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Abstract

We transfer the notion of structural symmetries to lifted plan-
ning task representations, based on a generalizing concept of
abstract structures we use to model planning tasks. We show
that symmetries are preserved by common grounding meth-
ods and shed some light on the relation to previous symme-
try concepts. An analysis of common planning benchmarks
reveals that symmetries occur in the lifted representation of
many domains. Our concept prepares the ground for exploit-
ing symmetries beyond their current scope, such as for faster
grounding and mutex generation, as well as for state space
transformations and state space reductions.

Introduction
In the last decade, the concept of symmetries has been in-
creasingly investigated for the development of techniques
to increase the scalability of domain-independent classical
planners (Fox and Long 1999a; 1999b; Pochter, Zohar, and
Rosenschein 2011; Domshlak, Katz, and Shleyfman 2012;
2015; Sievers et al. 2015b; Riddle et al. 2016). In particu-
lar, Shleyfman et al. (2015) introduced the notion of struc-
tural symmetries, which is a declarative symmetry defini-
tion on the representation of propositional STRIPS tasks.
These symmetries subsume several earlier symmetry defi-
nitions for classical planning, many of which focus on ob-
ject symmetries (Fox and Long 1999a; 1999b; Riddle et al.
2016). Further, structural symmetries generalize other types
of symmetries considered for other state-space search prob-
lems in general, e. g. rotation and reflection.

In practice, planning tasks are usually given in a com-
pact lifted PDDL description, which is, however, not directly
supported by most planning techniques. Instead, they first
transform it into a much larger ground representation. Also
most of the recent symmetry-based approaches operate only
on this ground representation, including techniques based
on structural symmetries. However, reasoning about sym-
metries for applications that work directly on the lifted rep-
resentation requires a general concept of symmetries of the
lifted representation.

In this work, we define structural symmetries of the lifted
representation. Our aim is to build the theoretical basis
for many promising future applications of such symme-
tries. While structural symmetries of the lifted representa-
tion could be grounded to be used for existing symmetry-

based approaches that operate on the ground representation,
this is not our intended application, and there is no theo-
retical gain in doing so, as we will show. Rather, structural
symmetries of the lifted representation can be used for all
purposes operating on lifted representations. In particular,
in the long term, we would like to examine the potential of
symmetries for faster grounding and mutex generation, as
well as for state space transformations and state space re-
ductions.

For this purpose, we transfer the definition of structural
symmetries of Shleyfman et al. (2015) to lifted planning
tasks. We model planning tasks based on a general concept
of abstract structures, unlike previous work also covering
axioms and conditional effects. We show that symmetries
are preserved by common grounding methods and how they
are related to previous symmetry concepts. We also describe
how symmetries of the lifted representation can be computed
and show that planning benchmarks from the International
Planning Competition exhibit a large number of such sym-
metries. We close with a discussion of possible future appli-
cations.

Structural Symmetries
We start with defining abstract structures and structural sym-
metries for these structures.

Definition 1 (Abstract structure). Let S be a set of symbols,
where each s ∈ S is associated with a type t(s). The set of
abstract structures over S is inductively defined as follows:

• each symbol s ∈ S is an abstract structure, and

• for abstract structures A1, . . . , An, the set {A1, . . . , An}
and the tuple 〈A1, . . . , An〉 are abstract structures.

Informally speaking, a structural symmetry for an abstract
structure is a permutation of the symbols that preserves the
structure as well as the types of the symbols. Formally:

Definition 2 (Symbol mapping). A symbol mapping σ over
a set of symbols S is a permutation of S such that for all
s ∈ S : t(σ(s)) = t(s).

Definition 3 (Structural symmetry). For an abstract struc-
ture A over S and a symbol mapping σ over S, the abstract



structure mapping σ̃(A) is defined as follows:

σ̃(A) :=


σ(A) if A ∈ S
{σ̃(A1), . . . , σ̃(An)} if A = {A1, . . . , An}
〈σ̃(A1), . . . , σ̃(An)〉 if A = 〈A1, . . . , An〉

We call σ a structural symmetry for A if σ̃(A) = A.

We establish that the set of all structural symmetries for an
abstract structure A forms a group. We will not only exploit
this property in later theorems but it will also provide the
basis for the actual computation of such symmetries.

Lemma 1. Given an abstract structure A, let Γ(A) be the
set of all structural symmetries for A. Then Γ(A) is a group.

Proof. To show that a set of permutations of a finite set
forms a group under composition, it is sufficient to show
that it is nonempty and closed under composition. It is easy
to verify that the identity symbol mapping always is a struc-
tural symmetry, and for σ1, σ2 ∈ Γ(A) also σ := σ1 ◦ σ2 ∈
Γ(A) because σ̃(A) = σ̃1(σ̃2(A)) = σ̃1(A) = A.

Planning Tasks as Abstract Structures
To apply the general notion of structural symmetries to plan-
ning, we define planning tasks as abstract structures.

