
Forward Search with Backward Analysis

Shlomi Maliah
Information Systems Engineering

Ben Gurion University
shlomima@post.bgu.ac.il

Ronen I. Brafman
Computer Science Dept.
Ben Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering

Ben Gurion University
shanigu@bgu.ac.il

Abstract
We describe a new forward search algorithm
for classical planning. This algorithm attempts to
maintain a focused search, expanding states using
only a subset of the possible actions. Given a state
s′ that was obtained by applying action a to state s,
we prefer to apply in s′ only actions a′ that require
some effect of a which we call forward actions. As
this is incomplete, we must also consider actions
a′′ that supply some other precondition of a′ and
actions a′′′ that supply preconditions to a′′ and so
on. We call these backward actions, as identifying
the relevant actions requires backward reasoning.
We show that by giving high priority to the forward
actions a′ we get improved performance in many
domains. The resulting algorithm can be viewed as
building on the classic idea of means-ends analy-
sis [Newell and Simon, 1961]. One crucial open
problem that arises is how to prioritize the search
for backward actions.

1 Introduction
Planning typically requires achieving multiple goals stem-
ming from the existence of multiple sub-goals or multiple
preconditions. Unless the plans for these subgoals interact
strongly with each other, this usually implies that we have
flexibility in ordering them. This, in turn, implies that often,
there are multiple permutations of a plan that are also valid
plans. Ideally, we would like our search algorithm not to con-
sider alternative permutations. In this paper we formulate a
forward search algorithm that uses backwards reasoning, in
the spirit of means-ends-analysis [Newell and Simon, 1961],
to focus only on certain permutations. More specifically, we
try to consider only permutations in which work done for one
subgoal is not interleaved with work done for another sub-
goal.

Thus, while inconsistent with the jittery age we live in, our
search process aims to be focused – it tries to focus on achiev-
ing one sub-goal at a time. Ideally, if we just applied an action
a, we would like the next action to be relevant to it and use
one of the effects a. We call such actions forward actions.

Forward search with this pruning rule can drastically re-
duce the branching factor, and solves quite a few classical

planning benchmarks. Unfortunately, it is easily seen to be in-
complete: Suppose a1, a2, a3 is a solution plan where: a1, a2
have some precondition that is true initially, and generate p1
and p2 respectively; a3 requires both p1 and p2 and produces
the goal. Suppose I is the initial state and we generate a1(I).
At this point, the only action that uses an effect of a1 is a3,
but it is not applicable.

Action a3 is not applicable after a1 because its other pre-
condition, p2, does not hold. We need to modify the prun-
ing rule so that it allows actions, such as a2, that establish
the missing precondition p2 of a1, given a1(I). We call these
backwards actions. But a single backwards action may be in-
sufficient. What if a2 is not applicable after a1 because one of
its preconditions p3 does not hold? Establishing p2 may actu-
ally require a sub-plan, and this requires a form of backwards
relevance reasoning.

Thus, the essence of our algorithm is to move forward us-
ing forward actions. When such an action is inapplicable be-
cause of a missing precondition, we reason backwards and
find a sub-plan that achieves the missing precondition.1 To
make the algorithm efficient, we prioritize forward actions
over backward reasoning.

We present the results of a planner based on prioritized for-
ward search with backwards analysis. The results are mixed
– sometimes, our algorithm works better than naive forward
search, and sometimes worse. It leads to an interesting open
question on how to prioritize the expansion of different ac-
tions.

2 Forward Backward Search
We consider standard classical planning problems, repre-
sented by a tuple 〈P, A, I,G〉 where:

• P is a finite set of primitive propositions (facts).

• A is the action set.

• I is the start state.

• G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and literals,

1Note that backwards refers to the reasoning mode. Actions are
always applied forward.



respectively. A state is a truth assignment over P . G is a con-
junction of facts. a(s) denotes the result of applying action a
to state s. A plan π = (a1, . . . , ak) is a solution to a planning
task iff ak(. . . (a1(I) . . .) |= G.

An important assumption we make is that actions are in
transition normal form [Pommerening and Helmert, 2015].
That is, a primitive proposition (or its negation) appears in
a precondition iff it (or its negation) appears in the effect of
the action. Every problem is easily converted into transition
normal form.

