning allows an agent to deliberate about its own
goals during execution. This allows an agent to be more
adaptable to changes in the world by determining, for exam-
ple, when it should replan or when it should adjust its sensing.
A recent implementation of goal reasoning, called A C T O R -
S I M (Roberts et al. 2016b), has been applied to Minecraft,
but A C T O R S I M lacked a connection to PDDL-based plan-
ners and some features needed to support observations.

We extend A C T O R S I M to translate Minecraft into PDDL
and examine trade-offs of this combination. The contribu-
tions of this paper include: (1) an extension of A C T O R S I M
to include mobs, resources, and the ability to observe them;
(2) PDDL/PDDL+ models of Minecraft; to our knowledge,
these are the first PDDL models of Minecraft that include
randomly placed resources and zombies; (3) a discussion of
how the domain modeling evolved, highlighting the strengths
and shortcomings of each approach; (4) an effective mecha-
nism for managing an open, dynamic world via opportunistic
goals implemented as PDDL+ events; and, (5) an application
of goal reasoning to reduce the cumulative search effort of
the planner whilst maintaining domain-specific metrics such
as resources collected. In the remainder of the paper, we de-
scribe the planning models we constructed, how we leverage
them during goal reasoning, our evaluation of the system,
and related work. We close with a discussion of future work.

2 Interacting with Minecraft
To interact with the Minecraft game, we use the publicly
available tool called A C T O R S I M (Roberts et al. 2016b).
This connector exposes state information about the world
and discrete motion primitives for controlling character. It
also provides a way to construct challenge problems like the
introductory quest. The previous version of A C T O R S I M
only supports actions to move forward, mine, or build a
bridge and only reports the blocks directly around the player.

43

We extended A C T O R S I M considerably to support our
study. We added actions to move the character north, east,
south, or west and actions to collect resources. We extended
the sections available to include zombies, diamonds, bread,
and wood as well as observations of entities and items around
the player. Finally, we added a PlanManager to convert
this state to PDDL and run a planner. Figure 1 shows the
relationships between the core components for our study.

The PDDL planner accepts input files and produces a sin-
gle plan; not shown is the PlanManager component that as-
sists with this process by creating the PDDL files, running
the planner process, and parsing the plan output. The ‘Alex
Controller’ ensures that all actions taken are safe to execute
– that is, that the character doesn’t walk off a cliff or into
lava. It also abstracts the game state (e.g., blocks, observa-
tions, inventory) into data structures that can be read by other
components. Finally, the ‘Goal Reasoner’ sets up challenges,
monitors experiments, and manages the character’s goals.

3 Modeling Minecraft
All planning modeling languages have been designed for
particular classes of domains. With a multitude of domain
definition languages available, consideration of all features of
the scenario and its future extensions is necessary to capture
the model accurately. The choice of modeling language is
crucial as it affects the size of the search space, branching
factor, and generally how closely the domain represents the
corresponding real world problem. A domain language not
well-suited to a given problem can result in an inaccurate
representation of the essence of the real-world scenario, as
well as a convoluted and bloated domain. A more expressive
model allows a closer resemblance to the Minecraft world
but can increase search cost. We aim to arrive at a model
that is expressive enough while still solvable within a few
seconds. We modeled the Minecraft domain incrementally,
adjusting our choice of modeling languages as the desired set
of features expanded over time.

Observation and Plan Zones All the models share the con-
cept of zones. Minecraft coordinates are given in X (east-
west), Y (up-down), and Z (north-south) coordinates where
north, west, and down are negative. In this paper, we focus on
the X-Z grid of obstacles around the player and plan to add
height in future work. Even without height, the challenges
we present are 20 blocks wide by 150 blocks long. The full
obstacle course takes 90-180 seconds (or more) to plan, far
too slow for reactive execution. So we must consider how
much of the world to reason with when encoding the local
state around the player into a problem file for the planner. We
define observation and plan zones around the player given
by the distance (front,back,left,right) away from the player in
each of these directions. An observation zone is the larger of
the two, and defines the distance away from Alex that items
are observed. While this reduces the level of detail, planning
for the entire observation zone can still take tens of seconds
or longer and is too slow for a tight execution loop. So we use
a much smaller plan zone that the planner can solve quickly.

Consider Figure 2 which captures the abstract state from
the image in Figure 1. Alex (shown as Y) is about to walk into

Figure 1: Overview of the planning and acting components.

x3 X4 X5 X6 X7 X8 x9 x3 X4 X5 X6 X7 X8 x9

z-9 D W W z-9 D W W

z-8 . . T . . z-8 . . T . .

Z-7 . X X X . Z-7 . . = . .

Z-6 . X X X . Z-6 . = Z = .

Z-5 . X X X . Z-5 . . = . .

Z-4 . . .D . . Z-4 . . .D . .

Z-3 Z-3

Z-2 . . .Y . . Z-2 . . .Y . .

Z-1 Z-1

PDDL2.1 PDDL+

Figure 2: Sample problem and observation zones around
Alex (denoted Y) containing walkable cells (.), unsafe cells
(X), the intermediate target (T), glass blocks (=), diamonds
(D), wood (W), and a zombie (Z). The left plot shows the
PDDL2.1 representation, while the right plot shows the

PDDL+ version.

a zombie (Z) noted in the PDDL 2.1 model as unsafe (X) or
in the PDDL+ model as surrounded by glass (=). We cage the
zombies in glass because we lack an effective way to defend
against zombies; in future work, we discuss our plans for
using reactive strategies for defense. Walking in any corner
squares around the zombie, results in health damage, so Alex
must avoid these positions if possible. The PDDL+ model
encodes this knowledge but the PDDL2.1 model does not.
Thus, the goal reasoner marks as unsafe all blocks around a
zombie, effectively enforcing safety. The observation zone
in this small example includes the entire area. The plan
zone of (6,1,2,2) is six cells in front of Alex, one cell behind
Alex, and two cells to the left and right. Walkable cells (.)
in the plan zone are safe spots where Alex can stand. An
intermediate target (T) creates a feasible subproblem for the
planner. Just outside the plan zone are resources of wood (W)
and diamond (D). As the end of the hallway is always north
of the character, the intermediate target is the northernmost
walkable cell closest to the hallway’s end.

A propositional model Our first model employed
PDDL1.2 (IPC Committee 1998) and relied on propositional
variables to represent Alex and the surrounding area. Each
cell in the grid was defined in relation to its neighboring cells
(i.e. celli ”is north of” cellj). Discrete change and purely
propositional set of variables served well as a proof of con-
cept and the character could achieve the end goal. Research
in propositional encodings is the most mature, and every

44

planner we tried succeeded at the model for small problem
sizes. The character was able to move through hallway and
overcome most obstacles, but this required replanning every
3-5 steps. The planner could sometimes stall if the planning
zone wasn’t big enough to get around an obstacle.

