
27th International Conference on
Automated Planning and Scheduling

June 19-23, 2017, Pittsburgh, USA

HSDIP 2017
Proceedings of the 9th Workshop on

Heuristics and Search
for Domain-independent Planning

Edited by:

J. Benton, Nir Lipovetzky, Florian Pommerening, Miquel Ramirez,
Enrico Scala, Jendrik Seipp, and Álvaro Torralba

Organization

J. Benton
NASA Ames Research Center & AAMU-RISE, USA

Nir Lipovetzky
University of Melbourne, Australia

Florian Pommerening
University of Basel, Switzerland

Miquel Ramirez
University of Melbourne, Australia

Enrico Scala
ANU, Australia

Jendrik Seipp
University of Basel, Switzerland

Álvaro Torralba
Saarland University, Germany

ii

Foreword

Research into heuristics and search has resulted in numerous successes in domain-independent planning for nearly two decades.
The approach remains a staple in classical planning, temporal planning, and planning under uncertainty, and progress shows no
sign of decline. This workshop offers a discussion forum and an opportunity to showcase new and emerging ideas in the area.
Past workshops have featured novel methods that have grown and formed indispensable lines of research.

This year marks a decade since the first workshop on Heuristics for Domain-independent Planning (HDIP) was held in 2007.
HDIP was subsequently held in 2009 and 2011. With the fourth workshop in 2012, the organizers sought to recognize the role
search algorithms play in providing successful solutions to planning problems. They made a concerted effort to increase the
scope of the workshop and renamed it to the workshop on Heuristics and Search for Domain-independent Planning (HSDIP) to
encourage submissions on search. The workshop found success under both names and has become an annual event each year
at ICAPS. This is its ninth iteration.

Above all, the workshop encourages innovative ideas for heuristics and search both in theory and practice. We emphasize
clarity and understanding rather than focusing solely on significant empirical improvements. Rather than worrying exclusively
about the number of problems solved, or solving larger instances, we have equal interest in specific studies on solving complex
planning constraints that have caused significant difficulty for other planners. Further, though the series of workshops have
often focused on classical planning, we have sought to encourage papers on temporal planning, hierarchical planning, planning
under uncertainty and a variety of other topics.

J. Benton, Nir Lipovetzky, Florian Pommerening, Miquel Ramirez, Enrico Scala, Jendrik Seipp, and Álvaro Torralba
June 2017

iii

Contents

Beyond Forks: Finding and Ranking Star Factorings for Decoupled Search
Daniel Gnad, Valerie Poser and Jörg Hoffmann 1

On the Relationship Between State-Dependent Action Costs and Conditional Effects in Planning
Robert Mattmüller, Florian Geißer, Benedict Wright and Bernhard Nebel 10

Equi-Reward Utility Maximizing Design in Stochastic Environments
Sarah Keren, Luis Pineda, Avigdor Gal, Erez Karpas and Shlomo Zilberstein 19

Exploiting Variance Information in Monte-Carlo Tree Search
Robert Lieck, Vien Ngo and Marc Toussaint 26

A Graph-Partitioning Based Approach for Parallel Best-First Search
Yuu Jinnai and Alex Fukunaga 35

Forward Search with Backward Analysis
Shlomi Maliah, Ronen Brafman and Guy Shani 44

Tie-Breaking in A∗ as Satisficing Search
Masataro Asai and Alex Fukunaga 50

Cost-Length Tradeoff Heuristics for Bounded-Cost Search
Sean Dobson and Patrik Haslum 58

Structural Symmetries of the Lifted Representation of Classical Planning Tasks
Silvan Sievers, Gabriele Röger, Martin Wehrle and Michael Katz 67

Strengthening Canonical Pattern Databases with Structural Symmetries
Silvan Sievers, Martin Wehrle, Malte Helmert and Michael Katz 75

From Qualitative to Quantitative Dominance Pruning for Optimal Planning
Álvaro Torralba 84

Optimal Solutions to Large Logistics Planning Domain Problems
Gerald Paul, Gabriele Röger, Thomas Keller and Malte Helmert 93

iv

Beyond Forks: Finding and Ranking Star Factorings for Decoupled Search

Daniel Gnad and Valerie Poser and Jörg Hoffmann
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{gnad, hoffmann}@cs.uni-saarland.de; s9vapose@stud.uni-saarland.de

Abstract
Star-topology decoupling is a recent search reduction method
for forward state space search. The idea basically is to
automatically identify a star factoring, then search only
over the center component in the star, avoiding interleavings
across leaf components. The framework can handle complex
star topologies, yet prior work on decoupled search consid-
ered only factoring strategies identifying fork and inverted-
fork topologies. Here, we introduce factoring strategies
able to detect general star topologies, thereby extending the
reach of decoupled search to new factorings and to new do-
mains, sometimes resulting in significant performance im-
provements. Furthermore, we introduce a predictive portfolio
method that reliably selects the most suitable factoring for a
given planning task, leading to superior overall performance.

Introduction
In classical planning, the task is to find a sequence of ac-
tions leading from a given initial state to a state that satis-
fies a given goal condition. The states, goal condition, and
actions are described relative to a vector of state variables,
and the size of the resulting state space is exponential in
the number of state variables. Numerous techniques have
been proposed to tackle this state space explosion problem.
Star-topology decoupled search, short decoupled search, is
a recent addition to this arsenal (Gnad and Hoffmann 2015;
Gnad et al. 2015).

Decoupled search is a form of factored planning (e. g.
Amir and Engelhardt (2003), Kelareva et al. (2007), Fabre et
al. (2010), Brafman and Domshlak (2013)), where the state
variables are automatically partitioned into factors (compo-
nents), and the planning process distinguishes between lo-
cal per-factor planning vs. global across-factors planning.
In contrast to previous approaches, star-topology decoupled
search assumes that the interactions across factors take a par-
ticular shape, namely that of a star topology. Such a topol-
ogy has a single center factor that can arbitrarily interact
with possibly many leaf factors, but any interaction across
leaf factors must be via the center. The decoupled search
then branches only over those actions that affect the center,
handling the possible moves for each leaf factor separately.

Intuitively, one can think of this as exploiting a form of
“conditional independence” between the leaf factors: given
a fixed transition path πC for the center, the possible (center-
compliant) transition paths for each leaf are independent

across leaves. We can therefore avoid the multiplication of
leaf states across leaves. Instead, decoupled search accumu-
lates all possible leaf states given πC into a so-called decou-
pled state, which compactly represents the set of all states
that can be reached using πC . The number of decoupled
states can be, and is often in practice, exponentially smaller
than the number of states in the standard state space.

While decoupled search is able to handle star topologies
in general, existing factoring strategies so far only iden-
tified fork and inverted-fork topologies. Such structures
are well known in planning (Katz and Domshlak 2008;
Katz and Keyder 2012; Aghighi et al. 2015) and can be
easily detected by analyzing the causal graph of a planning
task (e. g. Knoblock (1994), Jonsson and Bäckström (1995),
Brafman and Domshlak (2003), Helmert (2003)). Yet fork
and inverted-fork topologies are quite limited. In particular,
they cannot identify any factorization within strongly con-
nected components of the causal graph.

Here we extensively widen the scope of star factorings,
introducing two new strategies that, in particular, do not suf-
fer from this limitation. We aim at maximizing the number
of leaf components, as the potential reductions are exponen-
tial in that number. Our first strategy is based on maximum
independent sets of the causal graph, which yield the max-
imum possible number of leaves. The leaves are then post-
processed, as larger leaves are more beneficial: we design
a greedy strategy maximizing leaf flexibility, derived from
the number of actions that affect only a leaf (and which the
search hence doesn’t need to branch over). Our second strat-
egy is simpler. It employs greedy variable selection using
a measure of connectivity in the causal graph, essentially
moving the most densely connected variables into the cen-
ter.

Both strategies extend the reach of decoupled search to
new factorings and to new domains, and sometimes result in
significant performance improvements. On the other hand, it
turns out that the two new factoring strategies, as well as the
previous ones, are often complementary (lead to good results
in different cases). So how to automatically select the best
factoring? We devise a predictive portfolio – a per-instance
self-configuration method – to answer that question.

Sequential portfolios, running a set of component plan-
ners for a fixed allotted time each, have been used widely
in planning (e. g. Howe et al. (1999), Gerevini et al. (2009),

1

Helmert et al. (2011), Seipp et al. (2015)). Yet, to our aware-
ness, the only known predictive planning portfolio is IBA-
COP (Cenamor et al. 2016), which predicts the performance
of a set of component planners based on a wide range of
input-syntax features. Such features are also more gener-
ally used for performance prediction in planning (Roberts
and Howe 2009; Hoffmann 2011; Fawcett et al. 2014). We
go beyond this here by a ranking method based on sample
searches, running the factoring candidates with a short time
limit, extracting features from the searches. This is differ-
ent from IBACOP, whose key to success is the component
selection, not the per-instance ranking. Our approach works
well. It reliably selects the best factoring, leading to superior
overall performance.

Preliminaries

We consider a classical planning framework with finite-
domain state variables (Bäckström and Nebel 1995; Helmert
2006), often referred to as FDR (finite-domain representa-
tion) planning. A planning task in this framework is a tuple
Π = 〈V,A, I,G〉. Here, V is a finite set of state variables,
short variables, where each v ∈ V is associated with a finite
domainD(v). A is a finite set of actions, each a ∈ A being a
triple 〈pre(a), eff(a), c(a)〉 of precondition, effect, and cost,
where pre(a) and eff(a) are partial assignments to V , and
the cost is a non-negative real number c(a) ∈ R0+. A state
is a complete assignment to V . I is the initial state. The
goal G is a partial assignment. For a partial assignment p,
we denote by V(p) ⊆ V the subset of variables on which p is
defined. For V ′ ⊆ V(p), by p[V ′] we denote the restriction
of p onto V ′, i. e., the assignment to V ′ made by p. We iden-
tify (partial) variable assignments with sets of variable/value
pairs.

We say that action a is applicable in state s if pre(a) ⊆ s.
Applying a in s changes the value of all v ∈ V(eff(a)) to
eff(a)[v], and leaves s unchanged elsewhere. The outcome
state is denoted sJaK. A plan for Π is an action sequence π
iteratively applicable in I , and resulting in a state sG where
G ⊆ sG. The plan π is optimal if the summed-up cost of its
actions, denoted c(π), is minimal among all plans for Π.

The factoring strategies we will consider heavily employ
the task’s causal graph, a well known concept in planning
capturing some of a task’s structure, in terms of pairwise
state-variable dependencies (e. g. Knoblock (1994), Jons-
son and Bäckström (1995), Brafman and Domshlak (2003),
Helmert (2006)). Specifically, the causal graph CGΠ of a
planning task Π is a directed graph whose vertices are the
variables V . The graph contains an arc v → v′ if v 6= v′,
and there exists an action a ∈ A such that v ∈ V(pre(a)) ∪
V(eff(a)) and v′ ∈ V(eff(a)). Intuitively, an arc from v to v′
indicates that, either, in order to move v′ (v′ ∈ V(eff(a))) we
may have to move v first (v ∈ V(pre(a))); or, when we move
v′, we may have to move v as a side effect (v ∈ V(eff(a))).

We assume that CGΠ is weakly connected, which makes
some factoring topologies more convenient to define. If that
is not so, then each weakly connected component can be cast
as a separate sub-task, and can be solved independently.

Decoupled Search Background
To understand our contribution, a recap of the previous work
by Gnad and Hoffmann (2015) and Gnad et al. (2015) is re-
quired. We define what star factorings are, give a brief sum-
mary of decoupled search, and discuss previous methods for
finding star factorings automatically.

Star Factorings
A factoring F is a partitioning of V into non-empty sub-
sets F ⊆ V . These sets are called factors. We say that a
factoring F is trivial if it contains only a single factor, i. e.,
|F| = 1. A non-trivial factoring F is called a star factor-
ing if there exists a factor FC ∈ F where, denoting the
remaining factors by FL := F \ {FC}, for every action
a ∈ A where V(eff(a)) ∩ FC = ∅ there exists FL ∈ FL

with V(eff(a)) ⊆ FL and V(pre(a)) ⊆ FL ∪ FC . In other
words, every action either affects (has an effect on) FC , or
it affects only a single FL ∈ FL and has preconditions only
on that same FL and/or on FC . In this situation, we refer to
FC as the center, and to the factors in FL as the leaves, in
F .

Intuitively, in a star factoring, the center dominates the
task structure, as fixing a transition path for the center also
fixes what any one of the leaves can or cannot do. Decou-
pled search exploits this by searching only over the actions
affecting the center.

Decoupled Search
We need a few basic notations. Given a factoringF , variable
assignments to FC are called center states, and assignments
to an FL ∈ FL are called leaf states. We refer to actions
affecting FC as center actions, denoted AC , and to actions
affecting a leaf FL as leaf actions, denoted AL[FL]. The
set of all leaf actions is denoted AL. Observe that AC and
AL[FL] may overlap: this happens if there is a center ac-
tion that affects both, FC and FL. We call leaf actions in
AL \ AC leaf-only actions. In a star factoring, center ac-
tions can have arbitrary preconditions and effects on all fac-
tors. On the other hand, as pointed out above already, leaf-
only actions affect only FL, and have preconditions only on
FL ∪ FC .

Given a path πC of center actions (a center path, appli-
cable to I[FC] in the task’s projection onto FC), decou-
pled search maintains – for each leaf separately – what is
referred to as the compliant-path graph. The compliant-path
graph compactly captures the set of leaf paths (sequences of
AL[FL] actions) that comply with the current center path.
Here, a leaf path πL of leaf FL complies with a center path
πC if their AC ∩ AL[FL] subsequences agree, and the leaf-
only actions in πL can be embedded into πC such that the
resulting action sequence is applicable to I[FC ∪FL] when
ignoring preconditions on the remaining leaves FL \ {FL}.

A decoupled state sF then consists of a center path πC ,
along with the compliant-path graph for each leaf FL ∈ FL.
For each leaf state sL, the price of sL in sF is the cost of a
cheapest compliant leaf path ending in sL, or∞ if no such
path exists. The search stops when reaching a goal decou-
pled state: a state whose center assignment satisfies the cen-

2

ter goal G[FC], and where for each leaf FL ∈ FL there ex-
ists a finite-price leaf state that satisfies the leaf goal G[FL].

Existing Factoring Strategies
Gnad et al. (2015) introduced the theoretical concept of star
factorings, yet explored only a tiny fragment of that rich
factoring space. They considered only extremely simple
sub-classes arising from well-known structures called forks
and inverted-forks, as well as a combination thereof, called
Xshape. These structures can be derived from simple causal
graph analyses, viewing the factoring as an equivalence re-
lation over the variables, i. e., over the causal graph vertices.

The interaction graph IGΠ(F) given a factoring F is the
directed graph whose vertices are the factors, with an arc
F → F ′ if F 6= F ′ and there exist v ∈ F and v′ ∈ F ′

such that v → v′ is an arc in CGΠ. A factoring F is a
fork factoring if there exists FC ∈ F such that the arcs in
IGΠ(F) are exactly {FC → FL | FL ∈ FL}. F is an
inverted-fork factoring if there exists FC ∈ F such that the
arcs in IGΠ(F) are exactly {FL → FC | FL ∈ FL}. F
is an Xshape factoring if there exists FC ∈ F such that, for
every FL ∈ FL, exactly one of FC → FL and FL → FC

is an arc in IGΠ(F).
Every fork/inverted-fork/Xshape factoring is, in particu-

lar, a star factoring. The advantage of these simple special
cases is that they are very easy to identify. Observe that,
in any one of these factoring types, as the dependency be-
tween each pair of factors can only be in one direction, (*)
every strongly connected component (SCC) of the causal
graph must be fully contained in a single factor. One can
hence identify such factorings from the DAG over causal-
graph SCCs, which in practice tends to be very small. Gnad
et al. (2015) devise simple greedy strategies attempting to
(though not guaranteeing to) maximize the number of leaf
factors.1

However, (*) is of course a stark limitation. For example,
if the causal graph is strongly connected, then no factoring
can be identified – this despite the fact that every planning
task has exponentially many star factorings, namely for ex-
ample all those partitioning V into two subsets (where the
role of “center” vs. “leaf” can be attributed arbitrarily).

Finding Star Topologies
We design factoring strategies making more comprehensive
use of the possibilities at hand. The strategies identify strict-
star factorings. A factoring F is a strict-star factoring if
there exists FC ∈ F s.t. all arcs in IGΠ(F) are contained in
{FC → FL, FL → FC | FL ∈ FL}. In other words, we
now allow arbitrary (including bidirectional) causal-graph

1We remark that, in fact, one can easily guarantee to find fork
(respectively inverted-fork) factorings with the maximal number
of leaves. Namely, that holds when simply setting FL to the leaf
(root) causal-graph SCCs. This is because adding a non-leaf (non-
root) component as a new leaf factor necessarily introduces a de-
pendency across leaf factors. Adding a component to an existing
leaf can only increase its size, but can never lead to more leaf fac-
tors. We will use these enhanced fork/inverted-fork strategies in
our experiments.

dependencies between the center and the leaves. This defi-
nition has been stated by Gnad et al. (2015) before, but its
power has never been explored.2

We introduce two factoring strategies. Both aim at maxi-
mizing the number of leaf factors in a strict-star factoring.
The latter is NP-complete (Gnad et al. 2015), due to a
simple reduction from finding a maximum independent set
(MIS): leaf factors are independent in the causal graph, and
vice versa independent causal graph variables can be made
leaves. Since maximizing the number of leaves is already
hard, we focus on optimizing only this measure. In the
end, the potential gain of decoupled search is exponential in
that number. Many other features could also be considered,
though. We leave the conclusive exploration of such features
for future work, instead concentrating on how to detect star
topologies.

Our first strategy uses a causal-graph MIS as a seed fac-
toring, which is then post-processed. Our second strategy
is simpler, using a greedy variable selection that moves the
most densely connected variables into the center.

Maximizing the Number of Leaves
Given the correspondence between causal-graph maximum
independent sets and strict-star factorings with maximum
number of leaves, a natural approach to find the latter is by
starting from a causal graph MIS VMIS ⊂ V . In our im-
plementation, we use standard methods to find such a MIS
(Fomin et al. 2009); precisely, we consider all cardinality-
maximal independent sets produced up to a time-out of 10
seconds. Each MIS then spawns a separate instance of our
factoring strategy. The strategy starts with a factoring FMIS
where every leaf contains exactly one variable v ∈ VMIS. It
applies a post-process designed to maximize leaf flexibility.
It may also abstain (see below) depending on the outcome.

The flexibility of a leaf FL is the ratio of leaf-only actions
over all actions affecting FL: |AL[FL]\AC |/|AL[FL]|. We
say that a leaf is frozen if its flexibility is 0. A leaf that is
not frozen is called mobile, and a factoring F is mobile if
all its leaves are mobile. Flexibility measures the “amount
of work” a leaf can do on its own. In particular, it is 1 for
fork or inverted-fork leaves. A frozen leaf cannot lead to a
reduction of the search space, in the sense that all its leaf
actions also affect the center, so must be branched over. We
hence remove frozen leaves, using only mobile factorings in
the search.

The MIS post-process is detailed in Figure 1. Starting
with a MIS-factoring FMIS, we (1) move variables from the
center into the leaves, (2) remove the frozen leaves, and (3)
maximize the number of variables in each leaf. For (1) and
(3), we use a hill-climbing approach to select the variables
(maximizeFlexibility). We do so by computing a set of can-
didate variables that are connected to exactly one leaf factor,

2We shun the complexity of general star factorings because (a)
they are defined based on individual actions and cannot be captured
by a compact structural representation like the causal graph; and
(b) their usefulness over strict-star factorings is unclear as the only
additional possibility are center actions affecting several leaves, an
implicit form of dependency across leaves.

3

IndependentSetFactoring(Π = 〈V,A, I,G〉):
FL := {{v} | v ∈ MIS(CGΠ)}
FL := maximizeFlexibility(FL) (1)
FL := {FL ∈ FL | FL is mobile} (2)
FL := maximizeFlexibility(FL) (3)
if |{FL ∈ FL | FL is mobile}| < 2 then

return abstain
return
F := {FC := {v ∈ V | ∀FL ∈ FL : v 6∈ FL}} ∪ FL

Function maximizeFlexibility (FL
0):

FC := {v ∈ V | ∀FL ∈ FL
0 : v 6∈ FL}

V ′ := {v ∈ FC | |neighbourLeaves(v,FL
0)| = 1}

FL
max := FL

0

i := 1
while V ′ 6= ∅ do

for v ∈ V ′ do
{FL

v } := neighbourLeaves(v,FL
max)

FL
i := FL

max ∪ {FL
v ∪ {v′}} \ {FL

v }
i := i + 1

end
FL

max := argmax(|FL
j |), for j ∈ [i− |V ′|, i− 1]

FC := {v ∈ V | ∀FL ∈ FL
max : v 6∈ FL}

V ′ := {v ∈ FC | |neighbourLeaves(v,FL
max)| = 1}

end
return FL

j with max # of mobile leaves, j ∈ [0, i− 1]

Function neighbourLeaves (v,FL):
N := {FL ∈ FL | ∃v′ ∈ FL : v → v′ ∈ CGΠ∨

v′ → v ∈ CGΠ}
return N

Figure 1: Factoring strategy based on a maximum indepen-
dent set (MIS) of the causal graph.

and that can hence be moved into that leaf factor without in-
troducing leaf-leaf dependencies. For each candidate c, a
candidate factoring is generated, where c has been moved
into the respective leaf. Out of the candidate factorings re-
sulting from the last for-loop execution, we pick the one with
the highest number of mobile leaves (in the argmax), then
we iterate.

Frozen leaves are removed in step (2), because any leaf
that is still frozen at this point cannot become mobile later
on. Step (3) aims at further increasing flexibility. Note that
additional iterations cannot improve the flexibility, since the
set of candidates would be empty. The factoring with the
highest number of mobile leaves is returned.

Although increasing flexibility – by moving variables into
the leaves – is desirable, having very large leaf state spaces
can lead to a prohibitive computational overhead when up-
dating the compliant-path graphs. To prevent this, like Gnad
and Hoffmann (2015), we use 232 as an upper bound on
the domain-size product of the variables in a leaf. We re-
mark that there might be more suitable choices for the upper
bound. Experimenting with this is out of the scope of this
work, though.

The algorithm may fail to find a non-trivial factoring. In
that case, our factoring strategy abstains, i. e., does not sug-
gest a factoring for this input task. Indeed, as done in pre-
vious work on decoupled search, we abstain – here as well

IncidentArcsFactoring(Π = 〈V,A, I,G〉):
FC := ∅
i := 1
for v ∈ V do

// sorted by decreasing # of incident arcs in CGΠ

FC := FC ∪ {v}
FL

i := connectedComponents(V \ FC)
i := i + 1

end
FL := select FL

i with max # of mobile leaves, i ∈ [1, |V |]
if |{FL ∈ FL | FL is mobile}| < 2 then

return abstain
return
F := {FC := {v ∈ V | ∀FL ∈ FL : v 6∈ FL}} ∪ FL

Figure 2: A greedy factoring strategy based on the number
of incident arcs of a variable in the causal graph.

as in the factoring strategy described in the next subsection
– whenever the algorithm returns a factoring with at most
one mobile leaf. This makes sense because the main ad-
vantage of decoupled search is to avoid interleaving across
several leaf factors. If the factoring strategy abstains, one
can in principle use any arbitrary other planner; the deci-
sion to abstain is typically taken very quickly (details in the
experiments).

A Greedy Approximation
Although the causal graph is usually small, it turns out that
there exist planning instances for which computing a max-
imum independent set is infeasible. Therefore, we propose
an alternative to the independent-set factoring, based on the
connectivity of the variables in the causal graph. We count
the number of incident arcs, the number of CG-arcs a vari-
able participates in, and move highly connected variables to
the center. This method computes a factoring (or fails to do
so) very quickly. Details are given in Figure 2.

The algorithm starts with the trivial factoring F = FL =
{V }, where all variables are in a single leaf factor. We
sort the variables by decreasing number of incident arcs and
move variables from the leaf to the center FC according to
this ordering. This generates a sequence of center factors
where in each step the size of the center is increased by
one. For each such FC , we set the leaves FL to be the
weakly connected components in CG projected on the non-
center part V \ FC that fit the leaf size bound. Picking the
weakly connected components in the leaf part ensures that
there are no cross-leaf dependencies, and we get a strict-star
factoring. Again, we choose the factoring that maximizes
the number of mobile leaves, abstaining if there are less than
2 of them.

The idea behind this strategy is to have the highly con-
nected variables in the center, because we assume those to
otherwise introduce dependencies between the leaves.

Predictive Per-Instance Self Configuration
Now that we have an arsenal of factoring strategies at hand,
the question arises if there exists a method that dominates

4

A∗ using LM-cut GBFS using hFF GBFS using hFF and preferred operator pruning
Dom # B F IF X MIS IA SC % # B F IF X MIS IA SC % # B F IF X MIS IA SC %
Air 17 13 - - - 13 - 13 17 17 - - - 16 - 16 17 17 - - - 17 - 17
Csnac 20 0 - 0 0 - 0 0 20 0 - 0 0 - 0 0 20 3 - 6 6 - 6 6
Depot 22 7 - 7 7 5 (11) 7 7 22 14 - 19 19 9 (11) 19 19 22 18 - 20 20 10 (11) 19 20
Driv 20 13 13 - 13 13 13 13 100 20 18 20 - 20 20 20 20 86 20 20 20 - 20 20 20 20 100
Elev 50 40 - 41 41 9 (41) 40 41 83 50 48 - 50 50 - 10 (40) 50 50 50 - 50 50 - 10 (40) 50
Floor 40 13 - 13 13 8 8 13 100 40 8 - 6 6 8 4 7 57 40 8 - 8 8 8 4 8 50
Free 42 2 - - - - 1 1 42 41 - - - - 42 42 42 42 - - - - 42 42
Log 63 26 34 27 34 35 35 35 100 63 54 63 63 63 63 63 63 93 63 63 63 63 63 63 63 63 98
Mico 145 136 135 - 135 135 135 135 145 145 145 - 145 145 145 145 145 145 145 - 145 145 145 145
Mpri 6 6 - - - - 4 4 6 6 - - - - 6 6 6 6 - - - - 6 6
Myst 5 1 - 0 (1) 0 (1) - 1 (4) 1 5 1 - 1 (1) 1 (1) - 1 (4) 2 5 2 - 1 (1) 1 (1) - 1 (4) 2
NoMy 20 14 20 - 20 20 20 20 20 9 19 - 19 19 19 19 20 10 19 - 19 19 19 19
Open 70 40 - - - 38 35 38 84 70 69 - - - 69 (1) 70 70 46 70 70 - - - 69 (1) 70 69 71
Parc 23 7 - - - - 13 13 25 24 - - - - 23 23 25 24 - - - - 24 24
Pathw 30 5 4 (1) - 4 5 5 5 100 30 11 12 (1) - 13 15 13 18 100 30 20 19 (1) - 20 23 20 24 100
Rover 40 7 9 5 (2) 9 9 9 9 88 40 23 22 38 (2) 22 21 21 32 90 40 40 40 38 (2) 40 40 40 40 87
Sat 36 7 7 10 (2) 7 8 9 12 90 36 30 33 34 (2) 33 33 28 33 87 36 36 36 34 (2) 36 36 31 35 84
Tetr 13 4 - - - - 5 5 17 5 - - - - 6 6 17 13 - - - - 14 14
Thoug 0 13 5 - - - 0 (10) 5 5 100 13 10 - - - 1 (10) 10 10 100
Tidy 40 22 - - - 8 (18) 23 24 20 14 - - - 14 14 14 20 15 - - - 13 (1) 13 13
TPP 29 5 18 (2) 2 (3) 18 3 (26) 5 18 100 29 21 23 (2) 25 (3) 25 3 (26) 26 25 96 29 29 27 (2) 26 (3) 29 3 (26) 24 27 96
Trans 70 23 - 23 23 3 (67) 18 (34) 23 100 70 16 - 70 70 3 (67) 9 (61) 70 100 70 45 - 70 70 3 (67) 9 (61) 70 100
Truck 27 9 - - - 6 (13) 10 10 100 27 16 - - - 7 (13) 16 16 100 27 18 - - - 7 (13) 16 16 100
Wood 46 25 14 (28) 28 (7) 28 (7) - 26 (3) 33 49 48 43 (6) 48 (1) 48 (1) 1 (48) 46 (3) 49 74 49 49 43 (6) 48 (1) 48 (1) 1 (48) 46 (3) 49 44
Zeno 20 13 13 11 (2) 13 12 12 13 61 20 20 20 18 (2) 20 20 20 20 100 20 20 20 18 (2) 20 20 20 20 100
Other 87 72 3 (84) 0 (87) 3 (84) 72 72 72 76 90 87 3 (87) 0 (90) 3 (87) 87 (2) 87 87 94 90 88 3 (87) 0 (90) 3 (87) 88 (50) 88 80 94
All 981 510 270 167 368 402 506 558 986 750 403 372 557 553 713 857 986 861 435 382 598 586 760 897

(560) (557) (330) (331) (58) (540) (553) (326) (343) (125) (540) (553) (326) (344) (125)
MIS 620 390 241 83 271 402 643 525 341 172 360 553 642 577 369 176 392 586

(271) (434) (207) (263) (435) (208) (262) (434) (207)
IA 923 490 270 160 361 506 861 685 403 267 452 713 861 764 435 277 493 760

(502) (540) (313) (415) (536) (309) (415) (536) (309)

Table 1: Coverage data (number of solved instances) for the standard search baseline (B), the revised F/IF/X factorings, our
new MIS and IA-based factorings, and self-configuration (SC). Best results highlighted in bold. # is the number of instances
where at least one factoring strategy did not abstain. Numbers in parentheses show the number of abstained tasks per domain.
The three rows at the bottom show overall coverage (and overall abstained) on the subset of instances where any (All), the MIS-
based (MIS), or the IA-based (IA) strategy does not abstain. “-” marks domains in which a strategy abstains on all instances.
We summarize domains with identical coverage for B, MIS, IA, and SC in “Other”. “%” indicates SC’s accuracy (see text).

the others. As we shall see in the experiments, this is
not the case, and the factoring methods are typically com-
plementary. A simple way to exploit such complementar-
ity is to combine several planners in a sequential portfolio
(e. g. Howe et al. (1999), Gerevini et al. (2009), Helmert
et al. (2011), Seipp et al. (2015)), where each component
planner gets a fixed allotted time slot based on a benchmark
training phase.

Cenamor et al. (2016) devised a more flexible predictive
portfolio, IBACOP, that assigns the times based on a per-
instance analysis over syntactic features of the planning task
input. Here, we select one of our factorings on a per-instance
basis. In contrast to Cenamor et al., we do not rely on syn-
tactic features, but run a short sample search with each fac-
toring.

Specifically, we generate the set of factorings using all
factoring strategies: fork, inverted-fork, Xshape, MIS-based
for every MIS found, incident arc based. For each factor-
ing, we run a sample search with a time limit of 1s. We

additionally allow up to 10s per factoring to precompute the
leaf state spaces, which is important for the efficiency of
decoupled search. In case a sample search already solves
the task, we return the solution. In domains where just a
single method finds a factoring, we simply select that fac-
toring. Given multiple factorings, we select one based on
sample search features, namely heuristic improvement – the
ratio between initial state heuristic value vs. the best heuris-
tic value observed in the search – as well as the number of
expanded states.

It turns out that, to reliably select the best-performing fac-
toring, it suffices to rank the factorings based on just one
of these features depending on the objective: heuristic im-
provement (higher is better) for satisficing planning (where
better heuristic values lead to faster search); and expanded
states (higher is better) for optimal planning. For the latter,
we expect the search space to be rather large, independent
of the factoring, so a fast expansion rate is important (the
expansion time highly depends on the factoring).

5

X vs. IA, hLM-cut X vs. MIS, hLM-cut X vs. IA, hFF X vs. MIS, hFF

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Figure 3: Scatter plots, with a data point per instance, showing the search space size (top), and runtime in seconds (bottom) of
X vs. IA/MIS, with X on the x-axis and IA/MIS on the y-axis. Black points indicate instances where both strategies did non
abstain. Blue circles (red triangles) highlight instances for which X (IA/MIS) has abstained; we show data for B in this case.

Experiments
We implemented the factoring strategies – the two new ones,
as well as the refined fork (F), inverted-fork (IF), and Xshape
(X) strategies as mentioned above – for Gnad et al.’s (2015)
decoupled search planner built on top of the Fast Downward
system (FD) (Helmert 2006). The experiments were con-
ducted on a cluster of Intel E5-2660 machines running at
2.20 GHz, with time (memory) limits of 30 minutes (4 GB).
We run experiments on the sequential optimal and satisficing
tracks of all international planning competitions (IPC).

To evaluate our MIS factoring strategy (on its own, with-
out per-instance self-configuration), in case several factor-
ings with the same number of mobile leaves are found, we
select an arbitrary one among those.

For all factoring strategies, the factoring process is fast.
The factoring time is below 1s on 90% of the instances; the
maximum is 30s. In instances with high factoring time, it
is typically (though not always) still faster than FD’s pre-
process. Expectedly, the incident arcs based factoring (IA)
tends to be significantly faster than the MIS-based strategy.

Our new strategies produce fork / inverted-fork / Xshape
/ strict-star factorings in 18% / 16% / 1% / 65% of the cases
for IA, and in 32% / 6% / 0% / 62% for MIS. So IA and MIS
are indeed able to detect many strict-star factorings.

In Table 1, we show coverage results of A∗ search with
LM-cut (Helmert and Domshlak 2009), and greedy best-first
search (GBFS) with hFF (Hoffmann and Nebel 2001) with
and without using preferred operators. Quite obviously, the
factoring strategies differ a lot, and no strategy dominates
all others. Comparing our MIS and IA strategies, it turns
out that IA abstains significantly less. The reason for this
are “ill-structured” maximum independent sets that, while
having many independent variables, cannot be repaired to a
mobile factoring by our post-process. Furthermore, a bit un-
expectedly, the IA factoring often results in a larger number
of leaf factors, on instances were both strategies are success-

ful.
In newly tackled domains, i. e., ones where only MIS

and/or IA do not abstain, we see that optimal decoupled
search with LM-cut usually solves about as many instances
(±2) as standard search. An outlier to the positive side is
ParcPrinter (+6), to the negative side Openstacks (−3), both
with IA. When using GBFS with hFF, there is little cover-
age difference in the newly tackled domains. Most config-
urations solve most of the instances, so in this sense these
benchmarks are just not sufficiently challenging to exhibit
coverage differences. In the other domains though, where
previous strategies find factorings, too, we often see big cov-
erage differences, most notably in Rovers and Satellite.

Predictive self-configuration (SC) turns out to be very
useful. Its accuracy (fraction of instances with at least 2
different factorings in which the best-performing – accord-
ing to FD’s search time – factoring is selected) is shown
in the % columns. Clearly, accuracy is very good almost
across the board, especially in optimal planning. In the
optimal benchmark suite, SC chooses the F/IF/X/IA/MIS
strategy 368/267/1/279/66 times, in the satisficing suite it
is 350/246/2/335/53. Note that the high number of forks
always includes 145 instances of Miconic. In terms of cov-
erage, this leads to superior performance overall. This is
either (1) due to combining methods that abstain on differ-
ent instances, or (2) picking the right factoring on instances
that can be solved when using one, but not using another
factoring method.

Runtime and search space size scatter plots, shown in Fig-
ure 3, allow a more fine-grained view on the performance of
different factorings. We show data for MIS and IA, compar-
ing to X as a baseline. The first row of plots shows the per-
instance comparison of the search space size (# expanded
nodes until last f -layer for hLM-cut, # evaluated states for
hFF), the second row shows runtime. If both factoring strate-
gies succeed (black points), we see that they often result in

6

B vs. IA, hLM-cut B vs. MIS, hLM-cut B vs. IA, hFF B vs. MIS, hFF

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

Figure 4: Scatter plots, with a data point per instance, showing the search space size (top), and runtime in seconds (bottom) of
B vs. IA/MIS, with B on the x-axis and IA/MIS on the y-axis.

the same factoring – there are many black points on the di-
agonal. When running hLM-cut, it turns out that some of the
instances solved by X, cannot be solved by IA. This risk
is less pronounced for MIS, so the MIS-based factorings
indeed seem to be better, although abstaining more often.
On commonly solved instances with different factorings X
is mostly faster than IA/MIS, favoring the simpler strategy if
it succeeds. A positive outlier is, e. g., the Satellite domain,
where MIS with hLM-cut achieves an average speed-up factor
over B of around 27, compared to no speed-up with the X
strategy. Other good cases are, e. g., Logistics and Pathways
with hFF, where IA gets a speed-up of 55 (32 for X), resp.
107 (13 for X) over B. In case X abstains (blue dots) we
see that our new strategies very consistently outperform the
baseline B, as we have already seen in the coverage table. If
IA/MIS abstain (red dots) we see the same picture for X vs.
B.

Figure 4 sheds further light on the comparison between
standard search (B) and the new IA/MIS factoring strate-
gies. The plots show search space size (top) and runtime
(bottom) on instances where IA/MIS do not abstain. Over-
all, the new strategies perform very well, mostly resulting
in a tremendously smaller search space and faster runtime.
Again, apparently the MIS factorings seem to work slightly
better than IA factorings – there are less points above the
diagonal, both for optimal planning with hLM-cut, and satis-
ficing with hFF. In summary, although mostly invisible in
the coverage table, there are cases where the new strategies
perform significantly better than standard search, and some-
times even better than Xshape factorings.

We also conducted experiments in proving planning tasks
unsolvable. Table 2 shows “coverage” data – the number of
instances proved unsolvable by the respective planners. All
configurations use the hmax heuristic for dead-end detection
(Bonet and Geffner 2001). We use the benchmarks from the
Unsolvability IPC’16, and an extended set of benchmarks
of Hoffmann et al. (2014), where we added instances with

higher constrainedness level for NoMystery, and Rovers.

Domain # B F IF X MIS IA SC
Unsolvability IPC’16

BagBarman 16 8 - - - - 4 4
BagTransport 29 6 - 10 10 - - 10
Cavediving 23 5 - - - 5 (10) 4 (2) 7
Diagnosis 11 5 - - - 5 8 8
DocTransfer 20 7 - - - 13 13 13
NoMystery 24 2 12 - 12 12 12 12
Rovers 20 7 8 - 8 10 10 10
TPP 30 16 - - - 5 (16) 14 15
PegSol-R5 12 2 - - - 0 (10) 2 2
PegSol 24 24 - - - - 24 24
Tiles 10 0 - - - - 0 0
Tetris 20 5 - - - - 5 5
IPC Mystery, Others Extended from (Hoffmann et al. 2014)

3-Unsat 1 1 - - - - 1 1
Mystery 3 0 - 0 0 - - 0
NoMystery 40 12 39 - 39 39 39 39
PegSol 24 24 - - - - 24 24
Rovers 40 9 10 - 10 12 10 10
Tiles 10 0 - - - - 0 0
TPP 25 5 - - - - 0 0∑

382 138 69 10 79 101 170 184
(258) (350) (226) (198) (34)

Table 2: Number of instances proved unsolvable. Abbrevi-
ations and general setup are as in Table 1. All configurations
use the hmax heuristic for dead-end detection.

The table reveals that the new factoring strategies exten-
sively widen the applicability of decoupled search on this set
of benchmarks. Where before the fork and inverted-fork fac-
torings abstained on most domains, IA and MIS tackle a lot
more instances. In terms of the number of tasks proved un-
solvable, decoupled search using the new factorings clearly
outperforms the standard search baseline. The accuracy of

7

the self-configuration (SC) is again quite good. Yet, the un-
derlying strategies result in the same factorings in all but 4
domains. In Diagnosis and UIPC TPP, SC always selects
the best factoring. In Rovers (both versions), the accuracy
is still good for the UIPC version (67%), but very low in the
variant of Hoffmann et al. (16%).

Conclusion
Decoupled search can tackle a large set of star factorings,
yet has previously been applied to fork and inverted-fork
structures only. Our work begins to close this gap, with
more general strict-star factorings found through maximum
independent sets and greedy optimizations/approximations.
The empirical results, especially with per-instance self-
configuration, are reasonably good. Major improvements
are rare though. The question remains whether better factor-
ing strategies yet exist, or whether the observed limitations
are simply due to the inherent structure (“we can only ex-
ploit star topologies where they are present”) of these bench-
marks.

Acknowledgments
This work was partially supported by the German Re-
search Foundation (DFG), under grant HO 2169/6-1, “Star-
Topology Decoupled State Space Search”.

References
Meysam Aghighi, Peter Jonsson, and Simon Ståhlberg.
Tractable cost-optimal planning over restricted polytree
causal graphs. In Blai Bonet and Sven Koenig, editors, Pro-
ceedings of the 29th AAAI Conference on Artificial Intelli-
gence (AAAI’15), pages 3225–3231. AAAI Press, January
2015.
Eyal Amir and Barbara Engelhardt. Factored planning. In
G. Gottlob, editor, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), pages
929–935, Acapulco, Mexico, August 2003. Morgan Kauf-
mann.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Blai Bonet and Héctor Geffner. Planning as heuristic search.
Artificial Intelligence, 129(1–2):5–33, 2001.
Ronen Brafman and Carmel Domshlak. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research, 18:315–349, 2003.
Ronen Brafman and Carmel Domshlak. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198:52–71, 2013.
Isabel Cenamor, Tomás de la Rosa, and Fernando
Fernández. The ibacop planning system: Instance-based
configured portfolios. Journal of Artificial Intelligence Re-
search, 56:657–691, 2016.
Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie
Thiébaux. Cost-optimal factored planning: Promises and

pitfalls. In Ronen I. Brafman, Hector Geffner, Jörg Hoff-
mann, and Henry A. Kautz, editors, Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS’10), pages 65–72. AAAI Press, 2010.
Chris Fawcett, Mauro Vallati, Frank Hutter, Jörg Hoffmann,
Holger Hoos, and Kevin Leyton-Brown. Improved fea-
tures for runtime prediction of domain-independent plan-
ners. In Steve Chien, Minh Do, Alan Fern, and Wheeler
Ruml, editors, Proceedings of the 24th International Con-
ference on Automated Planning and Scheduling (ICAPS’14).
AAAI Press, 2014.
Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A
measure & conquer approach for the analysis of exact algo-
rithms. Journal of the Association for Computing Machin-
ery, 56(5), 2009.
Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati.
An automatically configurable portfolio-based planner with
macro-actions: PbP. In Alfonso Gerevini, Adele Howe,
Amedeo Cesta, and Ioannis Refanidis, editors, Proceedings
of the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), pages 350–353. AAAI Press,
2009.
Daniel Gnad and Jörg Hoffmann. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Ronen Brafman, Carmel Domshlak, Patrik Haslum, and
Shlomo Zilberstein, editors, Proceedings of the 25th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’15), pages 88–96. AAAI Press, 2015.
Daniel Gnad, Jörg Hoffmann, and Carmel Domshlak. From
fork decoupling to star-topology decoupling. In Levi Lelis
and Roni Stern, editors, Proceedings of the 8th Annual Sym-
posium on Combinatorial Search (SOCS’15), pages 53–61.
AAAI Press, 2015.
Malte Helmert and Carmel Domshlak. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioan-
nis Refanidis, editors, Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09), pages 162–169. AAAI Press, 2009.
Malte Helmert, Gabriele Röger, Jendrik Seipp, Erez Karpas,
Jörg Hoffmann, Emil Keyder, Raz Nissim, Silvia Richter,
and Matthias Westphal. Fast Downward Stone Soup. In IPC
2011 planner abstracts, pages 38–45, 2011.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253–302, 2001.

Jörg Hoffmann, Peter Kissmann, and Álvaro Torralba. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. In Thorsten Schaub, editor, Proceed-
ings of the 21st European Conference on Artificial Intelli-
gence (ECAI’14), Prague, Czech Republic, August 2014.
IOS Press.
Jörg Hoffmann. Analyzing search topology without running
any search: On the connection between causal graphs and

8

h+. Journal of Artificial Intelligence Research, 41:155–229,
2011.
Adele Howe, Eric Dahlman, Chistopher Hansen, Anneliese
Von Mayrhauser, and Michael Scheetz. Exploiting competi-
tive planner performance. In S. Biundo and M. Fox, editors,
Proceedings of the 5th European Conference on Planning
(ECP’99), pages 62–72. Springer-Verlag, 1999.
Peter Jonsson and Christer Bäckström. Incremental plan-
ning. In European Workshop on Planning, 1995.
Michael Katz and Carmel Domshlak. Structural patterns
heuristics via fork decomposition. In Jussi Rintanen, Bern-
hard Nebel, J. Christopher Beck, and Eric Hansen, editors,
Proceedings of the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS’08), pages 182–
189. AAAI Press, 2008.
Michael Katz and Emil Keyder. Structural patterns be-
yond forks: Extending the complexity boundaries of clas-
sical planning. In Jörg Hoffmann and Bart Selman, editors,
Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI’12), pages 1779–1785, Toronto, ON, Canada,
July 2012. AAAI Press.
Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie
Thiébaux. Factored planning using decomposition trees. In
Manuela Veloso, editor, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’07),
pages 1942–1947, Hyderabad, India, January 2007. Morgan
Kaufmann.
Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243–302, 1994.
Mark Roberts and Adele Howe. Learning from planner per-
formance. Artificial Intelligence, 173(5-6):536–561, 2009.
Jendrik Seipp, Silvan Sievers, Malte Helmert, and Frank
Hutter. Automatic configuration of sequential planning port-
folios. In Blai Bonet and Sven Koenig, editors, Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), pages 3364–3370. AAAI Press, January 2015.