2.1 Forward-Backward Search
Forward-backward search is a forward search algorithm with
action pruning. Algorithm 1 shows the pseudo-code of its ini-
tial version, denoted FBS1. It maintains two open lists which
we call the forward list, denoted lfwd, and the backward list,
denoted lbwd. The forward list contains pairs of the form
〈s, P 〉, where s is a state and P is a set of primitive propo-
sitions. We can expand states in the forward open list only
using actions that have a precondition in P . Initially, this list
contains all elements of the form 〈a(I), eff (a)〉, where a is
any action applicable in I .

Unlike regular forward search, confined to actions with sat-
isfied preconditions, we also consider actions a that have a
precondition in P but are not applicable in s. We set up a pro-
cess which attempts to find an action, or possibly a sequence
of actions, that achieve the missing preconditions of a. This
is done by inserting the pair 〈s, [a]〉 to the backwards list.

The backward open list contains pairs of the form 〈s, stk〉,
where s is a state and stk is a stack of actions. If a appears
in the top of the stack and a is applicable in s, we apply
a and remove it from the stk, obtaining stk′. If the latter
is empty, 〈a(s), eff (a)〉 is added to the forward list. At this
point, we successfully generated a sub-plan that achieved the
missing preconditions of a, and can continue forward. Oth-
erwise, 〈a(s), stk′〉 is added to the backward list. This will
allow us to continue and apply the following actions, or po-
tentially add new actions that achieve preconditions that are
still missing.

If a appears in the top of the stack and a is inapplicable
in s, then we consider all actions a′ that achieve a missing
precondition of a. For each such action we add a new item
into the backward list. This item is identical to the original
pair, but with a′ pushed into the top of the stack. That is, we
continue to reason backwards seeking an action that can help
us to achieve a needed precondition.

We denote the above algorithm by FBS1. When expanding
a node from one of the lists (lines 10, 23), we select nodes
that are minimal in terms of the heuristic value of their state.
Below we explain how we optimize the choice between the
two lists.

In FBS1, an action was inserted into a stack in the backward
list if it supplied a missing precondition of a relevant action.
We denote by FBS2 a slightly modified version of the above
in which an action is inserted into the backward list even if it
supplies a precondition that is currently true, and even if the
action that requires this precondition is applicable. In terms
of the pseudo-code, the else parts starting in line 16 and line

Algorithm 1: The FwdBwd Algorithm
1 FwdBwd()
2 lfwd ← the empty list
3 lbwd ← the empty list
4 foreach Action a executable at I do
5 Add 〈a(I), eff (a)〉 to lfwd

6 while goal not achieved do
7 ExpandForward(lfwd)
8 ExpandBackward(lbwd)

9 ExpandForward(lfwd)
10 〈s, P 〉 ← extract min from lfwd

11 if s is a goal state then
12 trace back solution and terminate
13 foreach a ∈ A s.t. pre(a) ∩ P 6= ∅ do
14 if s |= pre(a) then
15 Add 〈a(s), eff (a)〉 to lfwd

16 else
17 P ′ ← pre(a) \ s
18 foreach a′ ∈ A s.t. eff (a′) ∩ P ′ 6= ∅ do
19 stack ← the empty stack
20 Push a′ into stack
21 Add 〈s, stack〉 to lbwd

22 ExpandBackward(lbwd)
23 〈s, stack〉 ← extract min from lbwd

24 Pop a from stack
25 if s |= pre(a) then
26 if stack is empty then
27 Add 〈a(s), eff (a)〉 to lfwd

28 else
29 Add 〈a(s), stack〉 to lbwd

30 else
31 Push a into stack
32 P ′ ← pre(a) \ s
33 foreach a′ ∈ A s.t. eff (a′) ∩ P ′ 6= ∅ do
34 copy ← a copy of stack
35 Push a′ into copy
36 Add 〈s, copy〉 to lbwd

30 are always executed, and with P ′ = pre(a). As we show
later, FBS1 is incomplete, whereas FBS2 is complete.

Optimizations
First, as in most search algorithms, it is useful to avoid re-
peated visits to the same state. In our case, this is somewhat
more complicated, because, e.g., the same state can be visited
many times, following different actions. Still, it is straight-
forward to add bookkeeping mechanisms to Algorithm 1 to
avoid adding duplicates to the forward and backward lists.

Intuitively, forward actions advance the plan towards the
goal, while backward actions are a necessary setback because
a needed action cannot be executed. Following this intuition,
we can give priority to actions that use an effect of the last
action. That is, in the main loop of the FwdBwd algorithm,



we expand more states from the forward list than from the
backward list.