Though simple to construct, the model scaled poorly. This
version only included the goal of reaching a specified target
cell and extending the model to include additional tasks was
particularly difficult. The key to reducing the number of
replanning episodes and eliminating stalls was to increase
the problem size, allowing the planner to plan further each
episode. However, the problem could not scale or include
height because each cell and its n-way connections must be
explicitly stated in the problem file.

A Numeric PDDL2.1 model To increase the problem
zone, we turned to PDDL2.1 (Fox and Long 2003) which
adds numeric fluents, durative actions and continuous action
effects. Expanding the model to account for entities and
resources required major changes in the domain.

Instead of predicates between cells, we represented each
cell with a numeric function for each dimension (e.g., x cell,
z cell) and a type (e.g., walkable, unsafe). Each cell in the
grid only takes four statements: the declaration, the x and
y values, and the cell type (walkable, unsafe, etc.). Queries
such as “is-north-of” are easily calculated and transitive. This
formulation provided information about distances between
cells, reduced the problem size, and eased scaling.

An added benefit of moving to PDDL2.1 was the ease in
representing inventory and resource collection. Resource
location, type, and quantity could easily be specified using
numbers without adding new predicates or functions.

The PDDL 2.1 model heavily relies on the goal reasoner
to add the goal conditions forcing Alex to visit cells with re-
sources and avoid cells with zombies. Extending the domain
to consider collecting resources is complicated by the fact
that these are randomized. A simple approach is to add a goal
condition to “collect” all resources, but this makes the prob-
lem unsolvable if no resources exist in the current plan zone.
To solve this, the PDDL2.1 model uses a “visited” predicate
to force the planner to collect resources. Similarly, avoiding
zombies requires an “unsafe” annotation for cells around a
zombie. The goal reasoner and PlanManager include these
predicates for resources/zombies within the plan zone.

A Numeric PDDL2.1 model with a plan metric To facil-
itate collecting resources without relying on “visited” pred-
icates, our next model employed plan metrics that maxi-
mized wood and diamond resources in the inventory, through
collect actions. However, the metric alone does not en-
courage the planner to collect the drop, and instead the plan-
ner focuses on a direct trajectory to the target cell at the end
of the corridor. We believe this behavior results from the
bias of a planner toward the shortest plan. This approach
completely ignores the resources, a focal point of this work,
so we exclude this model from further discussion and evalua-
tion. Instead, we employ PDDL+ events with what we call
opportunistic goals.

A Numeric PDDL+ model with opportunistic goals
PDDL+ (Fox and Long 2006) extends PDDL2.1 with in-
dependent processes and exogenous events. It has mostly
been used to define hybrid systems, i.e. models exhibiting
both discrete and continuous behavior, often with non-linear
system dynamics. Indeed, some of the continuous behavior in
Minecraft can only be represented by independent processes
(e.g., health regeneration cannot be directly manipulated by
Alex because Alex needs to eat, which in turn activates a
continuous process increasing his health level at a steady
rate.) On the other hand, events are best suited to model
some of the innate features of Minecraft, such as resources
or hostile entities entering Alex’s field of view. In addition,
PDDL+ events can also be compiled to act as opportunis-
tic goals/plan preferences which allow us to maximize the
collected resources, as described in Section 4.

Opportunistic goals enabled by PDDL+ events are trig-
gered when such resources are observed and need to be col-
lected. Unlike soft goals, which can be ignored by the planner,
opportunistic goals must be satisfied when encountered (e.g.
collect resources when seen along Alex’s path or avoid zom-
bies). Moreover, opportunistic goals are only ever considered
when required (e.g. if Alex has not collected a sufficient
amount of a given resource), otherwise they are ignored to
avoid unnecessary computational effort.

For each type of resource, a propositional fact is
added to the goal condition and falsified by events.
For example, to trigger wood collection we falsify
(wood resource collected):
(:event wood_resource_appears

:parameters (?start_cell - cell ?resource - cell)

:precondition (and (alex_at ?start_cell)

(wood_resource_collected)

(< (wood_in_inventory) (wood_goal))

(< (- (z_coord ?resource) (z_coord ?start_cell)) 5)

(= (resource_type ?resource) 3))

:effect (and (not (wood_resource_collected))))

This event triggers when wood is close to Alex.
There are cells that Alex should avoid at all costs. Zombies

are hostile entities which attack Alex when nearby. Each
strike from a zombie decreases Alex’s health. To trigger
zombie avoidance we falsify (alive):
(:event zombie_damage

:parameters (?start - cell ?zombie_cell - cell)

:precondition (and (alive) (alex_at ?start)

(= (entity_type ?zombie_cell) 100)

(>= (- (z_cell ?zombie_cell) (z_cell ?start)) -1)

(<= (z_cell ?zombie_cell) (z_cell ?start))

(<= (- (x_cell ?start) (x_cell ?zombie_cell)) 1)

(<= (- (x_cell ?zombie_cell) (x_cell ?start)) 1))

:effect (and (not (alive))))

This event triggers when a zombie appears in the plan zone
and when Alex is in striking distance from the zombie.

These goal conditions are satisfied in the initial state (i.e.
set to true by default) and falsified by the event, forcing Alex
to collect the resource or avoid the zombie before continuing
to the target cell. In the absence of resources or zombies, the
resource-related goal conditions remain satisfied throughout.

Overall, the PDDL+ domain allows finding plans which
prioritize immediate acting in the local space, while assuming

45

the subsequent sections of the search space are restricted to
movement only. As mentioned before, the triggered events
also drive the replanning strategy, specifying when to replan,
to efficiently catch changes in the local plan zone without
redundant effort. However, problems with large numbers of
resources and zombies, even in a restricted subproblem, can
quickly become intractable. So we turn to goal reasoning.

4 Goal Reasoning
Goal reasoning enables an actor to deliberate online about
its goals. Roberts et al. (Roberts et al. 2016b) formalize
goal reasoning as progression of goals according to a goal
lifecycle. A goal is formulated and selected before planning;
these two stages can filter an open world by only formulating
or selecting relevant goals. Let a plan π = 〈ai..an〉 be a
sequence of actions ai..an. A goal is then expanded into one
or more plans Π and a single plan π ∈ Π is committed for
execution; goal reasoning naturally extends to approaches
that find more than a single plan. When π is sent for execu-
tion the goal is dispatched; the simplest system sequentially
executes each action ai ∈ π. A goal impacted during execu-
tion is evaluated for the best course of action and resolved
appropriately. Example resolve strategies include repairing
π, replanning to create a new π, regoalling, etc. We focus on
replanning in this work.
Goal Reasoning Example Our study focuses on three goals
from the introductory paragraph: get to the end of the hall-
way (rooms excluded for the moment), avoid zombies, and
collect resources. These goals are formulated in a combined
‘Complete Hallway’ goal that is selected once the hallway
is constructed. The PlanManager expands a plan for this
goal by converting the goal to PDDL and calling an auto-
mated planner; the zombie and collect goals are translated to
the correct PDDL model, as described earlier. The planner
automatically commits to the first plan it finds.