9

On the Relationship Between State-Dependent Action Costs and Conditional
Effects in Planning

Robert Mattmüller and Florian Geißer
University of Freiburg, Germany

{mattmuel, geisserf}@informatik.uni-freiburg.de

Benedict Wright and Bernhard Nebel
BrainLinks-BrainTools, University of Freiburg, Germany

{bwright, nebel}@informatik.uni-freiburg.de

Abstract

When planning for tasks that feature both state-dependent
action costs and conditional effects using relaxation heuris-
tics, the following problem appears: handling costs and ef-
fects separately leads to worse-than-necessary heuristic val-
ues, since we may get the more useful effect at the lower cost
by choosing different values of a relaxed variable when de-
termining relaxed costs and relaxed active effects.
In this paper, we show how this issue can be avoided by
representing state-dependent costs and conditional effects
uniformly, both as edge-valued multi-valued decision dia-
grams (EVMDDs) over different sets of edge values, and
then working with their product diagram. We develop a the-
ory of EVMDDs that is general enough to encompass state-
dependent action costs, conditional effects, and even their
combination.
We define relaxed effect semantics in the presence of state-
dependent action costs and conditional effects, and describe
how this semantics can be efficiently computed using prod-
uct EVMDDs. This will form the foundation for informative
relaxation heuristics in the setting with state-dependent costs
and conditional effects combined.

Introduction
Both from the modeling and from the computational per-
spective, it makes sense to allow planning tasks with state-
dependent action costs, which can be more natural, elegant,
compact, and structured than tasks with state-independent
costs only. Recent work (Geißer, Keller, and Mattmüller
2015; 2016) has shown that state-dependent action costs
(SDAC) can be handled efficiently by representing cost
functions as edge-valued multi-valued decision diagrams
(EVMDDs) (Ciardo and Siminiceanu 2002; Lai, Pedram,
and Vrudhula 1996). Such decision diagrams exhibit ad-
ditive structure in the cost functions. This structure can
then be exploited in various ways, such as in compilations
of SDAC to constant-cost tasks, or within the relaxed plan-
ning graph (RPG) when computing relaxation heuristics, or
to efficiently obtain abstraction heuristics (Geißer, Keller,
and Mattmüller 2015; 2016).

However, it turns out that one needs to be very careful
when dealing with SDAC and conditional effects (CE) si-
multaneously, in particular in a delete-relaxed setting and if
there is an action whose cost and effect share dependencies

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

S G

Figure 1: Corridor example. Initial position left, goal posi-
tion right. The darker the grid cell, the more costly a move-
ment out of this cell.

on common variables. If this is the case, and if SDAC and
CE are handled separately, one may obtain a useful but ex-
pensive effect at an unrealistically low cost by choosing dif-
ferent values of a relaxed variable when determining relaxed
costs and relaxed active effects. This can lead to unnecessar-
ily low and thus uninformative heuristic values, which hurts
the search that uses this heuristic. Let us illustrate the prob-
lem with a concrete example (see Fig. 1). Assume that there
is a corridor of length 6 in which we can only move one cell
to the left or to the right in each step. The position in the
corridor is denoted by the state variable x with possible val-
ues 0, . . . , 5. Initially, x = 0, and in the goal, x = 5. The
move-right action is always applicable, and it has the condi-
tional effect x′ := x+ 11, which we read as an abbreviation
for (x = 0 B x′ := 1) ∧ · · · ∧ (x = 4 B x′ := 5). More-
over, the further to the right one gets, the more costly the
movements become, which is reflected by the cost function
cost(move-right) = x+ 1. The move-left action works simi-
larly, with the same cost function as move-right. An optimal
unrelaxed plan is to move to the right five times in a row, at
an overall cost of 1 + 2 + 3 + 4 + 5 = 15.

Assume that we want to obtain a relaxation heuristic value
for the initial state s0, say h+(s0), and assume that we ig-
nore the interaction of SDAC and CE in the relaxation. This
means that in a relaxed state s+ with s+(x) ⊆ {0, . . . , 5},
where x takes several values simultaneously, the cost of
move-right is the minimal cost the action has for any value of
x in s+, and that the effect is the union of the effects it has for
any value of x in s+. For example, for s+(x) = {0, 1, 2},
we get cost(move-right)(s+) = 1 from 0 ∈ s+(x), but
the next relaxed state will still include the value 3, because
2 ∈ s+(x), meaning that we moved one cell to the right at

1Notice that we call the variable x after the update x′. For clar-
ity, we will follow this pattern of using primed copies of variables
to refer to their value after an update throughout the paper.

10

cost 1, although it should have cost us 3. This can lead to
severe underestimations of the actual goal distances. E. g.,
we get h+(s0) = 5 instead of h∗(s0) = 15. Even worse,
instead of decreasing when moving closer to the goal, the
heuristic values first increase. For instance, if s1 is the state
with x = 1, then h+(s1) = 6 > 5 = h+(s0), although
we are closer to the goal. The reason is that we first have to
pay two units for moving to the left, just to get an excuse for
assuming unit cost values of the subsequent four actions of
moving to the right from the initial position x = 1. This ex-
ample can be generalized to show that the resulting heuristic
values can become arbitrarily inaccurate.

Fortunately, there is a way out of this problem. We must
not handle SDAC and CE separately by minimizing over the
costs and taking unions of effects separately, but rather take
the interaction between them into account. In the example,
this means that we still have to take the union over all pos-
sible effects in s+, but that we have to assign different costs
to different effects. Then, in state s+ from above, we still
get the effects x′ := 1, x′ := 2, and x′ := 3, but at sep-
arate costs of 1, 2, and 3, respectively, which leads to the
perfect heuristic value h+(s0) = 15. The question is how
to connect SDAC and CE in the right way. The key ob-
servation behind our proposed solution is that SDAC and
CE are very closely related, as they can both be thought of
as functions from states to elements of certain monoids: to
cost values from N = (N,+, 0) for SDAC2, and to sets
of active effects from F = (2F ,∪, ∅) for CE, where F
is the set of facts of the planning task. Having monoid
structures with addition and union, respectively, allows us
to assign partial costs that are already unavoidable and par-
tial effects that are already guaranteed to happen to partial
variable assignments, and to incrementally derive total costs
(via addition) and total effects (via set union) by system-
atically evaluating the current state fact by fact. This ob-
servation, together with the observation that EVMDDs al-
ready proved useful for state-dependent costs, suggests rep-
resenting conditional effects as EVMDDs over F , just as
state-dependent costs can be represented as EVMDDs over
N , and then combining these representations, provided that
both use the same variable ordering. The reader who is curi-
ous about what those diagrams look like for the motivating
example may already have a quick glance at Figs. 2, 3, and 4,
which we will discuss in more detail below. The prod-
uct diagram in Fig. 4 solves our problem with the run-
ning example. Recall the relaxed state s+ with s+(x) =
{0, 1, 2}. Before, we had cost(move-right)(s+) = 1 for all
effects that move-right produced in s+, i. e., for x′ := 1,
x′ := 2, and for x′ := 3 alike. Now, cost(move-right)(s+)
is no longer a single value, but rather it associates dif-
ferent costs to different effects, specifically cost i to ef-
fect x′ := i for i = 1, 2, 3, i. e., cost 3 to x′ := 3.
The combined decision diagrams for SDAC and CE can

2We use N instead of Z or even Q, because having a well-
founded set with a minimal element makes some later discussions a
bit easier, and it is hardly a restriction of generality, since we often
assume nonnegative action costs anyway, and fractional costs can
still be approximated.

then be used similarly as EVMDDs for SDAC alone are
used in various ways (Geißer, Keller, and Mattmüller 2015;
2016). The rest of the paper is concerned with how to for-
malize this idea and how to generalize it to arbitrary SDAC
and CE.

Preliminaries
Planning with State-Dependent Action Costs and
Conditional Effects
We consider planning tasks with SDAC and CE, and base
our work on the formalism of Geißer et al. (2015).

A planning task with SDAC and CE is a tuple Π =
(V, A, s0, s?, (ca)a∈A) consisting of the following compo-
nents: V = {v1, . . . , vn} is a finite set of state variables,
each with an associated finite domain Dv = {0, . . . , |Dv| −
1}. A fact is a pair (v, d), where v ∈ V and d ∈ Dv . We
often refer to single facts as f and the set of all facts as F .
A partial variable assignment s over V is a consistent set
of facts. If s assigns a value to each v ∈ V , s is called a
state. Let S denote the set of states of Π. A is a set of ac-
tions. An action is a pair a = 〈p, e〉, where p is a partial
variable assignment called the precondition, and e is a con-
ditional effect. We assume, without loss of generality, that
conditional effects are given in effect normal form (ENF),
which is a special case of Rintanen’s unary conditionality
(UC) normal form (Rintanen 2003). An effect in ENF is a
conjunction e =

∧
i=1,...,k ei of sub-effects ei of the form

ϕi B (w′ := d′), where ϕi is a propositional formula over
F , and where w′ := d′ is an atomic effect (a primed fact)
with a variable w ∈ V and value d′ ∈ Dw. In ENF, every
atomic effect may occur at most once in e. We furthermore
assume that there is no state s in which two contradicting
atomic effects are enabled, i. e., whenever e includes two
conjuncts ϕiB (w′ := d′) and ϕj B (w′ := d′′) for d′ 6= d′′,
then ϕi ∧ ϕj is unsatisfiable. If some ϕi = >, then the cor-
responding sub-effect is unconditional. The state s0 ∈ S is
called the initial state, and the partial state s? specifies the
goal condition. Each action a ∈ A has an associated cost
function ca : S → N that assigns the application cost of a to
all states where a is applicable.

Each cost function ca depends on a certain subset of the
state variables. Throughout the paper, we assume without
loss of generality that for all variables v that are mentioned
in the precondition p of an action a, neither ca nor any effect
condition ϕi of its effect depends on v. Otherwise, one could
substitute the precondition value of v in the cost function or
the effect condition, respectively, and simplify. The seman-
tics of planning tasks are as usual: an action a is applicable
in state s iff p ⊆ s. To define the result of an action applica-
tion, we need the change set of e in s (Rintanen 2003).
Definition 1. Let s ∈ S be a state and e an effect in ENF
over the state variables of s. Then the change set of e in s,
symbolically [e]s, is defined as follows:
(1) [e1 ∧ · · · ∧ en]s = [e1]s ∪ · · · ∪ [en]s.
(2) [ϕB f]s = {f} if s |= ϕ, and [ϕB f]s = ∅, otherwise.

A change set will never contain two contradicting effects
w′ := d′ and w′ := d′′ for d′ 6= d′′ because we as-

11

sume that contradicting effects have inconsistent conditions.
Therefore, removing primes from primed variables, we can
view change sets as partial variable assignments. Then, ap-
plying an applicable action a to s yields the state s′ with
s′(v) = [e]s(v) where [e]s(v) is defined, and s′(v) = s(v)
otherwise. We write s[a] for s′.

A state s is a goal state iff s? ⊆ s. Let π = 〈a0, . . . , an−1〉
be a sequence of actions from A. We call π applicable in s0
if there exist states s1, . . . , sn such that ai is applicable in si
and si+1 = si[ai] for all i = 0, . . . , n− 1. We call π a plan
for Π if it is applicable in s0 and if sn is a goal state. The
cost of plan π is the sum of action costs along the induced
state sequence, i.e., cost(π) =

∑n−1
i=0 cai

(si).

Edge-Valued Decision Diagrams
Both action cost functions and conditional effects can be
represented as EVMDDs, though over different monoids.
Recall that a monoid is a structure G = (G,+, 0) consist-
ing of a carrier set G, a binary operation + on G, and an
element 0 ∈ G such that + is associative, and that 0 is the
neutral element. Throughout the paper, we will also assume
that the monoids we are concerned with are commutative.

Definition 2. Let G = (G,+, 0) be a commutative monoid.
An EVMDD over G and over V is a tuple E = 〈κ, f〉,
where κ ∈ G and f is a directed acyclic graph consist-
ing of two types of nodes: (i) there is a single terminal
node denoted by 0. (ii) A nonterminal node v is a tuple
(v, χ0, . . . , χk, w0, . . . , wk) where v ∈ V is a variable,
k = |Dv| − 1, children χ0, . . . , χk are terminal or non-
terminal nodes of E , and w0, . . . , wk ∈ G.

By f we also refer to the root node of E . Edges of E be-
tween parent and child nodes are implicit in the definition
of the nonterminal nodes of E . The label of an edge from v
to child χi is wi. An EVMDD over a commutative monoid
G with carrier G and variables V denotes a function from
the set of states S over V to G. Intuitively, to determine the
function value for a given state s ∈ S, one has to follow the
unique path in the EVMDD determined by s by always fol-
lowing the unique edges consistent with s, collect the edge
labels along the way, and combine them with +. E. g., if the
edge labels are numbers and + is addition, then one has to
add up all the encountered edge labels.

Definition 3. An EVMDD E = 〈κ, f〉 over G = (G,+, 0)
and V denotes the function κ + f from the states over
V to G, where f is the function denoted by f . The
terminal node 0 denotes the constant function 0, and
(v, χ0, . . . , χk, w0, . . . , wk) denotes the function given by
f(s) = ws(v) +fs(v)(s), where fs(v) is the function denoted
by child χs(v). We write E(s) for κ+ f(s).

In the graphical representation of an EVMDD E = 〈κ, f〉,
f is represented by a rooted DAG and κ by a dangling in-
coming edge to the root node of f . The terminal node is
depicted by a rectangular node labeled 0. Edge constraints
d are written next to the edges, edge labels wd in boxes on
the edges.

Let us return to our example. The action cost function
cost(move-right) = x+1 can be represented by the EVMDD

x

0

1

0

0

1

1

2

2

3

3

4

4

5

5

Figure 2: EVMDD over N for cost function x+ 1.

x

0

∅

{x′ := 1}

0

{x′ := 2}
1 {x′ := 3}

2

{x′ := 4}
3

{x′ := 5}
4

∅

5

Figure 3: EVMDD overF for conditional effect x′ := x+1.

over N depicted in Fig. 2. Similarly, the conditional effect
x′ := x+1 of move-right can be represented by the EVMDD
over F depicted in Fig. 3. Notice that in the latter, the edge
labels are generally sets of effects that fire, not just single
effects. They only happen to be singleton sets in this exam-
ple for x = 0, . . . , 4. For x = 5, when the right end of the
corridor has been reached, the conditional effect is empty,
as witnessed by the corresponding edge label ∅. Similarly,
the empty set at the dangling incoming edge represents the
fact that there are no unconditional effects in this example.
Otherwise, they would be found there. The product of those
two EVMDDs, depicted in Fig. 4, is obtained by combining
decision nodes of (the quasi-reduced form of) one diagram
with nodes of (the quasi-reduced form of) the other diagram
on the same level, i. e., with the same associated decision
variable, with corresponding paths leading there, and com-
bining edges and edge labels accordingly. It is, by construc-
tion, an EVMDD over the direct product N ⊗ F of N and
F . In this example, there is only one decision node with as-
sociated decision variable x in both diagrams, and therefore
also just one product node.

To define when a (reduced ordered) EVMDD is canoni-
cal, we still need to ensure that edge labels are not arbitrar-
ily shifted up and down along the edges. This is achieved by
requiring that there is nothing that sibling edge labels origi-
nating in the same parent node v still have in common that
could not be taken care of earlier in the decision diagram.
For N = (N,+, 0), this means that the minimum edge
weight of any edge leaving v is zero (and hence, any ex-
cess weight has been pulled upward into the incoming edge
weight). Similarly, for F = (2F ,∪, ∅), it means that the
intersection of the labels of the edges leaving v is empty
(and hence, all partial effects that happen for all possible

12

x

0

1

∅

0

{x′ := 1}

0
1

{x′ := 2}

1
2

{x′ := 3}

2

3

{x′ := 4}

3

4

{x′ := 5}

4

5

∅

5

Figure 4: EVMDD over N ⊗F for cost function x+ 1 and
conditional effect x′ := x + 1 combined. Edge labels have
their N -part on top, and their F-part at the bottom.

values of the current decision variable v are pulled upward
into the incoming edge label). In general, it means that the
EVMDDs have to respect a lattice order on their underlying
monoid. A meet-semilattice is a partially ordered set (G,≤)
which has a greatest lower bound for any nonempty finite
subset G′ ⊆ G, denoted by

∧
G′. A monoid G = (G,+, 0)

is called meet-semilattice ordered if it comes with a partial
order≤ onG such that (G,≤) is a meet-semilattice, that the
operation + on G can be distributed over the greatest lower
bound operator ∧, and that

∧
G = 0. We will usually as-

sume a meet-semilattice ordering implicitly without always
mentioning it. It is easy to verify that both N with the nat-
ural order ≤ and the minimum operation min as greatest
lower bound, and F with the subset relationship ⊆ and the
intersection operation ∩ as greatest lower bound are com-
mutative meet-semilattice-ordered monoids.

With this, we can phrase the standard ex-
tra canonicity requirement for EVMDDs. Let
v = (v, χ0, . . . , χk, w0, . . . , wk) be a nonterminal node
of an EVMDD over a meet-semilattice-ordered monoid
G = (G,+, 0) with order ≤ and greatest lower bound

∧
.

Then we require that
∧

i=0,...,k wi = 0. In the following, we
assume that all EVMDDs we deal with are canonical.

EVMDD Construction
In this section, we will discuss how EVMDDs over N ⊗ F
can be constructed that encode SDAC and CE for unrelaxed
states in one diagram. In the subsequent section, we will
show how the same diagrams can also be used to determine
SDAC and CE for relaxed states.

Construction for State-Dependent Action Costs
The top-down EVMDD construction we sketch below is
standard and known from the literature (Lai, Pedram, and
Vrudhula 1996). It is basically the construction using re-
peated Shannon expansions into cofactors also known from
BDDs (Bryant 1986), just with the additional requirement
that the edge labels have to be set in the right way. In-
stead of describing the construction for arbitrary EVMDDs,
we discuss it for EVMDDs over N , and then explain how

this generalizes to other monoids, in particular to F . Let
c : S → N be the function we want to represent. For sim-
plicity, let us also assume that c is a multivariate polyno-
mial over the state variables given in canonical form as a
linear combination of monomials, and that we re-establish
this canonical form after each Shannon expansion. This al-
lows us to easily identify whether two cofactors should be
represented by the same decision node, which is the case iff
the polynomials only differ in their constant subterm. Let [c]
be the equivalence class of all polynomials that differ from
c only by an additive constant. We represent this class by
c with the constant additive subterm set to zero, which we
call c̃. Nodes in the decision diagram will represent such
equivalence classes. Let v1, . . . , vn be the variable ordering.
Then the EVMDD construction (ignoring possible Shannon
reductions performed on the fly) given a polynomial c pro-
ceeds variable layer by variable layer. On each layer, we
need decision nodes to represent a set of polynomials. For
layers i > 1, this set will be determined by the previous
layer(s). For layer i = 1, it is the singleton set {c}.

On layer 1 ≤ i ≤ n, let N = {c1, . . . , cn} be the set of
functions to be represented. First, we partitionN into equiv-
alence classes {c̃1, . . . , c̃n}. For each ci, let offset i = ci−c̃i
be the additive constant that got dropped when representing
ci as c̃i. For each representative c̃, we construct a decision
node v(c̃) associated with the current variable v = vi in the
variable ordering. In order to obtain sub-EVMDDs for all
outgoing (v, d)-branches at all nodes, at each node v(c̃), we
consider all cofactors c̃|v=d of c̃ for d ∈ Dv , where c̃|v=d

is obtained from c̃ by substituting value d for variable v and
simplifying. Call those cofactors c̃0, . . . , c̃k. On the next
layer i + 1, we will have to construct sub-EVMDDs for the
functions in the set

⋃
c∈N{c̃0, . . . , c̃k}, i. e., for all functions

from the previous layer with possible values of the variable v
plugged in. That recursive construction will return, for each
cofactor c̃i, i = 0, . . . , k, of each function c ∈ N , a dan-
gling edge with some weight wi pointing to some successor
node χi. Now, for each node v(c̃), we make the outgoing
edges point to successors χi, i = 0, . . . , k. Each corre-
sponding successor weight wi gets replaced with wi − w,
where w = mini=0,...,k wi, to ensure that the minimal suc-
cessor weight is zero. Finally, we have to pull excess weight
upward. To do that, for each function ci ∈ N , we return
a new dangling edge pointing to node v(c̃i) and carrying
weight w + offset i, i. e., the minimal weight w we had to
pull upward from the children plus the weight representing
the error we introduced by replacing ci with its representa-
tive c̃i. On the terminal layer n + 1, after all variables have
been branched on, necessarily c = κ is a constant. There-
fore, we return the EVMDD whose dangling incoming edge
immediately leads to the terminal node and carries label κ.

Notice that in this construction, we perform isomorphism
reductions along the way. For Shannon reductions, all we
have to do is skip branching on variables on which the cur-
rent cofactor does not depend any more, or, equivalently,
skip a decision node if all its children carry the same weight
and lead to the same successor node.
Example 1. To illustrate the construction, in Fig. 5 we de-
pict an EVMDD over N with variable ordering x, y, z rep-

13

x + y + z + yz + 1

x x + y + z + yz

y y + z + yz

z z z 2z

0 0

1

0

0

1

1

0

0

1

1

0

0 1

1

0

0

2

1

Figure 5: EVMDD for x+ y + z + yz + 1.

resenting the function c(x, y, z) = x+y+z+yz+1, where
the domains of all variables are binary. Importantly, the red
annotations at all decision nodes (and in the beginning) are
the respective cofactor representatives of the nodes. Follow-
ing the unique path through the EVMDD corresponding to
a given state s, say a state with s(x) = s(y) = s(z) = 1,
and summing up the edge weights along the way, results in
the correct function value, in this case c(x, y, z) = 5.

Proposition 1. Let c : S → N be an arithmetic function
and let Ec be the reduced ordered EVMDD for c constructed
as described above, for an arbitrary variable ordering. Let
s ∈ S be a state. Then c(s) = Ec(s).

The construction works for any type of functions over
states and corresponding sets of edge labels as long as we
can (a) determine cofactors for given variable-value pairs
v = d, (b) determine the edge labels, and (c) determine
whether two decision nodes represent the same function.
All this is simple for multivariate polynomials as above.
Generally, every arithmetic function from states to natural
numbers can be represented as a reduced EVMDD, even
uniquely for a fixed variable ordering.

Construction for Conditional Effects
For CE, using the monoid F = (2F ,∪, ∅), the construction
works in the same manner. Let e = (ϕ1Be1)∧· · ·∧(ϕnBen)
be an effect in ENF, and let v = d be a fact. Then the co-
factor e|v=d of e with respect to v = d is e with truth (>)
substituted for all occurrences of v = d and falsity (⊥) sub-
stituted for all occurrences of v = d′ for any d′ 6= d in any
effect condition ϕi, i = 1, . . . , n; and simplified. To ob-
tain the edge labels, a sub-effect w′ := d′ is moved into an
edge label as soon as it becomes unconditional, and gets re-
moved from the remaining cofactor. This is in analogy with
the construction for cost functions, since we can consider
two effects to be equivalent in the sense that they should be
represented by the same decision node iff they only differ
in their unconditional effects. Determining whether this is
the case amounts to a syntactic comparison of the remain-
ing cofactors, which is simple if the effects are in ENF and

(¬x B ¬v′) ∧ (x B u′) ∧
((x∨ y)B¬z′)∧ ((x∧ z)B v′)∧w′

x
(¬x B ¬v′) ∧ (x B u′) ∧
((x ∨ y) B ¬z′) ∧ ((x ∧ z) B v′)

y y B ¬z′

z z B v′

0 >

{w′}

{¬v′}
0

{u′,¬z′}

1

∅
0 {¬z′}

1

∅ 0

{v′}
1

Figure 6: EVMDD for (¬xB ¬v′) ∧ (xB u′) ∧ ((x ∨ y) B
¬z′) ∧ ((x ∧ z) B v′) ∧ w′.

all conditions ϕi are also appropriately normalized. In sum-
mary, this means that every conditional effect can be repre-
sented as an EVMDD over F .

Example 2. Consider the conditional effect in ENF e =
(¬xB¬v′)∧(xBu′)∧((x∨y)B¬z′)∧((x∧z)Bv′)∧w′.
We have binary domains for all variables and consequently
use the abbreviations ¬v and v for v = 0 and v = 1 (and
¬v′ and v′ for v′ := 0 and v′ := 1 in effects). The primed
variables in the edge labels (partial effects) help to distin-
guish them from their unprimed counterparts in the deci-
sion nodes (conditions). Fig. 6 depicts an EVMDD over F
with variable ordering x, y, z, u, v, w representing the effect
e. Again, the red annotations are the cofactor representa-
tives of the nodes. Following the unique path through the
EVMDD corresponding to a given state s, say a state with
s(x) = s(y) = s(z) = 1, and taking the union of the edge
labels along the way, results in the effect {w′, u′,¬z′, v′}.

For CE, the semantics of an effect applied to a state is its
change set [e]s. Therefore, the analogue to Prop. 1 for CE
reads as follows.

Proposition 2. Let e be a conditional effect in ENF, and
let Ee be the reduced ordered EVMDD for e constructed as
described above, for an arbitrary variable ordering. Let s ∈
S be a state. Then [e]s = Ee(s).

Proof sketch. The proof is by induction on the variable or-
dering v1, . . . , vn, showing that on each level i = 0, . . . , n
of Ee, the partial union E ie(s) of edge labels following state
s up to level i is the same as the partial change set [e]is up
to level i. The partial change set [e]is is defined with clause
(1) as in Def. 1, and with clause (2) replaced by clause (2′)
[ϕ B f]is = f if ϕ|v1=s(v1),...,vi=s(vi) is a tautology, and
[ϕBf]is = ∅, otherwise. Note that ϕ|v1=s(v1),...,vi=s(vi) is ϕ
with the values that s assigns to the first i variables plugged
in. This formula is a tautology iff it is already clear that the
effect ϕB f will fire after the first i variables in s have been
evaluated. We show inductively that for all i = 0, . . . , n,
we have [e]is = E ie(s). In the base case, both [e]0s and E0e (s)

14

x

y y

z z z z

0

1

{w′}

0

{¬v′}

0

1

{u′,¬z′}

1

0

∅

0

1

{¬z′}

1

0

∅

0

1

∅

1

0

∅

0
1

∅

1
0

∅

0 2

∅

1
0

∅

0

1

{v′}

1

0

∅

0

2

{v′}
1

Figure 7: EVMDD for x+ y+ z+ yz+ 1 and (¬xB¬v′)∧
(xB u′)∧ ((x∨ y)B¬z′)∧ ((x∧ z)B v′)∧w′ combined.

are the sets of unconditional effects of e; for [e]0s, because
nothing gets substituted in ϕ, and for E0e (s), since this is the
label of the dangling incoming edge of Ee. In the induc-
tive case, when going from [e]is to [e]i+1

s and from E ie(s) to
E i+1
e (s), in both cases exactly those facts are added that be-

come unconditional when also setting vi+1 to s(vi+1). In
conclusion, since [e]s = [e]ns and Ee(s) = Ene (s) (both obvi-
ous by definition), and [e]is = E ie(s) for all i = 0, . . . , n (by
the induction above), we also get [e]s = Ee(s).

Product EVMDDs
Before giving the general construction rule for product
EVMDDs, let us have a look at an example.

Example 3. Consider the two EVMDDs from Ex. 1 and 2.
Their product is depicted in Fig. 7. The diagram contains a
full binary tree over x, y, and z, which means that there is no
potential of exploiting shared structure due to the involved
combination of costs and conditional effects. This is, how-
ever, specific to this example. In general, product diagrams
can be much smaller.

The roadmap for our description of the product construc-
tion will be as follows: we will first express both the cost
EVMDD and the effect EVMDD as EVMDDs over the di-
rect product N ⊗ F . In the augmented cost EVMDD, each
edge carries its old weight together with the empty set of
effects, and similarly, in the augmented effect EVMDD,
each edge carries zero weight together with its old partial
effects. These two augmented EVMDDs can then be com-
bined into a product using the general apply procedure (Lai,
Pedram, and Vrudhula 1996) with the compound operator
(+,∪) that adds first components and takes unions of sec-
ond components. In other words, this application of (+,∪)

means that we independently add costs (actual costs coming
from one EVMDD, only zeroes coming from the other) and
take unions of effects (only empty effects coming from one
EVMDD, actual effects coming from the other).

Let us understand the apply procedure. For that, we as-
sume that a state space S and a variable ordering are fixed.
Let G = (G,+G, 0G) be a commutative monoid, and let
◦ be an operator on G, possibly different from +G. As-
sume further that g1 and g2 are two functions from S to G,
and that, by slight abuse of notation, we view ◦ also as an
operator on functions from S to G in the obvious way via
(g1 ◦ g2)(s) = g1(s) ◦ g2(s). Furthermore, let E(·) be the
construction that turns a function g : S → G into the re-
duced ordered EVMDD Eg representing it. We would like
to have an operator ◦E on EVMDDs over G (taking as input
and returning such EVMDDs) that mimics the behavior of ◦
on EVMDDs, i. e., such that E(g1◦g2) = Eg1 ◦E Eg2 . The ap-
ply procedure does exactly that. In the literature, the appli-
cation of ◦ on the EVMDD level, Eg1 ◦E Eg2 , is usually writ-
ten as apply(◦, Eg1 , Eg2). Algorithmically, the apply proce-
dure traverses both input EVMDDs Eg1 and Eg2 from top to
bottom in a synchronized manner, propagating edge labels
downward, recursively applying ◦ to pairs of correspond-
ing subgraphs with the same edge constraint, and pulling up
excess edge weights again when the recursive computation
has terminated. In the base case, when both EVMDDs only
represent constant functions encoded in their bottom-most
edge labels w1 and w2, those get combined into the new
edge label w1 ◦ w2. If, due to one of the EVMDDs being
Shannon-reduced at some point where the other is not, the
decision variables on both sides do not match, then the Shan-
non reduction on one side has to be conceptually undone by
virtually introducing a new decision node with all outgoing
edges carrying the “empty” label 0G before proceeding.

Let H = (H,+H , 0H) be another commutative monoid,
and assume that we want to take the product of two
EVMDDs EG over G and EH over H. Let us call E ′G =
expr1,G⊗H(EG) and E ′H = expr2,G⊗H(EH) the results of ex-
pressing both EVMDDs over the direct product G ⊗H. The
operations expri,G⊗H take their input EVMDD and leave its
entire structure intact, but replace each edge label w, in-
cluding the dangling incoming edge label κ, with the pair
(w, 0H) for i = 1, or with the pair (0G, w) for i = 2, re-
spectively. To take the product of EG and EH, it now suffices
to express both over G ⊗H, and then to apply the operation
+G×H = (+G,+H) to them:

EG ⊗ EH := expr1,G⊗H(EG) +G×H expr2,G⊗H(EH).

The definition of product EVMDDs along with the ob-
servation that product EVMDDs can be constructed effec-
tively allows us, in the following, to assume that we always
have access to EVMDDs talking about SDAC and CE in one
common structure. Next, we want to argue that this product
construction does the right thing. For that, we show that by
evaluating the product EVMDD for a state s, we still get the
correct cost values and change sets back via projection.
Proposition 3. Assume a fixed variable ordering. Let c :
S → N be an arithmetic function and e be a conditional
effect in ENF. Let Ec and Ee be the EVMDDs for c and e

15

constructed as described. Let Ec,e = Ec ⊗ Ee, and let s ∈ S
be a state. Then Ec,e(s) = (Ec(s), Ee(s)) = (c(s), [e]s).

Proof sketch. The second part of the equation immediately
follows from Props. 1 and 2. For the first part, we assume
without loss of generality that all EVMDDs in this proof
are quasi-reduced, which means that every variable appears
on every path through the EVMDD. This can always be
achieved by undoing all Shannon reductions and inserting
tests for all variables such that all outgoing arcs of those un-
necessary decision nodes point to the same successor and
carry the neutral element as edge labels. This only leads to
a polynomial blowup and does not change the semantics.

Let s ∈ S be an arbitrary state over the common state vari-
ables. Let Ec, Ee, and Ec,e be as stated in the proposition, but
already quasi reduced. Let E ′c = expr1,N⊗F (Ec) and E ′e =
expr2,N⊗F (Ee). When we construct Ec,e = E ′c ⊗E ′e, the ap-
ply procedure recursively combines corresponding edge la-
bels. Let v be a decision node constructed during the apply
procedure, and let vc and ve be the original nodes in E ′c and
E ′e from which it was constructed. Let (w0

c , ∅), . . . , (wk
c , ∅)

and (0, w0
e), . . . , (0, wk

e) the outgoing edge weights of vc

and ve, respectively. By construction, they carry all neu-
tral elements as one component. Then the outgoing edge
labels of v will be (w0

c , w
0
e), . . . , (wk

c , w
k
e). No labels will

be permanently shifted up or down during the procedure,
since

∧
i=0,...,k(wi

c, w
i
e) = (

∧
i=0,...,k w

i
c,
∧

i=0,...,k w
i
e) =

(mini=0,...,k w
i
c,
⋂

i=0,...,k w
i
e) = (0, ∅). This holds, since

we assumed that the original EVMDDs were canonical. The
successor nodes of v for pairs of decision variable v and
value d will also be the respective pairs, i. e., if vc has chil-
dren χ0

c , . . . , χ
k
c , and ve has children χ0

e, . . . , χ
k
e , then v has

children (χ0
c , χ

0
e), . . . , (χk

c , χ
k
e).

This implies that, when computing Ec,e(s), we trace
a sequence of edge labels (w0

c , w
0
e), . . . , (wn

c , w
n
e), from

top to bottom such that the corresponding sequences we
trace when computing Ec(s) and Ee(s) are w0

c , . . . , w
n
c , and

w0
e , . . . , w

n
e , respectively. For Ec,e(s) we use the neutral ele-

ment (0, ∅) and component-wise addition (+,∪), so that we
arrive at Ec,e(s) = (

∑n
j=0 w

j
c ,
⋃n

j=0 w
j
e), which is the same

as (Ec(s), Ee(s)).

We could alternatively have constructed the product
EVMDD directly in the product space, taking the two types
of cofactors for cost terms and conditional effects side by
side in each step, fixing partial costs and partial effects in
edge labels independently as soon as they are guaranteed to
occur, and only identifying two nodes on the same level if
both their remaining cost terms and their remaining effects
are identical. Since this would also correctly encode costs
and effects, the resulting EVMDD would be identical to Ec,e.
We opted for the product construction for clarity.

The size of a product EVMDD EG⊗EH is always bounded
by the product of the sizes of the factors EG and EH. More-
over, there are two special cases where the product construc-
tion incurs no blowup whatsoever. First, if EG and EH share
an identical graph topology and only differ in their edge
labels (as in Figs. 2 and 3), i. e., their evaluation proceeds

“in lockstep”, then the product also shares the same topol-
ogy. This happens whenever there is a one-to-one corre-
spondence between sub-effects and partial costs associated
with them. Second, if the set of variables VG on which EG
depends is disjoint from the set of variables VH on which
EH depends, and if VG and VH are not interleaved in the
variable ordering, then EG ⊗ EH will essentially be EG and
EH sequentially “glued together” in one way or the other,
with the label of the disappearing second dangling incom-
ing edge moved to the first dangling incoming edge instead.
This is the case whenever there is no relation between costs
and effects at all.

Relaxed Semantics for SDAC and CE
In this section, we first declaratively define a relaxed seman-
tics in the presence of SDAC and CE, and then show how
this semantics can be efficiently computed using the previ-
ously constructed product EVMDDs over N ⊗ F . When-
ever we mention relaxed states, the reader should keep in
mind that the same discussion works for arbitrary Carte-
sian states (Ball, Podelski, and Rajamani 2001; Seipp and
Helmert 2013), of which relaxed states are merely a special
case, in particular also for states of a Cartesian abstraction.

Declarative Definition
A relaxed state s+ assigns to each variable v ∈ V a non-
empty subset s+(v) ⊆ Dv of its domain. A state s ∈ S is
consistent with s+, in symbols s |= s+, iff for all variables
v, s(v) ∈ s+(v). An action a = 〈p, e〉 is relaxed applicable
in s+ iff p(v) ∈ s+(v) for all v for which p is defined. Now,
generalizing Def. 1, we define the change set of an effect
e of an action a with precondition p in a relaxed state s+.
However, instead of a set of facts, this will now be a set of
pairs of facts and associated cost values.
Definition 4. Let s+ be a relaxed state and a = 〈p, e〉 be
an action with effect e in ENF and cost function c : S →
N. Then the change set of e in s+ is defined as [e]cs+ =⊔

s∈S:s|=s+JeKcs, where

(1) Je1 ∧ · · · ∧ enKcs = Je1Kcs ∪ · · · ∪ JenKcs,
(2) JϕB fKcs = {(f, c(s))} if s |= ϕ, and

JϕB fKcs = ∅, otherwise, and
(3)

⊔
j Ej = {(f, n) ∈ ⋃j Ej | ∀(f, `) ∈

⋃
j Ej : ` ≥ n}.

The change set [e]cs+ consists of all those facts f that can
be achieved using e in any state s with s |= s+. With each
such fact f , the change set associates the minimal cost at
which f can be achieved among all s with s |= s+. When
defining [e]cs+ by referring to all states s with s |= s+,
we do not have to distinguish between states where a is
applicable and states where it is not. Since the precondi-
tion variables affect neither the costs nor the effect condi-
tions, whenever we get a minimal cost value from a state
where a is inapplicable, there must also be another state
also consistent with s+ where a is applicable and where
it costs the same. In clause (1), we still use the regular
union operation, which is justified since we assume that
no fact occurs on two different right-hand sides of sub-
effects. We might use the minimizing union

⊔
just as well,

16

leading to the equivalent phrasing [ϕ1 B f1 ∧ · · · ∧ ϕn B
fn]cs+ =

⊔
s∈S:s|=s+

⊔
i=1,...,nJϕi B fiKcs. For illustration,

recall the introductory example and the relaxed state s+ with
s+(x) = {0, 1, 2}. Let c = cost(move-right). Then we get
[x′ := x+ 1]cs+ = {(x′ := 1, 1), (x′ := 2, 2), (x′ := 3, 3)}.

EVMDD-Based Computation
Next, we show how we can compute change sets in relaxed
states efficiently. The problem is that in Def. 4, we take the
union over all unrelaxed states s with s |= s+, in the worst
case exponentially many in the number of state variables.
We would like to avoid this exponentiality whenever possi-
ble. This is where EVMDDs come into play. Below, we
will describe a polynomial evaluation procedure for product
EVMDDs Ec,e over costs and effects for relaxed states s+
as input that returns [e]cs+ . The main complication behind
the evaluation is that, in computing costs and effects for a
relaxed state s+, for costs we “minimize” (min) over all s
with s |= s+ to get the cheapest costs, whereas for effects,
we “maximize” (

⋃
) over all swith s |= s+ to get all possible

effects. This combination makes sense in a relaxed setting
to retain all behavior from the unrelaxed setting at no higher
costs. It also means, however, that we have to come up with
a custom evaluation procedure for EVMDDs over N ⊗ F
and relaxed states to reflect the described intuition.

Our proposed evaluation procedure traverses Ec,e, re-
stricted to edges consistent with s+, along a topological or-
dering from top to bottom. At each node v, it keeps track
of two pieces of information: (a) the set F of fact-cost pairs
(f, n) for all achieved facts f at v along any incoming path,
together with cheapest achievement costs n of f , and (b) the
cost n of a cheapest path leading to v. I. e., Ec,e(s+)(v)
will have the form (F, n). To formalize this procedure, let
v1, . . . ,vn be a topological ordering of Ec,e, where vn = 0.

Base case for i = 1: Node v1 only has the dangling in-
coming edge with label κ = (n, F ′). We let Ec,e(s+)(v) =
(F, n) with F = {(f, n) | f ∈ F ′} and n = n.

Inductive case for i > 1: Let v = vi be an interior
node of Ec,e. To determine F for v, we collect all facts Fold

inherited from parent nodes of incoming edges (consistent
with s+), with their costs increased by the incoming edge
cost. To those, we add all facts Fnew achieved on incom-
ing edges, with cost of achieving them there; the resulting
set of fact-cost pairs is filtered so that we only associate
the cheapest cost with each fact. Formally, let us denote
incoming edges of v as tuples consisting of a parent node
vj with associated decision variable vj and edge constraint
vj = dj , and edge label (nj , Fj), consisting of partial costs
nj and partial effects Fj . Index the incoming edges with
j = 1, . . . ,M . Let (Fj , nj) = Ec,e(s+)(vj) be the evalua-
tion result associated with parent node vj . Then we define
Fold
j = {(f, n+nj) | (f, n) ∈ Fj}, Fnew

j = {(f, nj+nj) | f ∈
Fj}, Fold =

⊔
j=1,...,M Fold

j , Fnew =
⊔

j=1,...,M Fnew
j , and

F = Fold t Fnew. Notice that for old facts, we still need to
take the respective edge costs into account, even after the
facts have already been achieved. To determine n for v, we
set n = minj=1,...,M (nj+nj). Then, Ec,e(s+)(vi) = (F, n).

Finally, we let Ec,e(s+) denote the first component of the

value Ec,e(s+)(0), discarding the reachability cost of 0, and
only keeping the reached facts with their associated costs.

Proposition 4. Let s+ be a relaxed state and a = 〈p, e〉 an
action with effect e in ENF and cost function c : S → N.
Let Ec,e = Ec ⊗ Ee be the product EVMDD of an EVMDD
Ec encoding c and an EVMDD Ee encoding e. Let the eval-
uation procedure of Ec,e for relaxed states be as described
above. Then [e]cs+ = Ec,e(s+).

Proof sketch. Both sides of the equality are by definition
functional sets of fact-cost pairs (f, n) where each fact f
occurs at most once. Functionality follows from the use of
the minimizing union operator t in both cases. We first ar-
gue that the sets of facts occurring in [e]cs+ and Ec,e(s+) are
identical. This is easy to see: by definition, a fact f occurs in
[e]cs+ iff there is an unrelaxed state s with s |= s+ such that
the effect condition for f is satisfied in s. This is the same
as saying that f ∈ [e]s for some such s. This is equivalent
to f ∈ Ee(s) for such an s according to Prop. 2, which, ac-
cording to the EVMDD product construction, is equivalent
to f appearing as part of some edge label in Ec,e for an edge
on a path corresponding to s. This, finally, is equivalent to f
occurring in Ec,e(s+), since during the evaluation procedure
of Ec,e, exactly the edges on paths corresponding to some s
with s |= s+ are traversed, and all visited effect edge labels
are collected along the way and no fact is ever discarded.

Now that we know that the same facts are mentioned in
[e]cs+ and Ec,e(s+), we still have to show that they are asso-
ciated with the same costs in both. In [e]cs+ , for fact f , by
definition this is the minimal cost at which f can be achieved
in any state s with s |= s+, i. e., mins∈S:s|=s+ and s|=ϕ c(s)
where ϕ is the effect condition of f . Let s be such a mini-
mizer. We have to show that f is associated with the same
cost in Ec,e(s+). We know that c(s) is the sum of edge
weights in the cost EVMDD Ec for the path corresponding
to s. By definition of the product construction, the same
weights (and therefore the same sum of weights) is also
present for s in the product EVMDD Ec,e. Moreover, in the
evaluation of Ec,e, that path will also be traversed. The point
at which f appears as an edge label may be anywhere on the
path, not just on the last edge before the terminal node. The
cost associated with f in Ec,e along that path is first deter-
mined after the edge where f appears as a label, and there it
is the cost of the prefix of the path corresponding to s ending
in the node after f has been set. It is clear by construction
that for the prefix, the sum of costs is the same as the partial
sum of costs in c(s). From there, when f gets propagated
further along the path suffix corresponding to s, the associ-
ated cost is always incremented accordingly, by adding nj
in the definition of Fold

j . Also, the cost coming from s never
disappears in a minimizing union operation, since s itself is
a minimizer. This shows that Ec,e(s+)(f) ≤ [e]cs+(f). For
the opposite direction, it suffices to note that if Ec,e(s+)(f)
were strictly smaller, then there would have to be a state s
responsible for this, which would also have to be taken into
account in [e]cs+(f), a contradiction.

Since we never associate more fact-cost pairs to a node
than there are facts, the evaluation procedure is clearly

17

polynomial in the size of the planning task and the prod-
uct EVMDD. To illustrate the evaluation, notice that the
EVMDD from Fig. 4 is such a product EVMDD. Evaluat-
ing it for relaxed state s+ with s+(x) = {0, 1, 2} means
removing all arcs with a constraint on x inconsistent with
s+, i. e., the arcs for x = 3, x = 4, and x = 5. Then, at the
decision node for x, we get the intermediate result (∅, 1).
At the terminal node, we get (∅ t {(x′ := 1, 1)} t {(x′ :=
2, 2)}t{(x′ := 3, 3)}, 1). Its first component is the same as
{(x′ := 1, 1), (x′ := 2, 2), (x′ := 3, 3)} = [x′ := x+ 1]cs+ .

Notice that, for a definition of optimal relaxed plans, we
will have to associate costs to facts in relaxed states as well,
and adapt Def. 4 accordingly. A complete analysis of h+
and its approximations in the SDAC/CE setting is beyond
the scope of this paper and left for future work.

Discussion
In the literature, SDAC and CE were only discussed sepa-
rately. In this paper, we demonstrated that they are, in fact,
just two sides of the same coin. This makes us conjecture
that, since EVMDDs seem to be an appropriate data struc-
ture to represent both, these decision diagrams might allow
us to handle all kinds of state-dependent aspects of actions
in a uniform way. We also have to point out, though, that
EVMDDs are not the magic bullet for dealing with condi-
tional effects. E. g., it is easy to see that an EVMDD-based
compilation of conditional effects can, in the worst case, be-
come exponentially larger than Nebel’s compilation (Nebel
2000). To see this, consider a conditional effect of the form
ϕ B w′ := d′, where ϕ is a propositional formula with an
exponentially large decision diagram representation. Then,
an EVMDD-based compilation will be exponential, whereas
Nebel’s compilation will be of constant size, since it only
branches on the entire formula ϕ once, whereas EVMDDs
may only branch on single variables in each step.