Definition 4 (Set of symbols for planning). We call a set
of symbols S a set of symbols for planning if the associ-
ated types are from {Object , Variable , FluentPredicate,
DerivedPredicate , Function , n ∈ N,Negation} and there
is at most one symbol of type Negation .

We also refer to symbols of type T as T symbols. Let S
be a set of symbols for planning. For convenience, we define
some notions for abstract structures over S:

• An atom is a tuple 〈P, x1, . . . , xn〉 of symbols with
t(P ) ∈ {FluentPredicate,DerivedPredicate}, and for
i ∈ {1 . . . , n}, t(xi) ∈ {Object ,Variable}. The atom is
fluent if t(P ) = FluentPredicate, otherwise it is derived.

• A literal is either an atom or an abstract structure 〈¬, A〉
where t(¬) = Negation and A is an atom.

• A function term is a tuple 〈f, x1, . . . , xn〉 of symbols
with t(f) = Function , and for i ∈ {1 . . . , n}, t(xi) ∈
{Object ,Variable}.

• A function assignment is a tuple 〈F, v〉 where F is a func-
tion term and v is a symbol with t(v) ∈ N.

We call these structures ground if they do not contain
Variable symbols.

Definition 5 (Planning task). A planning task is an abstract
structure Π = 〈O,A, s0, s?〉 over a set of symbols S for
planning, where

• O is a set of operators, each of the form o =
〈params, pre, eff , cost〉 where

– params is a set of Variable symbols,
– pre is a set of literals where all occurring variables are

from params ,

– eff is a set of universally quantified conditional effects,
each of the form 〈vars, cond , lit〉, where vars is a set
of Variable symbols, cond is a set of literals where all
occurring variables are from params ∪ vars , and lit is
a literal of a fluent atom where all variables are from
params ∪ vars , and

– cost is a function term where all occurring variables
are from params;

• A is a set of axioms, each of the form a =
〈params, pre, eff 〉 where
– params is a set of Variable symbols,
– pre is a set of literals where all occurring variables are

from params , and
– eff is a derived atom where all occurring variables are

from params ,
and this set of axioms must be stratifiable;1

• s0 is a set of fluent ground atoms and consistent ground
function assignments, i. e. assignments with identical
function term are identical;

• s? is a set of ground literals.

W.l.o.g. we require that all occurring sets of Variable sym-
bols are disjoint.

This definition of planning tasks corresponds to normal-
ized PDDL planning tasks as used by Helmert (2009), ex-
tended with support for action costs. We refer to such a
planning task as lifted task or as lifted representation of a
task. A ground planning task (or ground representation of
a task) contains no Variable symbols. The semantics of a
(lifted) planning task is defined via its induced ground plan-
ning task, which we define in the following.

For a set S of symbols for planning, we define Objs(S) =
{s ∈ S | t(s) = Object}. For sets X and Y , we denote the
set of all functions f : X → Y by XY . We call functions m
mapping from the Variable symbols in S to Objs(S) vari-
able mappings. We write m̃(S) for the natural extension of
m to abstract structures, where symbols outside the domain
of m are mapped to themselves.

Grounding instantiates operators and axioms with all pos-
sible variable assignments and expands universal effects.

Definition 6 (Induced ground planning task). For a (lifted)
planning task Π = 〈O,A, s0, s?〉 over S, the in-
duced ground planning task is defined as ground(Π) =
〈ground(O), ground(A), s0, s?〉 over S with

• ground(O) =
⋃

o∈O opground(o), where

opground(〈params, pre, eff , cost〉)
= {〈∅, m̃(pre), m̃(expand(eff )), m̃(cost)〉 |
m ∈ paramsObjs(S)}, with

expand(eff )

= {〈∅, ñ(cond), ñ(lit)〉 |
〈vars, cond , lit〉 ∈ eff , n ∈ varsObjs(S)}

1Stratifiability (Thiébaux, Hoffmann, and Nebel 2005) ensures
that the result of axiom evaluation is well-defined.
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Figure 1: Exemplary initial state of a SPANNER task.

• ground(A) =
⋃

a∈A axground(a), where

axground(〈params, pre, eff 〉)
= {〈∅, m̃(pre), m̃(eff )〉 | m ∈ paramsObjs(S)}.

A state of a ground planning task Π = 〈O,A, s0, s?〉 over
S is a set of ground atoms. A fluent state s is a subset of
the fluent ground atoms. The associated derived state JsK re-
sults from s by evaluating the axioms as in stratified logic
programming. A state s satisfies a set C of ground literals
if all atoms in C are also in s and no negated atom from
C occurs in s. A ground operator o = 〈∅, pre, eff , cost〉 is
applicable in a fluent state s if JsK satisfies pre and s0 con-
tains a function assignment for cost . The (fluent) successor
state s[o] contains a fluent ground atom a if there is an effect
〈∅, cond , a〉 ∈ eff such that JsK satisfies cond or if a ∈ s
and there is no 〈∅, cond , 〈¬, a〉〉 ∈ eff where JsK satisfies
cond . The (fluent) initial state consists of the atoms in s0. A
plan for Π is a sequence of operators such that their subse-
quent application to the initial state leads to a state s′ so that
Js′K satisfies s?. Its cost is the accumulated operator costs
of the sequence, where the actual numeric values are taken
from the function assignments in the initial state. Satisficing
planning deals with finding plans of any cost whereas opti-
mal planning is only interested in plans with minimal cost
among all plans.

