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Abstract

Dominance relations compare states to determine whether
one is at least as good as another in terms of their goal dis-
tance. We generalize these qualitative yes/no relations to
functions that measure by how much a state is better than
another. This allows us to distinguish cases where the state is
strictly closer to the goal. Moreover, we may obtain a bound
on the difference in goal distance between two states even if
there is no qualitative dominance.
We analyze the multiple advantages that quantitative domi-
nance has, like discovering coarser dominance relations, or
trading dominance by g-value. Moreover, quantitative dom-
inance can also be used to prove that an action starts an op-
timal plan from a given state. We introduce a novel action
selection pruning that uses this to prune any other successor.
Results show that quantitative dominance pruning greatly re-
duces the search space, significantly increasing the planners’
performance.

Introduction
Most classical planners focus on reducing the search space.
Their success greatly depends on their ability to exploit the
structure of the problem in the form of heuristics or pruning
methods. Pruning methods reduce the search effort by elim-
inating redundant states (Pochter, Zohar, and Rosenschein
2011) or avoiding the application of some actions (Wehrle
and Helmert 2012) while preserving at least one optimal
plan. Dominance pruning methods automatically construct
a relation that compares states, to eliminate those that are
dominated by others. Previous approaches define a qualita-
tive relation, �, in which t is said to dominate s (s � t) if it
is at least as close to the goal (Hall et al. 2013). In that case,
s may be safely pruned if its g-value is not lower than that
of t.

We generalize the label-dominance (LD) simulation
method originally devised to compute qualitative domi-
nance (Torralba and Hoffmann 2015) to a quantitative ver-
sion. Instead of a relation, we define a functionD : S×S →
R ∪ {−∞} that measures “by how much” does t dominate
s. A positive valueD(s, t) > 0 means that t is strictly closer
to the goal than s. Negative values bound the difference in
goal distance between t and s.

Theoretically, quantitative dominance has several advan-
tages. First, it may find coarser relations, hereby strength-

ening previous dominance pruning methods. Second, and
more importantly, novel pruning methods may take advan-
tage of the additional information. One way is to trade-off
dominance and g-value. IfD(s, t) > 0 we may prune s even
if its g-value is lower. If D(s, t) < 0 there is no qualitative
dominance but, we can still prune s if its g-value is large
enough. Another way is to use quantitative dominance to
prove that an action a starts an optimal plan from a given
state s, whenever the successor dominates s by an amount
equal to the action cost. We introduce a novel type of prun-
ing, which we call action selection pruning, that prunes any
other successor reducing the branching factor to one.

Empirically, we show that quantitative dominance can
greatly reduce the search space in many benchmark do-
mains, even when compared to the qualitative version. How-
ever, there is a big overhead to perform as much pruning as
possible so approximation methods may be desirable. Ac-
tion selection, on the other hand, achieves an impressive
amount of pruning with very low overhead. Moreover, it
is complementary to previous dominance pruning methods
and it greatly improves their performance in many domains.

Background
A planning task is a tuple Π = 〈V,A, I,G〉. V is a finite
set of variables v, each with a finite domain Dv . A partial
state is a function s on a subset V(s) of V , so that s(v) ∈ Dv

for all v ∈ V(s); s is a state if V(s) = V . I is the initial
state and the goal G is a partial state. A is a finite set of
actions. Each a ∈ A is a tuple 〈prea, eff a, ca〉 where prea
and eff a are partial states, called its precondition and effect,
and c(a) ∈ R+

0 is its cost. An action a is applicable in a
state s if s(v) = prea(v) ∀v ∈ V(prea). In that case, the
result of applying a in s, denoted sJaK, is another state s.t.
sJaK(v) = eff a(v) if v ∈ V(eff a), and sJaK(v) = s(v)
otherwise.

A labeled transition system (LTS) is a tuple Θ =
〈S,L, T, sI , SG〉 where S is a finite set of states, L is a fi-
nite set of labels each associated with a label cost c(l) ∈ R+

0 ,
T ⊆ S × L × S is a set of transitions, sI ∈ S is the start
state, and SG ⊆ S is the set of goal states. A planning
task defines a state space, which is an LTS where: S is the
set of all states; sI = I; s ∈ SG iff G ⊆ s; L = A, and
s
a−→ sJaK ∈ T if a is applicable in s. We will use s ∈ Θ to



refer to states in Θ and s a−→ t to refer to their transitions.
A plan for a state s is a path from s to any sG ∈ SG. The

cost of a cheapest plan for s is denoted h∗(s), and the cost
of a cheapest path from I to s is denoted g∗(s). A plan for
s is optimal iff its cost equals h∗(s) and is strongly optimal
if its number of 0-cost actions (denoted h∗0(s)) is minimal
among all optimal plans for s.

We consider a representation of the planning task as a set
of LTSs on a common set of labels, {Θ1, . . . ,Θk} (Helmert,
Haslum, and Hoffmann 2007; Helmert et al. 2014). When-
ever it is not clear from the context, we will use subscripts
to differentiate states in the state space, Θ (s, s′, t) and
in the individual components Θi (si, s′i, ti). The synchro-
nized product of two LTSs Θ1 ⊗ Θ2 is another LTS with
states S = {(s1, s2) | s1 ∈ Θ1 ∧ s2 ∈ Θ2}, transitions
T = {(s1, s2)

l−→ (s′1s
′
2) | s1

l−→ s′1 ∧ s2
l−→ s′2}, s.t.

(s1, s2) ∈ SG iff s1 ∈ SG1 and s2 ∈ SG2 .

Simulation-Based Qualitative Dominance
This section describes the label-dominance (LD) simula-
tion method we build upon (Torralba and Hoffmann 2015).
Given a planning task with states S, a dominance relation is
a relation �⊆ S × S where s � t implies h∗(t) < h∗(s)
or h∗(t) = h∗(s) and h∗0(t) ≤ h∗0(s). Such relation can
be used to prune states during the search: A search node
ns (representing state s) can be pruned at any point if there
exists a node nt ∈ open ∪ closed s.t. g(nt) ≤ g(ns) and
s � t.