Similarly, the search backwards for relevant actions can
distinguish between actions that supply a condition that is un-
true at present (as in FBS1) and actions that supply a condi-
tion that is true at present (allowed by FBS2). The latter can
be given lower priority, ensuring completeness, while having
little effect on computation time.

In many domains the goal is a conjunction of several facts.
The algorithm, as described, will not be able to handle such
goals because it cannot search forward once a sub-goal is
achieved (when subgoals are independent). One way to avoid
this is to add an artificial action that takes as precondition all
these facts, supplying a single artificial goal fact. Using this
technique in our algorithm, however, is problematic. This is
because in many domains once a subgoal is achieved, the en-
tire planning process is turned into a backward analysis in
order to obtain the missing goal facts. We can overcome this
by using a “reset” whenever a goal fact is achieved, allowing
all executable actions to be executed in the following state, as
we do for the initial state.

The backward search is very expensive in our implementa-
tion because we consider all actions that achieve a precondi-
tion, and it is unclear how to heuristically rank these actions.
Heuristics that rely on the current state are not informative for
these unexecuted actions. We now suggest a third version of
our algorithm that avoids the backward search altogether.

In forwards-backwards search 3 (FBS3), when an action a′
has a precondition supplied by the previous action a, but can-
not be executed at the current state s, we find all actions a′′
that are relevant to a′, and can be executed at s. This can be
done by regressing the preconditions of a′, terminating when-
ever reaching actions that can be executed at s. All these ac-
tions are then executed, and the resulting pairs are inserted
into the forward list. We still maintain a backward list, to al-
low us to prioritize forward expansions over backward analy-
sis, but the backward list no longer contains a stack of actions,
only pairs 〈s, P 〉, where P is the set of facts to regress.

The result is a less focused algorithm, because we no
longer maintain the “reasons” for the backward analysis, but
one that avoids the problematic prioritization of backward ex-
pansions. This also avoids the special treatment after achiev-
ing goal facts, because the backward regression is similar to
the “reset” operation, although more focused.

3 Properties
We now discuss the soundness and completeness of FBS.
Claim 1. FBS is sound.

Proof. Each state in a pair 〈s,X〉 (where X is either P or
stack), generated in FBS is obtained by applying an action
to a state that was previously generated, starting at the initial
state. Thus, all generated states are reachable, and if a goal
state is found, there must be a plan.

As noted earlier FBS1 is incomplete, and we provide a
counter-example later. We now prove, though, that FBS2, that
uses backward analysis even when preconditions are satisfied,
is complete.

It remains a key open question whether weaker condi-
tions suffice to ensure completeness. In strong stubborn sets
[Wehrle and Helmert, 2014], for example, it is sufficient to
move backward only over a single precondition of an ac-
tion, considering also actions that interfere with a needed
precondition. We conjecture that by using a similar condi-
tion in FBS1, we can attain completeness. Specifically, given
〈s, stk〉, if a is at the top of the stack and it is applicable
in s, and a′ is an action that interferes with a, we also add
〈s, stk′〉 where stk′ is obtained by pushing a′ to stk. In prac-
tice, when the optimizations described earlier are used over
current benchmarks, we never expand backwards states that
were added for satisfied preconditions.

For our completeness proof, we assume that the goal is a
single proposition, which can be achieved with a simple trans-
formation.

We use the following definitions in our proofs: The causal
structure of a valid plan π [Karpas and Domshlak, 2012], de-
noted CS(π) is a DAG whose nodes are the actions of π. a is
a parent of a′ iff a precedes a′ in the π, and a has an effect,
say p, that is a precondition of a′, and no action between a
and a′ produces p. This is often called a causal link between
a and a′ in π [Tate, 1977]. As we assume that the goal is
a single literal, there is a single leaf node in CS(π). We use
InvCS(π) to denote CS(π) with edge directions reversed,
which by the above is a DAG with a single root node. Finally,
we say that a plan is minimal if whenever any subset of action
instances is removed from the plan, it is no longer a valid plan
(i.e., it is either not executable or does not achieve the goal).
Lemma 1. Let a, a′ be two actions in a plan π such that a
precedes (not necessarily immediately) a′ in π, and p appears
in the description of a and a′ (possibly negated). Then, a is
an ancestor of a′ in CS(π).