The semantics of Π can also naturally be represented via
its induced transition graph, which is the labeled transi-
tion system TΠ = 〈D,L, T, Js0K, G〉 where D is the set
of derived states of Π, L corresponds to O, and whenever
o = 〈∅, pre, eff , cost〉 ∈ O is applicable in fluent state s,
there is a transition 〈JsK, o, Js[o]K〉 ∈ T labeled with o. The
cost of the transition is the value assigned to cost in s0. The
set of goal statesG consists of all s ∈ D that satisfy s?. Then
a plan for Π corresponds to the sequence of labels along a
path in TΠ from Js[o]K to a state fromG. For a lifted planning
task, its transition graph is defined as the transition graph of
the induced ground task.

As an example, consider a planning task of the IPC do-
main SPANNER with the initial state shown in Figure 1. The
goal of BOB, initially at the location SHED, is to tighten
the two nuts NUT1 and NUT2 located at the GATE, using
the spanners SP1 and SP2, initially at the location MID-
DLE. It does not matter which spanner is used for which
nut, but spanners can only be used once. There are opera-
tors MOVE(X, Y) to move BOB from X to Y, however there
are only one-way connections from the SHED to the MIDDLE
and from the MIDDLE to the GATE. Operators PICK-UP(X,
Y) let BOB pick up the spanner X at location Y, and once
picked up, spanners cannot be dropped again.

In the lifted representation of the planning task, there are
two structural symmetries: the two spanners are symmetric

to each other, and so are the two nuts, because both the span-
ners and the nuts are at the same location initially, the nuts
both need to be tightened in the goal, and the same oper-
ators work with the spanners and the nuts, respectively. In
the abstract structure modeling the planning task, both the
spanners and the nuts are modeled as symbols (because they
are PDDL objects), and hence the two mentioned structural
symmetries permute the corresponding symbols and all ab-
stract (sub)structures of the planning tasks where the span-
ners or nuts are mentioned.

We remark that due to our definition of planning tasks
as abstract structures and because structural symmetries re-
quire to permute the entire abstract structure, our symmetries
stabilize both the initial state and the goal condition, i. e. no
parts of a planning task can be considered symmetric if they
are not symmetric in the initial state or the goal. This dif-
fers to the definition of structural symmetries of ground rep-
resentation in previous work; e. g. Shleyfman et al. (2015)
do not stabilize the initial state because for symmetry-based
pruning in a forward search, only plans to the goal must
be preserved under a structural symmetry, but not the initial
state. Even if we were interested in this kind of application,
not stabilizing the initial state causes some difficulties due
to the specification of PDDL: function assignments and all
”static” information (e.g. hard-coded connectivity informa-
tion) are specified in the initial state, and this information
would be lost. However, all applications we have in mind
are based on a reachability analysis of the planning task, for
which stabilizing the initial state is essential. For these ap-
plications, we do not need to stabilize the goal, which we
can achieve by simply dropping the goal from the abstract
structure of a planning task.

Structural Symmetries and Grounding
To ensure that our symmetries can also be applied to ground
representations and hence are also symmetries in the sense
of previous work, we will first establish that structural sym-
metries of the lifted representation are also structural sym-
metries of the ground induced representation, and then dis-
cuss discuss this issue in the light of optimized grounding.

Theorem 1. Let σ be a symbol mapping over S. If σ is a
structural symmetry for a planning task Π = 〈O,A, s0, s?〉
over S, then σ is a structural symmetry for ground(Π).

Proof. For better readability, we use subscripts ↓ to denote
ground abstract structures in contrast to lifted ones in the fol-
lowing. We have to show that ground(Π) = σ̃(ground(Π))
and start with ground(A) = σ̃(ground(A)). Consider a↓ =
〈∅, pre↓, eff ↓〉 ∈ ground(A). Since a↓ is in ground(A)
there must be an axiom a = 〈params, pre, eff 〉 ∈ A and
a variable mapping m such that a↓ ∈ axground(a). Since
σ is a structural symmetry of A, also σ̃(a) ∈ A. Consider
m′ := σ ◦m ◦ σ−1 ∈ σ̃(params)Objs(S). Variable mapping
m′ grounds σ̃(a) to a′ := 〈∅, m̃′(σ̃(pre)), m̃′(σ̃(eff ))〉 ∈
axground(σ̃(a)). It holds that m̃′(σ̃(pre)) = {m̃′ ◦ σ̃(p) |
p ∈ pre} = {σ̃ ◦ m̃(p) | p ∈ pre} = σ̃({m̃(p) |
p ∈ pre}) = σ̃(pre↓) (*). Analogously, we can show



that m̃′(σ̃(eff )) = σ̃(eff ↓), so overall a′ = σ̃(a↓). There-
fore, for each a ∈ ground(A), also σ̃(a) is in ground(A),
and, since σ̃ is a permutation on Π, σ̃(ground(A)) =
ground(A).