The attentive reader familiar with the successor gener-
ator (SG) in the Fast Downward planner (Helmert 2006)
will have noticed that EVMDDs over F are basically edge-
valued SGs (without don’t-care branches).

Finally, when combining the decision diagrams for SDAC
and CE, making them compatible not only means making
both edge-valued, but also making sure both use the same
variable ordering. Practically, this implies that such an or-
dering needs to be chosen carefully. In particular, one should
avoid interleaving variables that only occur in the cost func-
tion with variables that only occur in the effect conditions.

Conclusion
We defined a relaxed operator semantics in the presence
of SDAC and CE that is closer to the unrelaxed seman-
tics than an alternative naı̈ve semantics where costs and ef-
fects are handled separately. Whereas the new semantics
refers to exponentially many unrelaxed states, we proposed
an EVMDD-based way of computing it that avoids this ex-
ponentiality in many practical cases.

We intend to build upon this work to derive informative
relaxation heuristics, such as generalizations of the addi-
tive (Bonet, Loerincs, and Geffner 1997) or the FF (Hoff-

mann and Nebel 2001) heuristic. We believe that our
EVMDD encoding will also prove useful in the definition
of Cartesian abstraction heuristics, similarly as in previous
work (Geißer, Keller, and Mattmüller 2016).

Moreover, we will define and analyze action compilations
based on product EVMDDs. Similar to previous work on
SDAC (Geißer, Keller, and Mattmüller 2015), those compi-
lations will turn decision diagram edges into auxiliary ac-
tions with costs corresponding to the edge costs, and partial
effects corresponding to the edge’s effect label, additionally
keeping track of the current node in the diagram and of the
original preconditions and original effects, with a clean-up
action in the end that copies the content of primed variables
back to their unprimed counterparts. Finally, we will also
investigate admissible ways of keeping our EVMDDs small,
possibly at the cost of some precision.

Acknowledgements. This work was partly supported by
BrainLinks-BrainTools, Cluster of Excellence funded by the
German Research Foundation (DFG, grant number EXC
1086).

References
Ball, T.; Podelski, A.; and Rajamani, S. K. 2001. Boolean
and cartesian abstraction for model checking C programs. In
Proc. TACAS 2001, 268–283.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust and
fast action selection mechanism for planning. In Proc. AAAI
1997, 714–719.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Ciardo, G., and Siminiceanu, R. 2002. Using edge-valued
decision diagrams for symbolic generation of shortest paths.
In Proc. FMCAD 2002, 256–273.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete
relaxations for planning with state-dependent action costs.
In Proc. IJCAI 2015, 1573–1579.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstrac-
tions for planning with state-dependent action costs. In Proc.
ICAPS 2016, 140–148.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Lai, Y.; Pedram, M.; and Vrudhula, S. B. K. 1996. Formal
verification using edge-valued binary decision diagrams.
IEEE Transactions on Computers 45(2):247–255.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. JAIR 12:271–315.
Rintanen, J. 2003. Expressive equivalence of formalisms for
planning with sensing. In Proc. ICAPS 2003, 185–194.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Proc. ICAPS 2013,
347–351.

18

Equi-Reward Utility Maximizing Design in Stochastic Environments

Sarah Keren† Luis Pineda‡ Avigdor Gal† Erez Karpas† Shlomo Zilberstein‡
†Technion–Israel Institute of Technology

‡College of Information and Computer Sciences, University of Massachusetts Amherst

Abstract

We present the Equi-Reward Utility Maximizing Design (ER-
UMD) problem for redesigning stochastic environments to
maximize agent performance. ER-UMD fits well contempo-
rary applications that require offline design of environments
where robots and humans act and cooperate. To find an op-
timal modification sequence we present two novel solution
techniques: a compilation that embeds design into a planning
problem, allowing use of off-the-shelf solvers to find a so-
lution, and a heuristic search in the modifications space, for
which we present an admissible heuristic. Evaluation shows
the feasibility of the approach using standard benchmarks
from the probabilistic planning competition and a benchmark
we created for a vacuum cleaning robot setting.

Introduction
We are surrounded by physical and virtual environments
with a controllable design. Hospitals are designed to mini-
mize the daily distance covered by staff, computer networks
are structured to maximize message throughput, human-
robot assembly lines are designed to maximize productivity,
etc. Common to all these environments is that they are de-
signed with the intention of maximizing some user benefit
while accounting for different forms of uncertainty.

Typically, design is performed manually, often leading to
far from optimal solutions. We therefore suggest to automate
the design process and formulate the Equi-Reward Utility
Maximizing Design (ER-UMD) problem where a system
controls the environment by applying a sequence of modi-
fications in order to maximize agent utility.

We assume a fully observable stochastic setting and use
Markov decision processes (Bellman 1957) to model the
agent environment. We exploit the alignment of system and
agent utility to show a compilation of the design problem
into a planning problem and piggyback on the search for an
optimal policy to find an optimal sequence of modifications.
In addition, we exploit the structure of the offline design pro-
cess and offer a heuristic search in the modifications space to
yield optimal design strategies. We formulate the conditions
for heuristic admissibility and propose an admissible heuris-
tic based on environment simplification. Finally, for settings
where practicality is prioritized over optimality, we present
a way to efficiently acquire sub-optimal solutions.

The contributions of this work are threefold. First, we
formulate the ER-UMD problem as a special case of en-

vironment design (Zhang, Chen, and Parkes 2009). ER-
UMD supports arbitrary modification methods. Particularly,
for stochastic settings, we propose modifying probability
distributions, an approach which offers a wide range of sub-
tle modifications. Second, we present two new approaches
for solving ER-UMD problems, specify the conditions for
acquiring an optimal solution and present an admissible
heuristic to support the solution. Finally, we evaluate our
approaches given a design budget, using probabilistic bench-
marks from the International Planning Competitions, where
a variety of stochastic shortest path MDPs are introduced
(Bertsekas 1995) and on a domain we created for a vac-
uum cleaning robot. We show how redesign substantially
improves utility, expressed via reduced cost achieved with
a small modification budget. Moreover, the techniques we
develop outperform the exhaustive approach reducing cal-
culation effort by up to 30% .

The remaining of the paper is organized as follows. Sec-
tion describes the ER-UMD framework. In Section , we de-
scribe our novel techniques for solving the ER-UMD prob-
lem. Section describes an empirical evaluation followed by
related work (Section) and concluding remarks (Section).

Equi-Reward Utility Maximizing Design
The equi-reward utility maximizing design (ER-UMD) prob-
lem takes as input an environment with stochastic action
outcomes, a set of allowed modifications, and a set of con-
straints and finds an optimal sequence of modifications
(atomic changes such as additions and deletions of environ-
ment elements) to apply to the environment for maximizing
agent expected utility under the constraints. We refer to se-
quences rather then sets to support settings where different
application orders impact the model differently. Such a set-
ting may involve, for example, modifications that add pre-
conditions necessary for the application of other modifica-
tions (e.g. a docking station can only be added after adding
a power outlet).

We consider stochastic environments defined by the
quadruple ε = 〈Sε, Aε, fε, s0,ε〉 with a set of states Sε,
a set of actions Aε, a stochastic transition function fε :
Sε ×Aε × Sε → [0, 1] specifying the probability f(s, a, s′)
of reaching state s′ after applying action a in s ∈ S, and an
initial state s0,ε ∈ Sε. We let E , SE and AE denote the set of
all environments, states and actions, respectively.

19

Figure 1: An example of an ER-UMD problem

Adopting the notation of Zhang and Parkes (2008) for en-
vironment design, we define the ER-UMD model as follows.

Definition 1 An equi-reward utility maximizing (ER-UMD)
model ω is a tuple 〈ε0ω,Rω, γω,∆ω,Fω,Φω〉 where
• ε0ω ∈ E is an initial environment.
• Rω : SE ×AE × SE → R is a Markovian and stationary

reward function, specifying the reward r(s, a, s′) an agent
gains from transitioning from state s to s′ by the execution
of a.

• γω is a discount factor in (0, 1], representing the depreca-
tion of agent rewards over time.

• ∆ω is a finite set of atomic modifications a system can
apply. A modification sequence is an ordered set of modi-
fications ~∆ = 〈∆1, . . . ,∆n〉 s.t. ∆i ∈ ∆ω . We denote by
~∆ω the set of all such sequences.

• Fω : ∆ω × E → E is a deterministic modification tran-
sition function, specifying the result of applying a modifi-
cation to an environment.

• Φω : ~∆ω × E → {0, 1} is an indicator that specifies the
allowed modification sequences in an environment.

Whenever ω is clear from the context we use ε0,R, γ, ∆,F ,
and Φ. Note that a reward becomes a cost when negative.

The reward function R and discount factor γ form, to-
gether with an environment ε ∈ E an infinite horizon dis-
counted reward Markov decision process (MDP) (Bertsekas
1995) 〈S,A, f, s0,R, γ〉. The solution of an MDP is a con-
trol policy π : S → A describing the appropriate action to
perform at each state. We let Πε represent the set of all pos-
sible policies in ε. Optimal policies Π∗ε ⊆ Πε yield an ex-
pected accumulated reward for every state s ∈ S (Bellman
1957). We assume agents are optimal and let V∗(ω) repre-
sent the discounted expected agent reward of following an
optimal policy from the initial state s0 in a model ω.

Modifications ∆ ∈ ∆ can be defined arbitrarily, support-
ing all the changes applicable to a deterministic environment
(Herzig et al. 2014). For example, we can allow adding a
transition between previously disconnected states. Particu-
lar to a stochastic environment is the option of modifying the
transition function by increasing and decreasing the proba-
bility of specific outcomes. Each modification may be as-
sociated with a system cost C : ∆ → R+ and a sequence
cost C(~∆) =

∑
∆i∈~∆ C(∆i). Given a sequence ~∆ such that

Φ(~∆, ε) = 1 (i.e., ~∆ can be applied to ε ∈ E) we let ε~∆ rep-

resent the environment that is the result of applying ~∆ to ε
and ω~∆ is the same model with ε~∆ as its initial environment.

The solution to an ER-UMD problem is a modification se-
quence ~∆ ∈ ~∆∗ to apply to ε0ω that maximizes agent utility
V∗(ω~∆) under the constraints, formulated as follows.

Problem 1 Given a model ω = 〈ε0ω,Rω, γω,∆ω,Fω,Φω〉,
the ER-UMD problem finds a modification sequence ~∆ ∈ ~∆

argmax
~∆∈~∆|Φ(~∆)=1

V∗(ω~∆)

We let ~∆∗ω represent the set of solutions to Problem 1 and
Vmax(ω) = max

~∆∈~∆|Φ(~∆)=1
V∗(ω~∆) represent the maximal

agent utility achievable via design in ω. In particular, we
seek solutions ~∆∗ ∈ ~∆∗ω that minimize design cost C(~∆∗).

Example 1 As an example of a controllable environment
where humans and robots co-exist consider Figure 1(left),
where a vacuum cleaning robot is placed in a living room.
The set E of possible environments specifies possible room
configurations. The robot’s utility, expressed via the reward
R and discount factor γ, may be defined in various ways;
it may try to clean an entire room as quickly as possible
or cover as much space as possible before its battery runs
out. (Re)moving a piece of furniture from or within the room
(Figure 1(center)) may impact the robot’s utility. For exam-
ple, removing a chair from the room may create a shortcut to
a specific location but may also create access to a corner the
robot may get stuck in. Accounting for uncertainty, there may
be locations in which the robot tends to slip, ending up in a
different location than intended. Increasing friction, e.g., by
introducing a high friction tile (Figure 1(right)), may reduce
the probability of undesired outcomes. All types of modifica-
tions, expressed by ∆ and F , are applied offline (since such
robots typically perform their task unsupervised) and should
be applied economically in order to maintain usability of
the environment. These type of constraints are reflected by
Φ that can restrict the design process by a predefined budget
or by disallowing specific room configurations.

Finding ~∆∗

A baseline method for finding an optimal modification se-
quence involves applying an exhaustive best first search
(BFS) in the space of allowed sequences and selecting one
that maximizes system utility. This approach was used for

20

finding the optimal set of modifications in a goal recognition
design setting (Keren, Gal, and Karpas 2014; Wayllace et al.
2016). The state space pruning applied there assumes that
disallowing actions is the only allowed modification, mak-
ing it non-applicable for ER-UMD, which supports arbitrary
modification methods. We therefore present next two novel
techniques to find the optimal design strategy for ER-UMD.

ER-UMD compilation to planning
As a first approach, we embed design into a planning prob-
lem description. The DesignComp compilation (Definition
2) extends the agent’s underlying MDP by adding pre-
process operators that modify the environment off-line. Af-
ter initialization, the agent acts in the new optimized envi-
ronment.

The compilation uses the PPDDL notation (Younes and
Littman 2004) which uses a factored MDP representation.
Accordingly, an environment ε ∈ E is represented as a
tuple 〈Xε, s0,ε, Aε〉 with states specified as a combina-
tion of state variables Xε and a transition function embed-
ded in the description of actions. Action a ∈ Aε is rep-
resented by 〈prec, 〈p1, add1, del1〉, . . . , 〈pm, addm, delm〉〉
where prec is the set of literals that need to be true as
a precondition for applying a. The probabilistic effects
〈p1, add1, del1〉, . . . , 〈pm, addm, delm〉 are represented by
pi, the probability of the i-th effect. When outcome i oc-
curs, addi and deli are literals, added and removed from the
state description, respectively (Mausam 2012).

The policy of the compiled planning problem has two
stages: design - in which the system is modified and ex-
ecution - describing the policy agents follow to maximize
utility. Accordingly, the compiled domain has two action
types: Ades, corresponding to modifications applied by the
design system and Aexe, executed by the agent. To separate
between the stages we use a fluent execution, initially false
to allow the application of Ades, and a no-cost action astart
that sets execution to true rending Aexe applicable.

The compilation process supports two modifications
types. Modifications ∆X change the initial state by modi-
fying the value of state variables X∆ ⊆ X . Modifications
∆A change the action set by enabling actions A∆ ⊆ A.
Accordingly, the definition includes a set of design action
Ades = Ades-s0 ∪ Ades-A, where Ades-s0 are actions that
change the initial value of variables and Ades-A includes ac-
tions A∆ that are originally disabled but can be enabled in
the modified environment. In particular, we include in A∆

actions that share the same structure as actions in the original
environment except for a modified probability distribution.

The following definition of DesignComp supports a de-
sign budget B implemented using a timer mechanism as in
(Keren, Gal, and Karpas 2015). The timer advances with up
to B design actions that can be applied before performing
astart. This constraint is represented by ΦB that returns 0
for any modification sequence that exceeds the budget.

Definition 2 For an ER-UMD problem ω =
〈ε0ω,Rω, γω,∆ω,Fω,ΦBω 〉 where ∆ω = ∆X ∪ ∆A

we create a planning problem P ′ = 〈X ′, s′0, A′,R′, γ′〉
where:

• X ′ = {Xε0ω} ∪ {execution} ∪ {timet | t ∈ 0, . . . , B} ∪
{enableda | a ∈ A∆}

• s′0 = {s0,ε0ω
} ∪ {time0}

• A′ = Aexe ∪Ades-s0 ∪Ades-A ∪ astart where
– Aexe = Aε0 ∪A∆ s.t.
∗ {〈prec(a) ∪ execution, eff(a)〉 | a ∈ Aε0}
∗ {〈prec(a) ∪ execution ∪ enableda, eff(a)〉 | a ∈ A∆}

– Ades-s0 = {〈〈¬execution, timei〉, 〈1, 〈x, timei+1〉,
〈timei〉〉〉 | x ∈ X∆}

– Ades-A = {〈〈¬execution, timei〉, 〈1, 〈enableda,
timei+1〉, timei〉〉 | a ∈ A∆}}

– astart = 〈∅, 〈1,¬execution, ∅}〉〉

• R′ =

{
R(a), if a ∈ Aexe
0, if a ∈ Ades, ainit

• γ′ = γ

Optimally solving the compiled problem P ′ yields an op-
timal policy π∗P ′ with two components, separated by the ex-
ecution of astart. The initialization component consists of
a possibly empty sequence of deterministic design actions
denoted by ~∆P ′ , while the execution component represents
the optimal policy in the modified environment.

The next two propositions establish the correctness of the
compilation. Proofs are omitted due to space constraints. We
first argue that V ∗(P ′), the expected reward from the initial
state in the compiled planning problem, is equal to the ex-
pected reward in the optimal modified environment.

Lemma 1 Given an ER-UMD problem ω and an optimal
modification sequence ~∆ ∈ ~∆∗ω

V ∗(P ′) = V ∗(ω~∆).

An immediate corollary is that the compilation outcome is
indeed an optimal sequence of modifications.

Corollary 1 Given an ER-UMD problem ω and the com-
piled model P ′, ~∆P ′ ∈ ~∆∗ω

The reward function R′ assigns zero cost to all design ac-
tions Ades. To ensure the compilation not only respects the
budget B, but also minimizes design cost, we can assign a
small cost (negative reward) cd to design actions Ades. If
cd is too high, it might lead the solver to omit design ac-
tions that improve utility by less than cd. However, the loss
of utility will be at most cdB. Thus, by bounding the min-
imum improvement in utility from a modification, we can
still ensure optimality.

Design as informed search
The key benefit of compiling ER-UMD to planning is the
ability to use any off-the-shelf solver to find a design strat-
egy. However, this approach does not fully exploit the spe-
cial characteristics of the off-line design setting we address.
We therefore observe that embedding design into the defini-
tion of a planning problem results in an MDP with a special
structure, depicted in Figure 2. The search of an optimal re-
design policy is illustrated as a tree comprising of two com-
ponent. The design component, at the top of the figure, de-
scribes the deterministic offline design process with nodes

21

representing the different possibilities of modifying the en-
vironment. The execution component, at the bottom of the
figure, represents the stochastic modified environments in
which agents act.

ᵂ∅
Original

environment

ᵂ2ᵂ1

ᵂ1,2

Execution - agent policy

Design - system policy

ᵂ3

ᵂ1,3 ᵂ2,3 ᵂ3,1 ᵂ3,2ᵂ2,1

Figure 2: State space of a ER-UMD problem

Each design node represents a different ER-UMD model,
characterized by the sequence ~∆ of modifications that has
been applied to the environment and a constraints set Φ,
specifying the allowed modifications in the subtree rooted
at a node. With the original ER-UMD problem ω at the root,
each successor design node represents a sub-problem ω~∆ of
the ancestor ER-UMD problem, accounting for all modifi-
cation sequences that have ~∆ as their prefix. The set of con-
straints of the successors is updated with relation to the par-
ent node. For example, when a design budget is specified,
it is reduced when moving down the tree from a node to its
successor.

When a design node is associated with a valid modifi-
cation, it is connected to a leaf node representing a ER-
UMD model with the environment ε~∆ that results from ap-
plying the modification. To illustrate, invalid modification
sequences are crossed out in Figure 2.

Algorithm 1 Best First Design (BFD)
BFD(ω, h)
1: create OPEN list for unexpanded nodes
2: ncur = 〈design, ~∆∅〉 (initial model)
3: while ncur do
4: if IsExecution(ncur) then
5: return ncur.~∆ (best modification found - exit)
6: end if
7: for each nsuc ∈ GetSuccessors(ncur, ω) do
8: put 〈〈design, nsuc.~∆〉, h(nsuc)〉 in OPEN
9: end for

10: if Φσ(ncur.~∆) = 1 then
11: put 〈〈execution, ~∆new〉, V∗(ω~∆new

)〉 in OPEN
12: end if
13: ncur = ExtractMax(OPEN)
14: end while
15: return error

Using this search tree we propose an informed search in

the space of allowed modifications, using heuristic estima-
tions to guide the search more effectively by focusing atten-
tion on more promising redesign options. The Best First De-
sign (BFD) algorithm (detailed in Algorithm 1) accepts as
input an ER-UMD model ω, and a heuristic function h. The
algorithm starts by creating an OPEN priority queue (line
1) holding the front of unexpanded nodes. In line 2, ncur is
assigned the original model, which is represented by a flag
design and the empty modification sequence ~∆∅.

The iterative exploration of the currently most promising
node in the OPEN queue is given in lines 3-14. If the current
node represents an execution model (indicated by the execu-
tion flag) the search ends successfully in line 5, returning the
modification sequence associated with the node. Otherwise,
the successor design nodes of the current node are generated
by GetSuccessors in line 7. Each successor sub-problem
nsuc is placed in the OPEN list with its associated heuristic
value h(nsuc) (line 8), to be discussed in detail next. In ad-
dition, if the modification sequence ncur.~∆ associated with
the current node is valid according to Φ, an execution node is
generated and assigned a value that corresponds to the actual
value V∗(ω~∆new

) in the resulting environment (lines 10-12).
The next node to explore is extracted from OPEN in line 13.

Both termination and completeness of the algorithm de-
pend on the implementation of GetSuccessors, which
controls the graph search strategy by generating the
sub-problem design nodes related to the current node.
For example, when a modification budget is specified,
GetSuccessors generates a sub-problem for every modifi-
cation that is appended to the sequence ~∆ of the parent node,
discarding sequences that violate the budget and updating it
for the valid successors.

For optimality, we require the heuristic function h to be
admissible. An admissible estimation of a design node n is
one that never underestimates Vmax

ω , the maximal system’s
utility in the ER-UMD problem ω represented by ncur.1

Running BFD with an admissible heuristic is guaranteed
to yield an optimal modification sequence.

Theorem 1 Given an ER-UMD model ω and an admissible
heuristic h, BFD(ω, h) returns ~∆∗ω ∈ ~∆∗ω .

The proof of Theorem 1 bares similarity to the proof ofA∗
(Nllsson 1980) and is omitted here for the sake of brevity.

The simplified-environment heuristic To produce ef-
ficient over-estimations of the maximal system utility
Vmax(ω), we suggest a heuristic that requires a single pre-
processing simplification of the original environment used
to produce estimates for the design nodes of the search.

Definition 3 Given an ER-UMD model ω, a function f :
E → E is an environment simplification in ω if ∀ε, ε′ ∈
Eω s.t. ε′ = f(ε), V∗(ω) ≤ V∗(ωf), where ωf is the ER-
UMD model with f(ε) as its initial environment.

The simplified-environment heuristic, denoted by hsim es-
timates the value of applying a modification sequence ~∆ to

1When utility is cost, it needs not to overestimate the real cost.

22

ω by the value of applying it to ωf .

hsim(ω~∆)
def
= Vmax(ωf~∆) (1)

The search applies modifications on the simplified model
and uses its optimal solution as an estimate of the value of
applying the modifications in the original setting. In partic-
ular, the simplified model can be solved using the Design-
Comp compilation presented in the previous section.

The literature is rich with simplification approaches, in-
cluding adding macro actions that do more with the same
cost, removing some action preconditions, eliminating neg-
ative effects of actions (delete relaxation) or eliminating un-
desired outcomes (Holte et al. 1995). Particular to stochas-
tic settings is the commonly used all outcome determiniza-
tion (Yoon, Fern, and Givan 2007), which creates a deter-
ministic action for each probabilistic outcome of every ac-
tion.

Lemma 2 Given an ER-UMD model ω, applying the
simplified-environment heuristic with f implemented as an
all outcome determinization function is admissible.

The proof of Lemma 2, omitted for brevity, uses the obser-
vation that f only adds solutions with higher reward (lower
cost) to a given problem (either before or after redesign).
A similar reasoning can be applied to the commonly used
delete relaxation or any other approaches discussed above.

Note that admissibility of a heuristic function depends on
specific characteristics of the ER-UMD setting. In particu-
lar, the simplified-environment heuristic is not guaranteed to
produce admissible estimates for policy teaching (Zhang and
Parkes 2008) or goal recognition design (Keren, Gal, and
Karpas 2014; Wayllace et al. 2016), where design is per-
formed to incentivize agents to follow specific policies. This
is because the relaxation itself may change the set of opti-
mal agent policies and therefore under estimate the value of
a modification.

Empirical Evaluation
We evaluated the ability to maximize agent utility given a
design budget in various ER-UMD problems, as well as the
performance of both optimal and approximate techniques.

We used five PPDDL domains from the probabilis-
tic tracks of the sixth and eighth International Planning
Competition2 (IPPC06 and IPPC08) representing stochas-
tic shortest path MDPs with uniform action cost: Box World
(IPPC08/ BOX), Blocks World (IPPC08/ BLOCK), Explod-
ing Blocks World (IPPC08/ EX-BLOCK), Triangle Tire
(IPPC08/ TIRE) and Elevators (IPPC06/ ELEVATOR). In
addition, we implemented the vacuum cleaning robot set-
ting from Example 1 (VACUUM) as an adaptation of the
Taxi domain (Dietterich 2000). The robot moves in a grid
and collects pieces of dirt. It cannot move through furniture,
represented by occupied cells, and may fail to move, remain-
ing in its current position.

In all domains, agent utility is expressed as expected cost
and constraints as a design budget. For each IPPC domain

2http://icaps-conference.org/index.php/main/competitions

change init probability change

BOX relocate a truck reduce probability of driving to a wrong destination
BLOCK — reduce probability of dropping a block or tower

EX-BLOCK — as for Blocks World
TIRE add a spare tire at a location reduce probability of having a flat tire

ELEVATOR add elevator shaft reduce probability of falling to the initial state
VACUUM (re)move furniture add high friction tile

Table 1: Allowed modifications for each domain
B=1 B=2 B=3

solved reduc solved reduc solved reduc
BOX 8 28 8 42 7 44

BLOCK 6 21 3 24 3 24
EX-BLOCK 10 42 9 42 9 42

TIRE 9 44 8 51 6 54
ELEVATOR 9 22 7 24 1 18
VACUUM 8 15 6 17 0 —

Table 2: Utility improvement for optimal solvers

we examined at least two possible modifications, including
at least one that modifies the probability distribution. Mod-
ifications by domain are specified in Table 1 with modifi-
cations marked by change init modify the initial state and
probability change marks modifications to the probability
function.

Optimal solutions
Setup For each domain, we created 10 smaller instances op-
timally solvable within a time bound of five minutes. Each
instance was optimally solved using:
• EX- Exhaustive exploration of possible modifications.
• DC- Solution of the DesignComp compilation.
• BFD- Algorithm 1 with simplified-environment heuristic

using delete relaxation and DesignComp to simplify and
optimally solve the model.

We used a portfolio of 3 admissible heuristics:
• h0 assigns 0 to all states and serves as a baseline for the

assessing the value of more informative heuristics.
• h0+ assigns 1 to all non-goal states and 0 otherwise.
• hMinMin solves all outcome determinization using the

zero heuristic (Bonet and Geffner 2005).
Each problem was tested on a Intel(R) Xeon(R) CPU

X5690 machine with a budget of 1, 2 and 3. Design actions
were assigned a cost of 10−4, and convergence error bound
of LAO* set to 10−6. Each run had a 30 minutes time limit.
Results Separated by domain and budget, Table 2 summa-
rizes the number of solved instances (solved) and average
percentage of expected cost reduction over instances solved
(reduc). In all domains, complexity brought by increased
budget reduces the number of solved instances, while the
actual reduction varies among domains. As for solution im-
provement, all domains show an improvement of 15% to
54%.

Table 3 compares solution performance. Each row repre-
sents a solver and heuristic pair. Results are separated by
domain and budget, depicting the average running time for
problems solved by all approaches for a given budget and the
number of instances solved in parenthesis. The dominating
approach for each row (indicating a domain and budget) is
emphasized in bold. In all cases, the use of informed search
outperformed the exhaustive approach.

23

BOX BLOCKS EX. BLOCKS TRIANGLE TIRE ELEVATORS VACCUM
B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3

Ex-h0 158.4(8) 264.7(7) 238.5(4) 50.5(6) 28.0(4) 348.9(2) 69.4(9) 161.7 (9) 250.7 (9) 32.9(9) 55.2(7) 270.3(6) 300.4 (8) 361.8 (5) na 0.15(9) 3.6(9) na
Ex-h0+ 159.0(8) 264.9(7) 236.5(4) 50.5(6) 28.2(4) 347.3(2) 70.2(9) 170.9(9) 265.9(9) 32.9(9) 55.4(7) 136.5(6) 299.6(8) 360.9(5) na 0.16(9) 3.27(9) na

Ex-hMinMin 158.9(8) 267.8(7) 235.6 (4) 50.8(6) 28.0(4) 348.2(2) 69.9 (9) 168.1(9) 292.2(9) 33.1(9) 55(7) 258.4(6) 301.6(8) 366.2 (5) na 0.152(9) 3.44(9) na
DC-h0 163.9(8) 270.6(7) 241.5(4) 50.7(6) 28.2(4) 354.5(2) 68.4(9) 153.1(9) 252.5(9) 33.3(9) 55.5(7) 269.7(6) 301.9(8) 363.4(5) na 0.17(9) 3.25(9) na

DC-h0+ 70.7(8) 92.1(8) 73.5(4) 41.7(6) 17.4(4) 194.6(3) 38.7(9) 88.2(9) 134.9(9) 30.2(9) 51.1(8) 136.5(6) 236.2(9) 261(5) 1504.6(1) 0.099(9) 2.13(9) na
DC-hMinMin 221.4 (8) 332.7(7) 271.7(4) 77.1(6) 36.4(3) 363.5(2) 6.7(10) 30.2(10) 88.8(8) 36.8(9) 88.8(8) 258.4(6) 192.6(9) 243.89(5) 1117.4(1) 0.15(9) 2.49(9) na

BFD-h0 157.4(8) 260.8(7) 234.3(4) 50.3(6) 28(4) 352.2(2) 69.5(9) 153.9(9) 285.9(9) 33(9) 55(7) 267.6(6) 302.6(8) 360.8(5) na 0.15(9) 3.39(9) na
BFD-h0+ 68.2(8) 88(8) 70.2 (7) 41.6 (6) 17.2(4) 118.2(3) 40.3(9) 85.6(9) 160.9(9) 29.5(9) 50.9(8) 188.3(6) 238.3(9) 258.6(5) 1465.8(1) 0.096(9) 2.021(9) na

BFD-hMinMin 216.4(8) 325.3(7) 265.94(4) 74.4(6) 35.4(3) 354.8(2) 60.3(9) 135(9) 237.4(9) 36.9(9) 89(8) 256.2(6) 176.6(9) 231.2(5) 1042.5(1) 0.13(9) 2.61(9) na

Table 3: Running time and number of instances solved for optimal solvers

Approximate solutions
Setup For approximate solutions we used a solver based on
an MDP reduction approach that creates simplified MDPs
that account for the full set of probabilistic outcomes a
bounded number of times (for each execution history), and
treat the problem as deterministic afterwards (Pineda and
Zilberstein 2014). The deterministic problems were solved
using the FF classical planner (Hoffmann and Nebel 2001).
Because this is a replanning approach, we used Monte-Carlo
simulations to evaluate the policies’ probability of reaching
a goal state and its expected cost. In particular, we gave the
planner 20 minutes to solve each problem 50 times. We used
the first 10 instances of each competition domain mentioned
above, excluding Box World, due to limitations of the plan-
ner. For the VACUUM domain we generated ten configura-
tions of up to 5× 7 grid size rooms, based on Figure 1.
Results Table 4 reports three measures (per budget):
the number of problems completed within allocated time
(solved), improved probability of reaching a goal of the re-
sulting policies with respect to the policies obtained with-
out design (δPs), and the average percentage of reduction
in expected cost after redesign (reduc) (δPs and reduc are
averaged only over problems solved 50 times when using
both the original and modified model). In general, we ob-
served that redesign enables either improvement in expected
cost or in probability of successes (and sometimes both),
across all budgets. For BLOCK and EX-BLOCK, a budget
of 2 yielded best results, while for ELEVATOR, TIRE, and
VACUUM a budget of 3 was better. However, the increased
difficulty of the compiled problem resulted sometimes in a
lower number of solved problems (e.g., solving only 3 prob-
lems on TIRE with budget of 3). Nevertheless, these results
demonstrate the feasibility of obtaining good solutions when
compromising optimality.

Discussion
For all examined domains, results indicate the benefit of us-
ing heuristic search over an exhaustive search in the modi-
fication space. However, the dominating heuristic approach
varied between domains, and for TIRE also between bud-

B = 1 B = 2 B = 3

solved δPs reduc solved δPs reduc solved δPs reduc
BLOCK 8 0 19.1 8 0 21.2 8 0 18.6

EX-BLOCK 10 0.42 0 10 0.50 0 10 0.41 0
TIRE 7 0 6.98 7 0 17.9 3 0 33

ELEVATOR 10 -0.33 25 10 0.1 30 10 0.1 38.3
VACUUM 10 0.2 8.12 10 0.2 4.72 10 0.3 9.72

Table 4: Utility improvement for sub-optimal solver

get allocation. Investigating the reasons for this variance,
we note a key difference between BFD and DC. While DC
applies modifications to the original model, BFD uses the
simplified-environment heuristic that applies them to a sim-
plified model. Poor performance of BFD can be due to either
the minor effect applied simplifications have on the com-
putational complexity or to an exaggerated effect that may
limit the informative value of heuristic estimations. In par-
ticular, this could happen due to the overlap between the de-
sign process and the simplification. To illustrate, by applying
the all outcome determinization to the Vacuum domain de-
picted in Example 1, we ignore the undesired outcome of
slipping. Consequently, the heuristic completely overlooks
the value of adding high-friction tiles, while providing in-
formative estimations to the value of (re)moving furniture.
This observations may be used to account for the poor per-
formance of BFD with EX-BLOCKS, where simplification
via the delete relaxation ignores the possibility of blocks ex-
ploding and overlooks the value of the proposed modifica-
tions. Therefore, estimations of BFD may be improved by
developing a heuristic that uses the aggregation of several
estimations. Also, when the order of application is immate-
rial, a closed list may be used for examined sets in the BFD
approach but not with DC. Finally, a combination of relax-
ation approaches may enhance performance of sub-optimal
solvers.

Related Work
Environment design (Zhang, Chen, and Parkes 2009) pro-
vides a framework for an interested party (system) to seek
an optimal way to modify an environment to maximize
some utility. Among the many ways to instantiate the gen-
eral model, policy teaching (Zhang and Parkes 2008; Zhang,
Chen, and Parkes 2009) enables a system to modify the re-
ward function of a stochastic agent to entice it to follow spe-
cific policies. We focus on a different special case where the
system is altruistic and redesigns the environment in order to
maximize agent utility. The techniques used for solving the
policy teaching do not apply to our setting, which supports
arbitrary modifications.

The DesignComp compilation is inspired by the tech-
nique of Göbelbecker et al. (2010) of coming up with good
excuses for why there is no solution to a planning prob-
lem. Our compilation extends the original approach in four
directions. First, we move from a deterministic environ-
ment to a stochastic one. Second, we maximize agent util-
ity rather than only moving from unsolvable to solvable.
Third, we embed support of a design budget. Finally, we
support arbitrary modification alternatives including modi-

24

fications specific to stochastic settings as well as all those
suggested for deterministic settings (Herzig et al. 2014;
Menezes, de Barros, and do Lago Pereira 2012).

Conclusions
We presented the ER-UMD framework for maximizing
agent utility by the off-line design of stochastic en-
vironments. We presented two solution approaches; a
compilation-based method that embeds design into the def-
inition of a planning problem and an informed heuristic
search in the modification space, for which we provided an
admissible heuristic. Our empirical evaluation supports the
feasibility of the approaches and shows substantial utility
gain on all evaluated domains.

In future work, we will explore creating tailored heuris-
tics to improve planner performance. Also, we will extend
the model to deal with partial observability using POMDPs,
as well as automatically finding possible modifications, sim-
ilarly to (Göbelbecker et al. 2010). In addition, we plan to
extend the offline design paradigm, by accounting for online
design that can be dynamically applied to a model.

Acknowledgements
The work was partially supported by the NSF grant number
IIS-1405550.

References
Bellman, R. 1957. A markovian decision process. Indiana
University Mathematics Journal 6:679–684.
Bertsekas, D. P. 1995. Dynamic programming and optimal
control, volume 1. Athena Scientific Belmont, MA.
Bonet, B., and Geffner, H. 2005. mgpt: A probabilistic plan-
ner based on heuristic search. Journal of Artificial Intelli-
gence Research(JAIR) 24:933–944.
Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the maxq value function decomposition. Journal of
Artificial Intelligence Research(JAIR) 13:227–303.
Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. Cognitive Robotics 10081.
Herzig, A.; Menezes, V.; de Barros, L. N.; and Wassermann,
R. 2014. On the revision of planning tasks. In Proceed-
ings of the Twenty-first European Conference on Artificial
Intelligence (ECAI).
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Holte, R. C.; Perez, M.; Zimmer, R.; and MacDonald, A. J.
1995. Hierarchical a*. In Symposium on Abstraction, Refor-
mulation, and Approximation.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS).
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recognition
design for non optimal agents. In Proceedings of the Con-
ference of the American Association of Artificial Intelligence
(AAAI).

Mausam, A. K. 2012. Planning with markov decision pro-
cesses: an ai perspective. Morgan & Claypool Publishers.
Menezes, M. V.; de Barros, L. N.; and do Lago Pereira,
S. 2012. Planning task validation. In Proceedings of
the International Conference on Automated Planning and
Scheduling Workshop on Scheduling and Planning Applica-
tions (SPARK-ICAPS), 48–55.
Nllsson, N. J. 1980. Principles of artificial intelligence. Tio-
gaSpringer Verlag. Palo Alto. California.
Pineda, L., and Zilberstein, S. 2014. Planning under uncer-
tainty using reduced models: Revisiting determinization. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS).
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal
recognition design with stochastic agent action outcomes. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI).
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan:
A baseline for probabilistic planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), volume 7, 352–359.
Younes, H. L., and Littman, M. L. 2004. Ppddl1. 0: The
language for the probabilistic part of ipc-4. In Proceedings
of the International Planning Competition (IPC).
Zhang, H., and Parkes, D. C. 2008. Value-based policy
teaching with active indirect elicitation. In Proceedings of
the Conference of the American Association of Artificial In-
telligence (AAAI).
Zhang, H.; Chen, Y.; and Parkes, D. C. 2009. A general
approach to environment design with one agent. Morgan
Kaufmann Publishers Inc.

25

Exploiting Variance Information in Monte-Carlo Tree Search

Robert Lieck Vien Ngo Marc Toussaint
Machine Learning and Robotics Lab

University of Stuttgart
prename.surname@ipvs.uni-stuttgart.de

Abstract

In bandit problems as well as in Monte-Carlo tree search
(MCTS), variance-based policies such as UCB-V are re-
ported to show better performance in practice than policies
that ignore variance information, such as UCB1. For bandits,
UCB-V was proved to exhibit somewhat better convergence
properties than UCB1. In contrast, for MCTS so far no con-
vergence guarantees have been established for UCB-V. Our
first contribution is to show that UCB-V provides the same
convergence guarantees in MCTS that are known for UCB1.
Another open problem with variance-based policies in MCTS
is that they can only be used in conjunction with Monte-Carlo
backups but not with the recently suggested and increasingly
popular dynamic programming (DP) backups. This is because
standard DP backups do not propagate variance information.
Our second contribution is to derive update equations for the
variance in DP backups, which significantly extends the ap-
plicability of variance-based policies in MCTS.
Finally, we provide an empirical analysis of UCB-V and
UCB1 in two prototypical environments showing that UCB-V
significantly outperforms UCB1 both with Monte-Carlo as
well as with dynamic programming backups.

Introduction
Monte-Carlo tree search (MCTS) has become a standard
planning method and has been successfully applied in var-
ious domains, ranging from computer Go to large-scale
POMDPs (Silver et al. 2016; Browne et al. 2012). Some of
the most appealing properties of MCTS are that it is easy
to implement, does not require a full probabilistic model of
the environment but only the ability to simulate state tran-
sitions, is suited for large-scale environments, and provides
theoretical convergence guarantees.

The core idea in MCTS is to treat a sequential decision
problem as a series of bandit problems (Berry and Frist-
edt 1985). The main difference, however, is that in bandit
problems the return distributions are assumed to be station-
ary whereas in MCTS they are not because the return dis-
tributions vary with the tree-policy. This means that con-
vergence properties do not necessarily carry over from the
bandit setting to MCTS.

The most popular MCTS algorithm is UCT (Kocsis and
Szepesvári 2006), which uses UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002) as tree-policy. UCB1 has proven bounds

for the expected regret in the bandit setting as well as poly-
nomial convergence guarantees for the failure probability
in the MCTS setting. More recently, Audibert, Munos, and
Szepesvári (2009) suggested UCB-V, which takes the em-
pirical variance of the returns into account, and proved
bounds for the expected regret in the bandit setting. In the
case of MCTS, however, no convergence guarantees have
been proved so far. Our first contribution in this paper is
to show that UCB-V, just like UCB1, provides polynomial
convergence guarantees in the MCTS setting.

Apart from the tree-policy, an important aspect of an
MCTS algorithms is the employed backup method. The
most common variants are Monte-Carlo (MC) backups and
the more recently suggested dynamic programming (DP)
backups (Keller and Helmert 2013). DP backups have be-
come increasingly popular because they show good con-
vergence properties in practice (see Feldman and Domsh-
lak 2014a for a comparison). The use of variance-based poli-
cies, however, has so far been restricted to MC backups since
here the variance information is readily available. In con-
trast, DP backups do not generally propagate variance infor-
mation. Our second contribution is the derivation of update
equations for the variance that enable the use of variance-
based policies in conjunction with DP backups.

Finally, we evaluate UCB-V and UCB1 in different envi-
ronments showing that, depending on the problem charac-
teristics, UCB-V significantly outperforms UCB1 both with
MC as well as with DP backups.

In the remainder we will discuss related work on MCTS
and reinforcement learning, present the proof for the con-
vergence guarantees of UCB-V, derive the update equations
for the variance with DP backups, and present our empirical
results.

Background & Related Work
Monte-Carlo Tree Search
There exists a wide variety of MCTS algorithms that dif-
fer in a number of aspects. Most of them follow a generic
scheme that we reproduce in Alg. 1 for convenience. Note
that some recent suggestions deviate slightly from this
scheme (Keller and Helmert 2013; Feldman and Domsh-
lak 2014b). In Alg. 1 we highlighted open parameters that
need to be defined in order to produce a specific MCTS im-

26

Algorithm 1 MCTS: Generic algorithm with open param-
eters for finit-horizon non-discounted environments. Nota-
tion: () is a tuple; 〈 〉 is a list, + appends an element to the
list, | l | is the length of list l, and li is its ith element.
Input: v0 → root node

s0 → current state
M → environment model

Output: a∗→ optimal action from root node / current state

1: function MCTS(v0, s0,M)
2: while time permits do
3: (ρ, s)← FOLLOWTREEPOLICY(v0, s0)
4: R←FOLLOWDEFAULTPOLICY(s)
5: UPDATE(ρ,R)
6: end while
7: return BESTACTION(v0) → open parameter
8: end function

9: function FOLLOWTREEPOLICY(v, s)
10: ρ← 〈〉
11: do
12: a← TREEPOLICY(v) → open parameter
13: (s′, r)←M(a, s)
14: ρ← ρ+ 〈(v, s, a, s′, r)〉
15: v ← FINDNODE(v, a, s′) → open parameter
16: s← s′

17: while v is not a leaf node
18: return (ρ, s)
19: end function

20: function FOLLOWDEFAULTPOLICY(s)
21: R← 0
22: repeat
23: a← DEFAULTPOLICY(s) → open parameter
24: (s′, r)←M(a, s)
25: R← R+ r
26: s← s′

27: until s is terminal state
28: return R
29: end function

30: function UPDATE(ρ,R)
31: for i in |ρ|, . . . , 1 do
32: (v, s, a, s′, r)← ρi
33: BACKUP(v, s, a, s′, r, R) → open parameter
34: R← r +R
35: end for
36: end function

plementation. Two of these parameters, the TREEPOLICY
and the BACKUP method, will be discussed in more detail
below.

BESTACTION(v0) selects the action that is eventually rec-
ommended – usually the action with maximum empirical
mean return (see e.g. Browne et al. 2012 for alternatives).

FINDNODE(v, s, a, s′) selects a child node or creates a
new leaf node if the child does not exist. This procedure
usually builds a tree but it can also construct directed acyclic
graphs (see e.g. Saffidine, Cazenave, and Méhat 2012).

DEFAULTPOLICY(s) is a heuristic policy for initializing
the return for new leaf nodes – usually the uniform policy.

TREEPOLICY(v) The tree-policy selects actions in inter-
nal nodes and has to deal with the exploration-exploitation
dilemma: It has to focus on high-return branches (exploita-
tion) but it also has to sample sub-optimal branches to some
extend (exploration) to make sure the estimated returns con-
verge to the true ones. A common choice for the tree-policy
is UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), which
chooses actions as1

a∗ = argmaxaB(s,a) with (1)

B(s,a) = R̂(s,a) + 2Cp

√
2 log ns
n(s,a)

(2)

where R̂(s,a) is the mean return of action a in state s, ns is
the number of visits to state s, n(s,a) is the number of times
action a was taken in state s, the returns are assumed to be
in [0, 1], and the constant Cp > 0 controls exploration. For
UCB1 Kocsis and Szepesvári (2006) proved that the proba-
bility of choosing a sub-optimal action at the root node con-
verges to zero at a polynomial rate as the number of trials
grows to infinity.