The ‘Complete Hallway’ goal is dispatched by preparing
the full plan for execution. But because the Controller only
executes one command at a time, the goal reasoner creates
subgoals of ‘Complete Hallway’ so each action of the plan
can be tracked independently. For example, a move-north ac-
tion is converted to a subgoal to be at the location north of the
player. The goal reasoning system automatically selects the
subgoal, skips planning since it is not needed, and dispatches
the single action to the controller. The controller completes
the action and reports back to the subgoal. When the subgoal
completes, ‘Complete Hallway’ is notified and can check to
see if any of its goals are impacted. Changes during exe-
cution may result in the need to replan. Further, Alex will
clearly need to replan when all actions of the current plan are
completed. Alex might also replan when zombies, wood, or
diamonds appear. In all cases, the goal reasoner determines
when replanning is needed.
Goal Reasoning with Planning So far, we have explained
how opportunistic goals in PDDL+ allow a planner to syn-
thesize a plan under partial observability and how a goal
reasoning system adjusts goals based on Alex’s context. Con-
sider again Figure 2. The resulting plan for either plot moves
Alex north two blocks to collect the diamond, east and north

around the zombie, and west toward the intermediate target.
But there is a problem with the resources in row z-9 that lie
outside the plan zone: the planner is blind to them because
they are not reported in the PDDL model. It could replan at
every step but this may waste computational effort or need-
lessly slow down Alex. There are several more reasonable
choices for the goal reasoner that we explore: (1) It could
use a Small plan zone to identify opportunities close to Alex
and force replanning at fixed intervals. (2) It could use a
Large plan zone, which could result in increased planning
cost when there are no opportunities available. (3) It could
use a Dynamic plan zone by starting with a Small plan zone
when there are no nearby opportunities but increase the zone
size when opportunities surface in the observation window.
We next explore the tradeoffs of these three choices.

5 Evaluation
In this section, we assess three research hypotheses con-
cerning the use of an expressive planning model and a goal
reasoning system: (1) The use of a Dynamic planning zone
by the goal reasoner will significantly reduce planning effort
when compared with always using a large planning zone;
(2) the use of PDDL+ to collect resources via events will
significantly reduce planning effort over the numeric PDDL
model for any zone size; and (3) the use of the Dynamic
plan zone or PDDL+ will not significantly reduce resource
collection.

Similar to previous A C T O R S I M experiments for
Minecraft, we randomly generate hallways consisting of 10
sections. Each section is 20 blocks wide and 15 blocks long,
and contains one randomly placed element: a wood drop, a
diamond drop, or a caged zombie.

The goal reasoning system selects for the planner a plan-
ning zone, defined as the number of cells away from the
player in each of the following directions: (front, back, left,
right). The Small plan zone of (5,1,3,3) has the benefit of
a fast planning time at the expense of frequent replanning
and possibly missing opportunities to collect resources. The
Large plan zone of (8,3,8,8) reduces the number of replanning
episodes at the cost of increasing the overall computational
effort and planning time; however, it is less likely to miss
opportunities. The Dynamic plan zone defaults to the Small
zone until a resource is within 8 blocks, at which point it en-
larges the plan zone in the direction needed to reach that drop.
In effect, the goal reasoner is varying the replanning strategy
as imposed by the plan zone. We leave more sophisticated
zone-selection strategies for future work.

For this study, we limit the models and planning systems
to focus on our research questions. For planning models,
we focus on the numeric PDDL2.1 model that uses “visited”
and “unsafe” predicates as well as the PDDL+ model that
uses opportunistic goals. For a planner, we used the POPF
planner extended for reasoning with PDDL+ processes and
events (Coles and Coles 2014). This choice was motivated by
the capabilities of the planner which considers all features of
our models. Using the same planner for all models guarantees
fair comparison between the different variants.

Table 1 summarizes 180 runs: 30 runs for each of the
six zone/model combinations. The S(N), L(N), and D(N)

46

rows show the numeric PDDL2.1 runs, whereas rows de-
noted S(+), L(+), and D(+) summarize the PDDL+ runs
for Small, Large, and Dynamic planning areas, respectively.
The columns summarize the mean and standard deviation
for each of the response variables: cumulative CPU time,
number of nodes evaluated, and memory as well as the ra-
tio of items collected versus those available in the hallway.
A two-factor, paired-sample ANOVA for zone and course
across each metric reveals that zone size significantly effects
the results of each metric (p ≈ 0 for all five metrics), justi-
fying pairwise comparisons between the zone results. We
now make a number of pairwise comparisons to examine how
strongly the evidence supports our three research hypothe-
ses. We report p-values for the Tukey Honest Significant
Difference test (α = 0.05) but we verified these results using
Scheffe’s method, which is more robust to potential effects
of heteroscedasticity.
A dynamic planning zone reduces planning effort. The
evidence suggests that the Dynamic plan zone can signifi-
cantly reduce planning time while not using more memory.
It is evident that in either the numeric or PDDL+ models
there is 70-90 second difference in the CPU time between the
Small and Large planning zones. As expected, the Dynamic
plan zone is significantly different from the Large planning
zone (p < 0.0001) and significantly similar to the Small plan-
ning zone (p ≈ 0.84 for the numeric PDDL and p ≈ 0.99
for PDDL+). In terms of nodes evaluated and memory, the
Dynamic uses more nodes but less (or similar) memory than
Small zone. However, the Dynamic zone never uses signifi-
cantly more nodes or memory than the Large zone.
A PDDL+ model is less computationally intensive than
a numeric PDDL2.1 model. The evidence is mixed. A
PDDL+ model uses a statistically similar number of nodes as
a PDDL2.1 model. It uses significantly more CPU time for
the large zone but is similar for the other two zones. Finally,
it uses significantly less memory for the Small zones and
similar time for the Large and Dynamic zones. This is seen
by comparing the Time, Nodes, or Memory usage for S(N)
with S(+), L(N) with L(+), or D(N) with D(+).
The dynamic plan zone (as selected by goal reasoning) or
PDDL+ do not reduce resource collection The evidence
suggests that neither goal reasoning nor PDDL+ significantly
reduces Alex’s ability to collect resources. This question is
answered by examining the ratios of wood and diamonds
collected. At first glance, it may appear that these ratios are
very different because the means vary so much. Examining
the pairwise comparisons reveals a significant difference for
the Small zone. Because there exists no significant difference
between collection results for most of the zone/model combi-
nations, it is clear that adding goal reasoning or PDDL+ to
the system allowed it to maintain resource collection at the
Large zone level.
Discussion The results show that goal reasoning can signif-
icantly reduce the planning time by a factor of 15-20. The
results did not show that PDDL+ provided a further reduction
in planning effort, but rather both models exhibited similar
performance. Further, neither approach fared worse at re-
source collection than the Large zone, which was a baseline

Time Nodes Memory Wood Diamond
x̄ s x̄ s x̄ s x̄ s x̄ s

S(N) 2.0 0.1 304 50 134 2 0.47 0.47 0.27 0.32
S(+) 3.4 0.5 312 44 110 9 0.25 0.28 0.28 0.29
L(N) 74.2 12.3 12439 21870 120 40 0.96 1.01 0.94 0.87
L(+) 93.4 13.0 7508 16175 104 31 0.65 0.33 0.64 0.38

D(N) 4.3 2.2 1804 3339 124 5 0.66 0.64 0.75 0.78
D(+) 3.5 0.8 446 204 124 9 0.68 0.77 0.64 0.74

Table 1: Summary of statistics for the hallway study.

upper bound. However, the PDDL+ provides a much eas-
ier and more encompassing model for resource collection,
which reduces the computational effort exerted by the goal
reasoning system.