To establish that ground(O) = σ̃(ground(O)), let
o↓ = 〈∅, pre↓, eff ↓, cost↓〉 ∈ ground(O). Since
o↓ is in ground(O) there is an operator o =
〈params, pre, eff , cost〉 ∈ O and a variable mapping
m such that o↓ ∈ opground(o). Since σ is a struc-
tural symmetry of O, also σ̃(o) ∈ O. Consider again
m′ := σ ◦ m ◦ σ−1 ∈ σ̃(params)Objs(S). Variable
mapping m′ grounds σ̃(o) to o′ := 〈∅, m̃′(σ̃(pre)),
m̃′(expand(σ̃(eff ))), m̃′(σ̃(cost))〉 ∈ opground(σ̃(a)),
where expand(σ̃(eff )) = {〈∅, ñ(σ̃(cond)), ñ(σ̃(lit))〉 |
〈σ̃(vars), σ̃(cond), σ̃(lit)〉 ∈ σ̃(eff ), n ∈ σ̃(vars)Objs(S)}.
We get

m̃′(expand(σ̃(eff )))

= {〈∅, m̃′(ñ(σ̃(cond))), m̃′(ñ(σ̃(lit)))〉 |
〈σ̃(vars), σ̃(cond), σ̃(lit)〉 ∈ σ̃(eff ),

n ∈ σ̃(vars)Objs(S)}
= {〈∅, ñ(m̃′(σ̃(cond))), ñ(m̃′(σ̃(lit)))〉 |
〈m̃′(σ̃(vars)), m̃′(σ̃(cond)), m̃′(σ̃(lit))〉
∈ m̃′(σ̃(eff )), n ∈ m̃′(σ̃(vars))Objs(S)}

= {〈∅, ñ(σ̃(cond↓)), ñ(σ̃(lit↓))〉 |
〈σ̃(vars↓), σ̃(cond↓), σ̃(lit↓)〉 ∈ σ̃(eff ↓),

n ∈ σ̃(vars↓)
Objs(S)}

= expand(σ̃(eff ↓))

where the first step (switchingm′ and n) is possible because
σ̃(params)∩ σ̃(vars) = ∅, and the second step uses the def-
inition of m′ and the same argumentation as for axioms, cf.
(*). With the latter, we also get that m̃′(σ̃(pre)) = σ̃(pre↓).
Furthermore, we have that m̃′(σ̃(cost)) = m̃′ ◦ σ̃(cost) =
σ̃ ◦ m̃(cost) = σ̃(cost↓), and so overall o′ = σ̃(o↓). There-
fore, for each o ∈ ground(O), also σ̃(o) is in ground(O),
and since σ̃ is a permutation on Π, σ̃(ground(O)) =
ground(O).

As s0 and s? of the induced ground task are the same as in
the lifted task, we immediately get σ̃(s0) = s0 and σ̃(s?) =
s?, and hence overall ground(Π) = σ̃(ground(Π)).

In practice, the induced ground task is typically too large
to be represented and computed in reasonable time. For ex-
ample, the induced ground representation of task #28 of the
IPC domain LOGISTICS98 contains 5.82 · 1010 operators,
compared to 3 · 106 operators in a ground representation
where operators that are inapplicable due to mismatching
types of parameters or statically unsatisfiable preconditions
are removed (Helmert 2009).

We say that a grounding algorithm is optimized if it re-
moves (some, not necessarily all) irrelevant parts of the task
representation (Köhler and Hoffmann 2000). Such ground-
ing is correct if the reachable part of the transition graph
is not affected. We denote ground representations of lifted

tasks Π that result from correct optimized grounding by
groundopt(Π).

Observation 1. Let Π be a planning task and let σ be a
structural symmetry for Π. Then σ is not necessarily a struc-
tural symmetry for groundopt(Π).

As an example for this observation, consider again the
planning task of the IPC domain SPANNER shown in Fig-
ure 1. As we have seen before, in the lifted representation,
the spanners are symmetric to each other, and so are the nuts.
However, consider the ground representation groundopt(Π)
in which only the ground operator PICK-UP(SP1, SHED) has
been been removed, and all other (inapplicable) instantia-
tions of PICK-UP are still present.2 Then the structural sym-
metry mapping the spanners in Π is not a structural symme-
try of groundopt(Π), because PICK-UP(SP2, SHED) has no
symmetric counterpart.

However, this exploits that the grounding algorithm re-
moves one unreachable operator but retains a symmetric
one. This would be a very atypical behavior of a reasonable
grounding algorithm. We say that a grounding algorithm is
rational if it never removes a component (such as an oper-
ator or an atom) and at the same time keeps a symmetric
component. We denote the resulting ground representation
by ground rat(Π).

Theorem 2. Let Π be a planning task and let σ be a struc-
tural symmetry for Π. Then σ is a structural symmetry for
ground rat(Π).