A relation � is goal-respecting if whenever s � t, t ∈
SG ∨ s 6∈ SG. � is a simulation relation if, whenever s � t,
for every s l−→ s′, there exists a transition t l−→ t′ s.t. s′ �
t′. A cost-simulation allows the transition from t to use a
different label of lower or equal cost, i.e., whenever s � t,

for every s l−→ s′, there exists a transition t l′−→ t′ s.t. s′ � t′

and c(l′) ≤ c(l).
In a compositional approach, we take as input a set of

LTSs {Θ1, . . . ,Θk} and compute a relation �i on each Θi

to obtain a goal-respecting cost-simulation of the whole state
space Θ1⊗. . .⊗Θk. LD simulation computes all of them si-
multaneously, using label dominance to ensure that the prop-
erty still holds after merging every Θi.

Definition 1 (LD Simulation) A set {�1, . . . ,�k} of rela-
tions�i⊆ Si×Si is a label-dominance (LD) simulation for
{Θ1, . . . ,Θk} if all �i are goal-respecting and, whenever

s �i t, for all s l−→ s′ ∈ Θi, there exists a transition t l′−→ t′

in Θi s.t. s′ �i t′, c(l′) ≤ c(l), and for all j 6= i, l′ dom-
inates l in Θj given �j . We say that l′ dominates l in Θj

given �j if for all s l−→ s′ ∈ Θj there exists s l′−→ t′ ∈ Θj

s.t. s′ � t′.
Intuitively, t dominates s in Θi if, for every outgoing tran-

sition from s, t has an at least as good transition where the
targets are compared according to�i and the labels are com-
pared in all other Θj to ensure that there is no negative side
effect. For any LD simulation {�1, . . . ,�k}, we can define
a relation � s.t. s � t iff si �i ti for each Θi. This rela-

TA TB
dr

lA lB

(a) Θ1 (truck)

PA PT PB

lA lB

dr drdr

(b) Θ2 (package)

Figure 1: LTSs describing our logistics running example.

tion is a goal-respecting cost-simulation and hence, a valid
dominance relation for the state space Θ ≡ Θ1 ⊗ . . .⊗Θk.

A typical example is a logistics task where a single truck
must transport n packages from location A to B. Figure 1
shows the LTSs of the case with a single package. In this
example, LD simulation finds a relation where PA � PT �
PB , i.e., having a package at its destination is at least as good
as having it in the truck, which is at least as good as having
it anywhere else. This holds independently of the position
of the truck or the other packages in case there are any. This
allows to prune, for example, state 〈TA, PA〉 if 〈TA, PT 〉 has
lower or equal g-value. This is quite useful, as it prunes
away any state in which a package has been unloaded in
any location other than its destination. However, in the next
sections we see that quantitative dominance can do much
more.

Quantitative Dominance
First, we generalize the definition of dominance relations.

Definition 2 (Quantitative Dominance Function) A func-
tion D : S × S → R ∪ {−∞} is a quantitative dominance
function for an LTS Θ iff D(s, t) ≤ h∗(s) − h∗(t) and, if
h∗(s) = h∗(t) and h∗0(s) < h∗0(t), then D(s, t) < 0.

Intuitively, if D(s, t) > 0, then t is strictly closer to the
goal than s; if D(s, t) = 0 then t is at least as close to the
goal as s; and if −∞ < D(s, t) < 0, t can get as close
to the goal as s by paying a price of −D(s, t). Finally, if
D(s, t) = −∞, we did not discover any dominance of t over
s. The second part of the definition ensures that the pruning
is safe in domains with 0-cost actions, where s should not be
dominated by t if it is in the path from t to the goal. Given a
function D, we can define dominance relations based on it.

Definition 3 (Quantitative Dominance Relation) Let D
be a quantitative dominance function on an LTS Θ and let
C ∈ R be a constant. We define the C-dominance relation
as s �CD t iff D(s, t) ≥ C.

This generalizes qualitative dominance, since �0
D is a

qualitative dominance relation. For any other �CD, we dis-
tinguish between positive and negative dominance relations
depending on whether C > 0 or C < 0. For unspecified C,
s �CD t serves as a shorthand for D(s, t) > −∞.

Quantitative Compositional LD Simulation
We follow a compositional approach. Given a set of LTSs
{Θ1, . . . ,Θk}, we define a quantitative dominance for each
of them so that their aggregation is a quantitative dominance



function of the state space of the planning task, Θ1 ⊗ . . . ⊗
Θk.

To operationalize this definition, we draw upon LD simu-
lation relations. Let s and t be two states for which s � t.
Then, in the standard notion of simulation any plan πs for s
must also be a plan for t. As this is too restrictive for deriv-
ing useful dominance relations, LD simulation allows to use
different labels in the plan πt from t and, if a noop action is
considered, πt can be shorter than πs. A limitation is that
it still requires the plan for t not to be longer than that from
s. This is fine in qualitative dominance because there is usu-
ally a strong correlation between plan cost and length (Radzi
2011). However, it is an impediment to infer negative dom-
inance since if there exists a path t→∗s of cost c we would
like to infer that D(s, t) ≥ −c. Consider the position of the
truck in our example. In an LD simulation, TA 6�1 TB be-

cause of the transition TA
lA−→ TA for which TB does not

have any counterpart (noop or lB do not dominate lA in the
other LTSs). However, since the movements of the truck do
not depend on any other variable, D1(TA, TB) = −1 be-
cause from TB we can always reach TA without having any
side effects on other variables.

We avoid this restriction by considering weak simulation
relations (Hennessy and Milner 1985). Weak simulations
consider a set of internal τ -labels that are not relevant to de-
scribe the behavior of the system. Therefore, each transition
s

l−→ s′ can be simulated by a path t τ−→∗u l−→ u′
τ−→∗t′

s.t. s′ � t′. In our case, τ -labels are those that do not have
any preconditions or effects in other LTSs, like dr for the
position of the truck in our example.

Definition 4 (τ -label) Let {Θ1, . . . ,Θk} be a set of LTSs.

Label l is a τ -label for Θi iff s l−→ s ∈ Θj ∀Θj 6= Θi, s ∈
Θj .

The particular actions in a τ -path are not relevant, only its
cost is. We model this by defining the τ -distance between
any two states.