6 Related Work
Perhaps the closest planning work related to our use of oppor-
tunistic/soft goals in an open world is the Open World Quan-
tified Goals of Talamadupala et al. (2010), where quantified
goals allow the planner to expand on goals that may appear
during execution. An earlier work by Etzioni et al. (1997)
used Local Closed-World statements to integrate an open
world with a closed-world planner. In contrast to employ-
ing quantification or locality, a PDDL+ opportunistic goal is
always in the problem’s goal conjunction and a conditional
event enables the goal.

A variety of research systems have been built to study
Minecraft. The first, called BurlapCraft, by Abel et al. (2015)
integrated the BURLAP machine learning platform1 and ex-
amined how to use knowledge to select actions. More re-
cently, Microsoft has released an open-source platform called
Malmo2 that provides extensive support for multiple pro-
gramming languages, the ability to set up experiments, as
well as support for reinforcement learning. A C T O R S I M is
primarily distinguished from these other systems in its use
of goal reasoning, existing experiments using deep learning
(Roberts et al. 2016c), and integration with other simulators
including robotics platforms. Each system has merits depend-
ing on the task at hand, but none of these systems supported
observations when we first examined them.

Recently, AI research in game-playing concentrated on
exploiting Deep Learning techniques, particularly deep Q-
networks (DQN) which beat expert human players on a
range of ATARI games (Mnih et al. 2015). ATARI games
have also been tacked using classical planning (Lipovetzky,
Ramirez, and Geffner 2015). More advanced games such
as Starcraft and Minecraft require a non-trivial transition
to a much more complex environment. Recent work (e.g.,
(Bonanno et al. 2016; Tessler et al. 2016; Abel et al. 2015;
Usunier et al. 2016)) shows promise in this area, though
these studies examine simplified models or restricted sub-
tasks. Massive training data sets, sparse rewards, vast state-
action spaces, and difficult-to-define evaluation functions sig-
nificantly limit the scaling potential and efficiency of DQNs.

1
http://burlap.cs.brown.edu/

2
https://github.com/Microsoft/malmo

47

In fact, Starcraft and Minecraft games are both prime exam-
ples of domains from automated planning (e.g. the Settlers
domain (Long and Fox 2003)) where long-term, high-level
goals need to be achieved.

Prior work has explored the use of PDDL to represent
Minecraft (Branavan et al. 2012). This paper presents the first
PDDL+ domains of Minecraft. Similar domains were previ-
ously defined in either purely propositional PDDL (IPC Com-
mittee 1998) or non-temporal PDDL2.1 with numeric fluents
(Fox and Long 2003). PDDL+ is designed to compactly repre-
sent hybrid systems with mixed discrete/continuous behavior
through processes and events. In recent years, PDDL+ plan-
ning has become a rising trend in AI and multiple approaches
have been proposed to deal with PDDL+ domains (Shin and
Davis 2005; Cashmore et al. 2016; Coles and Coles 2014;
Della Penna et al. 2009; Piotrowski et al. 2016).

In the past PDDL+ was combined with Hierarchical Task
Networks (HTNs) for goal-driven autonomy, implemented in
the SHOP2PDDL+ planner (Klenk et al. 2013; Molineaux et
al. 2010). In contrast to hierarchical approaches, our work
focuses on the first PDDL representation. We plan to incor-
porate more recent developments in hierarchical planning
(e.g., (Ghallab, Nau, and Traverso 2016; Alford et al. 2016;
Dvorak et al. 2014; Shivashankar et al. 2012)).

Soft goals are hard to express in PDDL. PDDL2.1 (Fox
and Long 2003) introduced the notion of plan metrics en-
abling specification of soft goals and enhancing the quality
of solutions. They could be useful in the context of assessing
alternative plans. However, few planners actually employ
plan metrics and they are limited to one specified optimizable
function. For example, suppose each action modified the re-
sources used or acquired, the character’s change in health or
food, and the number of steps to completion. Then, a planner
could focus on producing diverse plans that span the trade
offs. But plan metrics can only minimize or maximize the
quality function which can exert unnecessary computational
effort by collecting resources well beyond Alex’s needs (and
overloading Alex’s inventory in the process).

On the other hand, PDDL3.0 (Gerevini and Long 2005)
also incorporated plan metrics and combined it with the con-
cept of planning with preferences which enable better rea-
soning with multiple objects and a more accurate method
for specifying the desired plan characteristics. Planning with
preferences is largely based on Linear Temporal Logic (LTL)
(Pnueli 1977). PDDL3.0 provides a strong feature base for
representing the Minecraft scenario. Numerical variables,
plan metrics, and preferences are well-suited to build a con-
cise and expressive Minecraft planning domain including
maximizing collected resources when available. However,
defining preferences in this manner can inflate the size of the
domain and state variables sets, and significantly increase
planning time.

These advanced features – plan metrics from PDDL2.1
and preferences from PDDL3.0 – could provide interesting
and successful variants extending the modeling in this paper.
The numeric PDDL model in this paper provides a solid
foundation for assessing these features in Minecraft.

7 Closing Remarks
We have presented the first formulation of the Minecraft
domain in PDDL+ extended with resource collection and
zombie avoidance tasks. We also showed how events, a
native feature of PDDL+, can be used to model opportunistic
goals. Finally, we presented a goal reasoning approach to
reducing the computational effort for finding a viable plan by
selecting the zone size and partitioning the original problem
into planning and observation zones. To the best of our
knowledge this is the most extended model of Minecraft in
AI, though it is only a preliminary stage of a larger project.

Future work will focus on modeling and solving the mo-
tivating example. It will include a revision of the plan zone
and visibility, not only adjusting the size of the zone but also
the shape which prunes areas of no interest while including
areas with desirable resources and entities. We will also aim
to expand the PDDL+ model to account for the continuous
behavior in Minecraft, such as health management. Health
decreases when attacked by hostile mobs, but regenerates
slowly when resting. We will expand the list of happenings,
actions, and goals to reason with and manage the agent’s
health. PDDL+ events are a natural fit for this modeling.