Proof sketch. In Theorem 1, we have shown that every
structural symmetry of Π is a structural symmetry of the
induced ground representation. As any structural symmetry
maps the initial state onto itself, we can easily show that any
symmetric state of a reachable state is reachable, and hence
any symmetric operator of a reachable operator is reachable.
Thus, no structural symmetry can map a non-reachable op-
erator to a reachable operator of the planning task or vice
versa. Hence, as rational grounding either removes all or
none of the symmetric components, any structural symmetry
must be preserved through rational grounding.

We conclude that with any reasonable grounding ap-
proach, our symmetries correspond to symmetries of the
grounded representation, and hence we can safely exploit
symmetries of the lifted representation for any application.
We remark that symmetries of the lifted representation de-
fine mappings of predicates and objects of a planning task,
and as such induce a mapping of ground atoms as used in
(propositional) ground representations of planning tasks.3
However, according to the above theorem, such grounding of
lifted symmetries with rational grounding algorithms cannot

2While this might not necessarily be the result of a any existing
implementation of a grounding algorithm, it could be the result of
some correct optimized grounding algorithm.

3A further transformation of a symmetry into finite domain rep-
resentation (FDR) (Helmert 2009) is not as straight-forward in gen-
eral but it is trivial in the common case of a rational transformation,
i. e. if the transformation treats symmetric ground atoms symmet-
rically when grouping ground atoms into FDR variables.



result in finding more symmetries compared to directly com-
puting structural symmetries of the ground representation,
and hence such an application of our symmetries is fruitless.

Relation to Previous Notions of Symmetry
Shleyfman et al. (2015) already introduced structural sym-
metries for STRIPS planning tasks. These symmetries are
also structural symmetries in the sense of our definition,
but representing planning tasks as different abstract struc-
tures. In the following, we denote this other representation
the propositional task representation. The main difference is
that the set of symbols consists of the ground atoms. Ground
atoms are therefore not represented as tuples but as symbols.

The different symbol set already gives rise to symmetries
that are not symmetries of our task representation: consider
a task in propositional representation that has a symmetry
σ′ with σ′(P (a)) = P (a) and σ′(P (b)) = Q(b). In our
abstract structure representation this task cannot have an
analogous symmetry σ because σ̃(〈P, a〉) = 〈P, a〉 implies
σ(P ) = P , so σ̃(〈P, b〉) = 〈P, σ̃(b)〉 6= 〈Q, b〉.

Vice versa, we can show that for ground planning tasks
each structural symmetry σ of our task representation cor-
responds to a structural symmetry σ′ of the propositional
representation. The key idea of the proof is to define σ′ as
σ′(P (c1, . . . , cn)) = σ(P )(σ(c1), . . . , σ(cn)). A full proof
requires a definition of task equivalence bridging the for-
malisms and an extension of Shleyfman et al.’s definition to
axioms and conditional effects. As both are straight-forward
but lengthy, we refrain from including them in this paper.

Together with the result of Theorem 2 in the previous sec-
tion, this observation again emphasizes that there is no theo-
retical gain in computing structural symmetries of the lifted
representation for the purpose of grounding them. However,
we can utilize structural symmetries of the lifted representa-
tion for any application that works on this lifted representa-
tion, and these structural symmetries are symmetries in the
same sense as in previous work.

A second aspect where our symmetries are similar to
those of Shleyfman et al. is that they are so-called transi-
tion graph symmetries, as we will show next. Since, as men-
tioned above, Shleyfman et al. did not cover axioms and
conditional effects, we discuss transition graph symmetries
independently. A transition graph symmetry of a planning
task is a goal-stable automorphism of the induced transition
graph of the task, i. e. a mapping of derived states and op-
erators, preserving transitions and their cost as well as goal
states.
Theorem 3. Let Π = 〈O,A, s0, s?〉 be a ground planning
task over S and let σ be a structural symmetry for Π. Then
σ̃ (viewed as a function on the states and operators) is a
transition graph symmetry of TΠ.

Proof. We have to show that σ̃ preserves transitions and
their cost as well as goal states of TΠ. We begin with show-
ing the former. Let 〈JsK, o, Js[o]K〉 be a transition of TΠ

where s is a fluent state and o = 〈∅, pre, eff , cost〉 ∈ O
an operator such that JsK satisfies pre. Then σ̃(JsK) satis-
fies the precondition of σ̃(o) and σ̃(s)[σ̃(o)] = σ̃(s[o]).
The (stratified) evaluation of the axioms deriving Js[o]K

from s[o] directly translates to a symmetric axiom eval-
uation deriving Jσ̃(s[o])K from σ̃(s[o]). So overall, also
〈σ̃(JsK), σ̃(o), σ̃(Js[o]K)〉 is a transition of TΠ. The other di-
rection follows directly from the same argument and the fact
that σ−1 is a structural symmetry for Π (because the set of
symmetries of Π form a group, c. f. Lemma 1).