Definition 5 (τ -distance) Let s and t be two states in an
LTS Θ. The, τ -distance from s to t, written hτ (s, t), is the
cost of a minimum-cost path from s to t in Θ using only
transitions with τ labels or∞ if no such path exists. 0-cost
transitions are considered to have an infinitesimal cost ε.

A non-goal state can only dominate a goal state if it has
a τ -path to the goal, so we define a goal-respecting function
in terms of the τ -distance.

Definition 6 (Goal-respecting function) A function D is
goal-respecting for Θ iff for all s ∈ SG and t ∈ S,
D(s, t) ≤ maxsg∈SG −hτ (t, sg).

Finally, we extend the definition of label dominance to
the quantitative case, by defining a function DL(l, l′) that
captures the relation between labels.

Definition 7 (Label-dominance function) Let D be a
function for Θ, we define its corresponding label-dominance
function asDL(l, l′) = min

s
l−→s′∈Θ

max
s
l′−→s′′∈Θ

D(s′, s′′)

IfDL(l, l′) > 0, then every time that we can apply l in any
state s, applying l′ will lead us to a better state. If −∞ <
DLj (l, l′) < 0, we could reach an at least as good state if we
pay the corresponding price.

Definition 8 (QLD Simulation) Let DF = {D1, . . . ,Dk}
be a set of goal-respecting functions for T = {Θ1, . . . ,Θk}.
DF is a quantitative label-dominance (QLD) simulation
for T if for all Θi ∈ T and s, t ∈ Θi, Di(s, t) ≤
fQLD(T ,DF , i, s, t) where fQLD(T ,DF , i, s, t) :=

min
s
l−→s′

max
u
l′−→u′

Di(s′, u′)−hτ (t, u)+c(l)−c(l′)+
∑
j 6=i
DLj (l, l′)

where s l−→ s′ ∈ Θi, u
l′−→ u′ ∈ Θi

Intuitively, we compare all transitions from s (s l−→ s′),
against the best alternative from t (t τ−→∗u l−→ u′)1 by
summing up the difference in goal-distance of the targets
(Di(s′, u′)), the cost of the transition from s (c(l)), mi-
nus the cost that it takes to apply the transition from t
(hτ (t, u)+c(l′)). Finally,

∑
j 6=iDLj (l, l′) estimates the ben-

efit or penalty for using l′ instead of l in the other LTSs.
Applying this definition to our example, we now find some
dominance for the truck D1(TA, TB) = D1(TB , TA) =
−1. For the package, we find that D2(PA, PT ) = 1,
D2(PT , PB) = 1 so D2(PA, PB) = 2. This is similar to the
result of LD simulation PA � PT � PB , but with the addi-
tional information that is strictly closer instead of at least as
close to the goal.

Theorem 1 A unique maximal QLD simulation always ex-
ists.

Proof Sketch: An QLD simulation always exists because
the “identity” function s.t. Di(si, ti) = −∞ if si 6= ti and
0 otherwise is always an QLD simulation. Given any two
QLD simulations, their maximum is also an QLD simulation
so a unique maximal simulation exists. �

Theorem 2 Let DF = {D1, . . . ,Dk} be an QLD simula-
tion on T = {Θ1, . . . ,Θk}. Then, D1 + · · · + Dk is a
quantitative dominance function on Θ1 ⊗ . . .⊗Θk.

A proof is included in the appendix.

Computing Quantitative LD Simulations
Algorithm 1 shows how to compute an QLD simulation for
a set of LTSs T , given a parameter, K. Each Di is ini-
tialized as the maximal goal-respecting function. Then, at
each iteration it checks whether the property Di(s, t) ≤
fQLD(T ,DF , i, s, t) is violated for some Di(s, t). In that
case, it updates the value and repeats until the result is a
valid QLD simulation. For sufficiently large K (e.g., if K is
greater than the maximum cost of any plan of the task, which
can be easily bounded by |Θ1 ⊗ . . . ⊗ Θk|(maxl∈L c(l))),
Algorithm 1 will find the maximal QLD simulation.

Theorem 3 Algorithm 1 has a worst-case running time
polynomial in |Θ1|× . . . × |Θk|×|L|×maxsi∈Θi(h

∗(si) +
K)× gcd({cl | l ∈ L}).

1The path u′
τ−→∗t′ is implicitly considered by D(s′, u′).



Algorithm 1: Quantitative LD simulation
Input: LTSs: T = {Θ1, . . . ,Θk}, Limit: K ∈ N
Output: Dominance Function DF = {D1, . . . ,Dk}

1 Di[s, t]← maxsg∈SGi −h
τ (t, sg) ∀t ∈ Θi, s ∈ SGi

2 Di[s, t]← h∗(s)− h∗(t) ∀t ∈ Θi, s 6∈ SGi
3 while ∃i ∈ [1, k], s, t ∈ Θi s.t.
Di[s, t] > fQLD(T ,DF , i, s, t)

4 if fQLD(T ,DF , i, s, t) > −K then
5 Di[s, t]← fQLD(T ,DF , i, s, t)
6 else
7 Di[s, t]← −hτ (t, s)
8 return {D1, . . . ,Dk}

Proof Sketch: Each iteration takes polynomial time in
the size of the input, i.e., the LTSs and L. At each it-
eration the value of some Di(s, t) decreases by at least
gcd({cl | l ∈ L}), so the number of iterations is polyno-
mially bounded by the number of times the number can de-
crease. The maximum value in the initialization is bounded
by maxsi∈Θi h

∗(si), and the minimum by -K. �

In practice we set K to a lower value. While this di-
minishes the power to infer negative dominance below −K,
those are of little use anyway, since they will only be use-
ful to prune states with very large g-value. Note that,
even though the algorithm does not run in polynomial time
(since h∗(si) may be exponential in the size of the in-
put, depending on the labels’ cost), this is not a major in-
convenience in practice. Other pruning techniques, like
symmetry pruning (Pochter, Zohar, and Rosenschein 2011;
Domshlak, Katz, and Shleyfman 2012), also rely on non-
polynomial algorithms in their precomputation phase. This
is not a problem, as soon as the algorithm finishes in a rea-
sonable amount of time for tasks that are solvable without
any pruning.