Our approach grew from a desire to accurately model
health, food, resources, and entities in Minecraft, for which
PDDL+ events and processes are best suited. It also provides
a foundation for incorporating mixed discrete/continuous
dynamics should this be desired in future domains. External
happenings often modify the state of the environment without
interference from the agent; we believe there is a great deal
to learn from extending the model in this way.

A long-term focus of future work will enable the goal rea-
soning for long-duration autonomy. While it may be possible
to manage short-term goals such as those in the motivat-
ing quest, we are interested in leveraging goal reasoning
and automated planning for an agent that perpetually learns
(Roberts et al. 2016a). Such an agent will need to manage its
own learning agenda to master new tasks, revise previously
learned tasks, and halt learning for already mastered tasks.

A final area of future work is in extending the model
to incorporate Deep Learning. Minecraft was previously
attempted using Deep Reinforcement Learning. We plan
to compare the two approaches to identify their relative
strengths. Deep Learning could manage short-term reac-
tive behavior (i.e. self-defense) while planning with goal
reasoning could manage long-term deliberative behavior.

Authors are sometimes circumspect about the actual devel-
opment, design choices, and computational requirements of
using a particular ’brand’ of planning. In contrast, we have
set out in this work to identify exactly our representational
and design choices to the greatest extent possible. While
it is unreasonable to expect a laymen to understand the nu-
ances of automated planning, PDDL, or of effective domain
modeling, we can at the least point to the active goal of the
goal reasoning system, examine the domain or problem files
produced, and examine the search trace of the planner to ex-
plain its decision. The transparency of the approach we have
outlined is especially noteworthy in an era where AI systems
are being called to arrive at sensible and correct output while
also making transparent their decision-making process.

48

Minecraft presents worthwhile challenges for studying
planning with respect to a simulated environment. As we
moved from a propositional representation to a more detailed
PDDL+ representation, the planners available to us dimin-
ished considerably – from close to a hundred to less than
a few. Were we to move in the direction of PDDL3.0 fea-
tures, a similar problem would occur. Similarly, few planners
support advanced PDDL2.1 features such as metrics beyond
action cost. Our findings underscore the need for the con-
tinued advance of planning systems – perhaps through the
competitions – to better support the range of PDDL features
used by applications.

Acknowledgments
We thank the anonymous reviewers whose comments im-
proved this paper. MR, DA, and PB thank NRL for support-
ing this research.

References
Abel, D.; Hershkowitz, D. E.; Barth-Maron, G.; Brawner, S.;
O’Farrell, K.; MacGlashan, J.; and Tellex, S. 2015. Goal-
based action priors. In ICAPS, 306–314.
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and Aha,
D. W. 2016. Hierarchical planning: Relating task and goal
decomposition with task sharing. In IJCAI. AAAI Press.
Bonanno, D.; Roberts, M.; Smith, L.; and Aha, D. W. 2016.
Selecting Subgoals using Deep Learning in Minecraft: A
Preliminary Report. In IJCAI Workshop on Deep Learning
for Artificial Intelligence.
Branavan, S.; Kushman, N.; Lei, T.; and Barzilay, R. 2012.
Learning high-level planning from text. In Proc. of the An-
nual Meeting of the Assoc. for Comput. Linguistics, 126–135.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
ICAPS, 583–591.
Coles, A. J., and Coles, A. I. 2014. PDDL+ Planning with
Events and Linear Processes. In ICAPS, 74–82.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrigila,
B. 2009. UPMurphi: A Tool for Universal Planning on
PDDL+ Problems. In ICAPS, 106–113. AAAI.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible ANML actor and planner in robotics.
In Planning and Robotics (PlanRob) Workshop (ICAPS),
Portsmouth, United States.
Etzioni, O.; Golden, K.; and Weld, D. S. 1997. Sound and
efficient closed-world reasoning for planning. AIJ 89(1):113
– 148.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR
20:61–124.
Fox, M., and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. JAIR 27:235–297.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. In The Language of the 5th IPC.
Technical Report, Department of Electronics for Automation,
University of Brescia, Italy, volume 75.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge Univ. Press.
IPC Committee. 1998. PDDL : the planning domain defnition
language. Technical report, Yale Center for Computational
Vision and Control. The committee consisted of: M. Ghallab
and A. Howe and C. Knoblock and D. McDermott and A.
Ram and M. Veloso and D. Weld and D. Wilkins.
Klenk, M.; Molineaux, M.; and Aha, D. 2013. Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Computational Intelligence 29(2):187–206.
Lipovetzky, N.; Ramirez, M.; and Geffner, H. 2015. Classical
planning with simulators: results on the atari video games.
In IJCAI, 1610–1616.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysis. JAIR 20:1–59.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; and Ostrovski, G. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-
driven autonomy in a navy strategy simulation. Technical
report, DTIC Document.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and
Mercorio, F. 2016. Heuristic Planning for PDDL+ Domains.
In IJCAI, 3213–3219.
Pnueli, A. 1977. The temporal logic of programs. In Foun-
dations of Computer Science, 1977., 18th Annual Symposium
on, 46–57. IEEE.
Roberts, M.; Hiatt, L. M.; Coman, A.; Choi, D.; Johnson, B.;
and Aha, D. 2016a. Actorsim, a toolkit for studying cross-
disciplinary challenges in autonomy. In Fall Symposium on
Cross-Disciplinary Challenges in Autonomy.
Roberts, M.; Shivashankar, V.; Alford, R.; Leece, M.; Gupta,
S.; and Aha, D. 2016b. Goal reasoning, planning, and acting
with ActorSim, the actor simulator. In Proceedings of ACS.
Roberts, M.; Alford, R.; Shivashankar, V.; Leece, M.; Gupta,
S.; and Aha, D. W. 2016c. A C T O R S I M: A toolkit for
studying goal reasoning, planning, and acting. In Working
notes of the ICAPS PlanRob Workshop.
Shin, J.-A., and Davis, E. 2005. Processes and Continuous
Change in a SAT-based Planner. AIJ 166(1):194–253.
Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012. A
hierarchical goal-based formalism and algorithm for single-
agent planning. In AAMAS, volume 2, 981–988. Int. Found.
for AAMAS.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermer-
horn, P.; and Scheutz, M. 2010. Planning for human-robot
teaming in open worlds. ACM TIST 1(2):14:1–14:24.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D. J.; and
Mannor, S. 2016. A Deep Hierarchical Approach to Lifelong
Learning in Minecraft. arXiv preprint arXiv:1604.07255.
Usunier, N.; Synnaeve, G.; Lin, Z.; and Chintala, S. 2016.
Episodic Exploration for Deep Deterministic Policies: An
Application to StarCraft Micromanagement Tasks. arXiv
preprint arXiv:1609.02993.