More recently, Audibert, Munos, and Szepesvári (2009)
suggested UCB-V that selects actions as

a∗ = argmaxaB(s,a) with (3)

B(s,a) = R̂(s,a)+

√
2 R̃(s,a)ζ log ns

n(s,a)
+3cb

ζ log ns
n(s,a)

(4)

where R̂(s,a), ns, n(s,a) as above, R̃(s,a) is the empir-
ical variance of the return, rewards are assumed to be
in [0, b], and the constants c, ζ > 0 control the algo-
rithm’s behavior. For the bandit setting Audibert, Munos,
and Szepesvári (2009) proved regret bounds but for the
MCTS setting we are not aware of any proof similar to the
one for UCB1. In Section Bounds and Convergence Guaran-
tees we will adapt the proof of Kocsis and Szepesvári (2006)
to show that UCB-V provides the same convergence guaran-
tees as UCB1 in the MCTS setting.

BACKUP(v, s, a, s′, r, R) The BACKUP procedure is re-
sponsible for updating node v given the transition (s, a) →
(s′, r) and the return R of the corresponding trial. It has to
maintain the data needed for evaluating the tree-policy. In
the simplest case of MC backups the BACKUP procedure
maintains visit counts ns, action counts n(s,a), and an esti-
mate of the expected return R̂(s,a) by accumulating the aver-
age ofR. In the more recently suggested DP backups (Keller

1We use states and actions as subscripts to remain consistent
with the MCTS setting.

27

and Helmert 2013) the BACKUP procedure also maintains a
transition model and an estimate of the expected immediate
reward that are then used to calculate R̂(s,a) while the return
samples R are ignored. MC and DP backups have signif-
icantly different characteristics that are subject of ongoing
research (Feldman and Domshlak 2014a). Recently, tem-
poral difference learning and function approximation have
also been proposed as backup methods (Silver, Sutton, and
Müller 2012; Guez et al. 2014). It has also been suggested
to use different backup methods depending on the empirical
variance of returns (Bnaya et al. 2015).

When attempting to use variance information in MCTS a
major problem arises because the variance of the return is
usually not maintained by the BACKUP procedure. As we
discuss in Section Variance Backups, for MC backups the
extension is straightforward whereas for DP backups this
is not the case. The combination of variance-based tree-
policies with DP backups has therefore not been possible
so far. In this paper we close this gap by deriving general
update equations for the variance with DP backups.

In conclusion, while the UCB-V policy has been estab-
lished for bandits, no convergence proof for its use in MCTS
exists to date. Furthermore, DP backups have to date not
been extended to include variance updates thus limiting the
applicability of UCB-V and other variance-based methods
in MCTS.

Reinforcement Learning

The exploration-exploitation dilemma exists not only for
bandits and MCTS but generally in reinforcement learning.
Bayesian reinforcement learning (Vlassis et al. 2012) offers
a general solution that, however, is intractable for most prac-
tical problems. Various approaches, such as R-MAX (Braf-
man and Tennenholtz 2003) and the Bayesian Exploration
Bonus (Kolter and Ng 2009) offer near-optimal approxima-
tions most of which follow the optimism in the face of uncer-
tainty principle. In this context, the variance of the expected
return can be used as a measure of uncertainty, which is for
instance done in Bayesian Q-learning (Dearden, Friedman,
and Russell 1998) where both the expected return as well
as its variance are estimated by performing online updates
under the assumption of normally distributed returns. The
variance information is then used to guide exploration either
by sampling values from the corresponding distribution or
based on the value of information of an action.

Many general ideas, such as optimism in the face of un-
certainty or variance-based exploration, carry over from re-
inforcement learning to the MCTS setting. However, as op-
posed to reinforcement learning, in MCTS we can explore
“for free” during the planning phase. It is thus important to
(a) enable the use of these concepts in MCTS, which we do
by deriving update equations for the variance and (b) estab-
lish convergence guarantees, which we do for the case of
UCB-V.

UCB-V for Monte-Carlo Tree Search
Bounds and Convergence Guarantees
We will now extend the guarantees for UCB-V as proved
by Audibert, Munos, and Szepesvári (2009) from the ban-
dit setting to MCTS. In doing so we will closely follow the
proof by Kocsis and Szepesvári (2006) for the UCB1 pol-
icy showing that both policies exhibit the same convergence
guarantees in the MCTS setting.

Let there beK arms with returnRk,i in the ith play whose
estimated expected return and estimated variance of the re-
turn after n plays are

R̂k,n= 1
n

∑n
i=1Rk,i , R̃k,n= 1

n

∑n
i=1

(
Rk,i − R̂k,n

)2
.

We assume that Rk,i are independently and identically dis-
tributed and the expected values of R̂k,n and R̃k,n converge

µk,n= E[[R̂k,n]] , σ2
k,n= E[[(µk,n − R̂k,n)2]] ,

µk = limn→∞ µk,n , σ
2
k = limn→∞ σ2

k,n ,

δk,n = µk,n − µk .
We denote quantities associated with the optimal arm with
an asterisk and define ∆k = µ∗ − µk. The action selection
rule of UCB-V is2

In = argmax
k∈{1,...,K}

Bk,nk,n with

Bk,nk,n = R̂k,nk +

√
2R̃k,nkζ log(n)

nk
+ 3bc

ζ log(n)

nk

where n is the total number of plays, nk is the number of
plays for the kth arm, b = Rmax, and c, ζ are exploration
parameters. Similar to Kocsis and Szepesvári (2006) we will
assume that the error of the expected values of R̂k,n and
R̃k,n can be bounded and use this assumption for all results
in the paper without explicitly repeating it:
Assumption 1. For any ε > 0, and τ ≥ 1, there exists
N0(ε, τ) such that for all n ≥ N0(ε, τ): |δk,n| ≤ ε∆k/2,
|δ∗n| ≤ ε∆k/2, and σ2

k,n ≤ τ σ2
k.

We begin by repeating Theorem 1 in (Audibert, Munos, and
Szepesvári 2009), which we use in what follows.
Theorem 1. For any t ∈ N and x > 0

P

(
|R̂k,t − µ| ≥

√
2R̃k,tx

t
+ 3b

x

t

)
≤ 3e−x . (5)

On the other hand,

P

(
|R̂k,s − µ| ≥

√
2R̃k,sx

s
+ 3b

x

s

)
≤ β(x, t) (6)

holds for all s ∈ {1, . . . , t} with

β(x, t) = 3 inf
1<α≤3

(
log t

logα
∧ t
)
e−x/α ,

where u ∧ v denotes the minimum of u and v.
2We switch back from the notation used in Eq. (4) to a notation

that ignores the state s and instead includes the number of samples.

28

The following first result extends Lemma 1 in (Audibert,
Munos, and Szepesvári 2009).
Lemma 1. Let

u =
⌈
8(c ∨ 1)

(σ2
k

τ∆2
k

+
2b

τ∆k

)
ζn

⌉
,

where u ∨ v denotes the maximum of u and v. Then, for
u ≤ nk ≤ t ≤ n,

P (Bk,nk,t > µ∗t) ≤ 2e
− nkτ∆2

k
8σ2
k

+4b∆k/3 .

Proof. In Appendix II.

We define A(n, ε, τ) = N0(ε, τ) ∨ u and bound the number
of plays of an arm k for non-stationary multi-armed bandits:
Theorem 2. Applying UCB-V for non-stationary multi-
armed bandits, we can bound the expected number of plays
of arm k as

E[Tk(n)] ≤ A(n, ε, τ) + ne−(c∨1)ζn
(24σ2

k

τ∆2
k

+
4b

τ∆k

)
+ . . .

. . .+
n∑

t=u+1

β
(
(c ∧ 1)ζt, t

)
(7)

Proof. In Appendix II.

The following theorem is the counter-part of Theorem 2 in
UCT (Kocsis and Szepesvári 2006). This bound is different
in that it takes the variance of the return into account.
Theorem 3. The expected regret is bounded by

∣∣E[R̂n]− µ∗
∣∣ ≤ |δ∗n|+O

(
N0(ε, τ)

n
+ . . .

. . .+

∑
k

[
τσ2
k

(1−2ε)∆k
+

σ2
k

b2∆k
+ 2b+ 2

]
log(n)

n

) (8)

Proof. The proof follows the same simple derivation of The-
orem 2 in UCT (Kocsis and Szepesvári 2006), then fol-
lows the same trick to bound the sum appearing in Theo-
rem 2.

Theorem 4. Under the assumptions of Lemma 1 and Theo-
rems 2 and 3, the failure probability converges to zero

lim
n→∞

P (In 6= k∗) = 0

Proof. The proof follows exactly the proof of Theorem 5 in
(Kocsis and Szepesvári 2006).

We are now in the position to prove the most important the-
oretical result of UCB-V applied to MCTS. Although the
result in Theorem 3 takes into account the variance of the
reward distribution, we prefer to upper-bound the expected
regret by a different term for simplicity. As the sum contains
only constants and runs over k ∈ {1, . . . ,K} we can upper-
bound it as
∣∣E[R̂n]− µ∗

∣∣ ≤ |δ∗n|+O

(
K log(n) +N0(ε, τ)

n

)
, (9)

which leads to the final result.

Theorem 5. Applying UCB-V as tree-policy in a search tree
of depthD, with branching factorK, and returns in [0, b] the
expected regret at the root node is bounded by

O

(
KD log(n) +KD

n

)
.

At the same time, the probability of choosing a sub-optimal
action at root node converges to zero in polynomial time.

Proof. Using the simplified bound in Eq. (9), the proof fol-
lows similarly to the proof of Theorem 6 in (Kocsis and
Szepesvári 2006).

Variance Backups

The BACKUP(v, s, a, s′, r, R)-routine has to update node v’s
data based on the transition information (s, a) → (s′, r)
and the return R of the corresponding trial. In order to use
variance-based tree-policies we need to use this information
to not only maintain an estimate of the expected return but
also of its variance.

For MC backups this extension is trivial since it suffices
to maintain quadratic statistics of the return and estimate the
variance as

R̃(s,a) = E[[R2
(s,a)]]− E[[R(s,a)]] . (10)

For DP backups on the other hand we need to propagate the
variance up the tree just as we do for the expected value. The
value of action a in state s is defined as the expected return

Q(s,a) = E[[R(s,a)]] , (11)

so that when we estimate Q from the available samples it is
itself a random variable whose expected value and variance
we denote by Q̂ and Q̃, respectively. The DP updates for the
value are defined as

Q(s,a) =
∑

s′

p(s′|s,a)

(
r(s,a,s′) + γ Vs′

)
(12)

and Vs =
∑

a

π(a|s)Q(s,a) (13)

where Vs is the state value; π(a|s) is the probability of
choosing action a in state s; p(s′|s,a) is the probability of
transitioning from state s to state s′ upon taking action a;
r(s,a,s′) is the expected reward for such a transition; and
0 ≤ γ ≤ 1 is the discount factor. p and r are random vari-
ables whose mean and variance can be estimated from data
while π is chosen by the algorithm. Eqs. (12) and (13) carry
over to the expected values by simply replacing all variables
with their estimated values, which gives the standard DP
backups used in MCTS. The implicit assumption here is
that variables associated to different states are independent,
which we will also assume from now on. In order to
estimate the variance we have to use Eqs. (12) and (13) and
explicitly write out the expectations

29

Q̃(s,a) = E[[Q2
(s,a)]]− E[[Q(s,a)]]

2 (14)

=
∑

s′

[
p̂ 2

(s′|s,a) + p̃(s′|s,a)

][
r̃(s,a,s′) + γ2 Ṽs′

]
+ . . .

. . .+
∑

s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ V̂s′

][
r̂(s,a,s′′) + γ V̂s′′

]
(15)

Ṽs =
∑

a

π2
(a|s) Q̃(s,a) (16)

where p̃ and r̃ are the (co)variances of p and r. We defer the
full derivation to the Appendix I. For the immediate reward,
r, we maintain linear and quadratic statistics to compute its
mean and variance. For the transition probabilities, p, we
maintain transition counts, from which the expected value p̂
and variance p̃ can be computed, assuming p to be Dirichlet
distributed.

Experiments
We performed experiments in various domains combining
UCB-V and UCB1 with MC and DP backups. Our evalua-
tions revealed that, depending on the problem characteris-
tics, each of the four possibilities may significantly outper-
form the others. While an exhaustive presentation and dis-
cussion of all results is beyond the scope of this paper, we
present two exemplary cases where UCB-V with MC and
DP backups, respectively, outperforms the alternatives and
discuss possible explanations. Fig. 1 shows for both cases
the probability of choosing the optimal action at the root
node as a function of the number of rollouts. The optimal
action a∗ is known for each problem and its probability is
computed as relative frequency of a∗ actually being recom-
mended by the planner (i.e. having the maximum empiri-
cal mean return) after each given run. In all experiments we
used c = 1 and ζ = 1.2 for UCB-V and Cp = 1/

√
2 for

UCB1, for which regret bounds were proved in (Audibert,
Munos, and Szepesvári 2009) and (Auer, Cesa-Bianchi, and
Fischer 2002), respectively.

Stochastic1D In this environment the agent moves along a
line and receives a terminal reward after a fixed time T . Each
action moves the agent {−k, . . . , k} steps along the line, so
there are 2 k+1 actions to choose from and after T steps the
agent may be at any position x ∈ {−k T, . . . , k T}. When
performing an action, with probability α the agent actually
performs the chosen action and with probability 1−α it per-
forms a random action. After T time steps, with probability
β the agent receives a terminal reward and with probabil-
ity 1 − β it receives a reward of zero instead. The terminal
rewards lie in [0, 1] and scale linearly with the terminal po-
sition x

r =
x+ k T

2T k
. (17)

The optimal policy thus is to always choose action k. Results
in Fig. 1(a) are averaged over 10000 runs for parameters k =
3, T = 10, α = 0.6, β = 0.5.

Two properties of Stochastic1D make UCB-V in conjunc-
tion with MC backups favorable. First, in this environment

MC backups with a uniform rollout policy will in expecta-
tion yield the optimal policy. This allows to take advantage
of the more robust convergence properties of MC backups as
compared to DP backups. Second, the optimal reward also
has the highest variance. Since UCB-V is biased towards
high-variance branches this favors UCB-V over UCB1.3

NastyStochastic1D This environment is identical to the
Stochastic1D environment except for the magnitude of the
terminal rewards, which are “misleading” in this case. The
maximum reward of 1 is still received when the agent ends
at position k T , however, the second-best reward is received
at position −k T and then decreases linearly until reaching
the minimum of 0 when the agent misses the optimal reward
by one step and ends at position k T − 1

r =

{
1 if x = k T
k T−x−1

2T k else .
(18)

The optimal policy is the same as in the Stochastic1D en-
vironment. Results in Fig. 1(b) are averaged over 4000 runs
for parameters k = 1, T = 3, α = 0.9, β = 1.

In NastyStochastic1D, again, the maximum reward also
has the maximum variance, favoring UCB-V over UCB1.
This time, however, MC backups with a uniform rollout pol-
icy will in expectation result in a sub-optimal policy that
guides the agent away from the optimal path – note the neg-
ative slope in the initial planning phase in Fig. 1(b). In this
situation, the ability of DP backups to quickly “switch” to a
different path gives them a clear advantage over MC back-
ups.

The presented results are examples showing that the best
choice (in this case UCB-V versus UCB1 and MC versus
DP) strongly depends on the characteristics of the problem
at hand. It is therefore important to be able to freely choose
the method that suits the problem best and to be assured of
convergence guarantees. In this respect, our paper makes an
important contribution for the case of variance-based tree-
policy in general, and UCB-V in particular.

Conclusion
We showed that the variance-based policy UCB-V (Audib-
ert, Munos, and Szepesvári 2009) provides the same theo-
retical guarantees for Monte-Carlo tree search as the widely
used UCB1 policy, namely, a bounded expected regret and
polynomial convergence of the failure probability. We ad-
ditionally derived update equations for the variance allow-
ing to combine variance-based tree-policies with dynamic
programming backups, which was not possible so far. In
our experimental evaluations we demonstrate that, depend-
ing on the problem characteristics, UCB-V significantly out-
performs UCB1.

3Giving high rewards a low variance and vice versa will in gen-
eral deteriorate the performance of UCB-V as compared to UCB1.

30

Number of Rollouts

P
ro

ba
bi

li
ty

 o
f

O
pt

im
al

 A
ct

io
n

/ DPUCB-V

/ DPUCB1

/ MCUCB1

/ MCUCB-V

(a) Stochastic1D (10000 runs)
Number of Rollouts

P
ro

ba
bi

li
ty

 o
f

O
pt

im
al

 A
ct

io
n

/ DPUCB-V

/ DPUCB1

/ MCUCB1

/ MCUCB-V

(b) NastyStochastic1D (4000 runs)

Figure 1: Experiments. The plots show the probability of choosing the optimal action at the root node as a function of the number
of rollouts. Solid lines correspond to UCB-V policy, dashed lines to UCB1. Filled circles correspond to dynamic programming
backups, open circles to Monte-Carlo backups. Note that due to the large number of runs the error bands are barely visible.

Appendix I: Derivation of Variance Updates

We use the following notation

x̂ = E
[[
x
]]
x

expected value of x

x̃ = E
[[
x2
]]
x
− x̂ 2 variance of x

cov(x, y) = E
[[
xy
]]
x,y
− x̂ŷ covariance of x and y .

We assume π and γ to be scalar variables (π may still
represent a non-deterministic policy). V , Q, p, and r are
random variables that are assumed independent so that all
covariance terms vanish (i.e. only the diagonal variance
terms remain). The only exception to this are the transition
probabilities for the same state-action pair but with a

different target state, where we use

cov(p(s′|s,a), p(s′′|s,a)) = p̃(s′/s′′|s,a) (19)

as a more compact notation. For the variance of the state
value V we get

Ṽs = E
[[[∑

a

π(a|s)Q(s,a)

]2]]

r,p

− V̂ 2
s (20)

=
∑

a,a′

π(a|s) π(a′|s) E
[[
Q(s,a)Q(s,a′)

]]
r,p
− V̂ 2

s (21)

=
∑

a

π2
(a|s) Q̃(s,a) . (16)

The variance of the state-action value is

Q̃(s,a) = (22)

= E
[[[∑

s′

p(s′|s,a)

(
r(s,a,s′) + γ Vs′

)]2]]

r,p

− Q̂ 2
(s,a) (23)

=
∑

s′,s′′

E
[[
p(s′|s,a) p(s′′|s,a)

]]
r,p

E
[[
γ2 Vs′ Vs′′ + r(s,a,s′) r(s,a,s′′) + γ r(s,a,s′) Vs′′ + γ r(s,a,s′′) Vs′

]]
r,p
− Q̂ 2

(s,a) (24)

=
∑

s′,s′′

[
p̂(s′|s,a) p̂(s′′|s,a) + cov(p(s′|s,a), p(s′′|s,a))

] [
γ2
[
V̂s′ V̂s′′ + cov(Vs′ , Vs′′)

]
+ . . . (25a)

. . .+
[
r̂(s,a,s′) r̂(s,a,s′′) + cov(r(s,a,s′), r(s,a,s′′))

]
+ γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
− Q̂ 2

(s,a) (25b)

=
∑

s′,s′′

cov(p(s′|s,a), p(s′′|s,a))
[
γ2 V̂s′ V̂s′′ + r̂(s,a,s′) r̂(s,a,s′′) + γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
+ . . . (26a)

. . .+
∑

s′,s′′

[
p̂(s′|s,a) p̂(s′′|s,a) + cov(p(s′|s,a), p(s′′|s,a))

] [
γ2 cov(Vs′ , Vs′′) + cov(r(s,a,s′), r(s,a,s′′))

]
+ . . . (26b)

. . .+
∑

s′,s′′

p̂(s′|s,a) p̂(s′′|s,a)

[
γ2 V̂s′ V̂s′′ + r̂(s,a,s′) r̂(s,a,s′′) + γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
− Q̂ 2

(s,a)

︸ ︷︷ ︸
=0

(26c)

31

=
∑

s′

[
p̂ 2

(s′|s,a) + p̃(s′|s,a)

][
r̃(s,a,s′) + γ2 Ṽs′

]
+
∑

s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ V̂s′

][
r̂(s,a,s′′) + γ V̂s′′

]
(15)

where in lines 26a–26c we arrange terms such that in 26b
the terms with s 6= s′ vanish because the covariances of r
and V then vanish by assumption, and in 26c the first part

exactly reproduces Q̂ 2
(s,a) so that the complete line cancels

out. Using the simplified notation given in Eq. (19) for the
covariance of p in 26a we finally reproduce Eq. (15).

Appendix II: Proofs for Lemma 1 and Theorem 2
Proof. (Lemma 1) We define ζn = ζ log(n). From the definition of Bk,nk,t, we have

P (Bk,nk,t > µ∗t)

= P
(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µ∗ + δ∗t
)

= P
(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µk + ∆k + δ∗t
)

= P
(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µk,t + δk,t + ∆k + δ∗t
)

≤ P
(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µk,t + ∆k − ε∆k

)

(
using the fact that |δk,t| ≤ ε∆k/2 and |δ∗t | ≤ ε∆k/2 for l ≥ N0(ε, τ)

)

≤ P
(
R̂k,nk +

√
2[σ2

k,t + bτ∆k/2]ζt

nk
+ 3bc

ζt
nk

> µk,t + (1− ε)∆k

)

+ P (R̃k,nk,t ≥ σ2
k,t + bτ∆k/2) .

For the second term,

R̃k,nk,n =
1

nk

nk∑

j=1

(Rk,j − µk,t)2 − (µk,t − R̂k,nk,t)2

≤ 1

nk

nk∑

j=1

(Rk,j − µk,t)2 ,

hence,

P (R̃k,nk,t ≥ σ2
k,t + bτ∆k/2) ≤ P

(∑nk
j=1(Rk,j − µk,t)2

nk
− σ2

k,t ≥
bτ∆k

2

)
.

For the first term, we use the fact that u ≤ nk ≤ t ≤ n, σ2
k,t ≤ τσ2

k, and the definition of u to derive
√

2[σ2
k,t + bτ∆k/2]ζt

nk
+ 3bc

ζt
nk
≤
√

[2τσ2
k + bτ∆k]ζn

u
+ 3bc

ζn
u

≤
√

[2τσ2
k + bτ∆k]τ∆2

k

8(σ2
k + 2b∆k)

+ 3b
τ∆2

k

8(σ2
k + 2b∆k)

=
τ∆k

2

(√
[2σ2

k + b∆k]

(2σ2
k + 4b∆k)

+ 3b
∆k

(4σ2
k + 8b∆k)

)

32

=
τ∆k

2

(
1− 1

2

[
1−

√
[2σ2

k + b∆k]

(2σ2
k + 4b∆k)

]2)

≤ τ∆k

2
.

Hence,

P
(
R̂k,nk +

√
2[σ2

k,t + bτ∆k/2]ζt

nk
+ 3bc

ζt
nk

> µk,t + (1− ε)∆k

)

≤ P
(
Bk,nk,t − µk,t >

(τ − 2ε)∆k

2

)
.

Using Bernstein’s inequality twice, we obtain

P (Bk,nk,t > µ∗t) ≤ e
− nk(τ−2ε)2∆2

k
8σ2
k,t

+4b(τ−2ε)∆k/3 + e
− nkb

2τ2∆2
k

8σ2
k,t

+4b2τ∆k/3

≤ e−
nk(τ−2ε)2∆2

k
8τσ2

k
+4b(τ−2ε)∆k/3 + e

− nkb
2τ∆2

k
8σ2
k

+4b2∆k/3 (the fact: σ2
k,t ≤ τσ2

k)

≤ 2e
− nkτ∆2

k
8σ2
k

+4b∆k/3 .

Proof. (Theorem 2) Similar to the proofs of Theorems 2 and 3 in (Audibert, Munos, and Szepesvári 2009), Theorem 1 in (Auer,
Cesa-Bianchi, and Fischer 2002), and Theorem 1 in (Kocsis and Szepesvári 2006), the number of plays of a suboptimal arm k
until time n for arbitrary u is

E[Tk(n)] = E
[n∑

t=1

I{It = k}
]

≤ u+
n∑

t=u+1

t−1∑

nk=u

P (Bk,nk,t > µ∗t) +
n∑

t=u

t−1∑

nk=1

P (Bk∗,nk,t ≤ µ∗t) .

The last term is bounded using Theorem 1. The second term is bounded as in Lemma 1. Using the same simplifying trick as in
the proof of Lemma 1 in (Audibert, Munos, and Szepesvári 2009), we obtain the final result as

E[Tk(n)] ≤ u+
n∑

t=u+1

t−1∑

nk=u

2e
− nkτ∆2

k
8σ2
k

+4b∆k/3 +
n∑

t=u+1

β
(
(c ∧ 1)ζt, t

)

≤ u+

n∑

t=u+1

2
e
− uτ∆2

k
8σ2
k

+4b∆k/3

1− e−
τ∆2

k
8σ2
k

+4b∆k/3

+

n∑

t=u+1

β
(
(c ∧ 1)ζt, t

)

≤ u+

n∑

t=u+1

(24σ2
k

τ∆2
k

+
4b

τ∆k

)
e
− uτ∆2

k
8σ2
k

+4b∆k/3 +

n∑

t=u+1

β
(
(c ∧ 1)ζt, t

)

(because 1− e−x ≥ 2x/3)

≤ A(n, ε, τ) + ne−(c∨1)ζn
(24σ2

k

τ∆2
k

+
4b

τ∆k

)
+

n∑

t=u+1

β
(
(c ∧ 1)ζt, t

)

where u satisfies the condition in Lemma 1.

33

References
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009.
Exploration–exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science
410(19):1876–1902.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47:235–256.
Berry, D. A., and Fristedt, B. 1985. Bandit problems: se-
quential allocation of experiments (Monographs on statis-
tics and applied probability). Springer.
Bnaya, Z.; Palombo, A.; Puzis, R.; and Felner, A. 2015.
Confidence backup updates for aggregating mdp state values
in monte-carlo tree search. In Eighth Annual Symposium on
Combinatorial Search.
Brafman, R. I., and Tennenholtz, M. 2003. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. The Journal of Machine Learning Research 3:213–
231.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
q-learning. In AAAI/IAAI, 761–768.
Feldman, Z., and Domshlak, C. 2014a. Monte-carlo tree
search: To mc or to dp? Models and Paradigms for Planning
under Uncertainty: a Broad Perspective 11.
Feldman, Z., and Domshlak, C. 2014b. On mabs and
separation of concerns in monte-carlo planning for mdps.
In Twenty-Fourth International Conference on Automated
Planning and Scheduling.
Guez, A.; Heess, N.; Silver, D.; and Dayan, P. 2014. Bayes-
adaptive simulation-based search with value function ap-
proximation. In Advances in Neural Information Processing
Systems, 451–459.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon mdps. In ICAPS.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kolter, J. Z., and Ng, A. Y. 2009. Near-bayesian exploration
in polynomial time. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, 513–520. ACM.
Saffidine, A.; Cazenave, T.; and Méhat, J. 2012. Ucd:
Upper confidence bound for rooted directed acyclic graphs.
Knowledge-Based Systems 34:26–33.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of go with deep neural networks and tree search. Na-
ture 529(7587):484–489.
Silver, D.; Sutton, R. S.; and Müller, M. 2012. Temporal-
difference search in computer go. Machine learning
87(2):183–219.

Vlassis, N.; Ghavamzadeh, M.; Mannor, S.; and Poupart, P.
2012. Bayesian reinforcement learning. In Reinforcement
Learning. Springer. 359–386.

34

A Graph-Partitioning Based Approach for Parallel Best-First Search

Yuu Jinnai 1,2
1 Center for Advanced Intelligence Project

RIKEN

Alex Fukunaga2
2 Graduate School of Arts and Sciences

The University of Tokyo

Abstract

Parallel best-first search algorithms such as HDA* distribute
work among the processes using a global hash function. Pre-
vious work distribution strategies seek to find a good wall-
time efficiency by reducing search overhead and/or com-
munication overhead, but there was no unified, quantitative
analysis on the effects of the methods on both overheads.
We propose GRAZHDA*, a graph-partitioning based ap-
proach to automatically generating feature projection func-
tions. GRAZHDA* seeks to approximate the partitioning of
the actual search space graph by partitioning the domain tran-
sition graph, an abstraction of the state space graph. We eval-
uate GRAZHDA* on domain-independent planning as well
as a domain specific solver for the 24-puzzle and show that
GRAZHDA* outperforms previous methods.

1 Introduction
The A* algorithm (Hart, Nilsson, and Raphael 1968) is used
in many areas of AI, including planning, scheduling, path-
finding, and sequence alignment. Parallelization of A* can
yield speedups as well as a way to overcome memory lim-
itations – the aggregate memory available in a cluster can
allow problems that can’t be solved using 1 machine to be
solved. Thus, designing scalable, parallel search algorithms
is an important goal.

Hash Distributed A* (HDA*) is a parallel best-first search
algorithm in which each processor executes A* using lo-
cal OPEN/CLOSED lists, and generated nodes are assigned
(sent) to processors according to a global hash function
(Kishimoto, Fukunaga, and Botea 2013). HDA* can be used
in distributed memory systems as well as multi-core, shared
memory machines, and has been shown to scale up to hun-
dreds of cores with little search overhead. The performance
of HDA* depends on the hash function used for assigning
nodes to processors. Kishimoto et al. (2009; 2013) showed
that using the Zobrist hash function (1970), HDA* could
achieve good load balance and low search overhead. Burns
et al (2010) noted that Zobrist hashing incurs a heavy com-
munication overhead because many nodes are assigned to
processes that are different from their parents, and proposed
AHDA*, which used an abstraction-based hash function
originally designed for use with PSDD (Zhou and Hansen
2007) and PBNF (Burns et al. 2010). Abstraction-based
work distribution achieves low communication overhead,

but at the cost of high search overhead. Abstract Zobrist
hashing (AZH) (Jinnai and Fukunaga 2016a) achieves both
low search overhead and communication overhead by incor-
porating the strengths of both Zobrist hashing and abstrac-
tion. While the Zobrist hash value of a state is computed
by applying an incremental hash function to the set of fea-
tures of a state, AZH first applies a feature projection func-
tion mapping features to abstract features, and the Zobrist
hash value of the abstract features (instead of the raw fea-
tures) is computed. Improvements to domain-independent,
automated abstract feature generation methods for AZHDA*
were proposed in (Jinnai and Fukunaga 2016a). Although
these methods seek to reduce search/communication over-
heads in the HDA* framework, these methods can be char-
acterized as bottom-up, ad hoc approaches that introduce
new mechanisms to address some particular problem within
the HDA*/AZHDA* framework, but these methods do not
allow a priori prediction of the communication and search
overheads that will be incurred.

This paper proposes a new, top-down approach to mini-
mizing overheads in parallel best-first search. Instead of ad-
dressing specific problems/limitations within the AZHDA*
framework, we formulate an objective function which de-
fines exactly what we seek in terms of minimizing both
search and communications overheads, enabling a predic-
tive model of these overheads. We then propose an algo-
rithm which directly synthesizes a work distribution func-
tion approximating the optimal behavior according to this
objective. The resulting algorithm, GRAZHDA* signifi-
cantly outperforms all previous variants of HDA*. We first
review HDA* and previous work distribution methods (Sec.
2). We then describe the relationship between the work
distribution method, search overhead, communication over-
heads and time efficiency, and propose an objective func-
tion for directly maximizing efficiency, which corresponds
to the problem of partitioning the state space graph ac-
cording to a sparsest-cut objective (Sec. 4-5). Next, we
propose GRAZHDA*, a new domain-independent method
for automatically generating a work distribution function,
which, instead of partitioning the actual state space graph
(which is impractical), generates an approximation by par-
titioning a domain transition graph (Sec. 6). We evaluate
GRAZHDA* experimentally on domain-independent plan-
ning using a commodity cluster (48 cores) as well as a cloud

35

cluster (128 cores), and show that it outperforms previous
methods (Sec. 7). We also evaluate GRAZHDA* for a
domain-specific, 24-puzzle solver on a multicore machine.

This paper summarizes work which will appear in a
JAIR article (Jinnai and Fukunaga 2017).

2 Background
Hash Distributed A* (HDA*) (Kishimoto, Fukunaga, and
Botea 2013) is a parallel A* algorithm where each processor
has its own OPEN and CLOSED. A global hash function
assigns a unique owner thread to every search node. Each
thread T repeatedly executes the following: (1) For all new
nodes n in T ’s message queue, if it is not in CLOSED (not a
duplicate), put n in OPEN. (2) Expand node n with highest
priority in OPEN. For every generated node c, compute hash
value H(c), and send c to the thread that owns H(c).

Although an ideal parallel best-first search algorithm
would achieve a n-fold speedup on n threads, several over-
heads can prevent HDA* from achieving linear speedup.
Communication Overhead (CO): Communication over-
head is the ratio of nodes transferred to other threads:
CO := # nodes sent to other threads

nodes generated . CO is detrimental to perfor-
mance because of delays due to message transfers (e.g., net-
work communications), as well as access to data structure
such as message queues. HDA* incurs communication over-
head when transferring a node from the thread where it is
generated to its owner according to the hash function. In
general, CO increases with the number of threads. If nodes
are assigned randomly to the threads, CO will be propor-
tional to 1− 1

#thread .
Search Overhead (SO): Parallel search usually expands
more nodes than sequential A*. In this paper we define
search overhead as SO := # nodes expanded in parallel

#nodes expanded in sequential search − 1.
SO can arise due to inefficient load balance (LB). If load bal-
ance is poor, a thread which is assigned more nodes than oth-
ers will become a bottleneck – other threads spend their time
expanding less promising nodes, resulting in search over-
head.

There is a fundamental trade-off between CO and SO. In-
creasing communication can reduce search overhead at the
cost of communication overhead, and vice-versa.

Zobrist Hashing, Abstraction, and Abstract Zobrist
Hashing In the original work on HDA*, Kishimoto et al.
(2013) used Zobrist hashing (1970). The Zobrist hash value
of a state s, Z(s), is calculated as follows. For simplicity,
assume that s is represented as an array of n propositions,
s = (x0, x1, ..., xn). Let R be a table containing preinitial-
ized random bit strings.

Z(s) := R[x0] xor R[x1] xor · · · xor R[xn]

Zobrist hashing seeks to distribute nodes uniformly
among all threads, without any consideration of the neigh-
borhood structure of the search space graph. As a con-
sequence, communication overhead is high. Assume an
ideal implementation that assigns nodes uniformly among
threads. Every generated node is sent to another thread with
probability 1− 1

#threads . Therefore, with 16 threads, > 90%

of the nodes are sent to other threads, so communication
costs are incurred for the vast majority of node generations.

In order to minimize communication overhead in HDA*,
Burns et al (2010) proposed AHDA*, which uses abstrac-
tion based node assignment. AHDA* applies the state space
partitioning technique used in PBNF (Burns et al. 2010),
which in turn is based on PSDD (Zhou and Hansen 2007).
Abstraction projects nodes in the state space into abstract
states, and abstract states are assigned to processors using
a modulus operator. Thus, nodes that are projected to the
same abstract state are assigned to the same thread. If the
abstraction function is defined so that children of node n
are usually in the same abstract state as n, then communica-
tion overhead is minimized. The drawback of this method
is that it focuses solely on minimizing communication over-
head, and there is no mechanism for equalizing load bal-
ance, which can lead to high search overhead. Abstraction
is generally constructed by ignoring subset of features. It
has been shown that abstraction has roughly 2-4 times the
search overhead of Zobrist hashing on the 24-puzzle (Jinnai
and Fukunaga 2016a).

Dynamic AHDA* (DAHDA*), dynamically sets the
threshold of the abstract graph size according to the in-
stance’s state space size (Jinnai and Fukunaga 2016b).
DAHDA* was shown to significantly improve upon AHDA*
in distributed memory clusters, in cases where AHDA* fails
to solve many instances because of poor load balancing.

Abstract Zobrist hashing (AZH) (Jinnai and Fukunaga
2016a) is a hybrid hashing strategy which augments the Zo-
brist hashing framework with the idea of projection from ab-
straction, incorporating the strengths of both methods. The
AZH value of a state, AZ(s) is:

AZ(s) := R[A(x0)] xor R[A(x1)] xor · · · xor R[A(xn)] (1)

where A is a feature projection function, a many-to-one
mapping from from each raw feature to an abstract feature,
and R is a precomputed table for each abstract feature.

Thus, AZH is a 2-level, hierarchical hash, where raw
features are first projected to abstract features, and Zobrist
hashing is applied to the abstract features. Figure 1 illus-
trates the computation of AZH for the 8-puzzle.

AZH seeks to combine the advantages of both abstrac-
tion and Zobrist hashing. Communication overhead is min-
imized by building abstract features that share the same
hash value (abstract features are analogous to how abstrac-
tion projects states to abstract states), and load balance is
achieved by applying Zobrist hashing to the abstract features
of each state.

Compared to Zobrist hashing, AZH incurs less CO due
to abstract feature-based hashing. While Zobrist hashing as-
signs a hash value for each node independently, AZH assigns
the same hash value for all nodes which share the same ab-
stract features for all features, reducing the number of node
transfers. Also, in contrast to abstraction-based node assign-
ment, which minimizes communications but does not opti-
mize load balance and search overhead, AZH seeks good
load balance, because the node assignment considers all fea-
tures in the state, rather than just a subset.

36

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
s

Feature
xi

3

Abstract
Feature
Hash
R[A(xi)]

State
Hash
AZ(s)

1

2

3

Abstract
Feature
A(xi)

x1=2

x2=3

x3=4

A(x1)=1

A(x2)=1

A(x3)=2

Figure 1: Calculation of abstract Zobrist hash (AZH) value AZ(s)
for the 8-puzzle: State s = (t1, t2, ..., t8), where ti = 1, 2, ..., 9.
The Zobrist hash value of s is the result of xor’ing a preinitialized
random bit vector R[ti] for each feature (tile) ti. AZH incorporates
an additional step which projects features to abstract features (for
each feature ti, look up R[A(ti)] instead of R[ti]).

Domain-Independent Feature Projection Functions for
Abstract Zobrist Hashing The feature projection func-
tion plays a critical role in determining the performance of
AZH, because AZH relies on the feature projection in or-
der to reduce communications overhead. Below, we review
two recently proposed domain-independent abstract feature
generation methods, GreedyAFG and FluencyAFG.

Greedy Abstract Feature Generation (Jinnai and
Fukunaga 2016a) Greedy abstract feature generation
(GreedyAFG) is a simple, domain-independent abstract fea-
ture generation method, which partitions each feature into 2
abstract features (Jinnai and Fukunaga 2016a). GreedyAFG
first identifies atom groups (sets of mutually exclusive
propositions from which exactly one will be true for each
reachable state, e.g., the values of a SAS+ multi-valued vari-
able (Bäckström and Nebel 1995)). Each atom group G is
partitioned into 2 abstract features S1 and S2, based G’s
undirected transition graph (nodes are propositions, edges
are transitions), as follows: (1) assign the minimal degree
node to S1; (2) greedily add to S1 the unassigned node
which shares the most edges with nodes in S1; (3) while
|S1| < |G|/2 repeat step (2) to guarantee ; (4) assign all
unassigned nodes to S2. This procedure guarantees |S2| ≤
|S1| ≤ |S2|+ 1.

Fluency-Dependent Abstract Feature Generation (Jinnai
and Fukunaga 2016b) Since the hash value of the state
changes if any abstract feature value changes, GreedyAFG
fails to prevent high CO when any abstract feature changes
its value very frequently. Fluency-dependent abstract feature
generation (FluencyAFG) overcomes this limitation (Jinnai
and Fukunaga 2016b). The fluency of a variable v is the #
of ground actions which change the value of the v divided
by the total # of ground actions in the problem. By ignor-
ing variables with high fluency, FluencyAFG was shown to
be quite successful in reducing CO and increasing speedup
compared to GreedyAFG.

A problem with fluency is that in the AZHDA* frame-

work, CO is associated with a change in value of an ab-
stract feature, not the feature itself. However, FluencyAFG
is based on the frequency with which features (not abstract
features) change. This leads FluencyAFG to exclude vari-
ables from consideration unnecessarily, making it difficult
to achieve good LB (in general, the more variables are ex-
cluded, the more difficult it becomes to reduce LB). For ex-
ample, in the grid domain, the atom group for the prob, the
SAS+ variable representing the robot’s position has high flu-
ency (∼ 1.0), so FluencyAFG marks it for exclusion, but the
value of the abstract feature for prob seldom changes because
the size of the grid is very large.

3 Work Distribution as a Graph Partitioning
Although previous research on work distribution for HDA*
proposed methods which reduce CO or SO, there was no
explicit model which enabled the prediction of the actual
efficiency achieved during search.

In this section, we show that a work distribution method
can be modelled as a partition of the search space graph,
and that communication overhead and load balance can be
understood as the number of cut edges and balance of the
partition, respectively.

Work distribution methods for hash-based parallel search
distribute nodes by assigning a process to each node in the
state space.

To guarantee the optimality of a solution, a parallel search
method needs to expand a goal node and all nodes with
f < f∗ (relevant nodes S). The workload distribution of a
parallel search can be modeled as a partitioning of an undi-
rected, unit-cost workload graph GW which is isomorphic
to the relevant search space graph, i.e., nodes in GW corre-
spond to states in the search space with f < f∗ and goal
nodes, and edges in the workload graph correspond to edges
in the search space between nodes with f < f∗ and goal
nodes. The distribution of nodes among p processors corre-
sponds to a p-way partition of GW , where nodes in partition
Si are assigned to process pi.

Given a partitioning of GW , LB and CO can be estimated
directly from the structure of the graph, without having to
run HDA* and measure LB and CO experimentally, i.e., it
is possible to predict and analyze the efficiency of a work-
load distribution method without actually executing HDA*.
Therefore, although it is necessary to run A* or HDA* once
to generate a workload graph,1 we can subsequently com-
pare the LB and CO of many partitioning methods without
re-running HDA* for each partitioning method. LB corre-
sponds to load balance of the partitions and CO is the num-
ber of edges between partitions over the number of total
edges, i.e.,

CO =

∑p
i

∑p
j>i E(Si, Sj)∑p

i

∑p
j≥i E(Si, Sj)

, LB =
|Smax|

mean|Si|
, (2)

1Hence, this is not yet a practical method for automatic hash
function generation – a further approximation of this model which
does not require generating the workload graph, and yields a prac-
tical method is described in Section 6.

37

where |Si| is the number of nodes in partition Si,
E(Si, Sj) is the number of edges between Si and Sj , |Smax|
is the maximum of |Si| over all processes, and mean|S| =
|S|
p .

Next, consider the relationship between SO and LB. It has
been shown experimentally that an inefficient LB leads to
high SO, but to our knowledge, there has been no previous
analysis on how LB leads to SO in parallel best-first search.
Assume that the number of duplicate nodes is negligible2,
and every process expands nodes at the same rate. Since
HDA* needs to expand all nodes in S, each process expands
|Smax| nodes before HDA* terminates. As a consequence,
process pi expands |Smax|−|Si| nodes not in the relevant set
of nodes S. By definition, such irrelevant nodes are search
overhead, and therefore, we can express the overall search
overhead as:

SO =

p∑

i

(|Smax| − |Si|)

= p(LB − 1). (3)

4 Parallel Efficiency and Graph Partitioning
In this section we develop a metric to estimate the walltime
efficiency as a function of CO and SO. First, we define time
efficiency effactual := speedup

#cores , where speedup = Tn/T1,
Tn is the runtime on N cores. Our ultimate goal is to maxi-
mize effactual .
Communication Efficiency: Assume that the communi-
cation cost between every pair of processors is identical.
Then communication efficiency, the degradation of effi-
ciency by communication cost, is effc = 1

1+cCO , where
c = time for sending a node

time for generating a node .
Search Efficiency: Assuming every core expands 1 node at
a time and there are no idle cores, HDA* with p processes
expands np nodes in the same wall-clock time A* requires
to expand n nodes. Therefore, search efficiency, the degra-
dation of efficiency by search overhead, is effs = 1

1+SO .
Using CO and LB, we can estimate the time efficiency

effactual . effactual is proportional to the product of commu-
nication and search efficiency: effactual ∝ effc · effs . There
are overheads other than CO and SO such as hardware over-
head (i.e. memory bus contention) that affect performance
(Burns et al. 2010), but we assume that CO and SO are the
dominant factors in determining efficiency.

We define estimated efficiency effesti := effc · effs , and
we use this metric to estimate the actual performance (effi-

2The number of duplicate node is closely related to LB and CO.
If the order of node expansion is exactly the same as A*, then the
number of duplicate is 0. The duplicate nodes occur when LB is
suboptimal and the order of node expansion diverges from A*. The
other cause of duplicate is CO. Even if the load balance is opti-
mal, the optimal path may be disturbed by communication latency
and suboptimal path may be discovered first, resulting in duplicate
nodes. Therefore, optimizing LB and CO leads to reducing dupli-
cate nodes.

ciency) of a work distribution method.

effesti = effc · effs = 1/
(
(1 + cCO)(1 + SO)

)

= 1/
(
(1 + cCO)(1 + p(LB − 1))

)
(4)

Experiment: effesti model vs. actual efficiency We eval-
uated the performance of the following HDA* variants on
domain-independent planning.
• FAZHDA*: AZHDA* using fluency-based filtering (Fluen-

cyAFG) (Jinnai and Fukunaga 2016b).
• GAZHDA*: AZHDA* using greedy abstract feature generation

(GreedyAFG) (Jinnai and Fukunaga 2016a).
• OZHDA*: HDA* with Operator-based Zobrist hashing (Jinnai

and Fukunaga 2016b).
• DAHDA*: AHDA* (Burns et al. 2010) with dynamic abstrac-

tion size threshold (Jinnai and Fukunaga 2016b).
• ZHDA*: HDA* using Zobrist hashing (Kishimoto, Fukunaga,

and Botea 2013).