Advantages of Quantitative LD Simulation
Qualitative dominance pruning methods prune a node ns if
there exists another nt s.t. g(nt) ≤ g(ns) and s � t. An
advantage of quantitative dominance is that, even when re-
stricted to this type of pruning, QLD simulations will find
coarser relations.

Theorem 4 Let � and D be the coarsest qualitative and
maximal quantitative LD simulation, respectively. Then,
�⊆�0

D and there are cases where �⊂�0
D.

Proof Sketch: For �⊆�0
D. Define D(s, t) = 0 if s � t and

−∞ otherwise. Then, D is an QLD simulation.
For �⊂�0

D, consider our example where no qualitative
dominance can possibly be found for states that differ in the
position of the truck. However, TBPA �0

D TAPT , since
D(TA, TB) = −hτ (TB , TA) = −1, and D(PA, PT ) = 1,
we can compensate the truck being at a different location if
we have picked up or delivered more packages. �

Moreover, we can trade off dominance and g-value to fur-
ther increase the amount of pruning.

Theorem 5 Let D be a dominance function. Let ns be a
search node with state s. If there exists nt ∈ open ∪ closed
s.t.Dε(s, t)+g(ns)−g(nt) ≥ 0 whereDε(s, t) = D(s, t)−
ε if D(s, t) < 0 and D(s, t) otherwise. Then, pruning ns
preserves completeness and optimality of the algorithm.

Proof Sketch: Since g(nt) + h∗(t) ≤ g(ns) + h∗(s), if an
optimal plan from I to G goes through ns, then g(ns) =
g∗(s) and there is another optimal plan through nt. If s is
in the path from t to the goal, then D(s, t) < 0. This means
that g(nt)+h∗(t)+ε = g∗(s)+h∗(s)+ε ≤ g(ns)+h∗(s),
so g∗(s) < g(ns), reaching a contradiction. �

Theorem 5 generalizes the qualitative pruning condition.
For nodes ns, nt s.t. g(ns) = g(nt) nothing changes, since
ns is pruned iff s �0

D t. However, if g(ns) 6= g(nt) we can
leverage quantitative dominance to get more pruning:

• If g(ns) < g(nt), qualitative dominance cannot prune ns.
Now, ns may still be pruned if D(s, t) is high enough.
This is specially relevant in A∗. If there is some nt in
the closed list with a higher g-value than that of ns, nt
was preferred by the heuristic, so there are chances of
D(s, t) > 0, assuming that dominance and the heuristic
are correlated.

• If g(nt) < g(ns), we replace the relation �0
D by the

coarser �g(nt)−g(ns)+εD . This may be useful in practice
because the successors of t do not necessarily dominate s
or its successors according to �0

D.

Action Selection Pruning
Instead of pruning states that are deemed worse than oth-
ers, we may use quantitative dominance to perform action
selection. Upon expansion of a node ns, if there exists an
applicable action a s.t. s �c(a)

D sJaK, then only that succes-
sor needs to be generated, reducing the branching factor to
1. This is safe because a starts an optimal plan from s if one
exists.

Theorem 6 LetD be a dominance function. Let s be a state
and a an applicable action on s. If D(s, sJaK) ≥ c(a), then
a starts an optimal plan from s to the goal if one exists.

Proof Sketch: As D(s, sJaK) ≥ c(a), then h∗(s) ≥
h∗(s[a]) + c(a). If c(a) > 0, sJaK is strictly closer to the
goal. If c(a) = 0, then h∗(s) = h∗(t). By the definition of
dominance function, h∗0(sJaK) ≤ h∗0(s). Therefore, s[a]
has a path to the goal that does not go through s. �

In our running example, this is extremely powerful.
Whenever a package may be loaded into the truck or un-
loaded at its destination this is automatically done. Since
the state resulting of unloading a package in any other lo-
cation is dominated by its parent, combining both types of
pruning the search will only branch over driving actions.

Action selection pruning is related to other heuristic
or learning methods that detect useless actions (Wehrle,
Kupferschmid, and Podelski 2008) or even directly decide
what action(s) to apply in certain states (Leckie and Zuker-
man 1998; de la Rosa et al. 2011; Krajnansky et al. 2014).
Contrary to our pruning, these methods do not preserve



Blind LM-cut
# Qualitative Quantitative Action Selection POR # Qualitative Quantitative Action Selection POR

� �0−
D �0

D Dτ D — �pD D � �0−
D �0

D Dτ D — �pD D
Airport(50) 15 1.3 1.3 1.3 1.3 1.3 1.1 1.1 1.3 4.3 24 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Driverlog(20) 7 12.6 13.3 20.8 12.6 21.1 3.7 6.9 27.4 1.0 13 1.4 1.5 2.3 3.6 4.3 1.5 1.8 4.3 1.0
Floortile(40) 2 140.5 140.5 140.5 140.5 140.5 1.0 140.5 140.5 1.2 13 3.5 3.5 3.5 3.5 3.5 1.0 3.5 3.5 1.0
Gripper(20) 7 2.0 2.1 2.1 2.0 2.1 1.0 1.0 2.1 1.0 7 2.0 2.1 2.1 2.8 2.8 1.0 1.0 2.8 1.0

Logistics(63) 12 16.8 67.4 149.1 16.8 150.9 35.0 46.5 166.0 1.1 26 1.4 4.9 47.4 80.5 81.2 29.6 30.2 83.9 2.3
Maintenance(5) 5 8848.4 8848.4 35338.8 8848.4 36181.5 11617.2 46540.2 102514.3 3513.7 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Miconic(150) 50 23.9 75.9 325.2 23.9 328.1 7.6 142.6 376.4 1.0 141 1.0 1.4 1.4 1.7 1.7 1.2 1.2 1.7 1.0
Mystery(30) 11 1.3 1.3 1.3 1.3 1.3 1.0 1.0 1.3 1.0 16 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0

NoMystery(20) 8 693.3 693.3 891.5 693.3 891.5 605.8 1249.2 10538.4 1.1 14 4.0 4.0 4.0 45.3 45.3 16.7 18.4 52.7 1.0
OpenStack(100) 30 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 35 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.9 1.2

ParcPrint(50) 16 815.3 840.7 955.5 820.5 955.5 622.9 942.8 3542.1 16446.1 31 7.0 7.2 7.4 78.4 78.9 25.3 29.3 94.8 1455.6
Path-noneg(30) 4 11.1 13.4 23.2 11.1 23.2 1.6 12.5 26.8 29.7 5 1.7 1.9 2.7 3.3 3.4 1.3 2.0 3.4 9.4