To show that costs are preserved, let F be the function
term specifying the cost of operator o. Let s0 contain a func-
tion assignment 〈F, c〉 for some numeric value c. Then all
transitions induced by o have the same cost c. As σ(c) = c
and σ̃(s0) = s0, this implies that s0 contains a function as-
signment 〈σ̃(F ), c〉, so that all transitions induced by σ̃(o)
have the same cost c. As σ̃(s?) = s? implies that JsK sat-
isfies s? iff σ̃(JsK) satisfies s?, σ̃ preserves the set of goal
states.

Computation
Pochter, Zohar, and Rosenschein (2011) already established
that symmetries can be computed as automorphisms of a cer-
tain graphical structure. In the following we introduce a suit-
able graph representation for general abstract structures.
Definition 7 (Abstract structure graph). Let A be an ab-
stract structure over S. The abstract structure graph ASGA

is a colored digraph 〈N,E〉, defined as follows.
• N contains a node A for the abstract structure A. If
N contains a node for A′ = {A1, . . . , An} or A′ =
〈A1, . . . , An〉, it also contains the nodes for A1, . . . , An.

• For each node A′, if A′ ∈ S then color(A′) = t(A′). If
A′ = {A1, . . . , An}, then color(A′) = set , and if A′ =
〈A1, . . . , An〉, then color(A′) = tuple .

• For each node A0 ∈ N , E contains the following edges.
If A0 = {A1, . . . , An}, there are edges 〈A0, Ai〉 ∈ E
for 1 ≤ i ≤ n. If A0 = 〈A1, . . . , An〉, there are edges
〈Ai−1, Ai〉 ∈ E for 1 ≤ i ≤ n.

Theorem 4. Let A be an abstract structure over S. Then
a colored graph automorphism of ASGA, interpreted as a
mapping of abstract structures corresponding to nodes of
ASGA, is an abstract structure mapping of A such that its
underlying symbol mapping is a structural symmetry.

Proof sketch. Let σ̃ be a colored graph automorphism of
ASGA. Consider some node A′ of ASGA. If A′ ∈ S,
then also σ̃(A′) ∈ S, because color(A′) = t(A′). We
immediately get that σ is a permutation on S. If A′ =
{A1, . . . An}, then from stabilizing colors and the structure-
preserving property of automorphisms, we get σ̃(A′) =
{σ̃(A1), . . . , σ̃(An)}. Analogously if A′ = 〈. . . 〉. Finally,
note that A is the only node with no incoming edges, and
hence σ̃(A) = A.

An immediate consequence is that we can use any graph
automorphism tool to compute structural symmetries of a
planning task Π: construct the abstract structure graph ASGΠ

and let the tool compute a set of automorphisms which gen-
erate a subgroup of the automorphism group Γ(ASGΠ).4
This subgroup corresponds to a symmetry group of Π.

4While no polynomial-time algorithms are known for comput-
ing the set of generators of the automorphism group of a graph,



Quantitative Analysis of Lifted Symmetries
Previous work established that structural symmetries arise
across nearly all common STRIPS planning benchmarks
(Domshlak, Katz, and Shleyfman 2013; Shleyfman et al.
2015; Sievers et al. 2015a). As we have seen that we might
find fewer structural symmetries of the lifted representa-
tion, we report quantitative results for computing structural
symmetries of the lifted representation, including planning
benchmarks with conditional effects and axioms. We imple-
mented the symmetry graph described in the previous sec-
tion in the translator component of the Fast Downward plan-
ning system (Helmert 2006). Using the graph automorphism
tool Bliss (Junttila and Kaski 2007), we then compute a sym-
metry group for a given planning task in PDDL.

We use the full set of planning benchmarks from the se-
quential tracks of all International Planning Competitions
(IPCs), including tasks that were used several times only
once. This gives rise to 2518 problems in 77 domains. Each
run is limited to 2GB of memory and 30 minutes runtime.

Ideally, we would report the size of the symmetry groups,
but as pointed out earlier, even computing a set of generators
of the automorphism group is not known to be polynomial-
time. Instead, we report the number of automorphisms found
by Bliss, i. e. the number of generators of the subgroup we
find for the planning task at hand. Additionally, we report the
order for these generators. The order of a symmetry gener-
ator σ is defined as the minimum number of compositions
with itself that yields the identity element.

Table 1 shows domain-wise results. The first two columns
list the total number of tasks and the number of tasks where
at least one generator can be found. Columns 3 and 4 show
the sum and the median of the number of found generators.
The fifth column reports the geometric mean of the runtime
required to compute the generators. The last two columns
show the geometric mean and the median of the order of the
generators. The last row aggregates the results over all do-
mains, using the same aggregation functions as for the do-
mains.

Looking at the number of tasks with symmetries, we note
that almost all domains exhibit symmetries. Furthermore,
most of these domains exhibit symmetries in most of their
tasks. Put the other way round, there are only 9 domains
with no symmetries and 26 domains where the median of the
number of generators is 0, i. e. there are more tasks without
than with symmetries. In total, more than half of the tasks
(1430/2518) exhibit symmetries. We also observe that the
computation of symmetries is cheap in terms of runtime. To
be precise, there are only 31 tasks for which the computation
takes more than 2s. Only for one task (in PSR-SMALL) the
symmetry computation did not finish within 300s, but this is
in fact a ground task with a very large number of duplicate
actions in the PDDL formalization. For all other tasks, the
maximum computation time is 18.81s.