We implemented these HDA* variants on Fast Down-
ward (parallelized implementation using MPICH 3) using
the merge&shrink heuristic (Helmert et al. 2014) (abstrac-
tion size =1000). We selected a set of IPC benchmark in-
stances that are difficult enough so that parallel performance
differences could be observed. We ran experiments on a
cluster of 6 machines, each with an 8-core Intel Xeon E5410
(2.33 GHz), 16GB RAM, and 1000Mbps Ethernet intercon-
nect.We packed 100 states per MPI message.

Table 1 shows the speedups (time for 1 process / time for
48 processes). We included the time for initializing work
distribution methods (for all runs, the initializations com-
pleted in ≤ 1 second), but excluded the time for initializing
the abstraction table for the M&S heuristic. From the mea-
sured runtimes, we can compute actual efficiency effactual .
Then, we calculated the performance estimated effesti as fol-
lows. We generated the workload graph GW for each in-
stance (i.e., enumerated all nodes with f ≤ f∗ and edges be-
tween these nodes), and calculated LB, CO, SO, and effesti

using Eqs 2-4. Figure 2b, which compares estimated effi-
ciency effesti vs. the actual measured efficiency effactual ,
indicates a strong correlation between effesti and effactual .
Using least-square regression to estimate the coefficient a in
effactual = a · effesti , a = 0.86 with variance of residuals
0.013. Note that a < 1.0 because there are other sources
of overhead which not accounted for in effesti , (e.g. mem-
ory bus contention) which affect performance (Burns et al.
2010).

5 Sparsest Cut Objective Function
A standard approach to workload balancing in parallel sci-
entific computing is graph partitioning, where the workload
is represented as a graph, and a partitioning of the graph ac-
cording to some objective (usually the cut-edge ratio metric)
represents the allocation of the workload among the proces-
sors (Hendrickson and Kolda 2000; Buluç et al. 2013).

In Sec. 4, we showed that effesti can be used to effectively
predict the actual efficiency of a work distribution. By defin-
ing a graph cut objective such that the partitioning the nodes
in the search space (with f < f∗) according to this graph cut

38

objective corresponds to maximizing effesti , we would have
a method of generating an optimal workload distribution.

A sparsest cut objective for graph partitioning problem
seeks to maximize the sparsity of the graph (Leighton and
Rao 1999).We define sparsity as

Sparsity :=

∏k
i |Si|∑k

i

∑k
j>i E(Si, Sj)

, (5)

where |Si| is the sum of nodes weights in partition Si,
E(Si, Sj) is the sum of edge weights between partition Si

and Sj . Consider the relationship between the sparsity of a
state space graph for a search problem and the effesti met-
ric defined in the previous section. By equations 4 and 2,
Sparsity simultaneously considers both LB and CO, as the
numerator

∏k
i |Si| corresponds to LB and the denominator∑k

i

∑k
j>i E(Si, Sj) corresponds to CO.

Sparsity is used as a metric for parallel workloads in com-
puter networks (Leighton and Rao 1999; Jyothi et al. 2014),
but to our knowledge this is the first proposal to use sparsity
in the context of parallel search of an implicit graph.

Experiment: Relationship between Sparsity and effesti

To validate the correlation between sparsity and estimated
efficiency effesti , we used METIS (approximate) graph par-
titioning package (Karypis and Kumar 1998) to partition
modified versions of the search spaces of the instances used
in Fig. 2a. We partitioned each instance 3 times, where
each run had a different set of random, artificial constraints
added to the instance (we chose 50% of the nodes randomly
and forced METIS to distribute them equally among the par-
titions – these constraints degrade the achievable sparsity).
Figure 2c compares sparsity vs. effesti on partitions gener-
ated by METIS with random constraints. There is a clear
correlation between sparsity and effesti . Thus, partitioning
a graph to maximize sparsity should maximize the effesti

objective, which should in turn maximize actual walltime
efficiency.

6 Graph Partitioning-Based Abstract
Feature Generation (GRAZHDA*)

Since effesti model accurately estimates actual efficiency,
and sparsity has a strong correlation with effesti , a partition
of the state space graph which minimize sparsity should be
a (near) optimal work distribution which maximizes effesti .
Unfortunately, it is impractical to directly apply standard
graph partitioning algorithms to the state space graph be-
cause the state space graph is a huge implicit graph, and the
partitioner needs as input the explicit representation of the
relevant state space graph (a solution to the search problem
itself!).

Therefore, to generate a work distribution method for par-
allel A*, we have to partition some graph which is eas-
ily accessible from the domain description (e.g. PDDL,
SAS+). We propose Graph partitioning-based Abstract Zo-
brist HDA* (GRAZHDA), which approximates the optimal
strategy by partitioning domain transition graphs.

Given an atom group x ∈ X , its domain transition graph
(DTG) Dx(E, V) is a directed graph where vertices V cor-
responds to the value of the atom group and edges E to their
transitions, where (v, v′) ∈ E if and only if there is an op-
erator o with v ∈ del(o) and v′ ∈ add(o) (Jonsson and
Bäckström 1998). We used DTGs of SAS+ variables.

Figure 3 shows the partitioning of a DTG (for the variable
representing package location) in the standard logistics
domain using sparsest cut objective function. Maximizing
sparsity results in cutting only 1 edge (i.e., good load bal-
ance).

GRAZHDA* treats each partition of the DTG as an ab-
stract feature in the AZH framework, assigning a hash value
to each abstract feature. Since the AZH value of a state is
the XOR of the hash values of the abstract features (Eqn
1), 2 nodes in the state space are in different partitions if
and only if they are partitioned in any of the DTGs. (Fig-
ure 4). Therefore, GRAZHDA generates 2n partitions from
n DTGs, which are then projected to the p processors (by
taking the partition ID modulo p). To make it likely that par-
titioning over the DTGs is a good approximation for parti-
tioning the actual state space graph, we set a weight for each
edge e = # ground actions which correspond to the transition

ground actions . As DTGs
typically have < 10 nodes, we compute the optimal sparsest
cut with a straightforward branch-and-bound procedure.

7 Evaluation of GRAZHDA*
Figure 2a shows effesti for the various work distribution
methods, including GRAZHDA*/Sparsity (see Sec. 4 for
experimental setup and list of methods included in compar-
ison). To evaluate how these methods compare to an ideal
(but impractical) model which actually applies graph par-
titioning to the entire search space (instead of partitioning
DTG as done by GRAZHDA*), we also evaluated IdealAp-
prox, a model which partitions the entire state space graph
using the METIS (approximate) graph partitioner (Karypis
and Kumar 1998). IdealApprox first enumerates a graph
containing all nodes with f ≤ f∗ and edges between these
nodes and ran METIS with the sparsity objective (Eqn. 5)
to generate the partition for the work distribution. Generat-
ing the input graph for METIS takes an enormous amount of
time (much longer than the search itself), so IdealApprox is
clearly an impractical model, but it is a useful approximation
for an ideal work distribution.

Not surprisingly, IdealApprox has the highest effesti , but
among all of the practical methods, GRAZHDA*/sparsity
has the highest effesti overall. As we saw in Sec. 4 that
effesti is a good estimate of actual efficiency, the result sug-
gest that GRAZHDA*/sparsity outperforms other methods.
In fact, as shown in Table 1, GRAZHDA*/sparsity achieved
a good balance between CO and SO and had the highest ac-
tual speedup overall, significantly outperforming all other
previous methods.
Cloud Environment Results: In addition to the 48 core
cluster, we evaluated GRAZHDA*/sparsity on an Ama-
zon EC2 cloud cluster with 128 virtual cores (vCPUs) and
480GB aggregated RAM (a cluster of 32 m1.xlarge EC2 in-
stances, each with 4 vCPUs, 3.75 GB RAM/core. This is a

39

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blocks8-0

Blocks8-1

Elevators08-3

Gripper6

M
iconic8-1

Nomprime3

Parcprint11-4

Scanalyze08-4

Sokoban08-10

W
oodwrk11-1

ef
f

Logistics00-5-0

Openstacks08-10

Psrsmall10

Truck1

es
ti

GRAZHDA*/sparsity
FAZHDA*
GAZHDA*

OZHDA*
DAHDA*

ZHDA*
IdealApprox

(a) Comparison effesti for various work distribution methods

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ef
f

effesti

ac
tu

al

y=0.86x

(b) effesti vs. effactual

 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 10 100

ef
f

sparsity

es
ti

(c) sparsity vs. effesti

Figure 2: Figure 2a compares effesti when c = 1.0, p = 48. Bold indicates that GRAZHDA* has the best effesti (except for IdealApprox).
Figure 2b compares effesti and the actual experimental efficiency when c = 1.0, p = 48. effactual = 0.86 ·effesti with variance of residuals =
0.013 (least-squares regression). Figure 2c compares sparsity vs. effesti . For each instance, we generated 3 different partitions using METIS
with load balancing constraints which force METIS to balance randomly selected nodes, to see how degraded sparsity affects effesti .

GreedyAFG sparsest cut

Figure 3: Example of sparsest cut and GreedyAFG to a domain
transition graph in logistic domain.

less favorable environment for parallel search compared to a
“bare-metal” cluster because physical processors are shared
with other users and network performance is inconsistent
(Iosup et al. 2011). We intentionally chose this configura-
tion to evaluate work distribution methods in environment
which is significantly different from our other experiments.
Table 2 shows that as with the smaller-scale cluster results,
GRAZHDA*/sparsity outperformed other methods in this
large-scale cloud environment.
24-Puzzle Results: We evaluated GRAZHDA*/sparsity on
the 24-puzzle using a high-performance, domain specific 24-
puzzle solver using a disjoint PDB heuristic (Korf and Fel-
ner 2002) (node generation rate = 367,645 nodes/sec/core).
We compared GRAZHDA*/sparsity (automated abstract
feature generation) vs. AZHDA* with the hand-crafted
work distribution (AZHDA*/HandCrafted) used in (Jinnai
and Fukunaga 2016a) and ZHDA* (Kishimoto, Fukunaga,
and Botea 2013) on 100 random instances on a single
Xeon E5-2650 v2 2.60 GHz CPU. The average runtime
of sequential A* on the instances was 219 secs. With
8 cores, the speedups were 7.84(GRAZHDA*/sparsity),
7.85(AZHDA*/HandCrafted), and 5.95(ZHDA*). Thus, the
completely automated GRAZHDA*/sparsity is competitive
with a carefully hand-designed work distribution method.

8 Previous Methods as Graph Partitioning
Previous work distribution methods for parallel best-first
search can be understood in terms of the graph partition-
ing framework proposed in this paper. ZHDA*, the original
Zobrist-hashing based HDA* (Kishimoto, Fukunaga, and
Botea 2013), corresponds to an extreme case of the AZH
framework where every node is assigned to a different parti-
tion. Abstraction-based work partitioning in AHDA* (Burns
et al. 2010) can be described as partitioning to a subset of
DTGs such that each node is assigned to a different parti-
tion. Previous instances of the AZH framework (Jinnai and
Fukunaga 2016a) can be viewed as the generation abstract
features based on bisections of DTGs according to some ob-
jective. Consider weighted sparsity, a generalization of the
sparsity objective:

WSparsity :=

∏k
i |Si|+ wco∑k

i

∑k
j>i E(Si, Sj) + wlb

. (6)

Then, GreedyAFG (Jinnai and Fukunaga 2016a) can be de-
scribed as optimizing weighted sparsity with weights wco =
0, wlb = +∞. Because it only optimizes LB, GAZHDA*
often results in significantly suboptimal CO. For exam-
ple, Figure 3 shows that for this logistics domain DTG,
GreedyAFG ends up cutting 2 edges while SparsestAFG
cuts only 1. We evaluated effesti for various values of these
weights, and observed that peak effesti was in the vicinity of
wco = wlb = 0 (i.e., same as Eqn. 5), while overweighting
CO or LB (wco > 0.2 or wlb > 0.2) resulted in significantly
degraded effesti .

FAZHDA* (Jinnai and Fukunaga 2016b) can be described
as an extension of GAZHDA* which generates the partition
S1 = G,S2 = ∅ when the optimal sparsity is lower than
some threshold (control parameter).

Thus, by casting previous work distribution methods as
instances of the graph partitioning framework, it can be seen
that from the perspective of graph partitioning, previous
methods are ad hoc solutions to the problem of work dis-
tribution. In contrast, GRAZHDA*/sparsity explicitly seeks
a work distribution which addresses both LB and CO, and
our experiments validate the effectiveness of this top-down
approach.

40

state space partitioned
by single DTG

states with
A(v1) = S1

states with
A(v1) = S2

states with
A(v2) = S1

states with
A(v2) = S2

state space partitioned by
multiple DTGs

states with
A(v1) = S1,
A(v2) = S2

state space partitioned
by single DTG

distribution of the states

states owned
by process 0

states owned
by process 0

states owned
by process 1

states owned
by process 1

Abstract
Feature

A(v1) = S1

DTG of v1: (at t1 ?x ?y)

Abstract
Feature

A(v1) = S2

Abstract
Feature

A(v2) = S2

Abstract
Feature

A(v2) = S1

S1 S2S1 S2

states with
A(v1) = S1,
A(v2) = S1

states with
A(v1) = S2,
A(v2) = S1

states with
A(v1) = S2,
A(v2) = S2

DTG of v2: (at t2 ?x ?y)

Figure 4: Partitioned DTGs and the resulting partitioniong of the state space by XORing the hash values of abstract features.

9 Conclusions
We proposed and evaluated a new, domain-independent ap-
proach to work distribution for parallel best-first search in
the HDA* framework. The main contributions are (1) pro-
posal and validation of effesti , a model of search and com-
munication overheads for HDA* which can be used to pre-
dict actual walltime efficiency, (2) formulating the optimiza-
tion of effesti as a graph partitioning problem with a sparsity
objective, and validating the relationship between effesti and
the sparsity objective, and (3) GRAZHDA*, a new work
distribution method which approximate the optimal strat-
egy by partitioning domain transition graphs. We exper-
imentally showed that GRAZHDA*/sparsity significantly
improves both estimated efficiency (effesti) as well as ac-
tual performance (walltime efficiency) compared to previous
work distribution methods. Our results demonstrate the via-
bility of approximating the partitioning of the entire search
space by applying graph partitioning to an abstraction of the
state space (i.e., the DTG).

Despite significant improvements compared to previ-
ous work distribution approaches, there is room for im-
provement. The gap between the effesti metric for
GRAZHDA*/sparsity and a ideal model (IdealApprox) rep-
resents the gap between actually partitioning the state space
graph (as IdealApprox does) vs. the approximation obtained
by the GRAZHDA*/sparsity DTG partitioning. Closing this
gap in effesti is a direction for future work.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11(4):625–655.
Buluç, A.; Meyerhenke, H.; Safro, I.; Sanders, P.; and
Schulz, C. 2013. Recent advances in graph partitioning.
Preprint.
Burns, E. A.; Lemons, S.; Ruml, W.; and Zhou, R. 2010.

Best-first heuristic search for multicore machines. Journal
of Artificial Intelligence Research 39:689–743.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM (JACM) 61(3):16.
Hendrickson, B., and Kolda, T. G. 2000. Graph parti-
tioning models for parallel computing. Parallel computing
26(12):1519–1534.
Iosup, A.; Ostermann, S.; Yigitbasi, M. N.; Prodan, R.;
Fahringer, T.; and Epema, D. H. 2011. Performance anal-
ysis of cloud computing services for many-tasks scientific
computing. Parallel and Distributed Systems, IEEE Trans-
actions on 22(6):931–945.
Jinnai, Y., and Fukunaga, A. 2016a. Abstract zobrist hash:
An efficient work distribution method for parallel best-first
search. In Proceedings of the Thritieth AAAI Conference on
Artificial Intelligence (AAAI).
Jinnai, Y., and Fukunaga, A. 2016b. Automated creation
of efficient work distribution functions for parallel best-first
search. In Proceedings of the 19th International Conference
on Automated Planning and Scheduling, ICAPS 2016.
Jinnai, Y., and Fukunaga, A. 2017. On hash-based work
distribution methods for parallel best-first search. J. Artif.
Intell. Res.(JAIR). (to appear).
Jonsson, P., and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and complex-
ity. Artificial Intelligence 100(1):125–176.
Jyothi, S. A.; Singla, A.; Godfrey, P.; and Kolla, A. 2014.

41

Table 1: Comparison of effactual , effesti , average speedups (spdup), communication/search overhead (CO, SO) on 10 runs on
a commodity cluster with 6 nodes, 48 processes using merge&shrink heuristic. effesti (effactual) with bold font indicates the
method has the best effesti (effactual). Instance name with bold indicates that the best effesti method has the best effactual .

Instance A* GRAZHDA*/sparsity FAZHDA*
time expd effactual effesti spdup CO SO effactual effesti spdup CO SO

Blocks10-0 129.29 11065451 0.57 0.57 27.17 0.28 0.38 0.54 0.43 26.02 0.70 0.35
Blocks11-1 813.86 52736900 0.71 0.53 34.25 0.66 0.15 0.71 0.50 34.25 0.66 0.15
Elevators08-5 165.22 7620122 0.34 0.51 16.43 0.47 0.33 0.26 0.49 12.34 0.32 0.51
Elevators08-6 453.21 18632725 0.45 0.50 21.47 0.49 0.37 0.38 0.36 18.05 0.52 0.81
Gripper8 517.41 50068801 0.56 0.60 26.67 0.50 0.15 0.57 0.63 27.45 0.43 0.10
Logistics00-10-1 559.45 38720710 0.94 0.70 45.16 0.43 0.01 0.91 0.61 43.85 0.57 0.02
Miconic11-0 232.07 12704945 0.87 0.95 41.97 0.01 0.07 0.88 0.91 42.43 0.01 0.06
Miconic11-2 262.01 14188388 0.94 0.97 45.26 0.01 0.05 0.93 0.92 44.87 0.01 0.05
NoMprime5 309.14 4160871 0.50 0.58 23.95 0.80 -0.04 0.48 0.53 22.87 0.79 -0.05
NoMystery10 179.52 1372207 0.72 0.61 34.80 0.51 0.12 0.48 0.75 22.99 0.24 -0.44
Openstacks08-19 282.45 15116713 0.51 0.59 24.67 0.27 0.34 0.42 0.58 20.00 0.24 0.37
Openstacks08-21 554.63 19901601 0.53 0.65 25.23 0.17 0.35 0.52 0.62 24.97 0.15 0.35
Parcprinter11-11 307.19 6587422 0.42 0.54 20.26 0.26 0.55 0.27 0.49 13.08 0.26 0.61
Parking11-5 237.05 2940453 0.62 0.55 29.75 0.40 0.34 0.62 0.54 29.67 0.63 0.11
Pegsol11-18 801.37 106473019 0.44 0.72 21.03 0.39 0.02 0.44 0.71 20.97 0.39 0.00
PipesNoTk10 157.31 2991859 0.33 0.52 15.73 0.98 0.01 0.33 0.49 15.64 0.98 0.01
PipesTk12 321.55 15990349 0.70 0.66 33.78 0.46 0.05 0.83 0.65 39.65 0.46 0.03
PipesTk17 356.14 18046744 0.92 0.65 43.92 0.54 0.01 0.94 0.63 45.03 0.54 0.01
Rovers6 1042.69 36787877 0.86 0.79 41.17 0.15 0.14 0.84 0.72 40.48 0.15 0.17
Scanalyzer08-6 195.49 10202667 0.69 0.92 32.92 0.12 0.01 0.63 0.86 30.31 0.12 0.01
Scanalyzer11-6 152.92 6404098 0.91 0.78 43.83 0.16 0.13 0.57 0.63 27.31 0.18 0.34
Average 382.38 21557805 0.64 0.62 30.92 0.38 0.17 0.60 0.61 28.68 0.40 0.17
Total walltime 8029.97 452713922 277.91 301.38

GAZHDA* OZHDA* DAHDA* ZHDA*
effactual effesti spdup CO SO effactual effesti spdup CO SO effactual effesti spdup CO SO effactual effesti spdup CO SO

Blocks10-0 0.45 0.44 21.81 0.99 0.12 0.32 0.37 15.47 0.98 0.34 0.52 0.47 25.11 0.88 0.08 0.31 0.48 14.93 0.98 0.30
Blocks11-1 0.61 0.48 29.20 0.99 0.03 0.61 0.47 29.20 0.99 0.03 0.52 0.43 24.88 0.91 0.21 0.58 0.48 27.98 0.98 0.07
Elevators08-5 0.61 0.58 29.35 0.65 -0.00 0.46 0.64 21.86 0.09 0.44 0.57 0.51 27.59 0.83 -0.03 0.57 0.47 27.54 0.98 -0.03
Elevators08-6 0.72 0.76 34.52 0.24 -0.09 0.68 0.56 32.70 0.41 0.22 0.32 0.39 15.28 0.88 0.31 0.38 0.49 18.19 0.96 0.06
Gripper8 0.46 0.50 21.86 0.81 0.06 0.52 0.44 24.77 0.98 0.14 0.45 0.45 21.80 0.98 0.08 0.45 0.47 21.66 0.98 0.08
Logistics00-10-1 0.24 0.42 11.68 0.85 0.25 0.24 0.43 11.68 0.85 0.25 0.36 0.53 17.52 0.84 0.00 0.34 0.48 16.09 0.99 0.00
Miconic11-0 0.27 0.53 13.15 0.53 0.24 0.79 0.96 37.86 0.02 0.02 0.96 0.91 46.05 0.01 0.08 0.15 0.48 7.40 0.96 0.13
Miconic11-2 0.18 0.37 8.53 0.53 0.74 0.77 0.90 36.86 0.02 0.07 0.70 0.81 33.81 0.01 0.18 0.31 0.48 14.67 0.96 0.05
NoMprime5 0.39 0.48 18.55 0.95 -0.06 0.35 0.51 16.66 0.94 0.00 0.38 0.49 18.46 0.90 -0.05 0.35 0.47 16.63 0.98 -0.02
NoMystery10 0.40 0.66 18.98 0.42 -0.07 0.45 0.50 21.61 0.74 0.11 0.59 0.60 28.41 0.60 -0.07 0.45 0.49 21.68 0.99 -0.07
Openstacks08-19 0.46 0.58 22.14 0.38 0.21 0.36 0.55 17.11 0.34 0.32 0.51 0.66 24.54 0.24 0.18 0.54 0.47 25.99 0.99 -0.05
Openstacks08-21 0.53 0.65 25.67 0.15 0.31 0.82 0.49 39.34 0.92 0.05 0.56 0.68 26.72 0.13 0.28 0.81 0.51 39.06 0.92 -0.00
Parcprinter11-11 0.35 0.40 16.85 0.74 0.41 0.33 0.34 15.98 0.82 0.56 0.15 0.15 7.00 0.19 4.38 0.40 0.48 19.15 0.97 0.08
Parking11-5 0.59 0.49 28.43 0.98 0.02 0.56 0.46 26.76 0.97 0.07 0.60 0.59 28.84 0.52 0.07 0.56 0.47 27.09 0.98 0.04
Pegsol11-18 0.34 0.53 16.22 0.77 0.05 0.55 0.71 26.17 0.34 -0.03 0.46 0.70 22.16 0.34 -0.01 0.35 0.47 16.97 0.98 0.03
PipesNoTk10 0.32 0.50 15.58 0.98 0.01 0.32 0.48 15.22 0.98 0.02 0.32 0.48 15.58 0.98 0.01 0.07 0.48 3.22 0.98 -0.44
PipesTk12 0.41 0.48 19.84 0.99 0.01 0.45 0.49 21.40 0.88 0.04 0.52 0.57 25.12 0.67 0.00 0.41 0.48 19.78 0.98 0.00
PipesTk17 0.56 0.50 26.64 0.98 0.00 0.60 0.52 28.82 0.88 0.00 0.65 0.60 31.16 0.60 0.01 0.55 0.49 26.27 0.98 0.00
Rovers6 0.70 0.61 33.49 0.56 0.01 0.85 0.71 41.00 0.31 0.03 0.53 0.73 25.48 0.05 0.26 0.63 0.53 30.01 0.76 0.00
Scanalyzer08-6 0.42 0.54 20.28 0.77 0.01 0.49 0.58 23.70 0.66 0.01 0.44 0.51 21.23 0.94 0.00 0.34 0.48 16.54 0.98 0.01
Scanalyzer11-6 0.34 0.41 16.36 0.65 0.49 0.81 0.68 38.82 0.30 0.09 0.41 0.44 19.51 0.50 0.46 0.42 0.48 20.36 0.98 0.05
Average 0.45 0.51 21.39 0.71 0.13 0.54 0.53 25.86 0.64 0.13 0.50 0.47 24.11 0.57 0.31 0.43 0.49 20.53 0.96 0.01
Total walltime 398.75 331.18 377.86 433.23

Measuring and understanding throughput of network topolo-
gies. arXiv preprint arXiv:1402.2531.

Karypis, G., and Kumar, V. 1998. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on scientific Computing 20(1):359–392.

Kishimoto, A.; Fukunaga, A. S.; and Botea, A. 2009. Scal-
able, parallel best-first search for optimal sequential plan-
ning. In Proc. 19th International Conference on Automated
Planning and Scheduling (ICAPS), 201–208.

Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a simple, scalable, parallel best-first search strategy.
Artificial Intelligence 195:222–248.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1):9–22.

Leighton, T., and Rao, S. 1999. Multicommodity max-flow

min-cut theorems and their use in designing approximation
algorithms. Journal of the ACM (JACM) 46(6):787–832.
Zhou, R., and Hansen, E. A. 2007. Parallel structured dupli-
cate detection. In Proc. 22nd AAAI Conference on Artificial
Intelligence (AAAI), 1217–1223.
Zobrist, A. L. 1970. A new hashing method with applica-
tion for game playing. reprinted in International Computer
Chess Association Journal (ICCA) 13(2):69–73.

42

Table 2: Comparison of walltime, communication/search overhead (CO, SO) on a cloud cluster (EC2) with 128 virtual cores
(32 m1.xlarge EC2 instances) using the merge&shrink heuristic. We run sequential A* on a different machine with 128 GB
memory because some of the instances cannot be solved by A* on a single m1.xlarge instance due to memory limits. Therefore
we report walltime instead of speedup.

Instance A* GRAZHDA*/sparsity FAZHDA*
expd time CO SO time CO SO

Airport18 48782782 102.34 0.59 0.49 95.48 0.59 0.29
Blocks11-0 28664755 12.40 0.42 0.37 22.86 0.68 0.53
Blocks11-1 45713730 17.21 0.42 0.25 32.60 0.66 0.82
Elevators08-7 74610558 51.90 0.54 0.25 121.90 0.55 0.26
Gripper9 243268770 78.90 0.42 0.01 82.90 0.43 0.06
Openstacks08-21 19901601 6.30 0.23 0.06 5.76 0.19 -0.05
Openstacks11-18 115632865 33.10 0.24 -0.14 33.25 0.23 -0.12
Pegsol08-29 287232276 58.85 0.44 0.16 81.75 0.42 0.55
PipesNoTk16 60116156 120.64 0.94 0.84 106.28 0.94 0.72
Trucks6 19109329 8.01 0.17 0.46 51.51 0.19 0.34
Average 99361115 43.03 0.42 0.25 59.87 0.48 0.39
Total walltime 894250040 387.31 538.81

Instance GAZHDA* OZHDA* DAHDA* ZHDA*
time CO SO time CO SO time CO SO time CO SO

Airport18 128.22 0.98 0.02 123.09 0.90 0.56 143.27 0.92 0.36 106.80 0.99 0.02
Blocks11-0 21.75 0.98 0.65 21.70 0.99 0.70 20.29 0.95 0.88 29.19 0.99 0.35
Blocks11-1 25.84 0.98 0.56 24.84 0.86 0.78 29.52 0.94 0.83 36.04 1.00 0.52
Elevators08-7 61.16 0.70 0.05 86.65 0.07 0.22 52.09 0.96 0.18 59.88 1.00 0.04
Gripper9 85.98 1.00 0.16 90.98 0.98 0.20 95.72 1.00 0.15 105.78 1.00 0.17
Openstacks08-21 5.67 0.71 -0.35 40.06 0.96 0.00 6.94 0.69 -0.17 14.65 1.00 -0.09
Openstacks11-18 71.34 0.77 -0.09 79.34 0.81 -0.00 84.67 0.76 0.01 49.97 1.00 -0.53
Pegsol08-29 98.53 0.98 0.06 54.13 0.34 0.13 108.17 1.00 0.11 120.27 0.98 0.16
PipesNoTk16 108.28 0.95 0.78 120.21 0.99 0.73 125.37 1.00 0.72 149.96 1.00 0.73
Trucks6 30.22 0.94 0.41 32.22 0.96 0.57 17.19 0.53 0.43 28.22 1.00 0.34
Average 56.53 0.89 0.29 61.13 0.77 0.41 60.00 0.87 0.36 66.00 1.00 0.29
Total walltime 508.77 550.13 539.96 593.96

43

Forward Search with Backward Analysis

Shlomi Maliah
Information Systems Engineering

Ben Gurion University
shlomima@post.bgu.ac.il

Ronen I. Brafman
Computer Science Dept.
Ben Gurion University
brafman@cs.bgu.ac.il

Guy Shani
Information Systems Engineering

Ben Gurion University
shanigu@bgu.ac.il

Abstract
We describe a new forward search algorithm
for classical planning. This algorithm attempts to
maintain a focused search, expanding states using
only a subset of the possible actions. Given a state
s′ that was obtained by applying action a to state s,
we prefer to apply in s′ only actions a′ that require
some effect of a which we call forward actions. As
this is incomplete, we must also consider actions
a′′ that supply some other precondition of a′ and
actions a′′′ that supply preconditions to a′′ and so
on. We call these backward actions, as identifying
the relevant actions requires backward reasoning.
We show that by giving high priority to the forward
actions a′ we get improved performance in many
domains. The resulting algorithm can be viewed as
building on the classic idea of means-ends analy-
sis [Newell and Simon, 1961]. One crucial open
problem that arises is how to prioritize the search
for backward actions.

1 Introduction
Planning typically requires achieving multiple goals stem-
ming from the existence of multiple sub-goals or multiple
preconditions. Unless the plans for these subgoals interact
strongly with each other, this usually implies that we have
flexibility in ordering them. This, in turn, implies that often,
there are multiple permutations of a plan that are also valid
plans. Ideally, we would like our search algorithm not to con-
sider alternative permutations. In this paper we formulate a
forward search algorithm that uses backwards reasoning, in
the spirit of means-ends-analysis [Newell and Simon, 1961],
to focus only on certain permutations. More specifically, we
try to consider only permutations in which work done for one
subgoal is not interleaved with work done for another sub-
goal.

Thus, while inconsistent with the jittery age we live in, our
search process aims to be focused – it tries to focus on achiev-
ing one sub-goal at a time. Ideally, if we just applied an action
a, we would like the next action to be relevant to it and use
one of the effects a. We call such actions forward actions.

Forward search with this pruning rule can drastically re-
duce the branching factor, and solves quite a few classical

planning benchmarks. Unfortunately, it is easily seen to be in-
complete: Suppose a1, a2, a3 is a solution plan where: a1, a2
have some precondition that is true initially, and generate p1
and p2 respectively; a3 requires both p1 and p2 and produces
the goal. Suppose I is the initial state and we generate a1(I).
At this point, the only action that uses an effect of a1 is a3,
but it is not applicable.

Action a3 is not applicable after a1 because its other pre-
condition, p2, does not hold. We need to modify the prun-
ing rule so that it allows actions, such as a2, that establish
the missing precondition p2 of a1, given a1(I). We call these
backwards actions. But a single backwards action may be in-
sufficient. What if a2 is not applicable after a1 because one of
its preconditions p3 does not hold? Establishing p2 may actu-
ally require a sub-plan, and this requires a form of backwards
relevance reasoning.

Thus, the essence of our algorithm is to move forward us-
ing forward actions. When such an action is inapplicable be-
cause of a missing precondition, we reason backwards and
find a sub-plan that achieves the missing precondition.1 To
make the algorithm efficient, we prioritize forward actions
over backward reasoning.

We present the results of a planner based on prioritized for-
ward search with backwards analysis. The results are mixed
– sometimes, our algorithm works better than naive forward
search, and sometimes worse. It leads to an interesting open
question on how to prioritize the expansion of different ac-
tions.

2 Forward Backward Search
We consider standard classical planning problems, repre-
sented by a tuple 〈P, A, I,G〉 where:

• P is a finite set of primitive propositions (facts).

• A is the action set.

• I is the start state.

• G is the goal condition.

Each action a = 〈pre(a), eff (a)〉 is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of primitive propositions and literals,

1Note that backwards refers to the reasoning mode. Actions are
always applied forward.

44

respectively. A state is a truth assignment over P . G is a con-
junction of facts. a(s) denotes the result of applying action a
to state s. A plan π = (a1, . . . , ak) is a solution to a planning
task iff ak(. . . (a1(I) . . .) |= G.

An important assumption we make is that actions are in
transition normal form [Pommerening and Helmert, 2015].
That is, a primitive proposition (or its negation) appears in
a precondition iff it (or its negation) appears in the effect of
the action. Every problem is easily converted into transition
normal form.

2.1 Forward-Backward Search
Forward-backward search is a forward search algorithm with
action pruning. Algorithm 1 shows the pseudo-code of its ini-
tial version, denoted FBS1. It maintains two open lists which
we call the forward list, denoted lfwd, and the backward list,
denoted lbwd. The forward list contains pairs of the form
〈s, P 〉, where s is a state and P is a set of primitive propo-
sitions. We can expand states in the forward open list only
using actions that have a precondition in P . Initially, this list
contains all elements of the form 〈a(I), eff (a)〉, where a is
any action applicable in I .

Unlike regular forward search, confined to actions with sat-
isfied preconditions, we also consider actions a that have a
precondition in P but are not applicable in s. We set up a pro-
cess which attempts to find an action, or possibly a sequence
of actions, that achieve the missing preconditions of a. This
is done by inserting the pair 〈s, [a]〉 to the backwards list.

The backward open list contains pairs of the form 〈s, stk〉,
where s is a state and stk is a stack of actions. If a appears
in the top of the stack and a is applicable in s, we apply
a and remove it from the stk, obtaining stk′. If the latter
is empty, 〈a(s), eff (a)〉 is added to the forward list. At this
point, we successfully generated a sub-plan that achieved the
missing preconditions of a, and can continue forward. Oth-
erwise, 〈a(s), stk′〉 is added to the backward list. This will
allow us to continue and apply the following actions, or po-
tentially add new actions that achieve preconditions that are
still missing.

If a appears in the top of the stack and a is inapplicable
in s, then we consider all actions a′ that achieve a missing
precondition of a. For each such action we add a new item
into the backward list. This item is identical to the original
pair, but with a′ pushed into the top of the stack. That is, we
continue to reason backwards seeking an action that can help
us to achieve a needed precondition.

We denote the above algorithm by FBS1. When expanding
a node from one of the lists (lines 10, 23), we select nodes
that are minimal in terms of the heuristic value of their state.
Below we explain how we optimize the choice between the
two lists.

In FBS1, an action was inserted into a stack in the backward
list if it supplied a missing precondition of a relevant action.
We denote by FBS2 a slightly modified version of the above
in which an action is inserted into the backward list even if it
supplies a precondition that is currently true, and even if the
action that requires this precondition is applicable. In terms
of the pseudo-code, the else parts starting in line 16 and line

Algorithm 1: The FwdBwd Algorithm
1 FwdBwd()
2 lfwd ← the empty list
3 lbwd ← the empty list
4 foreach Action a executable at I do
5 Add 〈a(I), eff (a)〉 to lfwd

6 while goal not achieved do
7 ExpandForward(lfwd)
8 ExpandBackward(lbwd)

9 ExpandForward(lfwd)
10 〈s, P 〉 ← extract min from lfwd

11 if s is a goal state then
12 trace back solution and terminate
13 foreach a ∈ A s.t. pre(a) ∩ P 6= ∅ do
14 if s |= pre(a) then
15 Add 〈a(s), eff (a)〉 to lfwd

16 else
17 P ′ ← pre(a) \ s
18 foreach a′ ∈ A s.t. eff (a′) ∩ P ′ 6= ∅ do
19 stack ← the empty stack
20 Push a′ into stack
21 Add 〈s, stack〉 to lbwd

22 ExpandBackward(lbwd)
23 〈s, stack〉 ← extract min from lbwd

24 Pop a from stack
25 if s |= pre(a) then
26 if stack is empty then
27 Add 〈a(s), eff (a)〉 to lfwd

28 else
29 Add 〈a(s), stack〉 to lbwd

30 else
31 Push a into stack
32 P ′ ← pre(a) \ s
33 foreach a′ ∈ A s.t. eff (a′) ∩ P ′ 6= ∅ do
34 copy ← a copy of stack
35 Push a′ into copy
36 Add 〈s, copy〉 to lbwd

30 are always executed, and with P ′ = pre(a). As we show
later, FBS1 is incomplete, whereas FBS2 is complete.

Optimizations
First, as in most search algorithms, it is useful to avoid re-
peated visits to the same state. In our case, this is somewhat
more complicated, because, e.g., the same state can be visited
many times, following different actions. Still, it is straight-
forward to add bookkeeping mechanisms to Algorithm 1 to
avoid adding duplicates to the forward and backward lists.

Intuitively, forward actions advance the plan towards the
goal, while backward actions are a necessary setback because
a needed action cannot be executed. Following this intuition,
we can give priority to actions that use an effect of the last
action. That is, in the main loop of the FwdBwd algorithm,

45

we expand more states from the forward list than from the
backward list.

Similarly, the search backwards for relevant actions can
distinguish between actions that supply a condition that is un-
true at present (as in FBS1) and actions that supply a condi-
tion that is true at present (allowed by FBS2). The latter can
be given lower priority, ensuring completeness, while having
little effect on computation time.

In many domains the goal is a conjunction of several facts.
The algorithm, as described, will not be able to handle such
goals because it cannot search forward once a sub-goal is
achieved (when subgoals are independent). One way to avoid
this is to add an artificial action that takes as precondition all
these facts, supplying a single artificial goal fact. Using this
technique in our algorithm, however, is problematic. This is
because in many domains once a subgoal is achieved, the en-
tire planning process is turned into a backward analysis in
order to obtain the missing goal facts. We can overcome this
by using a “reset” whenever a goal fact is achieved, allowing
all executable actions to be executed in the following state, as
we do for the initial state.

The backward search is very expensive in our implementa-
tion because we consider all actions that achieve a precondi-
tion, and it is unclear how to heuristically rank these actions.
Heuristics that rely on the current state are not informative for
these unexecuted actions. We now suggest a third version of
our algorithm that avoids the backward search altogether.

In forwards-backwards search 3 (FBS3), when an action a′
has a precondition supplied by the previous action a, but can-
not be executed at the current state s, we find all actions a′′
that are relevant to a′, and can be executed at s. This can be
done by regressing the preconditions of a′, terminating when-
ever reaching actions that can be executed at s. All these ac-
tions are then executed, and the resulting pairs are inserted
into the forward list. We still maintain a backward list, to al-
low us to prioritize forward expansions over backward analy-
sis, but the backward list no longer contains a stack of actions,
only pairs 〈s, P 〉, where P is the set of facts to regress.

The result is a less focused algorithm, because we no
longer maintain the “reasons” for the backward analysis, but
one that avoids the problematic prioritization of backward ex-
pansions. This also avoids the special treatment after achiev-
ing goal facts, because the backward regression is similar to
the “reset” operation, although more focused.

3 Properties
We now discuss the soundness and completeness of FBS.
Claim 1. FBS is sound.

Proof. Each state in a pair 〈s,X〉 (where X is either P or
stack), generated in FBS is obtained by applying an action
to a state that was previously generated, starting at the initial
state. Thus, all generated states are reachable, and if a goal
state is found, there must be a plan.

As noted earlier FBS1 is incomplete, and we provide a
counter-example later. We now prove, though, that FBS2, that
uses backward analysis even when preconditions are satisfied,
is complete.

It remains a key open question whether weaker condi-
tions suffice to ensure completeness. In strong stubborn sets
[Wehrle and Helmert, 2014], for example, it is sufficient to
move backward only over a single precondition of an ac-
tion, considering also actions that interfere with a needed
precondition. We conjecture that by using a similar condi-
tion in FBS1, we can attain completeness. Specifically, given
〈s, stk〉, if a is at the top of the stack and it is applicable
in s, and a′ is an action that interferes with a, we also add
〈s, stk′〉 where stk′ is obtained by pushing a′ to stk. In prac-
tice, when the optimizations described earlier are used over
current benchmarks, we never expand backwards states that
were added for satisfied preconditions.

For our completeness proof, we assume that the goal is a
single proposition, which can be achieved with a simple trans-
formation.

We use the following definitions in our proofs: The causal
structure of a valid plan π [Karpas and Domshlak, 2012], de-
noted CS(π) is a DAG whose nodes are the actions of π. a is
a parent of a′ iff a precedes a′ in the π, and a has an effect,
say p, that is a precondition of a′, and no action between a
and a′ produces p. This is often called a causal link between
a and a′ in π [Tate, 1977]. As we assume that the goal is
a single literal, there is a single leaf node in CS(π). We use
InvCS(π) to denote CS(π) with edge directions reversed,
which by the above is a DAG with a single root node. Finally,
we say that a plan is minimal if whenever any subset of action
instances is removed from the plan, it is no longer a valid plan
(i.e., it is either not executable or does not achieve the goal).
Lemma 1. Let a, a′ be two actions in a plan π such that a
precedes (not necessarily immediately) a′ in π, and p appears
in the description of a and a′ (possibly negated). Then, a is
an ancestor of a′ in CS(π).

Proof. The proof is by induction on the number of actions
between a and a′ in π in whose description p appears. First,
suppose that there are no such actions. Because we assume
action descriptions are in transition normal form, then p (pos-
sibly negated) appears in both the preconditions and effects
of a and a′. Therefore, a must supply the correct value of p to
a′. Consequently, by definition, a is a parent of a′ in CS(π).

For the inductive step, suppose the above holds when there
are k actions between a and a′, and consider the case where
there are exactly k + 1 actions, a1, a2, . . . , ak+1 between a
and a′ that contain p in their description. By the inductive hy-
pothesis, a1 is an ancestor of a′, and by the argument above,
a is a parent of a1, and thus, an ancestor of a′.

An immediate consequence of the above Lemma and the
definition of post-order traversal of a graph is:
Lemma 2. The order of actions that mention p in their de-
scriptions in any post-order traversal of InvCS(π) is identi-
cal.

Proof. By Lemma 1, every two actions that mention p have
an ancestor/descendant relation, which must be maintained in
any post-order traversal.

Lemma 3. Every post-order traversal of InvCS(π) is a
valid plan.

46

Figure 1: Counter Example

Proof. In any post-order traversal of the graph, for every ac-
tion a, the relative order of all actions supplying a with some
precondition must be the same. Therefore, the value of the
propositions in the precondition of a prior to the execution of
a will be identical to their value prior to the execution of a in
π, and therefore, the preconditions of a are satisfied and a is
executable, and hence the entire sequence is executable, and
in particular the last action that achieves the goal.

We now prove:

Theorem 1. FBS2 is complete.

Proof. Suppose a planning problem is solvable. Let π be such
a plan. We show that FBS2 generates a post-order traversal
InvCS(π), which by Lemma 3 is a plan.

We start with the first action in π. It must be a leaf node
of InvCS(π). Given this leaf node, a, after executing it, we
apply actions forward until we reach ap, the first ancestor of a
that has other children. At this point, we would like to apply
a descendant of the other children of ap. Let al be such a
descendant that is a leaf node. In FBS2, we are guaranteed that
this action is considered in the current state. Next, we apply
al, and continue with its parent, until we apply the relevant
child of ap. Note that al must be applicable since it is a leaf
node and we are assuming TNF.

We end this section with a counter-example to the com-
pleteness of FBS1 (Figure 1). In this example we see a plan
with nine actions a1, · · · , a9, where a9 achieves the goal.
a1, a2, a3, a4 are applicable in the initial state and require the
preconditions r1, s1, r2, s2, respectively. They do not delete
these preconditions. Recall that in transition normal form, this
implies that these preconditions are also their effects (denoted
by the dotted edges). a5 requires r1 and s1, and a6 requires
r2 and s2 as preconditions.

The key difficulty in this example is that a5 and a6 remove
necessary preconditions for a1, a2, a3, a4 that cannot be later
generated. These actions must be executed before actions a7
and a8. Hence, a1, a2 must be executed before a5, and a3, a4

before a6. However, executions that follow the FBS1 algo-
rithms always execute either a5 or a6 before some of the ac-
tions a1, ..., a4, as illustrated below.

Focusing on the left side (the right side is symmetric), the
execution can start with either a1, a2 or a5, whose precon-
ditions are satisfied initially. If we start with a5, r1, s1 are
deleted, blocking the execution of both a1 and a2 which pro-
duce required propositions for later actions.

Consider the execution in which first apply a1. There are
two actions that use an effect of a1: a5 and a7. a5 can be
immediately executed without backward reasoning, and this
implies that a2 is blocked, and will not be considered by the
algorithm. Without it, a8 cannot be executed later.

Another option we can consider is to apply a7 after a1,
applying backward reasoning, and then a3. After a3 we can
apply a6 which blocks a4, or a5 which blocks a2 again.

On the other hand, FBS2 will apply backward reasoning
from a5 even though its preconditions are satisfied, and will
discover the path executing a2 before a5.

It is interesting to note that we did not manage to generate a
smaller and simpler counter example, which may point to the
rarity of domains for which FBS1 is incomplete. When us-
ing the stubborn sets rule of moving backwards to interfering
actions, this counter example is no longer valid.