Psr-small(50) 48 1.9 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.2 48 1.7 1.7 1.7 1.7 1.7 1.5 1.6 1.7 1.1
Rovers(40) 5 29.6 93.7 396.9 29.6 396.9 62.8 203.9 1065.8 34.7 7 2.3 3.7 9.6 10.9 12.2 3.7 5.1 14.8 4.4

Satellite(36) 5 90.9 100.7 142.8 90.9 142.8 1.0 39.5 142.8 122.4 7 2.1 2.2 2.6 2.9 2.9 1.0 2.0 2.9 25.7
Scanalyzer(50) 9 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.0 19 1.0 1.0 1.2 2.1 2.1 1.0 1.0 2.1 1.0

Sokoban(50) 21 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.3 1.0 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Tidybot(20) 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.4 9 10.3 10.3 10.3 10.3 10.3 1.0 1.0 10.3 1.3

TPP(30) 6 16.3 17.5 86.5 16.3 86.5 6.6 10.9 102.4 1.0 6 1.8 1.8 2.5 5.9 6.7 24.7 24.7 30.9 1.0
Trucks(30) 6 44.1 44.1 44.2 44.1 44.3 1.3 7.2 44.3 1.0 10 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0

VisitAll(40) 12 27.8 31.1 31.1 27.8 34.9 1.0 1.0 35.2 1.0 14 5.9 6.0 6.0 5.9 6.1 1.0 1.0 6.1 1.0
Woodwork(50) 11 1626.8 1796.1 2818.2 1630.5 2820.0 480.5 2618.2 10795.6 549.5 29 5.8 5.9 8.6 52.2 52.5 2.8 2.8 76.5 133.7
Zenotravel(20) 7 5.5 8.8 21.5 5.5 21.5 2.1 2.5 22.5 1.1 13 3.9 4.0 4.7 7.3 7.3 1.3 1.5 7.5 1.0

Table 1: Ratio of expansions until the last f -layer by each method against the baseline in commonly solved instances (#).
Domains where none of the methods obtains at least a ratio of 1.2 are excluded.

completeness and optimality. Partial-order reduction tech-
niques like strong stubborn sets (Wehrle and Helmert 2012;
Wehrle et al. 2013; Wehrle and Helmert 2014) also reduce
the branching factor. However, they are based on a different
notion of action interference, and indeed they do not apply
in our running example because (un)load actions interfere
with driving actions.

Experiments
We run experiments on all the optimal-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on a
cluster of Intel Xeon E5-2650v3 machines with time (mem-
ory) cut-offs of 30 minutes (4 GB). Our main objective
is to compare quantitative and qualitative dominance. We
run A∗ with the blind heuristic and LM-cut (Helmert and
Domshlak 2009). We use the same initial set of LTSs for
all configurations, derived by running M&S with the merge
DFP strategy (Dräger, Finkbeiner, and Podelski 2006; 2009;
Sievers, Wehrle, and Helmert 2014), without label reduction
nor any shrinking, and with a time limit of 10 000 abstract
transitions and 300 seconds. We use K = 10.2 These limits
are adequate to finish the precomputation phase in a reason-
able time (under 30s in most domains, though it runs out of
time in a few cases). For comparison against other pruning
methods, we include partial-order reduction (POR) based on
strong stubborn sets (Wehrle and Helmert 2014).

Pruning power
We start by analyzing the potential of action selection (AS)
and dominance pruning based on comparing each node
against previously expanded states. Table 1 shows the ra-
tio of expansions until the last f -layer of each configuration

2Larger values forK are possible, but they were not observed to
significantly affect the results during our preliminar experiments.

compared to the baseline without pruning. We consider mul-
tiple variants, ranging from qualitative pruning (�) to full
quantitative pruning (D). In the middle, we consider sev-
eral approximations to analyze where the gain comes from.
�0−
D and�0

D perform the same pruning as�, constructing a
qualitative relation out of the quantitative dominance func-
tion. �0−

D defines each �i as si �i ti iff Di(si, ti) ≥ 0 and
then composes them. �0

D is always stronger since it trades
negative dominance in one Di by positive dominance in an-
other. Quantitative dominance methods use the full strength
of the quantitative function by comparing against states with
different g value. Dτ disables τ -labels to measure their rel-
evance.

To implement all of the above, we adapt the BDD-based
method used by (Torralba and Hoffmann 2015) in which for
each possible g-value they generate a BDD with all the states
dominated by any state expanded with that g-value. For
quantitative dominance, every time a state t is expanded, we
insert the sets of states dominated by it in the corresponding
g(t)−D(s, t) bucket. This has an important computational
overhead in the qualitative case, which often becomes pro-
hibitive with quantitative dominance. To obtain a more prac-
tical method, we use an approximation �pD that prunes any
state that is dominated by its parent. This greatly reduces the
overhead since it ignores all previously expanded states.

Obs. 1: Quantitative dominance is applicable in the same
domains as qualitative dominance, but has a larger pruning
potential. The only exception is Scanalyzer where quali-
tative dominance does not achieve any pruning, but positive
dominance has synergy with the LM-cut heuristic. However,
among the domains where both techniques apply, quanti-
tative dominance reduces the number of states in one or
two orders of magnitude more than qualitative dominance.
The gain comes from difference sources. In some domains,
�0−
D is already stronger than �, showing the ability of QLD

simulation to find coarser relations. Trading off negative
and positive dominance to construct a relation (�0

D) already



Blind LM-cut
B � AS POR B � AS POR
� �TH �pD �

0
D � �TH �pD �

0
D

Airport(50) 22 15 15 22 15 21 28 28 28 27 26 29
Driverlog(20) 7 9 9 10 8 7 13 13 13 13 14 13
Elevators(50) 26 25 25 26 24 26 40 40 40 40 40 40
Floortile(40) 2 11 11 16 11 2 13 16 16 16 16 13
FreeCell(80) 20 20 20 20 20 14 15 15 15 15 15 15
Gripper(20) 8 8 14 8 8 8 7 7 14 7 7 7
Hiking(20) 11 11 11 11 11 8 9 9 9 9 9 9