49

Towards Planning With Hierarchies of
Learned Markov Decision Processes

John Winder, Shawn Squire, Matthew Landen, Stephanie Milani and Marie desJardins
{jwinder1, ssquire1, mlanden, stemila1, mariedj}@umbc.edu
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, MD 21250

Abstract

Decision-making agents face immensely challenging
planning problems when operating in large environ-
ments to solve complex tasks. A hierarchy of abstract
Markov decision processes (AMDPs) provides a frame-
work for decomposing such problems into distinct, re-
lated subtasks or subgoals. AMDP hierarchies (Gopalan
et al. 2017) grant considerable speedup over related re-
cursively and hierarchically optimal methods such as
MAXQ and options. Each AMDP acts as a subgoal, and
each is itself a planning problem with a local model
and state space abstracted from a ground MDP. Cur-
rently, agents are able to plan more efficiently by us-
ing a reduced state space at the appropriate level of ab-
straction; however, they require their subtask models to
be specified by a human expert (Gopalan et al. 2017).
We describe an approach for automating model estima-
tion by combining the R-MAX algorithm with AMDPs.
We compare the resulting structures, R-AMDPs, with a
similar approach, R-MAXQ (Jong and Stone 2008), and
motivate its advantages. Ultimately, R-AMDPs repre-
sent the first step in learning AMDP hierarchies dynam-
ically, completely from an agent’s experience.

1 Introduction
For decision-making agents operating in large, rich envi-
ronments such as factory floors or kitchens, the resulting
planning problems are often extremely challenging due to
the immense number of states and the need to achieve a
complex, precise sequence of actions (Bollini et al. 2012;
Knepper et al. 2013). Typically, the state–action space of
these domains grows combinatorially with the number of
objects present in the environment. Standard planning algo-
rithms require an agent to explore this space at its lowest
level, resulting in a difficult search over long sequences of
actions.

For example, a taxi-driving agent might be required to
navigate to pick up a passenger and then drop them off at
a specific landmark of the passenger’s choosing. Planning
optimally over the lowest level of actions to deliver the pas-
senger to their desired landmark could necessitate searching
over all possible states and considering all of the naviga-
tional actions needed to reach each possible landmark. As
the number of landmarks and size of the world increases, the

complexity of action sequences likewise increases combina-
torially, resulting in an increasingly difficult search problem.

The concept of hierarchical planning and reinforcement
learning aims to partition such problems into subtasks, al-
lowing agents to reason about relevant objects and actions
at the appropriate level of abstraction and context. This idea
is motivated by the ways humans tend to think of and de-
scribe solutions for complex tasks, especially for the even-
tual goal of human-agent interaction through natural lan-
guage commands. For the taxi example, when provided with
only a general instruction like “take this passenger to that
destination,” the agent ought to execute the optimal path to
solve that goal. It is unappealing for the agent to require
unnecessarily detailed instructions, such as “go north one
step, go west one step” to solve the task. Instead, the global
goal can be decomposed hierarchically into subtasks (e.g.,
“get the passenger” and “put the passenger to the destina-
tion”), which in turn consist of atomic, grounded actions.
The agent can take advantage of these intermediate repre-
sentations to more readily repeat certain useful patterns of
behaviors. These subtasks serve as reusable skills that help
the agent traverse state space more effectively and can trans-
fer to new tasks in a related domain. With a hierarchical
decomposition, any given subtask is smaller in state-action
space than the original; often, this translates into a decision-
making problem that is easier to solve overall. Moreover,
learned subtask policies may be shared among parent tasks,
immediately facilitating knowledge transfer. Employing hi-
erarchies for planning, thus, dually aids the issues of rep-
resentation and computation, allowing agents to store and
reuse learned behaviors to solve new domains more rapidly.

A recently developed method of planning with a hierarchy
of abstract Markov decision processes (AMDPs) presents
a promising approach to decomposing a domain into a
graph of independent subgoals (Gopalan et al. 2017). While
AMDPs are appealing for improved planning in complex
domains, they require a large amount of expert knowledge
to design: the models must be fully specified at every level
by a designer, which is not always feasible or suitable. Ul-
timately, agents should learn the structure and models of
these hierarchies from data and experience without relying
on a designer. To that end, we present a novel extension of
AMDPs called R-AMDPs that uses the R-MAX method of
optimistic model estimation to approximate the transition

50

and reward functions for all subtasks.

2 Background
A Markov decision process (MDP) is a standard structure
for describing a decision-making problem. An MDP is rep-
resented as a five-tuple, {S,A,T,R, E}, respectively con-
sisting of a set of states, a set of actions, the transition prob-
ability function (T : S × A × S → [0, 1]), a reward func-
tion (R : S × A × S → R), and a set of terminal states
(E ⊂ S) from which there are no further actions. Reinforce-
ment learning (RL) is a paradigm where an agent lacks direct
access to T or R, while planning problems typically assume
an agent knows these precisely. A domain describes a distri-
bution of related MDPs from which a specific task MDP is
drawn.

An object-oriented MDP (OO-MDP) (Diuk, Cohen, and
Littman 2008) is designed to facilitate learning in domains
with large state spaces. It extends the traditional MDP model
by representing the domain as a set of object classes, C,
each with a set of predefined attributes, Att(C). An ob-
ject, o, belongs to a single object class and has values as-
signed for each attribute associated with the class. The state,
s, of a domain is defined as the union of the attribute val-
ues for all objects in the domain, s =

⋃O
i=1state (oi) where

O = {o1, o2, . . . , on} for n objects in the domain.
This factored representation gives several benefits over

an MDP that represents states symbolically or as a vector
of features alone. First, OO-MDPs can more easily repre-
sent the relevance of objects and classes to specific goals
and actions. Second, objects instantiated differently but with
equal values (i.e., given objects o1 and o2 of object class c,
o1 = o2 ⇐⇒ ∀a ∈ Att(c) : o1.a = o2.a) are considered
equivalent, so they may be handled interchangeably. Ad-
ditionally, propositional functions, while not required, can
be declared over objects to capture relations among them
or global properties of states. Finally, as a standardization
of state representation, the OO-MDP framework allows for
greater extensibility and ease of implementation.

The R-MAX algorithm (Brafman and Tennenholtz 2002)
describes a model-based reinforcement learning approach
where an agent maintains an approximate representation of
both T and R that is iteratively updated and improved. The
agent plans with this learned model, following the princi-
ple of optimism under uncertainty. R-MAX encourages ex-
ploration by initializing unknown rewards with a high posi-
tive value (RMAX, the upper bound of R), and the transition
approximations as having a probability of zero. An R-MAX
agent continues to behave optimistically, recording the oc-
currences of observed rewards and transitions, until some
threshold is reached and the respective reward or transition
is considered “known.” R-MAX typically finds an optimal
or near-optimal policy and allows agents to generalize more
rapidly to similar MDPs from the same domain.