Proof. The proof is by induction on the number of actions
between a and a′ in π in whose description p appears. First,
suppose that there are no such actions. Because we assume
action descriptions are in transition normal form, then p (pos-
sibly negated) appears in both the preconditions and effects
of a and a′. Therefore, a must supply the correct value of p to
a′. Consequently, by definition, a is a parent of a′ in CS(π).

For the inductive step, suppose the above holds when there
are k actions between a and a′, and consider the case where
there are exactly k + 1 actions, a1, a2, . . . , ak+1 between a
and a′ that contain p in their description. By the inductive hy-
pothesis, a1 is an ancestor of a′, and by the argument above,
a is a parent of a1, and thus, an ancestor of a′.

An immediate consequence of the above Lemma and the
definition of post-order traversal of a graph is:
Lemma 2. The order of actions that mention p in their de-
scriptions in any post-order traversal of InvCS(π) is identi-
cal.

Proof. By Lemma 1, every two actions that mention p have
an ancestor/descendant relation, which must be maintained in
any post-order traversal.

Lemma 3. Every post-order traversal of InvCS(π) is a
valid plan.



Figure 1: Counter Example

Proof. In any post-order traversal of the graph, for every ac-
tion a, the relative order of all actions supplying a with some
precondition must be the same. Therefore, the value of the
propositions in the precondition of a prior to the execution of
a will be identical to their value prior to the execution of a in
π, and therefore, the preconditions of a are satisfied and a is
executable, and hence the entire sequence is executable, and
in particular the last action that achieves the goal.

We now prove:

Theorem 1. FBS2 is complete.

Proof. Suppose a planning problem is solvable. Let π be such
a plan. We show that FBS2 generates a post-order traversal
InvCS(π), which by Lemma 3 is a plan.

We start with the first action in π. It must be a leaf node
of InvCS(π). Given this leaf node, a, after executing it, we
apply actions forward until we reach ap, the first ancestor of a
that has other children. At this point, we would like to apply
a descendant of the other children of ap. Let al be such a
descendant that is a leaf node. In FBS2, we are guaranteed that
this action is considered in the current state. Next, we apply
al, and continue with its parent, until we apply the relevant
child of ap. Note that al must be applicable since it is a leaf
node and we are assuming TNF.

We end this section with a counter-example to the com-
pleteness of FBS1 (Figure 1). In this example we see a plan
with nine actions a1, · · · , a9, where a9 achieves the goal.
a1, a2, a3, a4 are applicable in the initial state and require the
preconditions r1, s1, r2, s2, respectively. They do not delete
these preconditions. Recall that in transition normal form, this
implies that these preconditions are also their effects (denoted
by the dotted edges). a5 requires r1 and s1, and a6 requires
r2 and s2 as preconditions.

The key difficulty in this example is that a5 and a6 remove
necessary preconditions for a1, a2, a3, a4 that cannot be later
generated. These actions must be executed before actions a7
and a8. Hence, a1, a2 must be executed before a5, and a3, a4

before a6. However, executions that follow the FBS1 algo-
rithms always execute either a5 or a6 before some of the ac-
tions a1, ..., a4, as illustrated below.

Focusing on the left side (the right side is symmetric), the
execution can start with either a1, a2 or a5, whose precon-
ditions are satisfied initially. If we start with a5, r1, s1 are
deleted, blocking the execution of both a1 and a2 which pro-
duce required propositions for later actions.

Consider the execution in which first apply a1. There are
two actions that use an effect of a1: a5 and a7. a5 can be
immediately executed without backward reasoning, and this
implies that a2 is blocked, and will not be considered by the
algorithm. Without it, a8 cannot be executed later.

Another option we can consider is to apply a7 after a1,
applying backward reasoning, and then a3. After a3 we can
apply a6 which blocks a4, or a5 which blocks a2 again.

On the other hand, FBS2 will apply backward reasoning
from a5 even though its preconditions are satisfied, and will
discover the path executing a2 before a5.

It is interesting to note that we did not manage to generate a
smaller and simpler counter example, which may point to the
rarity of domains for which FBS1 is incomplete. When us-
ing the stubborn sets rule of moving backwards to interfering
actions, this counter example is no longer valid.