As mentioned above, we also assess the orders of the gen-
erators we find on the benchmarks. With the only excep-
tion of two domains, namely OPTICAL-TELEGRAPHS and

graph automorphism tools can efficiently compute the generators
of a subgroup thereof even for large graphs.

# tasks # generators time orders

total symm sum med mean mean med

AIRPORT 50 50 177 4 0.5 2 2
ASSEMBLY 30 29 260 8 0 2 2
BARMAN-OPT14-STRIPS 14 14 45 3 0 2 2
BARMAN-SAT14-STRIPS 20 20 98 5 0 2 2
BLOCKS 35 0 0 0 0 - -
CAVEDIVING-14-ADL 20 5 6 0 0 2 2
CHILDSNACK-OPT14-STRIPS 20 20 765 38 0.1 2 2
CHILDSNACK-SAT14-STRIPS 20 20 1241 59.5 0.1 2 2
CITYCAR-OPT14-ADL 20 20 87 4 0 2 2
CITYCAR-SAT14-ADL 20 20 107 5 0 2 2
DEPOT 22 22 72 2 0 2 2
DRIVERLOG 20 14 18 1 0 2 2
ELEVATORS-OPT11-STRIPS 20 2 2 0 0 2 2
ELEVATORS-SAT11-STRIPS 20 14 30 2 0 2 2
FLOORTILE-OPT14-STRIPS 20 1 1 0 0 2 2
FLOORTILE-SAT14-STRIPS 20 0 0 0 0 - -
FREECELL 80 1 1 0 0 2 2
GED-OPT14-STRIPS 20 20 40 2 0 2 2
GED-SAT14-STRIPS 20 20 40 2 0 2 2
GRID 5 0 0 0 0 - -
GRIPPER 20 20 460 23 0 2 2
HIKING-OPT14-STRIPS 20 20 60 3 0 2 2
HIKING-SAT14-STRIPS 20 20 85 4.5 0 2 2
LOGISTICS00 28 19 25 1 0 2 2
LOGISTICS98 35 33 1467 17 0 2 2
MAINTENANCE-OPT14-ADL 5 3 5 1 0 2 2
MAINTENANCE-SAT14-ADL 20 0 0 0 0.2 - -
MICONIC 150 11 12 0 0 2 2
MICONIC-FULLADL 150 150 171 1 0.1 2 2
MICONIC-SIMPLEADL 150 11 12 0 0 2 2
MOVIE 30 30 2895 96.5 0.1 2 2
MPRIME 35 21 230 2 0 2 2
MYSTERY 30 16 169 1 0 2 2
NOMYSTERY-OPT11-STRIPS 20 10 14 0.5 0.4 2 2
NOMYSTERY-SAT11-STRIPS 20 14 24 1 0.9 2 2
OPENSTACKS-OPT08-ADL 30 30 224 7 0 2 2
OPENSTACKS-OPT14-STRIPS 20 14 257 14 0.1 2 2
OPENSTACKS-SAT08-ADL 30 30 225 7.5 0 2 2
OPENSTACKS-SAT14-STRIPS 20 12 87 2 0.4 2 2
OPTICAL-TELEGRAPHS 48 48 96 2 0.1 6.4 2
PARCPRINTER-OPT11-STRIPS 20 6 18 0 0 2 2
PARCPRINTER-SAT11-STRIPS 20 4 12 0 0 2 2
PARKING-OPT14-STRIPS 20 0 0 0 0 - -
PARKING-SAT14-STRIPS 20 0 0 0 0 - -
PATHWAYS 30 30 257 9 0.1 2 2
PATHWAYS-NONEG 30 30 257 9 0.1 2 2
PEGSOL-OPT11-STRIPS 20 8 13 0 0 2 2
PEGSOL-SAT11-STRIPS 20 7 12 0 0 2 2
PHILOSOPHERS 48 48 48 1 0 20.3 25.5
PIPESWORLD-NOTANKAGE 50 36 69 1 0 2 2
PIPESWORLD-TANKAGE 50 47 977 13.5 0.1 2 2
PSR-LARGE 50 4 4 0 0 2 2
PSR-MIDDLE 50 3 3 0 0 2 2
PSR-SMALL 50 48 2024 8 0 2 2
ROVERS 40 1 1 0 0 2 2
SATELLITE 36 36 1813 12 0 2 2
SCANALYZER-OPT11-STRIPS 20 17 138 6.5 0 2 2
SCANALYZER-SAT11-STRIPS 20 18 150 8.5 0 2 2
SCHEDULE 150 32 37 0 0 2 2
SOKOBAN-OPT11-STRIPS 20 20 1005 37.5 0.2 2 2
SOKOBAN-SAT11-STRIPS 20 20 1128 44 0.2 2 2
STORAGE 30 28 157 3 0 2 2
TETRIS-OPT14-STRIPS 17 1 1 0 0 2 2
TETRIS-SAT14-STRIPS 20 4 4 0 0 2 2
THOUGHTFUL-SAT14-STRIPS 20 20 20 1 0 2 2
TIDYBOT-OPT14-STRIPS 20 0 0 0 0 - -
TIDYBOT-SAT11-STRIPS 20 0 0 0 0 - -
TPP 30 29 105 3 0 2 2
TRANSPORT-OPT14-STRIPS 20 4 4 0 0 2 2
TRANSPORT-SAT14-STRIPS 20 0 0 0 0.1 - -
TRUCKS 30 28 85 3 0 2 2
TRUCKS-STRIPS 30 28 85 3 1.6 2 2
VISITALL-OPT14-STRIPS 20 14 21 1 0 2 2
VISITALL-SAT14-STRIPS 20 20 30 1.5 1 2 2
WOODWORKING-OPT11-STRIPS 20 11 18 1 0 2 2
WOODWORKING-SAT11-STRIPS 20 11 43 1 0 2 2
ZENOTRAVEL 20 13 18 1 0 2 2