MAXQ (Dietterich 2000) is a hierarchical reinforcement
learning method for decomposing a value function for a pol-
icy into subtasks corresponding to subgoals identified by the
human designer. Given an MDPM , MAXQ decomposesM
into a set of n MDPs {M0,M1, . . . ,Mn}, one for each sub-

task. These MDPs are organized into a “task hierarchy,” a
directed acyclic graph which shows the relationship from a
root (global) goal to child tasks down to leaf tasks that use
the primitive actions of M . MAXQ uses the idea of a com-
pletion function to represent the expected discounted reward
of current task i after completing subtask (or action) a while
in state s, C(i, s, a). Then, action-value is decomposed re-
cursively, Q(i, s, a) = V (a, s) + C(i, s, a), in terms of the
value of the state for the child a (which depends on Q at that
lower level) plus the completion function of the respective
task. MAXQ achieves a recursively optimal solution, where
the policy is optimal at each level of the hierarchy. Other
frameworks, such as SMDPs (options) (Sutton, Precup, and
Singh 1999), provide a hierarchically optimal solution that
achieves the maximum reward at the base level (Dietterich
2000). Therefore, plans in MAXQ can be suboptimal from a
global perspective. However, in trading total optimality for
near-optimal solutions, recursively optimal methods can of-
fer significantly faster planning times.

R-MAXQ (Jong and Stone 2008) combines the hierar-
chical decomposition of MAXQ with the optimistic model-
based exploration of R-MAX. The algorithm simultaneously
estimates the reward and transition functions of a ground
MDP, computing the model dynamics of higher-level tasks
recursively up from that task’s descendants. After the knowl-
edge of the ground MDP is propagated up the task hierarchy,
the agent is able to plan at an abstract level using a Greedy-Q
policy. After a bounded amount of exploration, the agent’s
hierarchical model will converge to a nearly optimal solu-
tion. This learning algorithm will serve as a baseline to com-
pare the new approach described in Section 3.

Algorithm 1 Planning with an AMDP hierarchy
function SOLVE(H)

GROUND(H,ROOT(H))
function GROUND(H, i)

if i is primitive then . recursive base case
s′0 ← EXECUTE(i) . obtain next ground state

else
s′0 ← AMDP-PLAN(H, i)

return s′0
function AMDP-PLAN(H, i)

si ← Fi(s) . project the environment state s
π ← PLAN(si, i)
while si /∈ Ei do . execute until termination

a← π(si)
j ← LINK(H, i, a) . a links to child task j
s′0 ← GROUND(H, j)
si ← Fi(s

′
0)

return s′0

An abstract Markov decision process (AMDP) (Gopalan
et al. 2017) hierarchy is a framework for decomposing a
complex planning problem into a series of actionable sub-
tasks. Given some ground MDP to solve, an AMDP hierar-
chy is represented as a graph similar to MAXQ. The root
corresponds to the global goal of the MDP, the leaves repre-

51

sent primitive actions to be executed in the ground MDP, and
all other nodes are subtasks that function as the actions of the
parent nodes. A key difference when compared to MAXQ
tasks is that each AMDP task node is itself a complete MDP
possessing its own locally (not recursively) defined reward
and transition functions.

An AMDP is an MDP where each state is an abstracted
representation of the ground MDP. Formally, an AMDP is
a six-tuple {S̃, Ã, T̃, R̃, Ẽ ,F}, consisting of the OO-MDP
components with the addition of a state projection function
of F : S → S̃ for mapping states from the ground MDP into
the abstract state space of the AMDP. T̃, R̃, Ẽ are unique to
the given AMDP, and Ã consists of the AMDP’s child sub-
tasks (either primitive actions or other AMDPs). We define
the hierarchy of AMDPs as H = (V,E), a directed acyclic
graph in which the set of vertices V contains the AMDPs
and primitive actions of the ground MDP, and the edges E
express membership in an AMDP’s action set. Pseudocode
for planning with AMDP hierarchies is given in Algorithm 1

AMDP hierarchies produce optimal policies at each
AMDP. They are analogous to MAXQ hierarchies, and thus
share the benefit of being recursively optimal under the con-
dition that the local state abstraction, reward, and transition
functions are correct. AMDP hierarchies enable the agent
to plan only for subgoals that help achieve the main task
without computing plans for irrelevant subgoals, and allow
planning in stochastic environments. The biggest limitation
of AMDPs has been that the structure and components (the
hierarchy, task nodes, mapping function, task reward func-
tions and transition probabilities) must be specified by an
expert. Thus, we are working towards the first step in learn-
ing AMDP hierarchies: R-AMDPs.

3 Approach
AMDPs with R-MAX (R-AMDPs) are a natural, model-
based extension to AMDP hierarchies, analogous to R-
MAXQ with respect to MAXQ. For this technique, each
R-AMDP in the hierarchy follows the R-MAX approach of
building a model using a maximum-likelihood estimation of
its T̃ and R̃. Thus, R-AMDPs learn the (unseen) model dy-
namics at abstract levels, and use these to plan normally, as
described in Section 2

Following from R-MAX, every R-AMDP maintains ap-
proximations of T̃ and R̃ that are updated after the GROUND
subroutine in the AMDP-PLAN function of Algorithm 1.
For R-AMDP i, each time a transition (s, a, r, s′) is ob-
tained, the reward estimation r̃i : S̃i × Ãi is updated by
r̃i(s, a) ← r̃i(s, a) + r, the approximate transition proba-
bility t̃i : S̃i × Ãi × S̃i is incremented, and the counter of
state-action pair observations ni : S̃i × Ãi is also incre-
mented. When ni(s, a) reaches a threshold of state-pair vis-
its mi, the rewards and transitions are considered “known,”
and thereafter the model is updated with each transition:

R̃i(s, a)← r̃i(s,a)
ni(s,a)

and T̃i(s
′|s, a)← t̃i(s,a,s

′)
ni(s,a)

.

Until the model is known, optimism is used for rewards and

all transitions are assumed to have zero probability∗:

R̃ = RMAX ∀ s ∈ S̃, a ∈ Ã,
T̃i(s

′|s, a) = 0 ∀ s, s′ ∈ S̃, a ∈ Ã.
Thus, each R-AMDP will initially plan by favoring to
explore unknown rewards and transitions until they are
learned.

We hypothesize that the R-AMDP algorithm effectively
trades space (storing the task models) for the favorable prop-
erties of AMDP hierarchies, including faster planning and
pruning of the search space. Additionally, R-AMDPs learn
the abstract rewards and transitions without needing to re-
curse through multiple layers of abstraction to reach the
ground MDP, as R-MAXQ necessitates. Moreover, by com-
puting explicit models for each task, there is greater encour-
agement of exploration at all levels. That is, R-AMDPs are
not just guided to infrequently visited transitions defined at
the lowest level, but are directed to explore optimistically for
every abstract subgoal.