4 Empirical Evaluation
We now provide an empirical analysis of our FwdBwd al-
gorithm, comparing it to naive forward heuristic search. To
provide a clean analysis of our new approach, we avoided
comparison to mature classical planners, containing many op-
timizations, and implemented all algorithms on an identical
framework. As such, differences between algorithms result
from their properties, not from better implementation.

We experiment with two main heuristics — the FF heuris-
tic, and preferred operators [Hoffmann, 2001]. The FF heuris-
tic is a very popular and effective heuristic, analyzing the
number of actions in a plan over a delete relaxation of the
original problem. The preferred operators heuristic gives pri-
ority to actions in the relaxed plan. We find it important to
compare to preferred operators, because this technique also
restricts the set of actions that are considered at each state.
The original preferred heuristic does not ignore other actions,
only prioritizes them differently, for completeness, but for our
analysis we ignored all non-preferred actions.

When combining preferred operators and FBS, we restrict
our attention to actions that appear in the relaxed plan, both
in the forward search and in the backward analysis. That is,
when we expand a state either in the forward expansion (Al-
gorithm 1, line 13), or in the backward expansion (line 33),
we consider only actions that appear in the relaxed plan com-
puted through the FF heuristic.

We experiment with a number of domains from the Interna-
tional Planning Competition (IPC). Our inefficient implemen-
tation did not allow us to solve many such domains, and we
hence restrict our analysis only to 5 domains, where our for-
ward search with preferred operators managed to solve larger
instances. For these domains we experiment with the first 20
problems, as the larger instances could not be solved by our

47

Time (secs) Actions Coverage
PO S FB Fwd FBPO PO S FB Fwd FBPO PO S FB Fwd FBPO

IPC
elevators 9.46 50.93 21.55 21.01 29.73 72.9 52.4 61.5 56.8 70.8 20 17 20 5 19
openstacks 1.74 4.59 4.05 3.75 39.76 81.4 81.6 81.2 53.6 71.2 20 20 20 10 18
parcprinter 0.37 1.75 1.3 28.12 0.34 36.1 44.9 36.1 27.1 38.3 12 20 20 11 17
pegsol 4.93 17.89 10.09 20.04 11.86 19.5 19.4 18.6 19.4 19.5 19 19 17 19 19
scanalyzer 23.63 36.05 43.86 39.16 35.4 23.7 14.2 17 25.6 28.7 19 10 11 13 18

CoDMAP
depot 52.7 3.31 1.81 86.39 35.41 32 21 22 34 55.5 5 3 3 2 11
driverlog 12.8 1.07 18.26 2.48 4.76 26.4 16.8 17.4 20.9 24.1 16 13 14 15 13
elevators 10.33 64.84 22.31 41.52 22.94 72.7 53.3 62.3 59.7 75 20 18 20 3 20
logistics 0.36 1.6 0.59 X 0.95 52.3 51.9 53.2 0 60.9 20 20 20 8 20
MALogistics 0.49 2.15 0.55 16.91 0.3 71.4 67.3 66.5 75.7 81.2 20 19 18 15 20
rovers 7.19 32.5 24 X 18.99 64 33.8 41.6 X 60.1 20 5 8 0 18
satellites 15.94 70.25 77.59 58.13 19.12 47.7 39.1 37.2 58.5 33.9 17 13 10 3 8
taxi 0.03 8.54 0.14 2.52 0.03 21.9 21.4 21.2 21.8 23.2 20 20 19 20 20
zenotravel 31.6 42.64 29.59 15.78 11.51 47.7 26.6 34 33.7 29.8 19 14 16 15 14
Sum 247 211 216 139 235

Table 1: Comparing heuristic forward search (S), forward only (Fwd), Forward-Backward (FB), and their preferred operators
versions (PO, FBPO), over classical planning domains from IPC, and over unified multi-agent domains from CoDMAP.

forward search implementation.

In addition, we experiment with domains from the multi-
agent collaborative CoDMAP competition. We believe that
these domains contain a more factored search space, which
can be exploited by our forward backward approach. We
hence took multi-agent domains from the CoDMAP bench-
mark set, and unified them into single-agent domains.

Table 1 compares the performance of the different algo-
rithms. Looking at coverage, we can see that almost always
heuristic forward search with preferred operators achieves the
best coverage. The second best method is the FBPO variant,
which uses a forward-backward approach with preferred op-
erators. In one domain, depot, which appears to be the most
difficult domain in our benchmark set, forward-backward
with preferred operators achieved much better coverage than
all other approaches.

Of the methods that do not use preferred operators, the
forward-backward approach achieves a slightly higher cov-
erage than heuristic forward search. This is an encouraging
result, showing that the forward-backward approach has the
potential to improve upon regular forward search.

The forward-only approach, considering only actions that
have some precondition that was generated by the previ-
ous action, fails completely on 6 of the 14 domains that we
checked, but solves many instances in the other 8. This per-
haps shows that these domains are, in a way, easier to solve.
Still, even in domains where many instances were solved,
forward-only search, although drastically limiting the set of
considered actions is not necessarily faster than other meth-
ods. It may also generate longer plans, as in MALogistics.

Looking at plan length (number of actions), we can see that
heuristic search with preferred operators often does not find
the best plan. For example, in elevators (both versions), the
PO variant produces much longer plans. The FBPO variant
also produces longer plans in some cases, such as MALogis-
tics. Comparing only heuristic search and forward-backward,
the results are inconclusive — in parcprinter FB finds shorter
plans, while in logistics heuristic search is better.

5 Conclusion
We suggested a new search paradigm, which we call forward-
backward search, allowing us to limit the number of actions
that are considered at each expansion, while maintaining the
space of plans that can be computed.

We define forward actions — actions that require a precon-
dition supplied by the last action. We show that for complete-
ness one must also consider actions that supply a precondition
for a forward action. We search for such actions using what
we call backward reasoning.

We provide completeness proofs for our methods, and a
negative example for an intuitive, yet incomplete variant,
where we search backwards only for missing preconditions.

We provide an experimental evaluation of our approach,
comparing our methods to standard heuristic forward search,
showing that our methods produce slightly better coverage,
and in some cases shorter plans.

One obvious future direction is to implement our methods
into an existing planner such as FF or FD. This would al-
low us to test our approach in a competitive highly optimized
planner, and see whether they improve upon heuristic search.

Most closely related to our work are various action prun-
ing techniques, and in particular, strong stubborn sets [Wehrle
and Helmert, 2014]. Strong stubborn sets is an optimality pre-
serving method for action pruning. Given a set s, one com-
putes a set As of actions that contain (i) all actions that can
achieve one (arbitary) sub-goal that does not hold at s, (ii)
for all actions a ∈ As not applicable in s, calAs contains
all actions that can achieve one preconditions of these actions
(iii) for all actions a ∈ As applicable in s, As contains all
actions a′ that interfere with a whose preconditions do not
contradict those of a. Strong stubborn sets do not have the
focused element driving the forward part of our search, they
strongly resemble the type of backwards computation that de-
termines what additional actions to consider. In particular, it
is similar to the backwards computation used in FBS3, where
a stack is not maintained. As we indicated earlier, we believe
that condition (iii) is required for completeness of FBS1.

48

Acknowledgments: This work was supported by ISF Grant
933/13, by the Helmsley Charitable Trust through the Agri-
cultural, Biological and Cognitive Robotics Center of Ben-
Gurion University of the Negev, and by the Lynn and William
Frankel Center for Computer Science.

References
[Hoffmann, 2001] J. Hoffmann. FF: The fast-forward plan-

ning system. AI magazine, 22(3):57, 2001.
[Karpas and Domshlak, 2012] Erez Karpas and Carmel

Domshlak. Optimal search with inadmissible heuristics.
In Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling, ICAPS
2012, Atibaia, São Paulo, Brazil, June 25-19, 2012, 2012.

[Newell and Simon, 1961] Allen Newell and Her-
bert Alexander Simon. Gps, a program that simulates
human thought. Technical report, DTIC Document, 1961.

[Pommerening and Helmert, 2015] Florian Pommerening
and Malte Helmert. A normal form for classical planning
tasks. In Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling,
ICAPS 2015, Jerusalem, Israel, June 7-11, 2015., pages
188–192, 2015.

[Tate, 1977] Austin Tate. Generating project networks. In
Proceedings of the 5th International Joint Conference
on Artificial Intelligence. Cambridge, MA, August 1977,
pages 888–893, 1977.

[Wehrle and Helmert, 2014] Martin Wehrle and Malte
Helmert. Efficient stubborn sets: Generalized algo-
rithms and selection strategies. In Proceedings of the
Twenty-Fourth International Conference on Automated
Planning and Scheduling, ICAPS 2014, Portsmouth, New
Hampshire, USA, June 21-26, 2014, 2014.

49

Tie-Breaking in A* as Satisficing Search

Masataro Asai, Alex Fukunaga
Graduate School of Arts and Sciences

University of Tokyo

Abstract

Best-first search algorithms such as A* need to apply tie-
breaking strategies in order to decide which node to expand
when multiple search nodes have the same evaluation score.
Recently, these tiebreaking strategies were shown to have
significant impact on the performance of A* especially on
domains with 0-cost actions, and a new method was pro-
posed. In this paper, we propose a framework for interpreting
A* search as a series of satisficing searches within plateaus
consisting of nodes with the same f-cost. This new frame-
work motivates a new class of tie-breaking strategy, a multi-
heuristic tie-breaking strategy which embeds inadmissible,
distance-to-go variations of various heuristics within an ad-
missible search. This is shown to further improve the perfor-
mance in combination with the depth metric proposed in the
previous work.

1 Introduction
In this paper, we investigate tie-breaking strategies for cost-
optimal A∗. A∗ is a standard search algorithm for finding
an optimal cost path from an initial state s to some goal
state g ∈ G in a search space represented as a graph (Hart,
Nilsson, and Raphael 1968). It expands the nodes in best-
first order of f(n) up to f∗, where f(n) is a lower bound
of the cost of the shortest path that contains a node n and
f∗ is the cost of the optimal path. In many combinatorial
search problems, the size of the last layer f(n) = f∗ of
the search, called a final plateau, accounts for a signifi-
cant fraction of the effective search space of A∗. Figure 1
(p.1) compares the number of states in this final plateau with
f(n) = f∗ (y-axis) vs. f(n) ≤ f∗ (x-axis) for 1104 prob-
lem instances from the International Planning Competition
(IPC1998-2011). For many instances, a large fraction of the
nodes in the effective search space have f(n) = f∗: The
points are located very close to the diagonal line (x = y),
indicating that almost all states with f(n) ≤ f∗ have cost
f∗.

Figure 2 depicts this phenomenon conceptually. On the
left, we show one natural view of the search space that con-
siders the space searched by A∗ as a large number of closed
nodes with f < f∗, surrounded by a thin layer of final
plateau f(n) = f∗. This intuitive view accurately reflects
the search spaces of some real-world problems such as 2D
pathfinding on an explicit graph.

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

Total Number of Nodes

airport
barman-opt11
blocks
cybersec
depot
driverlog
elevators-opt11
floortile-opt11
freecell
grid
gripper
hanoi
logistics00
miconic
mprime
mystery
nomystery-opt11

openstacks-opt11
parcprinter-opt11
parking-opt11
pathways
pegsol-opt11
pipesworld-notankage
pipesworld-tankage
psr-small
rovers
scanalyzer-opt11
sokoban-opt11
storage
tidybot-opt11
tpp
transport-opt11
visitall-opt11
woodworking-opt11
zenotravel

y=x

N
um

be
r o

f N
od

es
 w

ith
 f

=
 f

*

Figure 1: The number of nodes with f = f∗ (y-axis) com-
pared to the total number of nodes in the search space (x-
axis) with f ≤ f∗ on 1104 IPC benchmark problems. This
experiment uses a modified Fast Downward with LMcut
which continues the search within the current f after any
cost-optimal solution is found. This effectively generates all
nodes with cost f∗.

f = f*
f > f*

Optimal solution(some nodes are expanded by A*)
(all nodes are expanded by A*)f < f*

expansion

Initial
Node

Large final plateau

Goal
 node

expansion

Initial
Node

expansion

expansion

(entire search space, A* never expands outside ellipse)

Figure 2: (Left) One possible class of search space which
is dominated by the states with cost f < f∗. (Right) This
paper focuses on another class of search space, where the
plateau containing the cost-optimal goals (f = f∗) is large,
and it even accounts for most of the search effort required
by A∗.

50

However, for many other classes of combinatorial search
problems, e.g., the IPC Planning Competition Benchmarks,
the figure on the right is a more accurate depiction – here,
the search space has a large plateau for f = f∗. Classical
planning problems in the IPC benchmark set are clearly the
instances of such combinatorial search problems.

For the majority of such IPC problem domains where the
last layer (f(n) = f∗) accounts for a significant fraction of
the effective search space, a tie-breaking strategy, which de-
termines which node to expand among nodes with the same
f -cost, can have a significant impact on the performance of
A∗. It is widely believed that among nodes with the same
f -cost, ties should be broken according to h(n), i.e., nodes
with smaller h-values should be expanded first. While this is
a useful rule of thumb in many domains, it turns out that tie-
breaking requires more careful consideration, particularly
for problems where most or all of the nodes in the last layer
have the same h-value.

In this paper, we provide an alternative view to the tie-
breaking behavior of A*. More specifically, cost-optimal
search using A∗ can be considered as a series of satisficing
searches on each plateau. This allows the problem of tie-
breaking to be reduced to satisficing search within a plateau
(Section 3), opening a wide variety of future work.

Based on this insight, we then investigate an admissible
tie-breaking strategy which uses an inadmissible distance-
to-go estimate, a heuristic function which treats every action
to have the unit costs (Section 4), for tie-breaking. Although
distance-to-go estimates are inadmissible, it does not com-
promise the admissibility of A∗ as long as it is used only for
tie-breaking.

[This paper presents work from Sections 7-8 from a re-
cent journal paper (Asai and Fukunaga 2017). This work
has not been previously presented in any conference or
workshop.]

2 Preliminaries
We first define some notation and the terminology used
throughout the rest of the paper. h(n) denotes the estimate
of the cost from the current node n to the nearest goal node.
g(n) is the current shortest path cost from the initial node
to the current node. f(n) = g(n) + h(n) is the estimate of
the resulting cost of the path to a goal containing the current
node. We omit the argument (n) unless necessary. h∗, g∗ and
f∗ denotes the true optimal cost from n to a goal, from the
start to n, or from the start to a goal through n, respectively.

A sorting strategy for a best first search algorithm tries to
select a single node from the open list (OPEN). Each sorting
strategy is denoted as a vector of several sorting criteria,
such as [criterion1, criterion2, . . ., criterionk], which means:
First, select a set of nodes from OPEN using criterion1. If
there are still multiple nodes remaining in the set, then break
ties using criterion2 and so on, until a single node is selected.
The first-level sorting criterion of a strategy is criterion1, the
second-level sorting criterion is criterion2, and so on.

Using this notation, A∗ without any tie-breaking can be
denoted as [f], and A∗ which breaks ties according to h
value is denoted as [f, h]. Similarly, GBFS is denoted as [h].

Unless stated otherwise, we assume the nodes are sorted in
increasing order of the key value, and BFS always selects a
node with the smallest key value.

A sorting strategy fails to select a single node when some
nodes share the same sorting keys. In such cases, a search
algorithm must select a node according to a default tie-
breaking criterion, criterionk, such as fifo (first-in-first-out),
lifo (last-in-first-out) or ro (random ordering). For example,
an A∗ using h and fifo tie-breaking is denoted as [f, h, fifo].
By definition, default criteria are guaranteed to return a sin-
gle node from a set of nodes. When the default criterion does
not matter, we may use a wildcard ∗ as in [f, h, ∗].

Given a search algorithm with a sorting strategy, a
plateau (criterion . . .) is a set of nodes in OPEN whose el-
ements share the same sort keys according to non-default
sorting criteria and therefore are indistinguishable. In a case
of A∗ using tie-breaking with h (sorting strategy [f, h, ∗]),
the plateaus are denoted as plateau (f, h), the set of nodes
with the same f cost and the same h cost. We can also
refer to a specific plateau with f = fp and h = hp by
plateau (fp, hp).

Recently, Asai and Fukunaga proposed a Random Depth
tiebreaking (2016) and its deterministic version (2017), re-
sulting in significant performance improvements in a new
set of benchmark domains called Zerocost domains 1.

Random Depth tiebreaking and its deterministic version
diversify the search within each plateau using the depth met-
ric d(n), a distance from the current node n to the nearest
ancestor that has the different f -value and the h-value. Each
node in a h-plateau is stored into a bucket of the correspond-
ing depth d, and the expansion happens on a node in a bucket
that is selected at random, or in a round-robin manner (de-
terministic version). Such a configuration of A∗ is denoted
as [f, h, 〈d〉, ∗].

Zerocost domains are the modified version of the stan-
dard IPC domains which characterizes the more practical
cost-minimization problems where the most important ac-
tions directly related to resource usage incur the non-zero
costs. We use this Zerocost domains for evaluation through-
out the paper.

3 A∗ as a Series of Satisficing Search
While A∗ requires the first sorting criterion f to use an ad-
missible heuristic in order to find an optimal solution, there
are no requirements on the second or later sorting criterion.
This means that the search within the same f plateau can be
an arbitrary satisficing search without any cost minimization
requirement (as opposed to the “satisficing” track setting in
IPC which also seeks to minimize the plan cost with anytime
algorithms). For example, if we ignore the first sorting crite-
rion in the standard admissible strategy [f, h, fifo], we have
[h, fifo], which is exactly the same configuration as a Greedy
Best First Search (GBFS) using fifo default tie-breaking.
This means that within a particular f -cost plateau, [f, h, fifo]
is performing a satisficing GBFS. As another example, the
reason for the poor performance of [f, fifo] is clearly that it is

1github.com/guicho271828/zerocost-opt

51

running [fifo], an uninformed satisficing breadth-first search
in the plateau.

From this perspective, we can reinterpret A∗ as in Algo-
rithm 1: A∗ expands the nodes in best-first order of f value.
When the heuristic function is admissible, the f values of
the nodes expanded by A∗ never decreases during the search
process. Thus, the entire process of A∗ can be considered as
a series of search episodes on each plateau (f). The search
on each plateau terminates when the plateau is proven to
contain no goal nodes (UNSAT), or when a goal is found
(SAT). When the plateau is UNSAT, then the search contin-
ues to the plateau with the next smallest f value. Figure 3
also illustrates this framework.

Algorithm 1 Reinterpretation of A∗ as iterations of satisfic-
ing search on plateaus

loop
Search plateau (f) for any goal state, using satisficing
search algorithm
if plateau (f) contains some goal (Plateau is SAT)
then

return solution
else

Increase f

f=0 : UNSAT
Initial
Node

Goal
Node

f=1 : UNSAT

f=2 : UNSAT f=3 : SAT

Figure 3: The concept of A∗ as a sequence of satisficing
searches.

This is somewhat similar to the standard approach to
model-based planning using SAT/IP/CP solvers (Kautz and
Selman 1992; van den Briel and Kambhampati 2005), based
on an iterative strategy where a planning problem is con-
verted to a corresponding constraint satisfaction problem
with a finite horizon t (plan length / makespan). The search
starts from the horizon 0 and tests if the problem is satis-
fiable. If not, then it increases the horizon, add constraints
excluding solutions below t, and retests the same problem
with additional constraints for a new horizon t+ 1.

It is also reminiscent of the behavior of iterative deepen-
ing A∗ (Korf 1985), which executes a series of satisficing
searches with an f -cost limit which increases on each it-
eration. However, “A∗-as a sequence of satisficing search”
differs from IDA* in that IDA*, in order to achieve lin-
ear memory usage, repeats previous work on each iteration.
Instead of searching a particular plateau in each iteration,
IDA* searches through the union of several plateaus.

The framework of “A∗ as a series of satisficing searches”

suggests that we can directly apply satisficing search tech-
niques to optimal search using A∗, especially for each f -
cost plateau search. In the following sections, we show that
this framework (1) provides a better understanding of depth-
diversification (Section 3.1) and (2) allows us to improve the
performance of A∗ on Zerocost domains (Section 4).

3.1 Depth Diversification and Satisficing Search
Within this framework, the implementation of depth diversi-
fication can be viewed as a variant of the Type-based diver-
sification approach (Xie et al. 2014), specifically tailored for
Zerocost domains.

Xie et al. proposed type based buckets, an implementa-
tion of the OPEN list which partitions the nodes into buck-
ets according to some set of key values (types). They pro-
posed several types such as 〈1〉, 〈g〉, 〈h〉 or 〈g, h〉. At each
type-based expansion, a randomly selected node from a ran-
domly selected single bucket is selected. For example, with
type 〈g, h〉, a node with g = 5 and h = 3 is put into a bucket
〈5, 3〉. This mechanism diversifies the search so that it re-
moves the cardinality bias in terms of the distance of a node
from the initial state or the goal states. They then proposed
Type-GBFS, which alternates the expansion between a nor-
mal GBFS [h, fifo] and the type-based expansion [〈g, h〉, ro].

In our framework of A∗ as a sequence of satisfic-
ing searches, depth diversification after h tie-breaking
([f, h, 〈d〉, ∗]) can be viewed as the combination of (1) an
implicit transformation of all 0-cost edges within a single
plateau (f, h) to unit-cost edges, and (2) a pure type-based
exploration within that plateau (unlike Type-GBFS, which
alternates GBFS and type-based buckets).

The notion of depth counts the number of 0-cost actions,
which does not change the f value and h value, on the path
from the entrance to the current plateau, to the current node.
Thus, depth-diversification treats the problem of finding an
exit from a particular plateau as a unit-cost satisficing search
problem – the depth is analogous to a g-value which is calcu-
lated with unit costs and is restricted to a particular plateau.

4 Tie-Breaking with Distance-to-Go
Estimates

In the previous section, we proposed a framework which
views cost-optimal A∗ search as a series of satisficing
searches on each f -cost plateau, and argued that the prob-
lem of tie-breaking can be reduced to a satisficing search.
We showed that the depth diversification tie-breaking crite-
rion, which is highly effective on Zerocost domains, is in
fact a case where a previously studied technique for satisfic-
ing search (type-based exploration) turns out to be highly ef-
fective when applied to tie-breaking. In this section, we push
this insight further and propose another approach to improv-
ing the search performance in plateaus produced by Zero-
cost domains – using inadmissible distance-to-go estimates
(heuristics) as a tie-breaking criterion within an admissible
A∗ search.

Distance-to-go estimates are a class of heuristics which
treat all actions as if they have unit cost. Even when 0-cost
actions are present, these estimates can predict the number

52

of operations required to reach a goal. In general, the esti-
mates are inadmissible (unless the estimates are guaranteed
to underestimate the number of required actions and all ac-
tions in the original domain have unit cost). Previous work
on distance-to-go-heuristics has focused on their use for sat-
isficing planning.

A∗
ε (Pearl and Kim 1982) is one of the earliest algorithms

that combines distance-to-go estimates with the cost esti-
mates. It is a bounded-suboptimal search which expands
nodes from the focal list, the set of nodes with f(n) ≤
w · fmin where weight w serves as a suboptimality bound,
similar to weighted A∗, and fmin is the minimum f value in
the OPEN list. While f is based on an admissible heuristic
function, the nodes in the focal list are expanded in increas-
ing order of an inadmissible distance-to-go estimate ĥ. Since
the search does not follow the best-first order according to f ,
it is not admissible, and is instead w-admissible. One excep-
tion is the case of w = 1 where the focal list is equivalent to
the f plateau and the expansion order in the focal list corre-
sponds to the tie-breaking on plateaus. In our notation, this
algorithm can be written2 as a BFS with the following sort-
ing criteria:

[d f

w · fmin
e, ĥ, ∗]

This notation is derived from the fact that the focal list
“blur”s f up to w ·fmin. For example, when w = 2, fmin =
5 and f(n) = 5, 9, 11, then d f

w·fmin
e = 1, 1, 2 respectively.

Continuing this line of work, Thayer and Ruml (2009;
2011) evaluated various distance-to-go configurations of
Weighted A∗, Dynamically Weighted A∗ (Pohl 1973) and
A∗
ε , where some configurations use distance-to-go as part

of tie-breaking. This work focused on bounded-suboptimal
search rather than cost-optimal search. Cushing, Benton, and
Kambhampati (2010) pointed out the danger of relying on
cost estimates in a satisficing search by investigating “ε-cost
traps” and other pitfalls caused by cost estimators for search
guidance. Finally, the FD/LAMA2011 satisficing planner
incorporates distance-to-go estimates in its iterated search
framework (Richter, Westphal, and Helmert 2011). The first
iteration of LAMA uses distance-to-go estimates combined
with various satisficing search enhancements.

Benton et al. (2010) proposed an inadmissible technique
for temporal planning where short actions are hidden be-
hind long actions and do not increase makespan. Such ac-
tions cause “g-value plateaus”, which are similar to the
large plateaus caused by 0-cost actions in sequential plan-
ning. They implemented an inadmissible heuristic function
combined with distance-to-go estimates as an extension of
Temporal Fast Downward (Eyerich, Mattmüller, and Röger
2009).

4.1 Embedding Distance-to-Go Estimates in
Admissible Search

Although previous work on distance-to-go estimates assume
a satisficing context, we show that distance-to-go estimates

2However, an actual implementation may differ due to dynamic
updates to fmin.

can be useful for cost-optimal search. Since the admissibility
of the sorting strategy and the optimality of the solution are
not affected by the second or later levels of sorting criteria,
it is possible to use an inadmissible distance-to-go estimate
in these subsequent sorting criteria without sacrificing the
optimality of the solution found. This means inadmissible
heuristics can be used for tie-breaking.

Let h be an admissible heuristic function, and ĥ be a
distance-to-go variation of h, i.e., ĥ uses essentially the same
algorithm as h, except that while h uses the actual action
costs for the problem domain, ĥ replaces all action costs
with 1. Since h is admissible, multi-heuristic sorting strate-
gies such as [g + h, h, ĥ] or [g + h, ĥ] are admissible.

Moreover, we can even use a multi-heuristic strategy
which uses an inadmissible heuristic for tie-breaking which
is unrelated to the primary, admissible heuristic h. For ex-
ample, [g + hLMcut, ĥFF] is an admissible sorting strategy
because the first sorting criterion f = g + hLMcut uses
an admissible LMcut heuristic. Its second sorting criterion,
the distance-to-go FF heuristic (Hoffmann and Nebel 2001),
does not affect the admissibility of this entire sorting strat-
egy.

A potential problem with sorting strategies which use
multiple heuristics is the cost of computing additional
heuristic estimates. For example, [g + hLMcut, ĥFF] requires
more time to evaluate each node compared to a standard tie-
breaking strategy such as [g + hLMcut, hLMcut] because com-
puting the ĥFF heuristic incurs significant overhead per node
while the results of hLMcut can be reused by a caching mech-
anism. When the inadmissible heuristic for tie-breaking is ĥ,
i.e. a distance-to-go (unit cost) variant of the primary, admis-
sible heuristic h, it may be possible to reduce this overhead
to some extent by implementing h and ĥ so that they share
some of the computation – this is a direction for future work.

Combining Distance-to-Go Estimates with Default Tie-
Breaking and Depth Diversification Tie-breaking using
distance-to-go estimates can still leave a set of nodes which
are equivalent up to the distance-to-go criterion (multiple
nodes can have the same f , h, and ĥ values), so additional
level(s) of tie-breaking are necessary in order to select a sin-
gle node. By adding a standard default criterion such as fifo,
lifo, ro, we obtain a sorting strategy that imposes a total
order. For example, [fLMcut, ĥFF, fifo] applies fifo after the
distance-to-go estimate ĥFF.

Furthermore, it is possible to combine depth diversity
based tie-breaking with distance-to-go estimates by apply-
ing the depth-diversity criterion after the distance-to-go es-
timate. For example, [fLMcut, ĥFF, 〈d〉, fifo] applies depth di-
versification criterion after the ĥFF distance-to-go estimate.
As we shall see below, a sorting strategy which performs
tie-breaking using both distance-to-go estimates and depth
diversity results in the best performance overall.

53

4.2 Evaluation of Distance-to-Go Estimates as
Tie-Breaking Criteria for Admissible Search

We tested various admissible sorting strategies on IPC do-
mains and Zerocost domains. In all configurations, the first
sorting criterion is the f = g + h value where h is an ad-
missible heuristic (either LMcut or M&S) using the actual
action-cost based cost calculation. As the second (and third)
criteria, we used ĥ, the distance-to-go version of the origi-
nal heuristic function h, as well as a distance-to-go variation
of FF heuristic (ĥFF). We also added configurations with the
depth metric within plateau

(
f, ĥFF

)
. Detailed per-domain

results are shown in Table 1.

Evaluation on Zerocost Domains In Zerocost domains,
we see that ĥ tie-breaking outperforms h tie-breaking for
both LMcut (e.g. 256 → 295 with fifo) and M&S (e.g.
280 → 308 with fifo). Also, combining h and ĥ can fur-
ther improve performance when the heuristic is LMcut (e.g.
295 → 305 with fifo). The results of combining h and ĥ

were comparable to ĥ when the main heuristic function h

is M&S. Yet more surprisingly, using ĥFF further improved
the performance for both LMcut (e.g. [f, h, ĥ, fifo] : 305 →
[f, ĥFF, fifo] : 337) and M&S (e.g. [f, h, ĥ, fifo] : 307 →
[f, ĥFF, fifo] : 336). Thus, when the depth diversity criterion
is not used, the best configurations are those which use ĥFF.

The reason for the good performance of [fLMcut, ĥFF, ∗] is
not surprising: ĥFF is by itself known to be a powerful inad-
missible heuristic function for satisficing GBFS, and if we
ignore the first sorting criterion, [fLMcut, ĥFF, ∗] is a GBFS
with [ĥFF, ∗].

Adding the depth diversity criterion further improves the
performance of the ĥFF-based strategies, although the im-
pact was small. The coverage increased in both h = hLMcut

(fifo: 337 → 340, lifo: 340 → 342, ro: 341 → 344.3) and
h = hM&S (fifo: 336 → 337, lifo: 331 → 333). When
the default tie-breaking was ro and the heuristic is M&S,
[f, ĥFF, 〈d〉, ro] performed slightly worse than [f, ĥFF, ro],
but the difference was very small (337.9 → 337.6) and 〈d〉
made the performance slightly more robust (smaller stan-
dard deviation: 2.1→ 1.3).

Evaluation on Standard IPC Domains For the standard
IPC benchmark instances, the overhead due to the additional
computation of ĥ or ĥFF tends to harm the overall perfor-
mance. Therefore, the best configuration using LMcut was
[f, h, 〈d〉, lifo] which uses depth and does not impose the
cost of additional heuristics, and the best result using M&S
was [f, h, lifo] which imposes no overhead including the
depth.

Delving into the detailed results, we observed the
following: In Cybersec, distance-to-go variants (e.g.
[fLMcut, ĥFF, lifo]:5) improve upon the standard strat-
egy (e.g. [fLMcut, hLMcut, lifo]:3), but does not im-
prove upon depth (e.g. [f, h, 〈d〉, lifo]: 12). When
h = hM&S, all coverages are zero. Overheads by
ĥFF also slightly degrade the performance in Open-

stacks (e.g. [fLMcut, hLMcut, lifo]:18, [fLMcut, ĥFF, lifo]:17,
[fLMcut, hLMcut, 〈d〉, lifo]: 18; Also, [fM&S, hM&S, lifo]:19,
[fM&S, ĥFF, lifo]:18, [fM&S, hM&S, 〈d〉, lifo]: 19). Thus, in
these two domains, although there are some improvements
in search efficiency due to the guidance by ĥFF or ĥ, the
runtime overhead of computing the distance-to-go heuristics
outweighed the benefit.

In the domains with only positive cost actions (all IPC
domains except Openstacks and Cybersec), ĥ or ĥFF only
harm the overall performance due to the overhead. When the
primary heuristics is LMcut, we do not observe a significant
difference between single-heuristics strategies except for the
fractional difference in the configurations using ro. When
the primary heuristic is M&S, [fM&S, hM&S, lifo] performs
slightly better than other default tie-breaking strategies; It
also outperforms the depth-based variants.

4.3 Simple Dynamic Configuration for Overall
Performance

In practice, the performance degradation when using multi-
heuristic strategy in domains with only positive cost actions
does not pose a problem. We can easily avoid the overhead
incurred by the distance-to-go heuristics in those domains
by applying the following simple policy: If there are any 0-
cost actions, use a multi-heuristic strategy; Otherwise, use a
single-heuristic strategy.

Since the impact of such a check on the total runtime is
negligible, we can extrapolate the result of applying this rule
based on the previously obtained results. Coverage results in
Table 2 show the total coverage of Zerocost and IPC bench-
mark domains. The bottom two rows, labeled as dynamic
configuration, are the extrapolated results when the switch-
ing policy is applied – this dynamic configuration achieves
the highest overall coverage.

When the configuration rule is applied to standard IPC in-
stances, the domains with 0-cost actions are Cybersec and
Openstacks only. They are solved using a multi-heuristic
strategy while other domains are solved in the best perform-
ing single-heuristic strategy. In Zerocost instances, all do-
mains are solved using the multi-heuristic strategy.

We only tested this relatively simple dynamic configura-
tion that switches between two strategies based on the pres-
ence of 0-cost operators. However, domain-specific solvers
(as opposed to domain-independent solvers, which are the
main focus of this paper) can benefit from fine-tuning the
tiebreaking strategy so that it is most suited to the target do-
main.

5 Related Work

Previous work on escaping search space plateaus has fo-
cused on non-admissible search. DBFS (Imai and Kishimoto
2011) adds stochastic backtracking to Greedy Best First
Search (GBFS) to avoid being misdirected by the heuris-
tic function. Type based buckets (Xie et al. 2014) classify
plateaus in GBFS according to the [g, h] pair and distributes

54

h = LMcut

[f
,h

,fifo
]

[f
,h

,lifo
]

[f
,h

,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

[f
,ĥ

,fifo
]

[f
,ĥ

,lifo
]

[f
,ĥ

,ro
]

[f
,h

,ĥ
,fifo

]

[f
,h

,ĥ
,lifo

]

[f
,h

,ĥ
,ro

]

[f
,ĥ

FF,fifo
]

[f
,ĥ

FF,lifo
]

[f
,ĥ

FF,ro
]

[f
,ĥ

FF,〈d〉,fifo
]

[f
,ĥ

FF,〈d〉,lifo
]

[f
,ĥ

FF,〈d〉,ro
]

Zerocost (620) 256 279 261.9 284 264 288.1 295 303 301.0 305 309 305.9 337 340 341 340 342 344.3
airport-fuel(20) 15 13 13.8 14 13 14 13 12 12.7 14 12 12.8 13 11 11.7 13 11 11.7

blocks-stack(20) 17 17 17 17 17 17 15 15 15.0 15 15 15 17 17 17 17 17 17
elevators-up(20) 7 13 7 7 9 9.1 20 20 19.9 20 20 20 20 20 20 20 20 20

freecell-move(20) 4 19 4.9 17 10 16.4 12 14 13.3 12 14 13.2 17 18 17.9 17 18 18.3
miconic-up(30) 16 17 16.6 19 18 20.3 14 17 15.1 14 17 15.1 15 21 17.9 15 21 18

mprime-succumb(35) 15 14 17.1 22 14 20.1 19 16 19.1 20 16 20.1 30 23 28.3 30 27 29.3
mystery-feast(20) 7 5 7.7 6 5 7.2 7 6 6.9 6 5 5.9 8 8 8 8 8 8

parking-movecc(20) 0 0 0 0 0 0 13 14 14.3 13 15 14.4 20 20 20 20 20 20
pipesnt-pushstart(20) 8 8 8.4 8 8 9.8 7 8 7.7 8 8 7.8 9 9 9 9 9 9

pipesworld-pushend(20) 3 4 3.8 3 3 4.8 5 6 5.1 5 5 5 7 8 7.1 7 7 7.7
scanalyzer-analyze(20) 9 9 9.1 9 10 9.2 8 11 10.1 16 18 15.3 15 15 15 15 15 15
sokoban-pushgoal(20) 18 18 18 18 18 18 16 16 16.0 16 16 16 17 17 17 17 17 17

tidybot-motion(20) 16 16 16 16 16 16 14 14 14.0 14 14 14 15 16 16 16 16 15.9
tpp-fuel(30) 8 11 8 11 10 11 8 10 8.7 8 10 8.2 8 10 9.1 10 10 10

woodworking-cut(20) 5 7 7 8 5 8.2 20 20 20.0 20 20 20 19 20 20 19 20 20
IPC benchmark (1104) 558 565 558.9 571 575 571.4 534 534 534 536 535 534.7 564 562 563.7 563 560 561.9

airport(50) 27 26 25.7 27 26 25.7 24 25 23.9 24 24 23.8 25 24 24.8 25 24 24.6
cybersec(19) 2 3 3.9 8 12 10 5 3 5.9 6 4 5.4 6 6 5.9 6 5 5.6

openstacks-opt11(20) 11 18 11.7 18 18 18 10 10 10 10 10 9.9 17 17 17 17 17 17

h = M&S

[f
,h

,fifo
]

[f
,h

,lifo
]

[f
,h

,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

[f
,ĥ

,fifo
]

[f
,ĥ

,lifo
]

[f
,ĥ

,ro
]

[f
,h

,ĥ
,fifo

]

[f
,h

,ĥ
,lifo

]

[f
,h

,ĥ
,ro

]

[f
,ĥ

FF,fifo
]

[f
,ĥ

FF,lifo
]

[f
,ĥ

FF,ro
]

[f
,ĥ

FF,〈d〉,fifo
]

[f
,ĥ

FF,〈d〉,lifo
]

[f
,ĥ

FF,〈d〉,ro
]

Zerocost (620) 280 301 287.7 302 288 308.1 308 305 307.3 307 306 307.8 336 331 337.9 337 333 337.6
airport-fuel(20) 5 5 5 5 5 5 1 1 1 1 1 1 5 5 5 5 5 5
depot-fuel(22) 5 5 6 6 5 6 6 6 6 6 6 6 4 4 4 4 4 4

elevators-up(20) 8 14 8.6 9 13 11 19 19 19 19 19 19 20 20 20 20 20 20
floortile-ink(20) 8 8 8 7 7 6.9 8 8 8 8 8 8 9 8 8.8 9 8 8.8

freecell-move(20) 5 17 6.7 17 15 17.3 13 14 12.7 13 13 12.7 17 17 17.4 17 17 17.3
hiking-fuel(20) 13 13 12.8 13 12 12.1 13 13 12.1 13 13 12.1 11 11 11 11 11 11
miconic-up(30) 29 30 30 30 30 30 22 22 22 22 22 22.1 30 30 30 30 30 30

mprime-succumb(35) 21 19 19.6 25 15 23.4 21 17 20.4 21 17 20.4 28 23 27.4 28 25 27.7
mystery-feast(20) 4 4 5.9 4 4 6 5 5 5 5 5 5 3 3 3 3 3 3

parking-movecc(20) 0 0 0 0 0 0 2 2 2 2 2 2 10 10 10.3 10 10 10.3
pipesnt-pushstart(20) 3 3 3.4 5 3 5 1 2 1.9 1 2 1.8 5 5 5 5 5 5

pipesworld-pushend(20) 5 9 7.7 5 6 9 8 7 7.8 8 8 8 5 5 5.4 5 5 5.6
scanalyzer-analyze(20) 11 11 11 11 11 11 15 14 15 14 15 15 15 16 15.4 15 15 15.2
sokoban-pushgoal(20) 19 19 18 18 18 18 17 17 17 17 17 17 18 18 18.2 18 18 18

tpp-fuel(30) 9 10 9.6 11 10 11 9 10 9.4 9 10 9.8 10 11 10.9 11 11 10.9
woodworking-cut(20) 7 7 8 8 7 9 20 20 20 20 20 20 20 20 20 20 20 20

IPC benchmark (1104) 491 496 489.4 487 487 485.6 477 475 470.4 476 475 470.9 458 457 457 457 457 456.8
airport(50) 9 9 9 9 9 9 7 7 7 7 7 7 9 9 9 9 9 9
blocks(35) 22 22 22 22 21 21.9 22 21 21 21 21 21 21 20 20.1 20 20 20
depot(22) 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4

elevators-opt11(20) 13 13 13 12 12 12 13 13 12 13 13 12 10 10 10 10 10 10
freecell(80) 17 17 16 16 16 16 15 15 15 15 15 15 14 14 14 14 14 14

miconic(150) 73 73 73.2 73 73 72.2 72 72 72 72 72 72 69 69 69.2 69 69 69.2
mprime(35) 23 24 23.7 23 24 23.4 19 19 19.3 20 19 19.3 21 21 21.1 21 21 21.2

nomystery-opt11(20) 18 18 18 18 18 18 18 18 18 18 18 18 16 16 16 16 16 16
openstacks-opt11(20) 15 19 15.4 19 19 19 18 19 18 18 19 18 18 18 18 18 18 17.7

pegsol-opt11(20) 19 19 19 19 19 19 19 19 19 19 19 19 17 17 17 17 17 17
pipesworld-notankage(50) 10 10 9.9 10 9 9.8 6 5 5.7 6 5 5.9 9 9 8.7 9 9 8.8

pipesworld-tankage(50) 13 13 13.2 13 13 13 12 12 12 12 12 12 9 9 9 9 9 9
rovers(40) 8 8 8 8 8 7.1 8 8 6 7 8 6.1 6 6 6 6 6 6

scanalyzer-opt11(20) 10 10 10 10 10 10 10 10 9.9 10 10 9.8 7 7 6.8 7 7 6.8
sokoban-opt11(20) 20 20 20 19 19 19 18 18 18 18 18 18 19 19 19 19 19 19

zenotravel(20) 12 12 12 10 10 10.1 12 11 10.9 12 11 10.9 10 10 10 10 10 10

Table 1: Coverage results with LMcut (top) and M&S (bottom) for computing f , and various tie-breaking strategies, on 620
Zerocost instances and 1104 IPC instances. We only show the domains when the difference between the maximum and the
minimum coverage exceeds 2, and highlight the best results.

55

LMcut M&S
[f, h, lifo] 844 797
[f, h, 〈d〉, fifo] 855 789
[f, h, 〈d〉, lifo] 839 775
[f, h, 〈d〉, ro] 859.5 793.7
Multi-heuristic strategies
[f, ĥFF, 〈d〉, fifo] 903 794
[f, ĥFF, 〈d〉, lifo] 902 790
[f, ĥFF, 〈d〉, ro] 906.2 794.4
Dynamic Configuration
If a problem contains zerocost actions:
[f, ĥFF, 〈d〉, ro] ; Else [f, h, 〈d〉, lifo] 911.9

If a problem contains zerocost actions:
[f, ĥFF, 〈d〉, ro] ; Else [f, h, lifo] 832.3

Table 2: Summary Results: Coverage comparison, the to-
tal of IPC domains and Zerocost domains (the num-
ber of instances solved in 5min, 4GB) between sev-
eral sorting strategies, plus a dynamic configuration strat-
egy. [f, h, fifo], [f, h, ro], [f, ĥ, ∗], [f, h, ĥ, ∗], [f, ĥFF, ∗] are
not shown because they achieve smaller coverage.

the effort.3 Marvin (Coles and Smith 2007) learns plateau-
escaping macros from the Enhanced Hill Climbing phase of
the FF planner (Hoffmann and Nebel 2001). Hoffmann gives
a detailed analysis of the structure of the search spaces of
satisficing planning (2005; 2011).

Benton et al. (2010) proposes inadmissible technique for
temporal planning where short actions are hidden behind
long actions and do not increase makespan. Wilt and Ruml
(2011) also analyzes inadmissible distance-to-go estimates.
This differs from our work on cost-optimal search because
admissible and inadmissible search differ significantly in
how non-final plateaus (plateaus with f < f∗) are treated:
Inadmissible search can skip or escape plateaus whenever
possible, while admissible search cannot, unless it is the
plateau with f = f∗ where the goals can immediately be
found.

In their work on combining multiple inadmissible heuris-
tics in a planner, Röger and Helmert (2010) considered a
tie-breaking approach which works as follows: When com-
bining two heuristics h1 and h2, h1 is used as the primary
criterion, and h2 is used to break ties among nodes with the
same h1 — [h1, h2, fifo]. This did not perform well in their
work on satisficing planning compared to the approaches
based on alternation queues and Pareto-optimal queue selec-
tion. Since their focus is on how to combine multiple heuris-
tics, this tie-breaking-based approach is just one instance of
various implementations of OPEN lists. In contrast, this pa-
per provides a focused, in-depth investigation of various tie-
breaking strategies, and shows how tie-breaking enables the
efficient search on the plateau created by the earlier levels of
sorting criteria.

3The relationship between Type-GBFS and our work is dis-
cussed in detail in Section 3.1.

6 Conclusions and Future Work
We introduced a new interpretation of cost-optimal A∗

search as a series of satisficing searches among f -cost
plateaus of an increasing order of f . This perspective led to
a novel approach for effective tie-breaking in Zerocost do-
mains, the use of inadmissible distance-to-go estimates as
part of a multi-heuristics tie-breaking strategy. Combination
of depth diversification and distance-to-go estimates results
in the best overall performance. Although there is an addi-
tional cost to compute multiple heuristic values, the over-
head can be eliminated by a simple case-based configuration
which only uses multiple heuristics when 0-cost actions are
present in the problem instance.