4 Empirical Evaluation
We now provide an empirical analysis of our FwdBwd al-
gorithm, comparing it to naive forward heuristic search. To
provide a clean analysis of our new approach, we avoided
comparison to mature classical planners, containing many op-
timizations, and implemented all algorithms on an identical
framework. As such, differences between algorithms result
from their properties, not from better implementation.

We experiment with two main heuristics — the FF heuris-
tic, and preferred operators [Hoffmann, 2001]. The FF heuris-
tic is a very popular and effective heuristic, analyzing the
number of actions in a plan over a delete relaxation of the
original problem. The preferred operators heuristic gives pri-
ority to actions in the relaxed plan. We find it important to
compare to preferred operators, because this technique also
restricts the set of actions that are considered at each state.
The original preferred heuristic does not ignore other actions,
only prioritizes them differently, for completeness, but for our
analysis we ignored all non-preferred actions.

When combining preferred operators and FBS, we restrict
our attention to actions that appear in the relaxed plan, both
in the forward search and in the backward analysis. That is,
when we expand a state either in the forward expansion (Al-
gorithm 1, line 13), or in the backward expansion (line 33),
we consider only actions that appear in the relaxed plan com-
puted through the FF heuristic.

We experiment with a number of domains from the Interna-
tional Planning Competition (IPC). Our inefficient implemen-
tation did not allow us to solve many such domains, and we
hence restrict our analysis only to 5 domains, where our for-
ward search with preferred operators managed to solve larger
instances. For these domains we experiment with the first 20
problems, as the larger instances could not be solved by our



Time (secs) Actions Coverage
PO S FB Fwd FBPO PO S FB Fwd FBPO PO S FB Fwd FBPO

IPC
elevators 9.46 50.93 21.55 21.01 29.73 72.9 52.4 61.5 56.8 70.8 20 17 20 5 19
openstacks 1.74 4.59 4.05 3.75 39.76 81.4 81.6 81.2 53.6 71.2 20 20 20 10 18
parcprinter 0.37 1.75 1.3 28.12 0.34 36.1 44.9 36.1 27.1 38.3 12 20 20 11 17
pegsol 4.93 17.89 10.09 20.04 11.86 19.5 19.4 18.6 19.4 19.5 19 19 17 19 19
scanalyzer 23.63 36.05 43.86 39.16 35.4 23.7 14.2 17 25.6 28.7 19 10 11 13 18

CoDMAP
depot 52.7 3.31 1.81 86.39 35.41 32 21 22 34 55.5 5 3 3 2 11
driverlog 12.8 1.07 18.26 2.48 4.76 26.4 16.8 17.4 20.9 24.1 16 13 14 15 13
elevators 10.33 64.84 22.31 41.52 22.94 72.7 53.3 62.3 59.7 75 20 18 20 3 20
logistics 0.36 1.6 0.59 X 0.95 52.3 51.9 53.2 0 60.9 20 20 20 8 20
MALogistics 0.49 2.15 0.55 16.91 0.3 71.4 67.3 66.5 75.7 81.2 20 19 18 15 20
rovers 7.19 32.5 24 X 18.99 64 33.8 41.6 X 60.1 20 5 8 0 18
satellites 15.94 70.25 77.59 58.13 19.12 47.7 39.1 37.2 58.5 33.9 17 13 10 3 8
taxi 0.03 8.54 0.14 2.52 0.03 21.9 21.4 21.2 21.8 23.2 20 20 19 20 20
zenotravel 31.6 42.64 29.59 15.78 11.51 47.7 26.6 34 33.7 29.8 19 14 16 15 14
Sum 247 211 216 139 235

Table 1: Comparing heuristic forward search (S), forward only (Fwd), Forward-Backward (FB), and their preferred operators
versions (PO, FBPO), over classical planning domains from IPC, and over unified multi-agent domains from CoDMAP.

forward search implementation.

In addition, we experiment with domains from the multi-
agent collaborative CoDMAP competition. We believe that
these domains contain a more factored search space, which
can be exploited by our forward backward approach. We
hence took multi-agent domains from the CoDMAP bench-
mark set, and unified them into single-agent domains.

Table 1 compares the performance of the different algo-
rithms. Looking at coverage, we can see that almost always
heuristic forward search with preferred operators achieves the
best coverage. The second best method is the FBPO variant,
which uses a forward-backward approach with preferred op-
erators. In one domain, depot, which appears to be the most
difficult domain in our benchmark set, forward-backward
with preferred operators achieved much better coverage than
all other approaches.