Note that while the mapping functions F may eventually
be learned, for now they are assumed to be provided by an
expert. This requirement is still reasonable because each F
typically consists solely of aggregating, removing, or oth-
erwise reducing the base MDP state space, a task much less
demanding on designers than specifying the full dynamics of
T̃ and R̃ for all AMDPs. Ultimately, our goal is to learn the
hierarchies completely from data, where an agent explores
and discovers subtasks or is trained to solve subtasks sepa-
rately and learns to compose them in an (R-)AMDP hierar-
chy on its own. R-AMDPs, thus, are preferable to AMDPs,
and are a step closer to learning abstract task hierarchies for
complex tasks from data.
Towards Scoring Hierarchies

To learn hierarchies from data, metrics for ranking will
be needed. The optimal metric to rank the success of a R-
AMDP hierarchy versus another hierarchy with an identical
root goal condition is the error between the learned policy
and the optimal policy; however, measuring this loss is non-
trivial because it requires knowledge of the optimal policy,
which is impractical and intractable in complex domains.
Instead, we compare two hierarchies using the number of
states explored as a metric. More state exploration can indi-
cate a hierarchy is suboptimal because unnecessary actions
result in an increased number of states explored.

Another important aspect of R-AMDP hierarchies is gen-
eralization: one hierarchy ought to be sufficient for solving
many goals in the environment domain. Testing generaliz-
ability involves producing multiple goal conditions that may
be solved in the base MDP without any hierarchy and ap-
plying the goal conditions to the R-AMDP. A properly de-
signed R-AMDP should be capable of solving all tasks pos-
sible in the ground MDP, so failure to complete some or all
tasks marks it as an incorrect hierarchy. Since R-AMDPs are
learned, it is possible to over-fit the hierarchy, which reduces
effectiveness for solving general problems.

∗In implementation, a hypothetical terminal state is added to
state space. All transitions lead to it until mi is reached.

52

Finally, a simple but imprecise metric is computational
run-time. One of the major benefits of a R-AMDP is reduced
run-time on complex domains, so a better R-AMDP hierar-
chy should plan and solve a domain faster. Taken together,
these metrics provide direction for assessing the structural
suitability, accuracy, efficiency, and simplicity of R-AMDP
hierarchies.

4 Methodology
To evaluate the performance of R-AMDPs, we will use the
classic Taxi domain (Dietterich 2000). Taxi is a discrete en-
vironment with a taxi agent, passengers, depot locations, and
impassable walls positioned on a constrained map. The ob-
jective is to deliver a passenger from their source location to
their goal location, both of which are any of the depots on
the map. The taxi may move in any cardinal direction that is
not blocked by a wall, pickup a passenger when they share
the same position on the map, or drop a held passenger when
the taxi is at a depot.

Taxi benefits greatly from hierarchical planning, since the
root objective may be decomposed straightforwardly into
several ”layers” of subgoals. The children task nodes for
the root, GET and PUT, are parameterized over the taxi and
the depot location, abstracting away the Cartesian coordi-
nate attributes of the taxi and depots. This abstraction greatly
reduces the state space over which the agent must reason.
Planning is simplified at this level to two subtasks: GET a
passenger from a source depot and PUT them at a goal de-
pot. In addition to the primitive actions PICKUP and PUT-
DOWN for GET and PUT, respectively, both tasks may also
NAVIGATE to any of the depots on the map. Because the sole
knowledge required for NAVIGATE is whether the agent is or
is not at a depot, the exact Cartesian coordinates are extra-
neous and, thus, are abstracted away. The children of each
NAVIGATE task node are the atomic movement actions that
operate in the base MDP. The straightforward abstractions
present in this domain make it an ideal problem to solve
with AMDPs and, thus, R-AMDPs. The AMDP hierarchy
for Taxi has been formalized in previous literature (Gopalan
et al. 2017).

The primary baseline for R-AMDPs is the R-MAXQ
algorithm (Jong and Stone 2008), which combines the
model-based exploration R-MAX with the abstractions of the
MAXQ framework. R-MAXQ provides a similar structure
to R-AMDPs, since both use a MAXQ structure. R-MAXQ
maintains a model solely for primitive actions; changes in
the model propagate up to the estimates of higher-level com-
posite actions. In contrast, each R-AMDP (as a complete
MDP in itself) keeps an independent, self-contained model
(learned via R-MAX). Each R-AMDP is responsible only for
approximating the model defined over its immediate state
space and child subtasks, saving it from the need to re-
cursively compute transition and reward functions from all
nodes to the ground. Additionally, R-AMDPs also receive
all the benefits of state abstraction, but R-MAXQ does not
leverage the state abstraction benefits granted by standard
MAXQ. Therefore, we expect to see better performance for
complex tasks than R-MAXQ.

5 Conclusion
In this work, we propose and motivate an extension to
AMDPs, R-AMDPs, which automatically learn the transi-
tion functions and reward functions from the base MDP
and the given abstraction function, F . R-AMDPs provide
the main benefits of abstraction and planning with AMDPs,
while relaxing some of the constraints for creating an
AMDP. The end goal of this work is for an agent in a com-
plex domain to be able to construct an AMDP task hierar-
chy and then learn the rewards and transitions at each level.
After the agent develops this stratified representation of the
domain, it can generate plans more efficiently and transfer
knowledge between similar tasks.

In the future, R-AMDPs will be extended to learn the ab-
straction function F in addition to the transition and reward
functions, uniquely enabling R-AMDPs to create their own
structure automatically with minimal expert knowledge re-
quired. Finding a method to score candidate AMDP graphs
for ranking generated R-AMDPs is a necessary step for com-
pletely autonomous AMDP generation. R-AMDPs provide
the initial backbone for autonomous planning in complex
domains.

References
Bollini, M.; Tellex, S.; Thompson, T.; Roy, N.; and Rus,
D. 2012. Interpreting and executing recipes with a cook-
ing robot. In International Symposium on Experimental
Robotics.
Brafman, R. I., and Tennenholtz, M. 2002. R-MAX - a
general polynomial time algorithm for near-optimal rein-
forcement learning. Journal of Machine Learning Research
3:213–231.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the 25th International Conference on Ma-
chine Learning.
Gopalan, N.; desJardins, M.; Littman, M. L.; MacGlashan,
J.; Squire, S.; Tellex, S.; Winder, J.; and Wong, L. L.
2017. Planning with abstract Markov decision processes. In
27th International Conference on Automated Planning and
Scheduling.
Jong, N. K., and Stone, P. 2008. Hierarchical model-based
reinforcement learning: R-max+ MAXQ. In Proceedings of
the 25th International Conference on Machine Learning.
Knepper, R.; Tellex, S.; Li, A.; Roy, N.; and Rus, D. 2013.
Single assembly robot in search of human partner: Versatile
grounded language generation. In ACM/IEEE International
Conference on Human-Robot Interaction Workshop on Col-
laborative Manipulation.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.

53