Our reformulation of A∗ as a sequence of satisficing
searches points to an interesting direction for future work.
Although we evaluated only one relatively simple, satisfic-
ing configuration (ĥFF) in the experiments, many techniques
which have previously been developed for satisficing plan-
ning can be applied to enhance tie-breaking (plateau-search)
in cost-optimal search, including lazy evaluation (Richter
and Westphal 2010), alternating/Pareto open list (Röger and
Helmert 2010), helpful actions (preferred operators) (Hoff-
mann and Nebel 2001), random walk local search (Nakhost
and Müller 2009), macro operators (Botea et al. 2005;
Chrpa, Vallati, and McCluskey 2015), factored planning
(Amir and Engelhardt 2003; Brafman and Domshlak 2006;
Asai and Fukunaga 2015) and exploration-based search en-
hancements (Valenzano et al. 2014; Xie et al. 2014; Valen-
zano and Xie 2016).

References
Amir, E., and Engelhardt, B. 2003. Factored Planning. In Proc.
of International Joint Conference on Artificial Intelligence (IJ-
CAI).
Asai, M., and Fukunaga, A. 2015. Solving Large-Scale Plan-
ning Problems by Decomposition and Macro Generation. In
Proc. of the International Conference on Automated Planning
and Scheduling(ICAPS).
Asai, M., and Fukunaga, A. 2016. Tiebreaking Strategies for
Classical Planning Using A∗ Search. In Proc. of AAAI Confer-
ence on Artificial Intelligence.
Asai, M., and Fukunaga, A. 2017. Tie-Breaking Strategies
for Cost-Optimal Best First Search. J. Artif. Intell. Res.(JAIR)
58:67–121.
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.; and
Kambhampati, S. 2010. G-Value Plateaus: A Challenge for
Planning. In Proc. of the International Conference on Auto-
mated Planning and Scheduling(ICAPS).
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005.
Macro-FF: Improving AI Planning with Automatically Learned
Macro-Operators. J. Artif. Intell. Res.(JAIR) 24:581–621.
Brafman, R. I., and Domshlak, C. 2006. Factored Planning:
How, When, and When Not. In Proc. of AAAI Conference on
Artificial Intelligence.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2015. On the On-
line Generation of Effective Macro-Operators. In Proc. of In-
ternational Joint Conference on Artificial Intelligence (IJCAI).

56

Coles, A., and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. J. Artif. Intell.
Res.(JAIR) 28:119–156.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
Based Search Considered Harmful. In Proc. of Annual Sympo-
sium on Combinatorial Search.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Proc. of the International Conference on
Automated Planning and Scheduling(ICAPS).
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Transactions on
4(2):100–107.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR) 14:253–302.
Hoffmann, J. 2005. Where ’Ignoring Delete Lists’ Works: Lo-
cal Search Topology in Planning Benchmarks. J. Artif. Intell.
Res.(JAIR) 24:685–758.
Hoffmann, J. 2011. Analyzing Search Topology Without Run-
ning Any Search: On the Connection Between Causal Graphs
and h+. J. Artif. Intell. Res.(JAIR) 41(2):155–229.
Imai, T., and Kishimoto, A. 2011. A Novel Technique for
Avoiding Plateaus of Greedy Best-First Search in Satisficing
Planning. In Proc. of AAAI Conference on Artificial Intelli-
gence.
Kautz, H. A., and Selman, B. 1992. Planning as Satisfiabil-
ity. In Proc. of European Conference on Artificial Intelligence,
volume 92, 359–363.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence 27(1):97–109.
Nakhost, H., and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Proc. of International Joint Con-
ference on Artificial Intelligence (IJCAI).
Pearl, J., and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. Pattern Analysis and Machine Intelligence, IEEE
Transactions on (4):392–399.
Pohl, I. 1973. The Avoidance of (Relative) Catastrophe, Heuris-
tic Competence, Genuine Dynamic Weighting and Computa-
tional Issues in Heuristic Problem Solving. In Proc. of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. J. Artif.
Intell. Res.(JAIR) 39(1):127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA 2008
and 2011. In Proc. of the International Planning Competition,
117–124.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. of the International Conference on Automated Planning
and Scheduling(ICAPS).
Thayer, J. T., and Ruml, W. 2009. Using Distance Estimates in
Heuristic Search. In Proc. of the International Conference on
Automated Planning and Scheduling(ICAPS).
Thayer, J. T., and Ruml, W. 2011. Bounded Suboptimal Search:
A Direct Approach using Inadmissible Estimates. In Proc.

of International Joint Conference on Artificial Intelligence (IJ-
CAI).
Valenzano, R. A., and Xie, F. 2016. On the Completeness
of BestFirst Search Variants that Use Random Exploration. In
Proc. of AAAI Conference on Artificial Intelligence.
Valenzano, R. A.; Schaeffer, J.; Sturtevant, N.; and Xie, F. 2014.
A Comparison of Knowledge-Based GBFS Enhancements and
Knowledge-Free Exploration. In Proc. of the International
Conference on Automated Planning and Scheduling(ICAPS).
van den Briel, M., and Kambhampati, S. 2005. Optiplan:
Unifying IP-based and Graph-based Planning. J. Artif. Intell.
Res.(JAIR) 24:919–931.
Wilt, C. M., and Ruml, W. 2011. Cost-Based Heuristic Search
is Sensitive to the Ratio of Operator Costs. In Proc. of Annual
Symposium on Combinatorial Search.
Xie, F.; Müller, M.; Holte, R. C.; and Imai, T. 2014. Type-Based
Exploration with Multiple Search Queues for Satisficing Plan-
ning. In Proc. of AAAI Conference on Artificial Intelligence.

57

Cost-Length Tradeoff Heuristics for Bounded-Cost Search

Sean Dobson
University of Auckland
seandobs@gmail.com

Patrik Haslum
Australian National University & CSIRO Data61

patrik.haslum@anu.edu.au

Abstract

Bounded-Cost Search involves solving a planning problem
subject to the constraint that the cost of the solution must
be within a specified cost bound. We investigate the use of
heuristics to guide a greedy search which solves these kinds
of cost bounded planning problems. We devise a formulation
which combines heuristic approximations for both solution
cost and solution length. This heuristic adapts previous work
in estimating a search node’s potential; the probability that it
will lead to a solution within the cost bound. We also intro-
duce Pareto Front Pattern Databases, which evaluate a num-
ber of pareto optimal solutions in an abstract space to produce
a heuristic which is suited to guiding Bounded-Cost Search.

1 Introduction
It is well known that classical planning problems can be
solved optimally using heuristic-guided search algorithms
such as A* (Hart, Nilsson, and Raphael 1968). However,
optimal solutions may prove to be too hard to find within
the practical constraints of time and memory. Conversely,
sub-optimal solutions can be found relatively quickly using
greedy best-first search. Historically, work in this area has
focused on producing sub-optimal solutions that are within
some factor, w, of the optimum (Pohl 1970). It is only re-
cently (Stern, Puzis, and Felner 2011; Thayer et al. 2012;
Haslum 2013) that work has been done to consider the alter-
native scenario where we are required to produce any sub-
optimal solution as long as its cost is less than or equal to
some maximum cost bound, C. We refer to this as Bounded-
Cost Search.

Typically, heuristics for optimal search aim to predict the
cost of the optimal solution (eg. PDB heuristics (Culberson
and Schaeffer 1996; Felner, Korf, and Hanan 2004; Haslum
et al. 2007; Helmert et al. 2007)). These are cheapest-
cost heuristics, and they naturally guide the search toward
cheaper solutions. If we weren’t concerned with solution
cost at all, then the fastest way to find a solution would be
to ignore operator costs completely and greedily prioritise
those nodes which are estimated to be closest to the goal
in terms of the number of actions, i.e. our search should
follow a shortest-length heuristic. However, with Bounded-
Cost search, there are different considerations to be made
when designing a heuristic. We are equally satisfied with any
solution within the cost bound, and this gives us some lee-

way to sacrifice cost-optimality and greedily follow shortest-
length in order to reduce search time. But it is clear that we
must also take solution cost into account; greedily following
the shortest-length heuristic may actually waste more time if
it chases solutions which exceed the cost bounds.

Our work attempts to strike a balance between these two
ideas, incorporating estimations for both solution length and
cost into a single guiding heuristic which can be used to
inform a best-first Bounded-Cost search. We explore the
concepts employed in the development of Potential Search
(PTS) (Stern, Puzis, and Felner 2011), which is a best-first
search prioritising nodes that are more likely to lead to a
goal within the cost bound. We show that this can be used
to inform a rational tradeoff between the likelihood of find-
ing a solution within the cost bound, and the time taken to
find that solution. This formulation produces an approxima-
tion for the ’expected work’ in finding a solution under a
given search node. Specifically, we estimate the number of
nodes that would need to be expanded on average to find
the solution. We claim that by prioritising our open list by
those nodes with the minimum expected work, the search
will minimise the total number of nodes expanded.

Independently of the expected work estimation, we also
produce a modified version of the Pattern Database (PDB)
heuristic (Culberson and Schaeffer 1996), which we call the
Pareto Front Pattern Database (PFPDB). In the construction
of our PFPDB, a number of cost-length pareto optimal solu-
tions are explored in the abstract space, allowing our heuris-
tic to produce different values for the same state depend-
ing on how close the node is to the cost bound. We propose
a modified version of Dijkstra’s algorithm (Dijkstra 1959),
called Pareto Front Dijkstra Search (PFD), which can be
used to efficiently construct the PFPDB. We also show that
techniques for producing additive PDBs (Felner, Korf, and
Hanan 2004) can also be applied to PFPDBs, and that we
can add together the elements of pareto fronts to produce a
new pareto front of higher quality.

2 Background
Past research in the area of bounded-cost search has often
involved either a cost-oriented heuristic (Stern, Puzis, and
Felner 2011), a distance-oriented heuristic (Haslum 2013),
or some mechanism of alternating between the two (Thayer
et al. 2012). This research has typically shown the purely

58

distance-oriented heuristics to be the fastest.
We begin by noting that not all nodes may be extended

into a solution within the cost bound. Expanding such nodes
is obviously a waste of time, and so it would be useful to be
able to detect and prune these nodes during our search. Note
the distinction between a state and a search node: a node
represents a path to a state in the search space. With that in
mind, suppose that n is a search node. We define h∗(n) to
be the cost of the cheapest path from the state represented
by n to the goal, and we define g(n) to be the (potentially
suboptimal) cost of the path that is represented by n. Then
f∗(n) = g(n)+h∗(n) is the cost of the cheapest path which
extends n in order to reach the goal. Clearly, we can extend
n’s path to a solution within the cost bounds if and only if
f∗(n) ≤ C. Nodes that don’t satisfy this condition should
not be expanded by our search, but detecting this would re-
quire knowledge of h∗(n).

Potential Search
Consider that it may be beneficial to repackage an admis-
sible cost-estimating heuristic, h, as a simple pruning func-
tion, pCh , such that

pCh (n) =

{
1, if h(n) ≤ C − g(n)

0, otherwise

Unfortunately, this discards some of the relevant information
given by h, but the formulation motivates a further improve-
ment. In the development of Potential Search (PTS) (Stern,
Puzis, and Felner 2011), this idea for a pruning function was
augmented to produce real values in the range [0, 1] where
pC(n) = Pr(h∗(n) ≤ C − g(n)). So pC represents the
probability that n can be extended to a solution within the
cost bound. PTS refers to pC as a node’s potential. Strictly
speaking, it is true that Pr(h∗(n) ≤ C − g(n)) ∈ {0, 1}
in a deterministic context, but for practical purposes we use
our heuristic to produce an aggregation of this probability
on a per h-value basis. Let Uh(v) give a uniform random
distribution over the set of all nodes n with h(n) = v. Then
we take pCh (q, v) = Pr(h∗(n) ≤ C − q | n ∼ Uh(v)),
such that pCh (g(n), h(n)) is the probability that a node n′
randomly chosen from the set of nodes with h(n′) = h(n)
has h∗(n′) ≤ C − g(n).

PTS guides the search by expanding nodes in ascending
order of 1

pCh (g(n),h(n))
(pruning on 1

0 = ∞), and thus di-
rects the search toward nodes which are more likely to lead
to a solution within the cost bound. PTS does not use pCh
directly as this function is generally unknown, but rather it
constructs a function φC that gives approximately the same
node ordering of nodes as pCh . Under the assumption that
the error h∗(n) − h(n) is linear in the size of h(n), it has
been shown (Stern, Puzis, and Felner 2011) that choosing
φC(g(n), h(n)) = 1 − h(n)

C+1−g(n) yields the same ordering
as pCh . Technically, this formulation is not explicitly stated
in their work. The standard PTS construction, as given in the
paper, takes PTSC(g(n), h(n)) = h(n)

C−g(n) . We have chosen
to replace C with C + 1 in our formulation. This is because
when h(n) = C − g(n), we still want the potential to be

greater than 0 in case we have h(n) = h∗(n). We have also
inverted the term so that φC more directly approximates pCh ,
and 1

φC(g(n),h(n))
gives the same ordering as PTS, but with

values in the range between [0,∞] rather than [0, 1].

BEEPS
Bounded-Cost Explicit Estimation Potential Search
(BEEPS) attempted to improve upon PTS by incorporating
distance-estimating heuristics to guide the search (Thayer et
al. 2012).

Assume that we are given an inadmissible cost heuristic,
ĥ, an admissible cost heuristic, h, and an inadmissible dis-
tance heuristic d̂. So it is safe to prune with h, but not with
ĥ. At any point during our search, we have a set of nodes,
open, which have been generated but are yet to be expanded.
BEEPS takes:

openC = {n ∈ open : g(n) + h(n) ≤ C}
ôpen

C
= {n ∈ openC : g(n) + ĥ(n) ≤ C}

The BEEPS search strategy then chooses the next node to be
expanded with the following rule:

BEEPSC(open) =

argmin
n∈ôpenC

d̂(n), if ôpenC 6= ∅

argmax
n∈openC

φC(g(n), ĥ(n)), otherwise

Essentially, BEEPS uses d̂ to guide the search whilst ĥ still
reports that a solution exists within the bounds. Then, when
the search runs out of nodes within the inadmissible bound-
ary, BEEPS reverts to running PTS (with ĥ) on those nodes
within the admissible boundary.

3 A Rational Approach to Combining Cost
and Distance Estimations

Rather than alternating between cost and distance heuristics
like BEEPS, our work attempts to merge them into a single
combined heuristic which rationally accounts for the inter-
action of these two sources of information.

Consider now that if we had knowledge of the perfect
heuristic, h∗, then pCh∗(g(n), h∗(n)) ∈ {0, 1} could be com-
puted exactly. But then, using this in the PTS formulation,
the search would assign every node either 0 or∞, resulting
in a blind search over all nodes with f∗(n) ≤ C. This is
obviously not an ideal search strategy, and it hints at the fact
that, beyond simply estimating the potential, PTS also relies
on its approximation prioritising nodes with lower h-values.

Expanding on the ideas of PTS, note that 1
pCh (g(n),h(n))

is the number of times we expect to have to draw n′ ∼
Uh(h(n)) before we find n′ with g(n) + h∗(n′) ≤ C. So
the expansion of n is predicated upon the fact that we expect
to expand 1

pCh (g(n),h(n))
other n-like nodes, along with all of

the nodes in their subtrees with f -levels less than C, before
we find a solution within the cost bound. Then let TC(n)
predict the size of the C-bounded subtree rooted at n, and

59

let HC(n) be the expected number of nodes that we will
explore before we find the goal under a node like n:

HC(n) =
TC(n)

pCh (g(n), h(n))

We will referHC as our expected work heuristic. At each de-
cision point, a rational agent seeking to minimise the amount
of work done in achieving its goal would choose the alter-
native which it predicts will minimise the amount of work
done in the future. So rationally speaking, our search strat-
egy should aim to expand the node which it predicts will re-
sult in the fewest number of future node expansions, which
is what the expected work heuristic aims to capture. Hence,
we claim that the search should ideally expand the node
which minimises HC(n). With perfect predictions for po-
tential, HC(n) would resort to prioritising nodes with the
smallest subtrees, which is ideal for minimising search run-
time.

In practice, we don’t know TC or pCh , but we can ap-
proximate pCh with φC , and TC can be estimated. Let b de-
note the average branching factor of the search tree, and let
dC(n) give an estimation for the length of the shortest so-
lution from n to the goal within the cost bound, such that
dC(n)b ≈ TC(n). Then we have:

HC(n) ≈ ωC(n) =
dC(n)b

φC(g(n), h(n))

Noting that φC can be a rather poor approximation, in our
Future Research section we outline a proposal for approxi-
mating pCh directly via online learning of heuristic errors.

4 Pareto Front Pattern Databases
Pattern databases (PDBs) (Culberson and Schaeffer 1996)
are a commonly used type of heuristic which solve an ab-
stract version of the problem in order to provide admissible
estimates of the difficulty of solving the actual problem. Es-
sentially, we construct a ’pattern’ abstraction, which is really
just a subset of the variables which make up a state descrip-
tion. We apply this abstraction to a state by simply remov-
ing the variables which aren’t in the pattern. Likewise, the
problem operators are abstracted so that the ignored vari-
ables are stripped from the action preconditions and effects.
This leaves us with a simpler abstract problem, for which
the cost of the cheapest abstract solution gives an admissible
estimate for the cost of the cheapest soluton in the concrete
space. We can perform a backward Dijkstra search from the
goal to find the cheapest path to the goal from all of the states
in the abstract state space. These costs are stored in the pat-
tern database, to be recalled at a later time during our actual
search. For a given abstraction a, and search node n, we map
ha(n) = h∗(a(n)), which is the cost of the cheapest abstract
solution found for a(n).

We now adapt the PDB methodology to produce a new
heuristic for bounded-cost search. We’ll refer to this heuris-
tic as a Pareto Front Pattern Database (PFPDB). Our idea is
simple; for every abstract state in the PFPDB, we explore all
paths from that state to the goal in the abstract space which

are pareto optimal in their length and cost. I.e. those solu-
tions for which the length cannot be improved without in-
creasing the cost, and the cost cannot be improved without
increasing the length. Let � denote the cost-length pareto
domination relation such that for two paths π and π′, we
have:

π � π′ ⇐⇒ length(π) ≤ length(π′)∧
cost(π) ≤ cost(π′)∧
(length(π) < length(π′)∨
cost(π) < cost(π′))

(Note that π � π′ means π dominates, i.e., is strictly better
than, π′.) Supposing that Π(s) gives the set of all paths from
a state s to the goal, we define a state s’s pareto front as the
subset of paths in Π(s) which are pareto optimal:

Π∗(s) = {π ∈ Π(s) : ¬∃π′ ∈ Π(s), π′ � π}
For a given abstraction a, our PFPDB heuristic finds Π∗(sa)
for each abstract state, sa, reachable from the abstracted
goal. Then with every pareto optimal abstract solution
π ∈ Π∗(sa), we store the corresponding pareto pair,
(cost(π), length(π)), in our database. Then we can easily
implement a function Πa(n) = Π∗(a(n)) mapping concrete
search nodes to their pre-computed abstract pareto fronts.

These pareto fronts may be used in various ways to com-
pute the heuristic value. E.g. we could return the length of
the shortest abstract solution within the cost bounds:

ΠC
a (n) = {π ∈ Πa(n) : g(n) + cost(π) ≤ C}

dCa (n) =

{
min

π∈ΠC
a (n)

length(π), if ΠC
a (n) 6= ∅

∞, otherwise

(pruning on dCa (n) = ∞). We could also substitute the
lengths and costs into formula for ωC(n) as the values for
d(n) and h(n) respectively:

ωCa (n) =

min
π∈ΠC

a (n)

length(π)b

φC(g(n),cost(π))
, if ΠC

a (n) 6= ∅
∞, otherwise

In general, this could be posed as the minimisation of some
objective function, O(n, π), over all π ∈ ΠC

a (n).

Computing the Pareto Fronts Efficiently
We now briefly describe an algorithm which will find the
pareto fronts for every node reachable via a regression from
the goal. Extending the standard PDB approach, we use
a modified version of Dijkstra’s (1959) algorithm. Pareto
Front Dijkstra’s Search (PFD) is different from the ordinary
Dijkstra’s algorithm in two respects. Firstly, PFD expands
nodes in lexicographical order of cost and then length. And
secondly, when considering a node n for expansion, which
represents a path from some state s to the goal, we only ex-
pand n if that path is nondominated in terms of cost and
length by any of the previously expanded paths to s. If n is
expanded, then (h(n), d(n)) is recorded in the pareto front
for s.

60

We claim that PFD has the following property: PFD ter-
minates after having explored precisely those nodes which
represent pareto optimal paths to the goal.
Proof: Note that our search proceeds backward from the
goal, so for a search node n which represents a path from
n’s state to the goal, we let h(n) and d(n) represent the re-
spective cost and length of that path. Now observe that all
of the subpaths of any pareto optimal path must they them-
selves be pareto optimal. Otherwise, we could swap that sub-
optimal subpath out for one that dominates it and produce a
new solution which dominates the original one, contradict-
ing our premise that that path was pareto optimal. Assume
now that we had expanded precisely those pareto optimal
nodes with h(n) ≤ i. Then the pareto optimal nodes with
h(n) = i + 1 could be found in the open list as children of
their pareto optimal parents. If n and n′ represent different
paths to the same state, then n′ � n iff h(n) ≥ h(n′) and
d(n) ≥ d(n′) and at least one of those inequalities is strict.
But by our lexicographical ordering and by our assumption,
when we consider n for expansion, all pareto optimal nodes
which could dominate n must have been found already. And
so it is sufficient to determine n’s pareto optimality by only
checking that it is not dominated by any of the previously ex-
plored pareto optimal nodes for that state. So, of the nodes
with h(n) = i + 1, PFD will expand exactly those nodes
which are pareto optimal. By induction from a base case
of the goal node G having h(G) = d(G) = 0, which is
obviously pareto optimal, PFD expands precisely the set of
pareto optimal nodes. QED

As a minor improvement to PFD, we can use a slightly
stricter pre-requisite for node expansion which requires that
the node is not only pareto optimal, but it also has a unique
cost and length when compared with the pareto optimal so-
lutions already in the PFPDB. This essentially removes du-
plicate entries from our list of pareto pairs. We also note
that the most recent pareto optimal pair added to the list for
a state is both the most expensive and shortest pareto op-
timal solution found so far for that state. Then the expan-
sion check can be made for a node n in O(1) by simply
taking the last entry in the list of pareto pairs for n’s state,
(hmax, dmin), and checking that d(n) < dmin. As another
simple way of speeding up PFD, if we know that none of the
pareto pairs exceeding cost(π) > C will be used to produce
the final heuristic value, then we can prune those nodes with
h(n) > C from our abstract search.

Additive Pareto Front Pattern Databases
Some techniques for improving PDB heurstics involve the
generation of a set of abstractions over which the PDB val-
ues can be summed together in order to produce an admissi-
ble heuristic value (Felner, Korf, and Hanan 2004). We say
that such a set of patterns is additive. We can take advantage
of this kind of additivity in our work by adding together the
pareto fronts. Pareto pairs are added together by summing
their costs and lengths:

cost(π1 + π2) = cost(π1) + cost(π2)

length(π1 + π2) = length(π1) + length(π2)

Lists of pareto pairs are added together by taking the pair-
wise sums of every combination of pareto pairs:

Π1 + Π2 =
⋃

(π1,π2)∈Π1×Π2

π1 + π2

Note that not all members of Π1 + Π2 are guaranteed to be
pareto optimal. Taking the subset of pareto optimal pairs, we
obtain:

Π1 +∗ Π2 = {π ∈ Π1 + Π2 : ¬∃π′ ∈ Π1 + Π2,

π′ � π}
Careful consideration must be made as to the implementa-
tion of this operation; this could be a bottleneck in the time
taken to compute the final heuristic value. With that in mind,
we have devised the following two alternative approaches:

1. We can use the same technique applied in PFD to find
Π1 +∗ Π2 via a single pass over the lexicographically
sorted Π1 + Π2. If n = |Π1|,m = |Π2|, then sorting
takes O(nm · log(nm)), for the nm pairs in Π1 + Π2.
Checking for pareto optimality and appending to the new
pareto front takes O(1) per pair, so sorting dominates the
complexity.

2. Our second approach will compute the minimum cost-
value associated with every length-value. Let

lengthmin = min
π∈Π1+Π2

length(π)

lengthmax = max
π∈Π1+Π2

length(π)

δ = lengthmax − lengthmin
We note that with a single iteration over Π1 + Π2, we can
easily construct an array of size δ that maps

costmin[d] = min
π∈Π1+Π2

cost(π)

s.t. length(π) = d+ lengthmin

(with costmin[d] = ∞ if no such π exists). Then we
can iterate over this map in ascending order of possible
length-values, d = 0, . . . , δ, inserting

(costmin[d], d+ lengthmin)

into the pareto front if we have costmin[d] 6= ∞ ∧
costmin[d] < min

d′<d
costmin[d′]. Every inserted pair is

pareto optimal because there is no π ∈ Π1 +Π2 for which
length(π) < d + lengthmin and cost(π) ≤ costmin[d].
Tracking the value of min

d′<d
costmin[d′] as we go yields

a complexity of O(δ) for this iteration. Then we have a
combined complexity of O(nm + δ) for both stages of
the computation.

Observe that in bounded cost search, the cost bound can be
used to limit the size of the pareto fronts by pruning those
pairs with cost(π) > C. No two pairs in a front may have
the same cost (assuming PFD removes duplicates), and so
n,m ≤ C. We can do this same pruning when construct-
ing the summed pareto front; our implementation cuts the
enumeration of Π1 + Π2 short so as to exclude all pairs

61

with cost(π) > C. In domains with large actions costs, it
will likely be the case that nm << C2, particularly because
path cost and length are positively correlated in the presence
of positive action costs. Under the assumption that δ would
be relatively small for most of the evaluated pareto fronts
(i.e. δ < C), we went with the second approach in our final
implementation.

For multiple additive abstractions, we can simply apply
the +∗ operation repeatedly to sum them all together. If Ξ =
{Π1,Π2, . . .} is a set of additive PFPDBs, and n is a search
node, then (with some abuse of notation) we take:

Ξ(n) =
∑∗

Πi∈Ξ

Πi(n)

= Π1(n) +∗ (Π2(n) +∗ (. . .))

ΞC(n) = {π ∈ Ξ(n) : g(n) + cost(π) ≤ C}

In our implementation, we compute ΞC(n) directly by
bounding each +∗ operation by the relative cost bound
C − g(n).

Canonical Pareto Front Pattern Databases
Some techniques for finding sets of additive PDBs will pro-
duce a Canonical PDB, which is a set of sets of additive
PDBs (Haslum et al. 2007). For a given state, within each
additive set of PDBs, the h-values for that state are summed.
Then the final heuristic value is given by maxing over those
summed totals. Each summed total is admissible, and so the
max is admissible. Note that, other than for pruning out-of-
bounds nodes, admissibility is not an important requirement
for guiding our bounded-cost search. As long as our CPDB
returns∞ when any of the additively summed h-values ex-
ceeds C−g(n), we are free to return an inadmissible heuris-
tic value. Suppose, then, that our PDB records both the cost
and length of the cheapest-cost path as a pareto pair. For each
set of additive PDBs, our CPDB would compute an admis-
sibly summed pair by adding the additive costs and lengths
together, pruning if any summed cost exceeds C− g(n). We
propose that the CPDB be parameterised with an objective
function of the form O(n, π) which measures the objective
value of a summed pareto pair π with respect to the search
node n. We also parameterise our CPDB with an aggregator
function that replaces the max aggregation (e.g. we might
sum the objective values rather than max over them). Then
our heuristic returns the aggregation of each summed pair’s
objective value.

Now we extend these ideas to PFPDBs, in which we are
given not only the cheapest-cost pair, but the entire pareto
front of pairs. This gives rise to the notion of a Canoni-
cal Pareto Front Pattern Database (CPFPDB). For each set
of additive PFPDBs in the CPFPDB, we find the additively
summed pareto front given by the

∑∗ operation (bounded
byC−g(n)). If that additively summed pareto front is empty
(because the additive sum of the cheapest solutions still ex-
ceeded the cost bound), then we prune the node. Otherwise,
with that summed pareto front, we first minimise the objec-
tive function over each of the pareto pairs, producing a sin-
gle minimum objective value for each set of additive PDBs.

Then we apply the aggregator to these minimum objective
values (just like with CPDBs), giving us our heuristic value.

For a cost bound C, an aggregator A, and an objec-
tive function O, we notate these parameterisations with
CPDBC [A O] and CPFPDBC [A O]. If we are given a CPF-
PDB Ψ, and a node n, then for each set of additive PFPDBs
Ξi ∈ Ψ, we compute:

Ξi(n) =
∑∗

Πj∈Ξi

Πj(n)

ΞCi (n) = {π ∈ Ξi(n) : g(n) + cost(π) ≤ C)}

vCi =

{
min

π∈ΞC
i (n)

O(n, π), if ΞCi (n) 6= ∅

∞, otherwise

And finally, our heuristic returns:

ΨC [A O](n) = A(vC1 , v
C
2 , . . .)

With A returning ∞ if any vCi = ∞ (meaning that the n
gets pruned).

If Ψ were a CPDB instead, then the only difference is that
Πj(n) would be a singleton set containing the cheapest-cost
pareto pair.

5 Experiments
We tested the effectiveness of the PFPDB heuristic in a
bounded-cost greedy search on the problems from the satis-
ficing track of the IPC6, 2008 International Planning Com-
petition. The results of the competition were used to set
cost bounds for our experiment. For each problem, two cost
bounds were tested:
• The cost of the second best plan for that problem found

by any of the planners that participated in IPC6, minus 1.
• The cost of the best plan from IPC6.
Each problem is run with a 1GB memory limit and a time
limit of 10 minutes. Upon the termination of each planner
instance, we recorded whether the problem was solved, if
the planner ran out of memory, or if it ran out of time.

We use the iPDB hill climbing method (Haslum et al.
2007) to generate our set of patterns. Our heuristic was im-
plemented by modifying the Fast Downward planner im-
plementation for iPDBs. Firstly, we altered the Dijkstra
searches so that they were constrained to not expand any ab-
stract nodes with h∗(na) > C, and for each node expanded
we store the length as well as cost. Secondly, we generalised
the iPDB heuristic computation to allow for user-specified
aggregator and objective functions. And finally, we added an
optional extra step to the iPDB construction which runs PFD
search (also bounded by C) on each of the pattern abstrac-
tions in order to generate the set of PFPDBs. The heuristics
without the PFD search will be labeled as iPDBC , whereas
those that did do the PFD search are labeled as iPFPDBC .
All instances of the hill-climbing were run with a max hill-
climbing time of 120 seconds, a cost bound, and with all
other parameters set to the default iPDB settings for Fast
Downward. The aggregator functions that we tested were
max and

∑
. We tested the following objective functions:

62

• h(n, π) = cost(π)

• d(n, π) = length(π)

• 1
φC (n, π) = 1

φC(g(n),cost(π))
= 1/(1− cost(π)

C+1−g(n))

• ωC(n, π) = length(π)b

φC(g(n),cost(π))

Where b is the average branching factor for the search tree
at the time of n’s evaluation. If u is the depth of the deep-
est node evaluated by the heuristic, and Tu−1 is the num-
ber of nodes evaluated up to depth u− 1, we take

b =

{
u−1
√
Tu−1, if Tu−1 >= 10000

1, otherwise

Note that, because we constrain the summed pareto front
by C, none of the evaluated pareto pairs will have g(n) +
cost(π) > C. This means that the d objective finds length
of the shortest pareto optimal abstract solution within the
cost bound, and φC won’t return a negative value.

The combinations of cost bound, i(PF)PDB, aggregator,
and objective that we tested are shown in Tables 1 and
2. FFC [d] is our label for the unit-cost FF heuristic which
has been shown to perform extremely well in bounded cost
search (Haslum 2013). With FF guiding the greedy search,
we used iPDBC [maxh] to admissibly prune nodes exceed-
ing the cost bound. We also tested A* with the ordinary
iPDB (labeled g+ iPDBC [maxh]). The only iPFPDB ob-
jectives that we tested were d and ωC because both 1

φC and
h are always minimised by the cheapest pareto pair (so iPDB
and iPFPDB would return the same value).

6 Results
Results for the experiment are shown in Table 1 (cheap-
est) and Table 2 (2nd cheapest - 1). Prior to exploring these
results, we will note that in the ’Woodworking’ domain,
the majority of the problems caused the iPDB and iPFPDB
heuristics to run out of memory during the iPDB hill climb-
ing. So those results are not particularly interesting beyond
the observation that the iPDB heuristic is not suited to some
specific domains.

It appears that the differences between iPDB and iPFPDB
were negligible in terms of the number of problems solved.
iPFPDB performs slightly better with loose bounds, but un-
der the tight bounds the iPFPDBC [

∑
ωC] heuristic actually

did a little bit worse than iPDB (in the Elevators domain).
This is perhaps a result of the fact that, under tight cost-
bounds, the search will end up needing to find cheaper so-
lutions. So assigning nodes a heuristic value derived from
cost-suboptimal paths may end up being overly optimistic.
However, even with tight bounds, the d objective did show
some improvement when using the PFPDB implementation.
We must also consider the fact that pareto front summation
introduces a slow-down to the heuristic evaluation that is
otherwise not present in the ordinary iPDB computation. In
testing this, we compared the time per node evaluation, and
the total number of nodes evaluated, for iPDBC [

∑
ωC] and

iPFPDBC [
∑
ωC], when using the tighter bounds. These re-

sults are shown in Figure 1. They showed that both heuris-
tics perform nearly identically in terms of per-node evalu-

ation time and number of nodes evaluated. These observa-
tions would be explained if the pareto fronts being gener-
ated by the PFD searches were mostly just a singleton set,
with the cheapest and shortest path being identical. Perhaps
the domains that we tested were not ’solution-rich’ in their
abstracted spaces, or perhaps the correlation between path
length and cost was so significant that, even if there were
multiple paths to the abstract states, very few of them were
pareto optimal. Either way, this would need to be tested with
a more in-depth experiment.

In terms of the best objective function, the results sug-
gest that iPDB/iPFPDB with the d and ωC objectives pro-
duce the best results, with d performing slightly better un-
der the tight cost bound, and ωC performing better under
the loose cost bound. The d objective far outperformed the
h objective, which confirms that distance-oriented heuris-
tics perform better than cost-oriented ones in bounded-cost
search. The fact that ωC did worse than d under the tight cost
bounds is evidence against our conjecture that ωC is always
the rational choice when it comes to bounded-cost search. It
does, however, show that the idea has some merit. It should
be noted that, in cases where the cheapest solution found by
any IPC6 planner was also the optimal solution, our search
can only find that solution by expanding a node right on the
cost-boundary. ωC penalises these nodes quite heavily, but it
would make more sense to prioritise the exploration of nodes
on the boundary, given that we know that a solution exists
there. We may also excuse some of this poor performance as
a result of the low quality potential approximations given by
φC and our estimate for the branching factor b. This has mo-
tivated us to devise better methods for predicting potential,
which we describe in the Future Research section at the end
of this paper. Likewise, better approximations for the subtree
size may also improve the expected work estimates.

Of the iPDB settings that we tested, iPDBC [max 1
φC] per-

formed the worst, which is in line with previous results test-
ing the quality of the PTS heuristic (Haslum 2013). That
work conjectures that this is due to the failure of the linear-
error assumption, but we offer an alternative explanation.
We claim that the poor performance of PTS comes from the
fact that it is not the correct measure if we seek to find a
bounded solution quickly. PTS follows those nodes which
are most likely to lead to a bounded solution, but it makes no
considerations as to how long that solution will take to find.
The PTS strategy may work best in minimising the number
of out-of-bounds nodes which are generated, but it ignores
nodes which may be simultaneously close to the bound (high
risk) and close to the goal (high reward). This is somewhat
supported by the fact that the ωC and d heuristics outperform
1
φC by a wide margin, as these heuristics prioritise nodes for
which reaching the goal will take the least amount of work.

iPDBC [
∑

1
φC] solved more problems than the

iPDBC [max 1
φC] version. This may be because the

∑

version introduces a larger distinction in node priorities by
incorporating more PDB values and extending the integer
range over which the final heuristic values are produced.
Hence our eager search can prioritise nodes for which all
of the PDBs yielded consistently low 1

φC values, rather

63

Table 1: No. of Problems Solved / Ran out of memory / Ran out of time, with C = the cost of the CHEAPEST IPC6 plan.
FFC [d] g+ iPDBC [maxh] iPDBC [

∑
h] iPDBC [max 1

φC] iPDBC [
∑

1
φC]

Elevators 13 / 0 / 17 2 / 12 / 16 2 / 15 / 13 2 / 12 / 16 4 / 10 / 16
Openstacks 24 / 0 / 6 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0
Parcprinter 21 / 0 / 9 15 / 3 / 12 26 / 1 / 3 16 / 2 / 12 20 / 3 / 7
Pegsol 24 / 0 / 6 20 / 0 / 10 22 / 0 / 8 22 / 0 / 8 22 / 0 / 8
Scanalyzer 18 / 5 / 7 11 / 19 / 0 21 / 9 / 0 12 / 18 / 0 12 / 18 / 0
Sokoban 28 / 0 / 2 24 / 6 / 0 27 / 3 / 0 25 / 5 / 0 25 / 5 / 0
Transport 8 / 0 / 22 6 / 17 / 7 28 / 1 / 1 6 / 19 / 5 7 / 18 / 5
Woodworking 6 / 18 / 6 6 / 18 / 6 8 / 18 / 4 6 / 18 / 6 6 / 18 / 6
total 142 / 23 / 75 96 / 93 / 51 146/65/29 101/92/47 108 / 90 / 42

iPDBC [
∑
d] iPDBC [

∑
ωC] iPFPDBC [

∑
d] iPFPDBC [

∑
ωC]

Elevators 15 / 9 / 6 19 / 8 / 3 18 / 8 / 4 17 / 8 / 5
Openstacks 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0
Parcprinter 24 / 1 / 5 18 / 2 / 10 24 / 1 / 5 18 / 2 / 10
Pegsol 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6
Scanalyzer 23 / 7 / 0 23 / 7 / 0 23 / 7 / 0 23 / 7 / 0
Sokoban 27 / 3 / 0 27 / 3 / 0 27 / 3 / 0 27 / 3 / 0
Transport 27 / 2 / 1 27 / 1 / 2 28 / 1 / 1 27 / 1 / 2
Woodworking 6 / 18 / 6 7 / 18 / 5 6 / 18 / 6 7 / 18 / 5
total 170 / 46 / 24 169 / 45 / 26 174 / 44 / 22 167 / 45 / 28

Table 2: No. of Problems Solved / Ran out of memory / Ran out of time, with C = the cost of the 2nd CHEAPEST IPC6 plan
- 1.

FFC [d] g+ iPDBC [maxh] iPDBC [
∑
h] iPDBC [max 1

φC] iPDBC [
∑

1
φC]

Elevators 23 / 0 / 7 2 / 12 / 16 2 / 14 / 14 2 / 12 / 16 4 / 10 / 16
Openstacks 24 / 0 / 6 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0
Parcprinter 20 / 0 / 10 15 / 3 / 12 26 / 1 / 3 20 / 1 / 9 24 / 1 / 5
Pegsol 25 / 0 / 5 20 / 0 / 10 22 / 0 / 8 22 / 0 / 8 22 / 0 / 8
Scanalyzer 19 / 5 / 6 11 / 19 / 0 21 / 9 / 0 12 / 18 / 0 12 / 18 / 0
Sokoban 28 / 0 / 2 24 / 6 / 0 27 / 3 / 0 22 / 8 / 0 22 / 8 / 0
Transport 8 / 0 / 22 6 / 17 / 7 29 / 0 / 1 6 / 19 / 5 6 / 19 / 5
Woodworking 6 / 18 / 6 6 / 18 / 6 9 / 18 / 3 6 / 18 / 6 7 / 18 / 5
total 153 / 23 / 64 96 / 93 / 51 148 / 63 / 29 102 / 94 / 44 109 / 92 / 39

iPDBC [
∑
d] iPDBC [

∑
ωC] iPFPDBC [

∑
d] iPFPDBC [

∑
ωC]

Elevators 22 / 7 / 1 25 / 5 / 0 23 / 6 / 1 26 / 3 / 1
Openstacks 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0
Parcprinter 24 / 1 / 5 25 / 1 / 4 24 / 1 / 5 25 / 1 / 4
Pegsol 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6
Scanalyzer 22 / 8 / 0 23 / 7 / 0 22 / 8 / 0 23 / 7 / 0
Sokoban 27 / 2 / 1 27 / 2 / 1 27 / 2 / 1 27 / 2 / 1
Transport 29 / 0 / 1 29 / 0 / 1 29 / 0 / 1 29 / 0 / 1
Woodworking 6 / 18 / 6 9 / 18 / 3 7 / 18 / 5 9 / 18 / 3
Total 178 / 42 / 20 186 / 39 / 15 180 / 41 / 19 187 / 37 / 16

64

Figure 1: iPDBC [
∑
ωC] vs. iPFPDBC [

∑
ωC] node evaluation statistics for the CHEAPEST cost bounds

than just a low maximum. This also justifies our decision
to use the

∑
aggregator on all of the other greedy PDB

heuristics. As an aside, note that
∑

gives the same ordering
as taking a floating point arithmetic mean of the objective
values, because the same number of objective values are
aggregated every time. Fast Downward does not support
floating point node priorities, so

∑
made more sense in our

implementation.

Unsurprisingly, it seems that tighter cost bounds gener-
ally reduce the number of problems solved by our heuristics,
to varying degrees. A* and h weren’t affected much, which
was to be expected because if a node’s f -level is within the
cost bound, then these objectives produce the same heuristic
value regardless of what that cost bound actually is. Like-
wise, the two versions of PTS don’t seem to be particularly
influenced by the tighter cost bound. This may have been
caused by there being too little difference in the two cost
bounds tested, but the fact that ωC (and to a lesser extent, d)
showed significant differences in performance suggests oth-
erwise. It may be the case that ωC and d are better at taking
advantage of the loose cost bounds to find solutions quickly.
These objectives essentially behave like a greedy search on
shortest-path when the cost bounds are loose.

In considering why iPDBC [
∑
d] performed better than

FFC [d], note that FFC [d] approximates the shortest delete-
relaxed solution without regard for whether or not that spe-
cific solution is within the cost bound. This solution is in-
dependent of the cost bound, and unrelated to the cost the
cheapest iPDB solution, which was used as the bounded-cost
pruning heuristic. So with tighter cost bounds, we get the
same ordering of nodes, but we just consider a smaller sub-
set of them for expansion. Moreover, our FFC [d] implemen-
tation suffered from both the pre-computation slowdown of
the iPDB, as well as FF’s naturally slow per-node heuristic
evaluation. This is reaffirmed by the fact that FFC [d] mostly
ran out of time rather than running out of memory, suggest-
ing that it suffered from poor precomputation and evaluation

time rather than heuristic quality. It would be interesting to
test a simple g-level bounds check with FF, rather than tak-
ing the time to compute an admissible f -level.

7 Conclusions
Our work in designing Bounded-Cost heuristics has borne
some useful results, but there is much room for improve-
ment. The i(PF)PDB length and expected work heuristics
outperformed A*, PTS and FF in our trials. The PFPDB
heuristic adapts the standard PDB approach to account for
the variety of cost-length tradeoffs available in the abstract
space. We have shown that the usual PDB techniques for ad-
ditivity can be applied to PFPDBs. This did not introduce
any significant slow down to heuristic computation, but it
also didn’t produce much of an improvement in terms of
the number of nodes evaluated by the search. We conjec-
tured (but did not test) that this was due to the fact that the
pareto fronts rarely contained abstract paths other than the
cheapest one, in which case the iPDB and iPFPDB heuris-
tics would behave almost identically. The ’expected work’
heuristic which we proposed seems like a good idea, as it ex-
plicitly aims to minimise search time by incorporating both
a node’s potential to lead to a solution, and its distance from
the goal. It performed quite well with looser cost bounds, but
under tight cost bounds it failed to perform significantly bet-
ter than the simpler approach of returning the length of the
shortest solution within the cost bound. We conjectured that
this was due to poor approximations for the node’s potential.

8 Future Research
We now propose a few ideas for future research: Ob-
serve that exploring multiple solutions in the abstract space
does not necessarily require the use of a PDB type pre-
computation of every possible pareto optimal abstract so-
lution in the abstract space. Any cheapest-cost abstract so-
lution heuristic can be made to take in to account a tradeoff
between cost and length by simply weighting the operators

65

between unit-cost and full-cost. This is very similar to the
idea of Lagrangian Relaxation which has had some success
in solving the Weight-Constrained Shortest Path Problem
(Carlyle, Royset, and Wood 2008). We also note that Merge
and Shrink heuristics (Helmert et al. 2007) also produce an
abstract space and PDB-like database of abstract solutions
which could easily be adapted to the PFPDB construction.

Estimating Potential via Online Learning
We’ll briefly describe an alternative method for estimating
node potential. Recall that our reason for why the ωC heuris-
tic didn’t improve upon the d heuristic was partly based
on the conjecture that the estimations for subtree size and
potential were poor. Adapting some previous work related
to the online learning of heuristic errors (Thayer, Ruml,
and Bitton 2008), we can construct and continually improve
an approximation for pCh during our search. Let eh(n) =
h∗(n)−h(n) give the signed error of h(n), and letEh(h(n))
give the discrete probability distribution of these errors for
n′ ∼ Uh(h(n)), such that Eh(h(n))[ε] = Pr(eh(n′) =
ε | n′ ∼ Uh(h(n))). But h∗(n′) = h(n′) + eh(n′) and
h(n′) = h(n), therefore:

pCh (g(n), h(n))

= Pr(h∗(n′) ≤ C − g(n) | n′ ∼ Uh(h(n)))

= Pr(eh(n′) ≤ C − g(n)− h(n) | n′ ∼ Uh(h(n)))

=
∑

ε≤C−g(n)−h(n)

Eh(h(n))[ε]

Let Fh(v) give the error histogram for all n with h(n) = v
such that Fh(v)[ε] is equal to the frequency of those nodes
with h(n) = v that have eh(n) = ε. We can evaluate Eh in
terms of Fh:

Eh(h(n))[ε] =
Fh(h(n))[ε]∑
i Fh(h(n))[i]

Then an approximation for Fh suffices to yield predictions
for Eh and thus pCh .