Of the methods that do not use preferred operators, the
forward-backward approach achieves a slightly higher cov-
erage than heuristic forward search. This is an encouraging
result, showing that the forward-backward approach has the
potential to improve upon regular forward search.

The forward-only approach, considering only actions that
have some precondition that was generated by the previ-
ous action, fails completely on 6 of the 14 domains that we
checked, but solves many instances in the other 8. This per-
haps shows that these domains are, in a way, easier to solve.
Still, even in domains where many instances were solved,
forward-only search, although drastically limiting the set of
considered actions is not necessarily faster than other meth-
ods. It may also generate longer plans, as in MALogistics.

Looking at plan length (number of actions), we can see that
heuristic search with preferred operators often does not find
the best plan. For example, in elevators (both versions), the
PO variant produces much longer plans. The FBPO variant
also produces longer plans in some cases, such as MALogis-
tics. Comparing only heuristic search and forward-backward,
the results are inconclusive — in parcprinter FB finds shorter
plans, while in logistics heuristic search is better.

5 Conclusion
We suggested a new search paradigm, which we call forward-
backward search, allowing us to limit the number of actions
that are considered at each expansion, while maintaining the
space of plans that can be computed.

We define forward actions — actions that require a precon-
dition supplied by the last action. We show that for complete-
ness one must also consider actions that supply a precondition
for a forward action. We search for such actions using what
we call backward reasoning.

We provide completeness proofs for our methods, and a
negative example for an intuitive, yet incomplete variant,
where we search backwards only for missing preconditions.

We provide an experimental evaluation of our approach,
comparing our methods to standard heuristic forward search,
showing that our methods produce slightly better coverage,
and in some cases shorter plans.

One obvious future direction is to implement our methods
into an existing planner such as FF or FD. This would al-
low us to test our approach in a competitive highly optimized
planner, and see whether they improve upon heuristic search.

Most closely related to our work are various action prun-
ing techniques, and in particular, strong stubborn sets [Wehrle
and Helmert, 2014]. Strong stubborn sets is an optimality pre-
serving method for action pruning. Given a set s, one com-
putes a set As of actions that contain (i) all actions that can
achieve one (arbitary) sub-goal that does not hold at s, (ii)
for all actions a ∈ As not applicable in s, calAs contains
all actions that can achieve one preconditions of these actions
(iii) for all actions a ∈ As applicable in s, As contains all
actions a′ that interfere with a whose preconditions do not
contradict those of a. Strong stubborn sets do not have the
focused element driving the forward part of our search, they
strongly resemble the type of backwards computation that de-
termines what additional actions to consider. In particular, it
is similar to the backwards computation used in FBS3, where
a stack is not maintained. As we indicated earlier, we believe
that condition (iii) is required for completeness of FBS1.



Acknowledgments: This work was supported by ISF Grant
933/13, by the Helmsley Charitable Trust through the Agri-
cultural, Biological and Cognitive Robotics Center of Ben-
Gurion University of the Negev, and by the Lynn and William
Frankel Center for Computer Science.

References
[Hoffmann, 2001] J. Hoffmann. FF: The fast-forward plan-

ning system. AI magazine, 22(3):57, 2001.
[Karpas and Domshlak, 2012] Erez Karpas and Carmel

Domshlak. Optimal search with inadmissible heuristics.
In Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012, 2012.

[Newell and Simon, 1961] Allen Newell and Her-
bert Alexander Simon. Gps, a program that simulates
human thought. Technical report, DTIC Document, 1961.

[Pommerening and Helmert, 2015] Florian Pommerening
and Malte Helmert. A normal form for classical planning
tasks. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling,
ICAPS 2015, Jerusalem, Israel, June 7-11, 2015., pages
188–192, 2015.

[Tate, 1977] Austin Tate. Generating project networks. In
Proceedings of the 5th International Joint Conference
on Artificial Intelligence. Cambridge, MA, August 1977,
pages 888–893, 1977.

[Wehrle and Helmert, 2014] Martin Wehrle and Malte
Helmert. Efficient stubborn sets: Generalized algo-
rithms and selection strategies. In Proceedings of the
Twenty-Fourth International Conference on Automated
Planning and Scheduling, ICAPS 2014, Portsmouth, New
Hampshire, USA, June 21-26, 2014, 2014.