Summary 2518 1430 18553 5 0 2.1 2

Table 1: Domain-wise results: number of tasks without and
with symmetries, number of generators (sum and median),
computation time in seconds (geometric mean), and orders
of symmetry generators (geometric mean and median).



PHILOSOPHERS, all generators are of (the smallest possi-
ble) order 2, except one generator of order 4 in SOKOBAN-
OPT11-STRIPS. In each PHILOSOPHERS task, there is ex-
actly one generator that rotates through all philosophers
and forks, and hence the order corresponds to the num-
ber of philosophers (and forks). Similarly for all OPTIMAL-
TELEGRAPHS tasks, there is one generator that rotates the
stations, and one simple generator of order 2 which swaps
stations pairwise.

Having established that we can find many structural sym-
metries directly of the lifted representation, in what follows
we discuss their potential applications.

Discussion and Future Work
We transferred the notion of structural symmetries to the
lifted representation of planning tasks and showed that with
rational grounding techniques, these are also symmetries of
the grounded task. Furthermore, we established that with
such grounding, each lifted structural symmetry is a tran-
sition graph symmetry of the grounded task and can thus be
exploited the same way as these, e. g. for symmetry breaking
in forward search (Pochter, Zohar, and Rosenschein 2011;
Domshlak, Katz, and Shleyfman 2012) or orbit space search
(Domshlak, Katz, and Shleyfman 2015). However, we have
seen that already due to representational limitations, this ap-
proach would find fewer symmetries than the approach by
Shleyfman et al. (2015) for finding structural symmetries of
STRIPS representations.

Still, this theoretical result is important to clarify the rela-
tion of our work to previous notions of symmetry. For prac-
tical applications we see the potential of our structural sym-
metries rather in areas where the earlier notions are inappli-
cable, namely applications that operate directly on the lifted
representation or at the transition point between the lifted
and the grounded representation of the task.

One potential application is the generation of invariants,
which are used for strengthening other techniques, e. g. in
constrained PDBs (Haslum, Bonet, and Geffner 2005) or
dead-end detection (Lipovetzky, Muise, and Geffner 2016).
Invariants are also crucial for the transformation of the task
into Finite Domain Representation, which many planning
heuristics rely on (Edelkamp 2001; Helmert et al. 2014;
Seipp and Helmert 2013; Helmert 2006). Traditionally, in-
variant generation methods fall into two groups: those that
operate only on the ground representation (Blum and Furst
1997; Rintanen 1998; 2008) and those that work directly
on the lifted representation (Gerevini and Schubert 1998;
Edelkamp and Helmert 1999; Rintanen 2000; Lin 2004;
Helmert 2009). The latter group usually scales better with
the size of the planning task but requires a certain amount of
first-order reasoning that suffers from complicated operator
specifications. Recent work on invariants (Li, Fan, and Liu
2013; Rintanen 2017) shows that it is often possible to only
consider a limited number of objects for the verification of
lifted invariant candidates. We expect that with our structural
symmetries it is possible to further extend the scope of this
line of work.

Another interesting direction for future work is speeding
up the grounding process. As for generating invariants, the

core question for grounding is what is reachable in the state
space. We plan to exploit structural symmetries by only con-
sidering a subset of the objects in this reachability analysis.

Yet another potential direction is task reformulation. Rid-
dle et al. (2016) have shown that it can be beneficial to re-
formulate a planning task so that for symmetric objects only
the number of objects that share specific properties is rep-
resented but not which exact objects these are. Many of the
criteria they use for detecting suitable objects are naturally
subsumed by structural symmetries, so we expect that we
can exploit them to apply similar state space transformations
to a wider range of planning domains.

In this paper, we have laid the theoretical foundation for a
sound exploitation of symmetries in these applications. Our
experiments show that a large number of planning bench-
marks exhibits structural symmetries in the lifted representa-
tion, so a further investigation of this line of research seems
indeed promising.
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