Logistics(63) 12 21 20 27 25 12 26 26 26 33 28 27
Miconic(150) 55 60 61 77 62 50 141 141 141 142 141 141

Mprime(35) 20 19 19 20 19 19 22 22 22 22 22 22
Mystery(30) 15 11 12 15 11 15 17 16 17 17 17 17

NoMystery(20) 8 16 18 20 20 8 14 20 20 20 20 14
OpenStack(100) 49 51 53 55 56 50 47 51 48 52 53 49

ParcPrint(50) 16 32 31 44 28 50 31 35 31 48 40 50
Path-noneg(30) 4 4 4 5 4 4 5 5 5 5 5 5

PipesNT(50) 17 17 17 17 17 14 17 17 17 17 17 17
PipesT(50) 12 13 12 12 13 9 12 12 12 12 12 12

Psr-small(50) 49 49 49 48 48 49 49 49 49 48 48 49
Rovers(40) 6 8 8 8 8 7 7 9 9 10 8 10

Satellite(36) 6 6 6 6 6 6 7 10 10 12 11 12
Scanalyzer(50) 21 19 21 17 17 13 27 21 23 23 23 27

Sokoban(50) 41 43 44 43 43 39 50 49 48 49 49 50
Tetris(17) 9 9 9 8 8 5 6 6 5 6 6 6

Tidybot(40) 16 1 1 15 1 7 23 10 14 22 10 22
TPP(30) 6 6 6 6 6 6 7 7 7 8 8 6

Transport(70) 24 24 24 24 24 23 23 23 23 23 23 23
Trucks(30) 6 8 8 8 8 6 10 10 10 10 10 10

VisitAll(40) 12 13 13 12 13 12 15 16 16 15 16 15
Woodwork(50) 11 30 30 38 36 24 29 48 43 50 50 46
Zenotravel(20) 8 9 9 9 8 8 13 13 13 13 13 13

Others(231) 91 91 91 91 91 91 112 112 112 112 112 112
Total(1612) 610 659 671 738 669 613 835 856 856 896 869 881

Table 2: Coverage of the baseline (B), qualitative domi-
nance, action selection (AS) with quantitative dominance,
and partial-order reduction (POR).

10−1 101 103 105 107

10−1

101

103

105

107

Expansions LM-cut

E
xp

an
si

on
s

L
M

-c
ut

A
S

+
�

p D

10−1 100 101 102 103

10−1

100

101

102

103

Search time (s) LM-cut

Se
ar

ch
tim

e
(s

)L
M

-c
ut

A
S

+
�

p D

Figure 2: Expansions until last f -layer and search time of
AS + �pD against the baseline with LM-cut.

achieves most of the pruning in several domains, specially
in blind search. Trading off dominance and g-value (D) is
more relevant with heuristics (e.g., NoMystery). The poten-
tial of quantitative dominance is also reflected in the compar-
ison against POR, since it is able to achieve stronger pruning
in most domains. Finally, the consideration of τ labels can
be seen important in around half of the domains, sometimes
increasing the pruning in one order of magnitude.

Obs. 2: Action selection pruning is highly complemen-
tary to previous dominance pruning methods. In most do-
mains, the combination of both methods is stronger than any
of them. Moreover, since the overhead of action selection is
quite low, it is almost always worth to use it whenever a
quantitative dominance function has been computed.

Overall Performance
Table 2 compares the coverage of our two best methods,
AS with pruning against the parent or against previously ex-

panded nodes, against qualitative dominance and POR. For
a fair comparison, we include qualitative pruning with the
same input LTSs as our approach (D) and the configuration
used by Torralba and Hoffmann(2015) (�TH ) which uses
exact label reduction (Sievers, Wehrle, and Helmert 2014),
bisimulation shrinking (Nissim, Hoffmann, and Helmert
2011) and a larger LTS size (100k). All configurations ex-
cept �pD use the “safety belt” that disables the method if no
pruning has been achieved after 1000 expansions.

Obs. 3: AS + �pD has huge pruning power and low over-
head, greatly increasing the capabilities of heuristic search
planners. It obtains the best overall coverage, solving 128
instances over the baseline in blind search and 61 with LM-
cut, much higher than POR or qualitative dominance. Some
domains like NoMystery that are hard even when using good
heuristics, become simple under the analysis of quantitative
dominance, which even with blind search is able to solve
all tasks. Figure 2 directly compares the number of ex-
panded nodes and search time of AS + �pD against the base-
line. It obtains reductions of several orders of magnitude
in the number of expansions with little overhead. Note that
this ignores the precomputation time (which can be of up to
300s to compute the LTSs plus the computation of the QLD
simulation), but, as the coverage improvement shows, the
precomputation time is highly compensated by the search
space reduction in instances that are not quickly solved by
the baseline.

Obs. 4: The overhead of current methods for exploiting
the full potential of quantitative dominance (D) is too high
to pay off. The D configuration did not improve the other
methods anywhere and was excluded from the table. This
contrasts with the results of Table 1 that show a great poten-
tial. However, there are a few domains where the additional
pruning when using �0

D to complement AS pays off like
Driverlog, Openstacks or VisitAll. Further exploring this
trade-off between pruning power and overhead (e.g., using
dominance-based methods for irrelevance pruning (Torralba
and Kissmann 2015)) is an interesting topic for future work.

Conclusion
We have introduced the notion of quantitative dominance
for optimal planning, which extends previous approaches of
qualitative dominance. This extension is more effective at
analyzing the structure of the task, which leads to stronger
pruning. More importantly, the quantitative information en-
ables new ways of pruning. We introduced action selec-
tion pruning, a novel pruning method that applies a single
action on a state if the action starts an optimal plan from
the state according to the quantitative dominance function.
Our experiments show that action selection is highly com-
plementary to previous dominance pruning methods, greatly
extending the capabilities of heuristic search planners.

Proofs
In this section we provide a detailed proof of Theorem 2.
First, Lemma 1 shows that the property holds if there is only
a single LTS T = {Θ}.



Lemma 1 Let D be a goal-respecting function
for Θ such that for all s, t ∈ Θ, D(s, t) ≤
min

s
l−→s′∈Θ

max
u
l′−→u′∈Θ

D(s′, u′)−hτ (t, u)+c(l)−c(l′).

Then, D is a quantitative dominance function for Θ.

Proof: If s ∈ SG, then D(s, t) ≤ maxsg∈SG −hτ (t, sg) ≤
−h∗(t). So,D(s, t) ≤ h∗(s)−h∗(t) = 0−h∗(t). Note that
if h∗(t) = 0 but t 6∈ SG then hτ (t, sg) ≥ ε so D(s, t) < 0.

If s 6∈ SG, we use induction on plan length. Let s l−→ s′

be the first action in a shortest optimal plan for s. Then,
there exists a path t τ−→∗u l−→ u′ s.t. D(s, t) ≤ Di(s′, u′) −
hτ (t, u) + c(l) − c(l′). By induction D(s′, u′) ≤ h∗(s′) −
h∗(u′). So, D(s, t) ≤ (c(l) + h∗(s′)) − (h∗(u′) + c(l′) +
hτ (t, u) ≤ h∗(s)− h∗(t). �

Next, Lemmas 2 to 5 prove certain properties that will be
needed for proving that the property of being an QLD simu-
lation is invariant under the synchronized product operation.

Lemma 2 Let {D1, . . .Dk} be the maximal QLD simula-
tion on T = {Θ1, . . .Θk}. Then, for any si, ti ∈ Θi and
sj , tj ∈ Θj , there exist states (sisj), (titj) ∈ Θi ⊗ Θj and
hτ (sisj , titj) ≤ hτ (si, ti) + hτ (sj , tj).

Proof: Let Lτi and Lτj be the set of τ -labels for Θi and Θj

respectively, and Lτi,j the set of τ labels for Θi ⊗Θj . Then,
Lτi ∪ Lτj ⊆ Lτi,j because all labels in Lτi and Lτj do not
affect any LTS in T \ {Θi,Θj}. Therefore, for any paths of
τ -labels si

πi−→ ti and sj
πj−→ tj , we have a path (sisj)

π1−→
(tisj)

π2−→ (titj). �

Lemma 3 Let {D1, . . .Dk} be the maximal QLD simula-
tion on {Θ1, . . .Θk}. Then, for all i ∈ [1, k]:

(i) ∀s, t, u ∈ Θi Di(s, t) +Di(t, u) ≤ Di(s, u)

(ii) ∀l1, l2, l3 ∈ L DLi (l1, l2) +DLi (l2, l3) ≤ DLi (l1, l3).

Proof: First we prove (i) by contradiction. Assume that
there exist states s, t, u s.t. Di(s, t) + Di(t, u) > Di(s, u).
Then, define D’ by setting D′ = D and iteratively as-
signing D′i(s, u) = Di(s, t) + Di(t, u) for any s, t, u s.t.
Di(s, t) +Di(t, u) > Di(s, u) until a fixpoint is reached.

Then, D’ is also an QLD simulation. Increasing Di(s, u)
can only cause the values of DL and fQLDto increase.
Therefore, the inequality Di(x, y) ≤ fQLD(T ,DF , i, x, y)
still holds for any 〈x, y〉 6= 〈s, u〉. The inequalityD′i(s, u) ≤
fQLD(T ,DF , i, s, u) also holds because for any s

l−→
s′ there exists a path t

τ−→∗ta l′−→ t′ s.t. D(s, t) ≤
Di(s′, t′)− hτ (t, ta) + c(l)− c(l′) +

∑
j 6=iDLj (l, l′). Same

for D(t, u) where there exists a path u
τ−→∗ua l′′−→ u′

s.t. D(t, u) ≤ Di(t′, u′) − hτ (t, ta) + c(l′) − c(l′′) +∑
j 6=iDLj (l′, l′′). Adding both inequalities we obtain

D′(s, u) ≤ fQLD(T ,DF , i, s, u). Therefore, D was not the
maximal function satisfying this property.
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Figure 3: Illustration for the proof of Theorem 2. We use
a color code to highlight what holds by assumption and the
definition of synchronized product (in black), what we need
to prove (red), and the intermediate deduction steps (blue).

Claim (ii) follows from (i):
DLi (l1, l2) +DLi (l2, l3) =

min
s
l1−→t

max
s
l2−→u

Di(t, u) + min
s
l2−→u

max
s
l3−→v

Di(u, v) ≤

min
s
l1−→t

max
s
l2−→u

Di(t, u) + max
s
l3−→v

Di(u, v) ≤

min
s
l1−→t

max
s
l3−→v

Di(t, v) = DLi (l1, l3)

�

Lemma 4 Let D1 and D2 be two goal-respecting functions
for Θ1 and Θ2, respectively. Then, D1 + D2 is a goal-
respecting function for Θ1 ⊗Θ2.
Proof: Consider any goal state (s1, s2) and non-
goal state (t1, t2) in Θ1 ⊗ Θ2. By the defini-
tion of synchronized product, s1 and s2 are goal
states in Θ1 and Θ2, respectively. Therefore,
D1(s1, t1) + D2(s2, t2) ≤ maxsg1∈SG1 −h

τ (t1, s
g
1) +

maxsg2∈SG2 −h
τ (t2, s

g
2). By Lemma 2, this cannot be

greater than max(sg1 ,s
g
2)∈SG −hτ ((t1, t2), (sg1, s

g
2)). �

Lemma 5 Let D1 and D2 be two functions for Θ1 and Θ2,
respectively, andD1,2 := D1+D2 be a function for Θ1⊗Θ2.
Then, DL1 (l, l′) +DL2 (l, l′) ≤ DL1,2(l, l′).

Proof: Let s l−→ s′ ∈ Θ1,2 be the transition that minimizes

the value of DL1,2(l, l′). Then, there exist s1
l−→ s′1 ∈ Θ1

and s2
l−→ s′2 ∈ Θ2. So, there exists s1

l′−→ t1 ∈ Θ1 s.t.
DL1 (l, l′) ≤ D1(s′1, t1) and analogously for Θ2. Therefore,

there exists t = (t1, t2) ∈ Θ1,2 s.t. s l′−→ t′ and the following
inequality holds:

DL1 (l, l′) +DL2 (l, l′) ≤
D1(s′1, t1) +D2(s′2, t2) = D1,2(s′, t) ≤ DL1,2(l, l′)

�



D1(s1, t1) ≤ D1(s′1, u
a
1)− hτ (t1, t

′
1) + c(l)− c(la) +

∑
j∈2,...,k

DLj (l, la) (1)

DL2 (l, la) ≤ D2(s′2, s
a
2) (2)

D2(s2, t2) ≤ D2(sa2 , u
′
2)− hτ (t1, t

′
1) + c(la)− c(l′) +

∑
j∈2,...,k

DLj (la, l′) (3)

DL1 (la, l′) ≤ D1(ua, u′1) (4)
∀Θi ∈ {Θ1, . . . ,Θk} ∀s,t,u∈Θi Di(s, t) +Di(t, u) ≤ Di(s, u) (5)

∀Θi ∈ {Θ1, . . . ,Θk}∀l,l′,l′′ DLi (l, l′) +DLi (l′, l′′) ≤ DLi (l, l′′) (6)
hτ ((s1, s2), (t1, t2)) ≤ hτ (s1, t1) + hτ (s2, t2) (7)

D1,2((s1, s2), (t1, t2)) = D1(s1, t1) +D2(s2, t2) (8)

D1,2(s, t) = D1(s1, t1) +D2(s2, t2)

(by 1, 3) ≤ D1(s′1, u
a
1) + c(l)− c(la)− hτ (t1, u1) +

∑
j 6=1

DLj (l, la) +D2(sa2 , u
′
2) + c(la)− c(l′)− hτ (t2, u2) +

∑
j 6=2

DLj (la, l′)

(by 2, 4) ≤ D1(s′1, u
a
1) +D1(ua1 , u

′
1) +D2(s′2, s

a
2) +D2(sa2 , u

′
2) + c(l)− c(l′)− hτ (t1, u1)− hτ (t2, u2) +

∑
j>2

(DLj (l, la) +DLj (la, l′))

(by 5, 6) ≤ D1(s′1, u
′
1) +D2(s′2, u

′
2) + c(l)− c(l′)− hτ (t1, u1)− hτ (t2, u2) +

∑
j>2

DLj (l, l′)

(by 7, 8) ≤ D1,2((s′1, s
′
2), (u′1, u

′
2)) + c(l)− c(l′)− hτ ((t1, t2), (u′1, u

′
2)) +

∑
j>2

DLj (l, l′)

Figure 4: Derivation of the inequality required by the proof of Theorem 2. Inequalities that have already been proven (above)
and how are they applied to reach the desired inequality (below).

Theorem 2 Let DF = {D1, . . . ,Dk} be an QLD simula-
tion on T = {Θ1, . . . ,Θk}. Then, D1 + · · · + Dk is a
quantitative dominance function on Θ1 ⊗ . . .⊗Θk.

Proof: We assume thatDF is the maximal QLD simulation.
Note that if it is a dominance function any other QLD sim-
ulation must be as well because decreasing the values of the
function cannot possibly cause the condition of dominance
function to become false.

If there is a single LTS, the proof follows from Lemma 1.
Next we show that the property of being an QLD simula-
tion is invariant under the synchronized product operation.
Assume WLOG that we merge Θ1 and Θ2 to obtain T ′ =
{Θ1 ⊗ Θ2,Θ3, . . . ,Θk}, and D′F = {D1,2,D3, . . . ,Dk}
where D1,2 = D1 + D2. In the following we show that D′F
is an QLD simulation for T ′.

Lemma 4 ensures that D1,2 is goal-respecting. Next,
we show that the Di(s, t) ≤ fQLD(T ′,D′F , i, s, t) holds
after merging Θ1 and Θ2. First, let’s consider the case
of other LTSs where i > 2. In order for the inequality
Di(s, t) ≤ fQLD(T ′,D′F , i, s, t) to be preserved, the val-
ues of DL must not decrease after merging Θ1 and Θ2,
i.e., DL1 (l, l′) + DL2 (l, l′) ≤ DL1,2(l, l′). This is ensured by
Lemma 5.

Figure 3 illustrates the main case, where i = (1, 2),
s = (s1, s2), and t = (t1, t2). The inequality holds automat-
ically if D1(s1, t1) = −∞ or D2(s2, t2) = −∞ so we may
assume that s1 �CD1 t1 and s2 �CD2 t2. We need to show

that for any transition s = (s1, s2)
l−→ (s′1, s

′
2) = s′, there

exists a transition (u1, u2)
l′−→ (u′1, u

′
2) s.t. D1,2(s, t) ≤

D1,2(s′, u′) + c(l)− hτ (t, u)− c(l′) +
∑
j∈3,...,k DLj (l, l′).

We first prove the existence of such s′, u, and u′ states and
then we show that the inequality holds.

In Θ1, since s1 �CD1 t1, there must exist u1
la−→ ua1 s.t.

(E1) D1(s1, t1) ≤ D1(s′1, u
a
1)− hτ (t1, u1) + c(l)− c(la) +∑

j∈2,...,k DLj (l, la). This implies that l �L2 la. In Θ2,

since l �L2 la and s2
l−→ s′2, there must exist s2

la−→ sa2 s.t.
(E2) DL2 (l, la) ≤ D2(s′2, s

a
2). Now, since s2 �CD2 t2 there

must exist u2
l′−→ u′2 s.t. (E3) D2(s2, t2) ≤ D2(sa2 , u

′
2) −

hτ (t1, u1) + c(la)− c(l′) +
∑
j∈2,...,k DLj (la, l′). This im-

plies that la �L1 l. Going back to Θ1, since la �L1 l, there

must exist u1
l′−→ u′1 s.t. (E4) DL1 (la, l′) ≤ D1(ua, u′1).

To prove that the inequality holds D1,2(s, t) =
D1(s1, t1) + D2(s2, t2) ≤ D1,2(s′, u′) + c(l) − c(l′) −
hτ (t, u)+

∑
j=3,...,k DLj (l, l′), we substitute in the left parts

the inequalities (E1-E4), the results of Lemmas 3 (E5 and
E6) and 2 (E7) and the fact that D1,2 is defined as the sum
of D1 and D2 (E8). Figure 4 shows all these equations and
the substitutions in a step by step manner.

�
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