If d(n) predicts the length of the shortest path within the
cost bound starting from n, then we can multiply d(n) by the
step-wise error going from n’s predecessor to n. This yields
an approximation for eh(n) which assumes that this step-
wise error is constant along the path represented by d(n).
Upon the expansion of any node n, we estimate:

eh(n) ≈ êh(n) = d(n)(f(n)− f(n′))

Where n′ is n’s predecessor. Generally speaking, we ex-
pect êh to be a poor approximation for eh. Not only is the
step-wise error unlikely to be constant along the path to the
goal, but also the estimate d(n) may be innacurate. How-
ever, we do not use êh directly. Instead we aggregate these
values in our construction of F̂h. For all 0 ≤ i ≤ C,
we initialise F̂h(i)[0] := 1 and for all j 6= 0, initialise
F̂h(i)[j] := 0. This essentially seeds our F̂h with the as-
sumption that our heuristic is perfect, which guarantees that
f(n) ≤ C ⇒ p̂Ch (g(n), h(n)) > 0. Then after every node
n that is expanded by the search (excluding the initial state),

we increment F̂h(h(n))[êh(n)] := F̂h(h(n))[êh(n)] + 1. At
any point during our search, F̂h can be used to produce an
estimate for n’s potential:

pCh (g(n), h(n)) ≈ p̂Ch (g(n), h(n))

=
∑

ε≤C−g(n)−h(n)

F̂h(h(n))[ε]∑
i F̂h(h(n))[i]

As a minor improvement, we can speed up the computation
of the denominator by seperately keeping track of the total
number of data points recorded for each h-value.

Substituting in p̂Ch for pCh , we obtain ĤC ≈ HC . If this
approximation turns out to be good enough, then we expect
it to outperform ωC (where we substituted φC for pCh).

Acknowledgements Sean Dobson’s work was supported
by the ANU College of Engineering and Computer Sci-
ence summer scholar program. This work was also sup-
ported by the Australian Research Council, through project
DP140104219, “Robust AI Planning for Hybrid Systems”.

References
Carlyle, W. M.; Royset, J. O.; and Wood, R. K. 2008. La-
grangian relaxation and enumeration for solving constrained
shortest-path problems. Networks 52(4):256–270.
Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. In Conference of the Canadian Society for
Computational Studies of Intelligence, 402–416. Springer.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1):269–271.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. J. Artif. Intell. Res.(JAIR) 22:279–318.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI, vol-
ume 7, 1007–1012.
Haslum, P. 2013. Heuristics for bounded-cost search. In
ICAPS, 312–316.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Stern, R. T.; Puzis, R.; and Felner, A. 2011. Potential search:
A bounded-cost search algorithm. In ICAPS, 234–241.
Thayer, J. T.; Stern, R.; Felner, A.; and Ruml, W. 2012.
Faster bounded-cost search using inadmissible estimates. In
ICAPS, 270–278.
Thayer, J. T.; Ruml, W.; and Bitton, E. 2008. Fast and loose
in bounded suboptimal heuristic search. In Proceedings of
the First International Symposium on Search Techniques in
Artificial Intelligence and Robotics (STAIR-08).

66

Structural Symmetries of the Lifted Representation of Classical Planning Tasks
Silvan Sievers and Gabriele Röger and Martin Wehrle

University of Basel, Switzerland
{silvan.sievers,gabriele.roeger,martin.wehrle}@unibas.ch

Michael Katz
IBM Watson Health, Haifa, Israel

katzm@il.ibm.com

Abstract

We transfer the notion of structural symmetries to lifted plan-
ning task representations, based on a generalizing concept of
abstract structures we use to model planning tasks. We show
that symmetries are preserved by common grounding meth-
ods and shed some light on the relation to previous symme-
try concepts. An analysis of common planning benchmarks
reveals that symmetries occur in the lifted representation of
many domains. Our concept prepares the ground for exploit-
ing symmetries beyond their current scope, such as for faster
grounding and mutex generation, as well as for state space
transformations and state space reductions.

Introduction
In the last decade, the concept of symmetries has been in-
creasingly investigated for the development of techniques
to increase the scalability of domain-independent classical
planners (Fox and Long 1999a; 1999b; Pochter, Zohar, and
Rosenschein 2011; Domshlak, Katz, and Shleyfman 2012;
2015; Sievers et al. 2015b; Riddle et al. 2016). In particu-
lar, Shleyfman et al. (2015) introduced the notion of struc-
tural symmetries, which is a declarative symmetry defini-
tion on the representation of propositional STRIPS tasks.
These symmetries subsume several earlier symmetry defi-
nitions for classical planning, many of which focus on ob-
ject symmetries (Fox and Long 1999a; 1999b; Riddle et al.
2016). Further, structural symmetries generalize other types
of symmetries considered for other state-space search prob-
lems in general, e. g. rotation and reflection.

In practice, planning tasks are usually given in a com-
pact lifted PDDL description, which is, however, not directly
supported by most planning techniques. Instead, they first
transform it into a much larger ground representation. Also
most of the recent symmetry-based approaches operate only
on this ground representation, including techniques based
on structural symmetries. However, reasoning about sym-
metries for applications that work directly on the lifted rep-
resentation requires a general concept of symmetries of the
lifted representation.

In this work, we define structural symmetries of the lifted
representation. Our aim is to build the theoretical basis
for many promising future applications of such symme-
tries. While structural symmetries of the lifted representa-
tion could be grounded to be used for existing symmetry-

based approaches that operate on the ground representation,
this is not our intended application, and there is no theo-
retical gain in doing so, as we will show. Rather, structural
symmetries of the lifted representation can be used for all
purposes operating on lifted representations. In particular,
in the long term, we would like to examine the potential of
symmetries for faster grounding and mutex generation, as
well as for state space transformations and state space re-
ductions.

For this purpose, we transfer the definition of structural
symmetries of Shleyfman et al. (2015) to lifted planning
tasks. We model planning tasks based on a general concept
of abstract structures, unlike previous work also covering
axioms and conditional effects. We show that symmetries
are preserved by common grounding methods and how they
are related to previous symmetry concepts. We also describe
how symmetries of the lifted representation can be computed
and show that planning benchmarks from the International
Planning Competition exhibit a large number of such sym-
metries. We close with a discussion of possible future appli-
cations.

Structural Symmetries
We start with defining abstract structures and structural sym-
metries for these structures.

Definition 1 (Abstract structure). Let S be a set of symbols,
where each s ∈ S is associated with a type t(s). The set of
abstract structures over S is inductively defined as follows:

• each symbol s ∈ S is an abstract structure, and

• for abstract structures A1, . . . , An, the set {A1, . . . , An}
and the tuple 〈A1, . . . , An〉 are abstract structures.

Informally speaking, a structural symmetry for an abstract
structure is a permutation of the symbols that preserves the
structure as well as the types of the symbols. Formally:

Definition 2 (Symbol mapping). A symbol mapping σ over
a set of symbols S is a permutation of S such that for all
s ∈ S : t(σ(s)) = t(s).

Definition 3 (Structural symmetry). For an abstract struc-
ture A over S and a symbol mapping σ over S, the abstract

67

structure mapping σ̃(A) is defined as follows:

σ̃(A) :=

σ(A) if A ∈ S
{σ̃(A1), . . . , σ̃(An)} if A = {A1, . . . , An}
〈σ̃(A1), . . . , σ̃(An)〉 if A = 〈A1, . . . , An〉

We call σ a structural symmetry for A if σ̃(A) = A.

We establish that the set of all structural symmetries for an
abstract structure A forms a group. We will not only exploit
this property in later theorems but it will also provide the
basis for the actual computation of such symmetries.

Lemma 1. Given an abstract structure A, let Γ(A) be the
set of all structural symmetries for A. Then Γ(A) is a group.

Proof. To show that a set of permutations of a finite set
forms a group under composition, it is sufficient to show
that it is nonempty and closed under composition. It is easy
to verify that the identity symbol mapping always is a struc-
tural symmetry, and for σ1, σ2 ∈ Γ(A) also σ := σ1 ◦ σ2 ∈
Γ(A) because σ̃(A) = σ̃1(σ̃2(A)) = σ̃1(A) = A.

Planning Tasks as Abstract Structures
To apply the general notion of structural symmetries to plan-
ning, we define planning tasks as abstract structures.

Definition 4 (Set of symbols for planning). We call a set
of symbols S a set of symbols for planning if the associ-
ated types are from {Object , Variable , FluentPredicate,
DerivedPredicate , Function , n ∈ N,Negation} and there
is at most one symbol of type Negation .

We also refer to symbols of type T as T symbols. Let S
be a set of symbols for planning. For convenience, we define
some notions for abstract structures over S:

• An atom is a tuple 〈P, x1, . . . , xn〉 of symbols with
t(P) ∈ {FluentPredicate,DerivedPredicate}, and for
i ∈ {1 . . . , n}, t(xi) ∈ {Object ,Variable}. The atom is
fluent if t(P) = FluentPredicate, otherwise it is derived.

• A literal is either an atom or an abstract structure 〈¬, A〉
where t(¬) = Negation and A is an atom.

• A function term is a tuple 〈f, x1, . . . , xn〉 of symbols
with t(f) = Function , and for i ∈ {1 . . . , n}, t(xi) ∈
{Object ,Variable}.

• A function assignment is a tuple 〈F, v〉 where F is a func-
tion term and v is a symbol with t(v) ∈ N.

We call these structures ground if they do not contain
Variable symbols.

Definition 5 (Planning task). A planning task is an abstract
structure Π = 〈O,A, s0, s?〉 over a set of symbols S for
planning, where

• O is a set of operators, each of the form o =
〈params, pre, eff , cost〉 where

– params is a set of Variable symbols,
– pre is a set of literals where all occurring variables are

from params ,

– eff is a set of universally quantified conditional effects,
each of the form 〈vars, cond , lit〉, where vars is a set
of Variable symbols, cond is a set of literals where all
occurring variables are from params ∪ vars , and lit is
a literal of a fluent atom where all variables are from
params ∪ vars , and

– cost is a function term where all occurring variables
are from params;

• A is a set of axioms, each of the form a =
〈params, pre, eff 〉 where
– params is a set of Variable symbols,
– pre is a set of literals where all occurring variables are

from params , and
– eff is a derived atom where all occurring variables are

from params ,
and this set of axioms must be stratifiable;1

• s0 is a set of fluent ground atoms and consistent ground
function assignments, i. e. assignments with identical
function term are identical;

• s? is a set of ground literals.

W.l.o.g. we require that all occurring sets of Variable sym-
bols are disjoint.

This definition of planning tasks corresponds to normal-
ized PDDL planning tasks as used by Helmert (2009), ex-
tended with support for action costs. We refer to such a
planning task as lifted task or as lifted representation of a
task. A ground planning task (or ground representation of
a task) contains no Variable symbols. The semantics of a
(lifted) planning task is defined via its induced ground plan-
ning task, which we define in the following.

For a set S of symbols for planning, we define Objs(S) =
{s ∈ S | t(s) = Object}. For sets X and Y , we denote the
set of all functions f : X → Y by XY . We call functions m
mapping from the Variable symbols in S to Objs(S) vari-
able mappings. We write m̃(S) for the natural extension of
m to abstract structures, where symbols outside the domain
of m are mapped to themselves.

Grounding instantiates operators and axioms with all pos-
sible variable assignments and expands universal effects.

Definition 6 (Induced ground planning task). For a (lifted)
planning task Π = 〈O,A, s0, s?〉 over S, the in-
duced ground planning task is defined as ground(Π) =
〈ground(O), ground(A), s0, s?〉 over S with

• ground(O) =
⋃

o∈O opground(o), where

opground(〈params, pre, eff , cost〉)
= {〈∅, m̃(pre), m̃(expand(eff)), m̃(cost)〉 |
m ∈ paramsObjs(S)}, with

expand(eff)

= {〈∅, ñ(cond), ñ(lit)〉 |
〈vars, cond , lit〉 ∈ eff , n ∈ varsObjs(S)}

1Stratifiability (Thiébaux, Hoffmann, and Nebel 2005) ensures
that the result of axiom evaluation is well-defined.

68

bob

shed middle gate

Figure 1: Exemplary initial state of a SPANNER task.

• ground(A) =
⋃

a∈A axground(a), where

axground(〈params, pre, eff 〉)
= {〈∅, m̃(pre), m̃(eff)〉 | m ∈ paramsObjs(S)}.

A state of a ground planning task Π = 〈O,A, s0, s?〉 over
S is a set of ground atoms. A fluent state s is a subset of
the fluent ground atoms. The associated derived state JsK re-
sults from s by evaluating the axioms as in stratified logic
programming. A state s satisfies a set C of ground literals
if all atoms in C are also in s and no negated atom from
C occurs in s. A ground operator o = 〈∅, pre, eff , cost〉 is
applicable in a fluent state s if JsK satisfies pre and s0 con-
tains a function assignment for cost . The (fluent) successor
state s[o] contains a fluent ground atom a if there is an effect
〈∅, cond , a〉 ∈ eff such that JsK satisfies cond or if a ∈ s
and there is no 〈∅, cond , 〈¬, a〉〉 ∈ eff where JsK satisfies
cond . The (fluent) initial state consists of the atoms in s0. A
plan for Π is a sequence of operators such that their subse-
quent application to the initial state leads to a state s′ so that
Js′K satisfies s?. Its cost is the accumulated operator costs
of the sequence, where the actual numeric values are taken
from the function assignments in the initial state. Satisficing
planning deals with finding plans of any cost whereas opti-
mal planning is only interested in plans with minimal cost
among all plans.

The semantics of Π can also naturally be represented via
its induced transition graph, which is the labeled transi-
tion system TΠ = 〈D,L, T, Js0K, G〉 where D is the set
of derived states of Π, L corresponds to O, and whenever
o = 〈∅, pre, eff , cost〉 ∈ O is applicable in fluent state s,
there is a transition 〈JsK, o, Js[o]K〉 ∈ T labeled with o. The
cost of the transition is the value assigned to cost in s0. The
set of goal statesG consists of all s ∈ D that satisfy s?. Then
a plan for Π corresponds to the sequence of labels along a
path in TΠ from Js[o]K to a state fromG. For a lifted planning
task, its transition graph is defined as the transition graph of
the induced ground task.

As an example, consider a planning task of the IPC do-
main SPANNER with the initial state shown in Figure 1. The
goal of BOB, initially at the location SHED, is to tighten
the two nuts NUT1 and NUT2 located at the GATE, using
the spanners SP1 and SP2, initially at the location MID-
DLE. It does not matter which spanner is used for which
nut, but spanners can only be used once. There are opera-
tors MOVE(X, Y) to move BOB from X to Y, however there
are only one-way connections from the SHED to the MIDDLE
and from the MIDDLE to the GATE. Operators PICK-UP(X,
Y) let BOB pick up the spanner X at location Y, and once
picked up, spanners cannot be dropped again.

In the lifted representation of the planning task, there are
two structural symmetries: the two spanners are symmetric

to each other, and so are the two nuts, because both the span-
ners and the nuts are at the same location initially, the nuts
both need to be tightened in the goal, and the same oper-
ators work with the spanners and the nuts, respectively. In
the abstract structure modeling the planning task, both the
spanners and the nuts are modeled as symbols (because they
are PDDL objects), and hence the two mentioned structural
symmetries permute the corresponding symbols and all ab-
stract (sub)structures of the planning tasks where the span-
ners or nuts are mentioned.

We remark that due to our definition of planning tasks
as abstract structures and because structural symmetries re-
quire to permute the entire abstract structure, our symmetries
stabilize both the initial state and the goal condition, i. e. no
parts of a planning task can be considered symmetric if they
are not symmetric in the initial state or the goal. This dif-
fers to the definition of structural symmetries of ground rep-
resentation in previous work; e. g. Shleyfman et al. (2015)
do not stabilize the initial state because for symmetry-based
pruning in a forward search, only plans to the goal must
be preserved under a structural symmetry, but not the initial
state. Even if we were interested in this kind of application,
not stabilizing the initial state causes some difficulties due
to the specification of PDDL: function assignments and all
”static” information (e.g. hard-coded connectivity informa-
tion) are specified in the initial state, and this information
would be lost. However, all applications we have in mind
are based on a reachability analysis of the planning task, for
which stabilizing the initial state is essential. For these ap-
plications, we do not need to stabilize the goal, which we
can achieve by simply dropping the goal from the abstract
structure of a planning task.

Structural Symmetries and Grounding
To ensure that our symmetries can also be applied to ground
representations and hence are also symmetries in the sense
of previous work, we will first establish that structural sym-
metries of the lifted representation are also structural sym-
metries of the ground induced representation, and then dis-
cuss discuss this issue in the light of optimized grounding.

Theorem 1. Let σ be a symbol mapping over S. If σ is a
structural symmetry for a planning task Π = 〈O,A, s0, s?〉
over S, then σ is a structural symmetry for ground(Π).

Proof. For better readability, we use subscripts ↓ to denote
ground abstract structures in contrast to lifted ones in the fol-
lowing. We have to show that ground(Π) = σ̃(ground(Π))
and start with ground(A) = σ̃(ground(A)). Consider a↓ =
〈∅, pre↓, eff ↓〉 ∈ ground(A). Since a↓ is in ground(A)
there must be an axiom a = 〈params, pre, eff 〉 ∈ A and
a variable mapping m such that a↓ ∈ axground(a). Since
σ is a structural symmetry of A, also σ̃(a) ∈ A. Consider
m′ := σ ◦m ◦ σ−1 ∈ σ̃(params)Objs(S). Variable mapping
m′ grounds σ̃(a) to a′ := 〈∅, m̃′(σ̃(pre)), m̃′(σ̃(eff))〉 ∈
axground(σ̃(a)). It holds that m̃′(σ̃(pre)) = {m̃′ ◦ σ̃(p) |
p ∈ pre} = {σ̃ ◦ m̃(p) | p ∈ pre} = σ̃({m̃(p) |
p ∈ pre}) = σ̃(pre↓) (*). Analogously, we can show

69

that m̃′(σ̃(eff)) = σ̃(eff ↓), so overall a′ = σ̃(a↓). There-
fore, for each a ∈ ground(A), also σ̃(a) is in ground(A),
and, since σ̃ is a permutation on Π, σ̃(ground(A)) =
ground(A).

To establish that ground(O) = σ̃(ground(O)), let
o↓ = 〈∅, pre↓, eff ↓, cost↓〉 ∈ ground(O). Since
o↓ is in ground(O) there is an operator o =
〈params, pre, eff , cost〉 ∈ O and a variable mapping
m such that o↓ ∈ opground(o). Since σ is a struc-
tural symmetry of O, also σ̃(o) ∈ O. Consider again
m′ := σ ◦ m ◦ σ−1 ∈ σ̃(params)Objs(S). Variable
mapping m′ grounds σ̃(o) to o′ := 〈∅, m̃′(σ̃(pre)),
m̃′(expand(σ̃(eff))), m̃′(σ̃(cost))〉 ∈ opground(σ̃(a)),
where expand(σ̃(eff)) = {〈∅, ñ(σ̃(cond)), ñ(σ̃(lit))〉 |
〈σ̃(vars), σ̃(cond), σ̃(lit)〉 ∈ σ̃(eff), n ∈ σ̃(vars)Objs(S)}.
We get

m̃′(expand(σ̃(eff)))

= {〈∅, m̃′(ñ(σ̃(cond))), m̃′(ñ(σ̃(lit)))〉 |
〈σ̃(vars), σ̃(cond), σ̃(lit)〉 ∈ σ̃(eff),

n ∈ σ̃(vars)Objs(S)}
= {〈∅, ñ(m̃′(σ̃(cond))), ñ(m̃′(σ̃(lit)))〉 |
〈m̃′(σ̃(vars)), m̃′(σ̃(cond)), m̃′(σ̃(lit))〉
∈ m̃′(σ̃(eff)), n ∈ m̃′(σ̃(vars))Objs(S)}

= {〈∅, ñ(σ̃(cond↓)), ñ(σ̃(lit↓))〉 |
〈σ̃(vars↓), σ̃(cond↓), σ̃(lit↓)〉 ∈ σ̃(eff ↓),

n ∈ σ̃(vars↓)
Objs(S)}

= expand(σ̃(eff ↓))

where the first step (switchingm′ and n) is possible because
σ̃(params)∩ σ̃(vars) = ∅, and the second step uses the def-
inition of m′ and the same argumentation as for axioms, cf.
(*). With the latter, we also get that m̃′(σ̃(pre)) = σ̃(pre↓).
Furthermore, we have that m̃′(σ̃(cost)) = m̃′ ◦ σ̃(cost) =
σ̃ ◦ m̃(cost) = σ̃(cost↓), and so overall o′ = σ̃(o↓). There-
fore, for each o ∈ ground(O), also σ̃(o) is in ground(O),
and since σ̃ is a permutation on Π, σ̃(ground(O)) =
ground(O).

As s0 and s? of the induced ground task are the same as in
the lifted task, we immediately get σ̃(s0) = s0 and σ̃(s?) =
s?, and hence overall ground(Π) = σ̃(ground(Π)).

In practice, the induced ground task is typically too large
to be represented and computed in reasonable time. For ex-
ample, the induced ground representation of task #28 of the
IPC domain LOGISTICS98 contains 5.82 · 1010 operators,
compared to 3 · 106 operators in a ground representation
where operators that are inapplicable due to mismatching
types of parameters or statically unsatisfiable preconditions
are removed (Helmert 2009).

We say that a grounding algorithm is optimized if it re-
moves (some, not necessarily all) irrelevant parts of the task
representation (Köhler and Hoffmann 2000). Such ground-
ing is correct if the reachable part of the transition graph
is not affected. We denote ground representations of lifted

tasks Π that result from correct optimized grounding by
groundopt(Π).

Observation 1. Let Π be a planning task and let σ be a
structural symmetry for Π. Then σ is not necessarily a struc-
tural symmetry for groundopt(Π).

As an example for this observation, consider again the
planning task of the IPC domain SPANNER shown in Fig-
ure 1. As we have seen before, in the lifted representation,
the spanners are symmetric to each other, and so are the nuts.
However, consider the ground representation groundopt(Π)
in which only the ground operator PICK-UP(SP1, SHED) has
been been removed, and all other (inapplicable) instantia-
tions of PICK-UP are still present.2 Then the structural sym-
metry mapping the spanners in Π is not a structural symme-
try of groundopt(Π), because PICK-UP(SP2, SHED) has no
symmetric counterpart.

However, this exploits that the grounding algorithm re-
moves one unreachable operator but retains a symmetric
one. This would be a very atypical behavior of a reasonable
grounding algorithm. We say that a grounding algorithm is
rational if it never removes a component (such as an oper-
ator or an atom) and at the same time keeps a symmetric
component. We denote the resulting ground representation
by ground rat(Π).

Theorem 2. Let Π be a planning task and let σ be a struc-
tural symmetry for Π. Then σ is a structural symmetry for
ground rat(Π).

Proof sketch. In Theorem 1, we have shown that every
structural symmetry of Π is a structural symmetry of the
induced ground representation. As any structural symmetry
maps the initial state onto itself, we can easily show that any
symmetric state of a reachable state is reachable, and hence
any symmetric operator of a reachable operator is reachable.
Thus, no structural symmetry can map a non-reachable op-
erator to a reachable operator of the planning task or vice
versa. Hence, as rational grounding either removes all or
none of the symmetric components, any structural symmetry
must be preserved through rational grounding.

We conclude that with any reasonable grounding ap-
proach, our symmetries correspond to symmetries of the
grounded representation, and hence we can safely exploit
symmetries of the lifted representation for any application.
We remark that symmetries of the lifted representation de-
fine mappings of predicates and objects of a planning task,
and as such induce a mapping of ground atoms as used in
(propositional) ground representations of planning tasks.3
However, according to the above theorem, such grounding of
lifted symmetries with rational grounding algorithms cannot

2While this might not necessarily be the result of a any existing
implementation of a grounding algorithm, it could be the result of
some correct optimized grounding algorithm.

3A further transformation of a symmetry into finite domain rep-
resentation (FDR) (Helmert 2009) is not as straight-forward in gen-
eral but it is trivial in the common case of a rational transformation,
i. e. if the transformation treats symmetric ground atoms symmet-
rically when grouping ground atoms into FDR variables.

70

result in finding more symmetries compared to directly com-
puting structural symmetries of the ground representation,
and hence such an application of our symmetries is fruitless.

Relation to Previous Notions of Symmetry
Shleyfman et al. (2015) already introduced structural sym-
metries for STRIPS planning tasks. These symmetries are
also structural symmetries in the sense of our definition,
but representing planning tasks as different abstract struc-
tures. In the following, we denote this other representation
the propositional task representation. The main difference is
that the set of symbols consists of the ground atoms. Ground
atoms are therefore not represented as tuples but as symbols.

The different symbol set already gives rise to symmetries
that are not symmetries of our task representation: consider
a task in propositional representation that has a symmetry
σ′ with σ′(P (a)) = P (a) and σ′(P (b)) = Q(b). In our
abstract structure representation this task cannot have an
analogous symmetry σ because σ̃(〈P, a〉) = 〈P, a〉 implies
σ(P) = P , so σ̃(〈P, b〉) = 〈P, σ̃(b)〉 6= 〈Q, b〉.

Vice versa, we can show that for ground planning tasks
each structural symmetry σ of our task representation cor-
responds to a structural symmetry σ′ of the propositional
representation. The key idea of the proof is to define σ′ as
σ′(P (c1, . . . , cn)) = σ(P)(σ(c1), . . . , σ(cn)). A full proof
requires a definition of task equivalence bridging the for-
malisms and an extension of Shleyfman et al.’s definition to
axioms and conditional effects. As both are straight-forward
but lengthy, we refrain from including them in this paper.

Together with the result of Theorem 2 in the previous sec-
tion, this observation again emphasizes that there is no theo-
retical gain in computing structural symmetries of the lifted
representation for the purpose of grounding them. However,
we can utilize structural symmetries of the lifted representa-
tion for any application that works on this lifted representa-
tion, and these structural symmetries are symmetries in the
same sense as in previous work.

A second aspect where our symmetries are similar to
those of Shleyfman et al. is that they are so-called transi-
tion graph symmetries, as we will show next. Since, as men-
tioned above, Shleyfman et al. did not cover axioms and
conditional effects, we discuss transition graph symmetries
independently. A transition graph symmetry of a planning
task is a goal-stable automorphism of the induced transition
graph of the task, i. e. a mapping of derived states and op-
erators, preserving transitions and their cost as well as goal
states.
Theorem 3. Let Π = 〈O,A, s0, s?〉 be a ground planning
task over S and let σ be a structural symmetry for Π. Then
σ̃ (viewed as a function on the states and operators) is a
transition graph symmetry of TΠ.

Proof. We have to show that σ̃ preserves transitions and
their cost as well as goal states of TΠ. We begin with show-
ing the former. Let 〈JsK, o, Js[o]K〉 be a transition of TΠ

where s is a fluent state and o = 〈∅, pre, eff , cost〉 ∈ O
an operator such that JsK satisfies pre. Then σ̃(JsK) satis-
fies the precondition of σ̃(o) and σ̃(s)[σ̃(o)] = σ̃(s[o]).
The (stratified) evaluation of the axioms deriving Js[o]K

from s[o] directly translates to a symmetric axiom eval-
uation deriving Jσ̃(s[o])K from σ̃(s[o]). So overall, also
〈σ̃(JsK), σ̃(o), σ̃(Js[o]K)〉 is a transition of TΠ. The other di-
rection follows directly from the same argument and the fact
that σ−1 is a structural symmetry for Π (because the set of
symmetries of Π form a group, c. f. Lemma 1).

To show that costs are preserved, let F be the function
term specifying the cost of operator o. Let s0 contain a func-
tion assignment 〈F, c〉 for some numeric value c. Then all
transitions induced by o have the same cost c. As σ(c) = c
and σ̃(s0) = s0, this implies that s0 contains a function as-
signment 〈σ̃(F), c〉, so that all transitions induced by σ̃(o)
have the same cost c. As σ̃(s?) = s? implies that JsK sat-
isfies s? iff σ̃(JsK) satisfies s?, σ̃ preserves the set of goal
states.

Computation
Pochter, Zohar, and Rosenschein (2011) already established
that symmetries can be computed as automorphisms of a cer-
tain graphical structure. In the following we introduce a suit-
able graph representation for general abstract structures.
Definition 7 (Abstract structure graph). Let A be an ab-
stract structure over S. The abstract structure graph ASGA

is a colored digraph 〈N,E〉, defined as follows.
• N contains a node A for the abstract structure A. If
N contains a node for A′ = {A1, . . . , An} or A′ =
〈A1, . . . , An〉, it also contains the nodes for A1, . . . , An.

• For each node A′, if A′ ∈ S then color(A′) = t(A′). If
A′ = {A1, . . . , An}, then color(A′) = set , and if A′ =
〈A1, . . . , An〉, then color(A′) = tuple .

• For each node A0 ∈ N , E contains the following edges.
If A0 = {A1, . . . , An}, there are edges 〈A0, Ai〉 ∈ E
for 1 ≤ i ≤ n. If A0 = 〈A1, . . . , An〉, there are edges
〈Ai−1, Ai〉 ∈ E for 1 ≤ i ≤ n.

Theorem 4. Let A be an abstract structure over S. Then
a colored graph automorphism of ASGA, interpreted as a
mapping of abstract structures corresponding to nodes of
ASGA, is an abstract structure mapping of A such that its
underlying symbol mapping is a structural symmetry.

Proof sketch. Let σ̃ be a colored graph automorphism of
ASGA. Consider some node A′ of ASGA. If A′ ∈ S,
then also σ̃(A′) ∈ S, because color(A′) = t(A′). We
immediately get that σ is a permutation on S. If A′ =
{A1, . . . An}, then from stabilizing colors and the structure-
preserving property of automorphisms, we get σ̃(A′) =
{σ̃(A1), . . . , σ̃(An)}. Analogously if A′ = 〈. . . 〉. Finally,
note that A is the only node with no incoming edges, and
hence σ̃(A) = A.

An immediate consequence is that we can use any graph
automorphism tool to compute structural symmetries of a
planning task Π: construct the abstract structure graph ASGΠ

and let the tool compute a set of automorphisms which gen-
erate a subgroup of the automorphism group Γ(ASGΠ).4
This subgroup corresponds to a symmetry group of Π.

4While no polynomial-time algorithms are known for comput-
ing the set of generators of the automorphism group of a graph,

71

Quantitative Analysis of Lifted Symmetries
Previous work established that structural symmetries arise
across nearly all common STRIPS planning benchmarks
(Domshlak, Katz, and Shleyfman 2013; Shleyfman et al.
2015; Sievers et al. 2015a). As we have seen that we might
find fewer structural symmetries of the lifted representa-
tion, we report quantitative results for computing structural
symmetries of the lifted representation, including planning
benchmarks with conditional effects and axioms. We imple-
mented the symmetry graph described in the previous sec-
tion in the translator component of the Fast Downward plan-
ning system (Helmert 2006). Using the graph automorphism
tool Bliss (Junttila and Kaski 2007), we then compute a sym-
metry group for a given planning task in PDDL.

We use the full set of planning benchmarks from the se-
quential tracks of all International Planning Competitions
(IPCs), including tasks that were used several times only
once. This gives rise to 2518 problems in 77 domains. Each
run is limited to 2GB of memory and 30 minutes runtime.

Ideally, we would report the size of the symmetry groups,
but as pointed out earlier, even computing a set of generators
of the automorphism group is not known to be polynomial-
time. Instead, we report the number of automorphisms found
by Bliss, i. e. the number of generators of the subgroup we
find for the planning task at hand. Additionally, we report the
order for these generators. The order of a symmetry gener-
ator σ is defined as the minimum number of compositions
with itself that yields the identity element.

Table 1 shows domain-wise results. The first two columns
list the total number of tasks and the number of tasks where
at least one generator can be found. Columns 3 and 4 show
the sum and the median of the number of found generators.
The fifth column reports the geometric mean of the runtime
required to compute the generators. The last two columns
show the geometric mean and the median of the order of the
generators. The last row aggregates the results over all do-
mains, using the same aggregation functions as for the do-
mains.

Looking at the number of tasks with symmetries, we note
that almost all domains exhibit symmetries. Furthermore,
most of these domains exhibit symmetries in most of their
tasks. Put the other way round, there are only 9 domains
with no symmetries and 26 domains where the median of the
number of generators is 0, i. e. there are more tasks without
than with symmetries. In total, more than half of the tasks
(1430/2518) exhibit symmetries. We also observe that the
computation of symmetries is cheap in terms of runtime. To
be precise, there are only 31 tasks for which the computation
takes more than 2s. Only for one task (in PSR-SMALL) the
symmetry computation did not finish within 300s, but this is
in fact a ground task with a very large number of duplicate
actions in the PDDL formalization. For all other tasks, the
maximum computation time is 18.81s.

As mentioned above, we also assess the orders of the gen-
erators we find on the benchmarks. With the only excep-
tion of two domains, namely OPTICAL-TELEGRAPHS and

graph automorphism tools can efficiently compute the generators
of a subgroup thereof even for large graphs.

tasks # generators time orders

total symm sum med mean mean med

AIRPORT 50 50 177 4 0.5 2 2
ASSEMBLY 30 29 260 8 0 2 2
BARMAN-OPT14-STRIPS 14 14 45 3 0 2 2
BARMAN-SAT14-STRIPS 20 20 98 5 0 2 2
BLOCKS 35 0 0 0 0 - -
CAVEDIVING-14-ADL 20 5 6 0 0 2 2
CHILDSNACK-OPT14-STRIPS 20 20 765 38 0.1 2 2
CHILDSNACK-SAT14-STRIPS 20 20 1241 59.5 0.1 2 2
CITYCAR-OPT14-ADL 20 20 87 4 0 2 2
CITYCAR-SAT14-ADL 20 20 107 5 0 2 2
DEPOT 22 22 72 2 0 2 2
DRIVERLOG 20 14 18 1 0 2 2
ELEVATORS-OPT11-STRIPS 20 2 2 0 0 2 2
ELEVATORS-SAT11-STRIPS 20 14 30 2 0 2 2
FLOORTILE-OPT14-STRIPS 20 1 1 0 0 2 2
FLOORTILE-SAT14-STRIPS 20 0 0 0 0 - -
FREECELL 80 1 1 0 0 2 2
GED-OPT14-STRIPS 20 20 40 2 0 2 2
GED-SAT14-STRIPS 20 20 40 2 0 2 2
GRID 5 0 0 0 0 - -
GRIPPER 20 20 460 23 0 2 2
HIKING-OPT14-STRIPS 20 20 60 3 0 2 2
HIKING-SAT14-STRIPS 20 20 85 4.5 0 2 2
LOGISTICS00 28 19 25 1 0 2 2
LOGISTICS98 35 33 1467 17 0 2 2
MAINTENANCE-OPT14-ADL 5 3 5 1 0 2 2
MAINTENANCE-SAT14-ADL 20 0 0 0 0.2 - -
MICONIC 150 11 12 0 0 2 2
MICONIC-FULLADL 150 150 171 1 0.1 2 2
MICONIC-SIMPLEADL 150 11 12 0 0 2 2
MOVIE 30 30 2895 96.5 0.1 2 2
MPRIME 35 21 230 2 0 2 2
MYSTERY 30 16 169 1 0 2 2
NOMYSTERY-OPT11-STRIPS 20 10 14 0.5 0.4 2 2
NOMYSTERY-SAT11-STRIPS 20 14 24 1 0.9 2 2
OPENSTACKS-OPT08-ADL 30 30 224 7 0 2 2
OPENSTACKS-OPT14-STRIPS 20 14 257 14 0.1 2 2
OPENSTACKS-SAT08-ADL 30 30 225 7.5 0 2 2
OPENSTACKS-SAT14-STRIPS 20 12 87 2 0.4 2 2
OPTICAL-TELEGRAPHS 48 48 96 2 0.1 6.4 2
PARCPRINTER-OPT11-STRIPS 20 6 18 0 0 2 2
PARCPRINTER-SAT11-STRIPS 20 4 12 0 0 2 2
PARKING-OPT14-STRIPS 20 0 0 0 0 - -
PARKING-SAT14-STRIPS 20 0 0 0 0 - -
PATHWAYS 30 30 257 9 0.1 2 2
PATHWAYS-NONEG 30 30 257 9 0.1 2 2
PEGSOL-OPT11-STRIPS 20 8 13 0 0 2 2
PEGSOL-SAT11-STRIPS 20 7 12 0 0 2 2
PHILOSOPHERS 48 48 48 1 0 20.3 25.5
PIPESWORLD-NOTANKAGE 50 36 69 1 0 2 2
PIPESWORLD-TANKAGE 50 47 977 13.5 0.1 2 2
PSR-LARGE 50 4 4 0 0 2 2
PSR-MIDDLE 50 3 3 0 0 2 2
PSR-SMALL 50 48 2024 8 0 2 2
ROVERS 40 1 1 0 0 2 2
SATELLITE 36 36 1813 12 0 2 2
SCANALYZER-OPT11-STRIPS 20 17 138 6.5 0 2 2
SCANALYZER-SAT11-STRIPS 20 18 150 8.5 0 2 2
SCHEDULE 150 32 37 0 0 2 2
SOKOBAN-OPT11-STRIPS 20 20 1005 37.5 0.2 2 2
SOKOBAN-SAT11-STRIPS 20 20 1128 44 0.2 2 2
STORAGE 30 28 157 3 0 2 2
TETRIS-OPT14-STRIPS 17 1 1 0 0 2 2
TETRIS-SAT14-STRIPS 20 4 4 0 0 2 2
THOUGHTFUL-SAT14-STRIPS 20 20 20 1 0 2 2
TIDYBOT-OPT14-STRIPS 20 0 0 0 0 - -
TIDYBOT-SAT11-STRIPS 20 0 0 0 0 - -
TPP 30 29 105 3 0 2 2
TRANSPORT-OPT14-STRIPS 20 4 4 0 0 2 2
TRANSPORT-SAT14-STRIPS 20 0 0 0 0.1 - -
TRUCKS 30 28 85 3 0 2 2
TRUCKS-STRIPS 30 28 85 3 1.6 2 2
VISITALL-OPT14-STRIPS 20 14 21 1 0 2 2
VISITALL-SAT14-STRIPS 20 20 30 1.5 1 2 2
WOODWORKING-OPT11-STRIPS 20 11 18 1 0 2 2
WOODWORKING-SAT11-STRIPS 20 11 43 1 0 2 2
ZENOTRAVEL 20 13 18 1 0 2 2

Summary 2518 1430 18553 5 0 2.1 2

Table 1: Domain-wise results: number of tasks without and
with symmetries, number of generators (sum and median),
computation time in seconds (geometric mean), and orders
of symmetry generators (geometric mean and median).

72

PHILOSOPHERS, all generators are of (the smallest possi-
ble) order 2, except one generator of order 4 in SOKOBAN-
OPT11-STRIPS. In each PHILOSOPHERS task, there is ex-
actly one generator that rotates through all philosophers
and forks, and hence the order corresponds to the num-
ber of philosophers (and forks). Similarly for all OPTIMAL-
TELEGRAPHS tasks, there is one generator that rotates the
stations, and one simple generator of order 2 which swaps
stations pairwise.

Having established that we can find many structural sym-
metries directly of the lifted representation, in what follows
we discuss their potential applications.

Discussion and Future Work
We transferred the notion of structural symmetries to the
lifted representation of planning tasks and showed that with
rational grounding techniques, these are also symmetries of
the grounded task. Furthermore, we established that with
such grounding, each lifted structural symmetry is a tran-
sition graph symmetry of the grounded task and can thus be
exploited the same way as these, e. g. for symmetry breaking
in forward search (Pochter, Zohar, and Rosenschein 2011;
Domshlak, Katz, and Shleyfman 2012) or orbit space search
(Domshlak, Katz, and Shleyfman 2015). However, we have
seen that already due to representational limitations, this ap-
proach would find fewer symmetries than the approach by
Shleyfman et al. (2015) for finding structural symmetries of
STRIPS representations.

Still, this theoretical result is important to clarify the rela-
tion of our work to previous notions of symmetry. For prac-
tical applications we see the potential of our structural sym-
metries rather in areas where the earlier notions are inappli-
cable, namely applications that operate directly on the lifted
representation or at the transition point between the lifted
and the grounded representation of the task.

One potential application is the generation of invariants,
which are used for strengthening other techniques, e. g. in
constrained PDBs (Haslum, Bonet, and Geffner 2005) or
dead-end detection (Lipovetzky, Muise, and Geffner 2016).
Invariants are also crucial for the transformation of the task
into Finite Domain Representation, which many planning
heuristics rely on (Edelkamp 2001; Helmert et al. 2014;
Seipp and Helmert 2013; Helmert 2006). Traditionally, in-
variant generation methods fall into two groups: those that
operate only on the ground representation (Blum and Furst
1997; Rintanen 1998; 2008) and those that work directly
on the lifted representation (Gerevini and Schubert 1998;
Edelkamp and Helmert 1999; Rintanen 2000; Lin 2004;
Helmert 2009). The latter group usually scales better with
the size of the planning task but requires a certain amount of
first-order reasoning that suffers from complicated operator
specifications. Recent work on invariants (Li, Fan, and Liu
2013; Rintanen 2017) shows that it is often possible to only
consider a limited number of objects for the verification of
lifted invariant candidates. We expect that with our structural
symmetries it is possible to further extend the scope of this
line of work.

Another interesting direction for future work is speeding
up the grounding process. As for generating invariants, the

core question for grounding is what is reachable in the state
space. We plan to exploit structural symmetries by only con-
sidering a subset of the objects in this reachability analysis.

Yet another potential direction is task reformulation. Rid-
dle et al. (2016) have shown that it can be beneficial to re-
formulate a planning task so that for symmetric objects only
the number of objects that share specific properties is rep-
resented but not which exact objects these are. Many of the
criteria they use for detecting suitable objects are naturally
subsumed by structural symmetries, so we expect that we
can exploit them to apply similar state space transformations
to a wider range of planning domains.

In this paper, we have laid the theoretical foundation for a
sound exploitation of symmetries in these applications. Our
experiments show that a large number of planning bench-
marks exhibits structural symmetries in the lifted representa-
tion, so a further investigation of this line of research seems
indeed promising.

References
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1–
2):281–300.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2013. Symme-
try breaking: Satisficing planning and landmark heuristics.
In Borrajo, D.; Kambhampati, S.; Oddi, A.; and Fratini, S.,
eds., Proceedings of the Twenty-Third International Confer-
ence on Automated Planning and Scheduling (ICAPS 2013),
298–302. AAAI Press.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
03, Technion, Haifa.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length. In
Biundo, S., and Fox, M., eds., Recent Advances in AI Plan-
ning. 5th European Conference on Planning (ECP 1999),
volume 1809 of Lecture Notes in Artificial Intelligence, 135–
147. Heidelberg: Springer-Verlag.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Fox, M., and Long, D. 1999a. The detection and exploita-
tion of symmetry in planning problems. In Dean, T., ed.,
Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI 1999), 956–961. Morgan
Kaufmann.
Fox, M., and Long, D. 1999b. The detection and exploitation
of symmetry in planning problems. Technical Report 1/99,
Department of Computer Science, University of Durham.

73

Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Rich, C., and
Mostow, J., eds., Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence (AAAI 1998), 905–912.
AAAI Press.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI 2005), 1163–1168. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Pro-
ceedings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX 2007), 135–149. SIAM.
Köhler, J., and Hoffmann, J. 2000. On the instantiation of
ADL operators involving arbitrary first-order formulas. In
Proceedings of the ECAI 2000 Workshop on New Results in
Planning, Scheduling and Design (PuK2000), 74–82.
Li, N.; Fan, Y.; and Liu, Y. 2013. Reasoning about state con-
straints in the situation calculus. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 997–1003. AAAI Press.
Lin, F. 2004. Discovering state invariants. In Dubois, D.;
Welty, C. A.; and Williams, M.-A., eds., Proceedings of the
Ninth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2004), 536–544. AAAI
Press.
Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps,
invariants, and dead-ends. In Proceedings of the Twenty-
Sixth International Conference on Automated Planning and
Scheduling (ICAPS 2016), 211–215. AAAI Press.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In Burgard,
W., and Roth, D., eds., Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011), 1004–
1009. AAAI Press.
Riddle, P.; Douglas, J.; Barley, M.; and Franco, S. 2016. Im-
proving performance by reformulating PDDL into a bagged
representation. In ICAPS 2016 Workshop on Heuristics and
Search for Domain-independent Planning, 28–36.
Rintanen, J. 1998. A planning algorithm not based on di-
rectional search. In Cohn, A. G.; Schubert, L.; and Shapiro,
S. C., eds., Proceedings of the Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR 1998), 617–624. Morgan Kaufmann.
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Kautz, H., and Porter, B., eds., Proceedings

of the Seventeenth National Conference on Artificial Intelli-
gence (AAAI 2000), 806–811. AAAI Press.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In Proceedings of the 18th European
Conference on Artificial Intelligence (ECAI 2008), 568–572.
Rintanen, J. 2017. Schematic invariants by reduction to
ground invariants. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (AAAI 2017), 3644–
3650. AAAI Press.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Borrajo, D.; Kambham-
pati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013), 347–351. AAAI Press.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3371–3377.
AAAI Press.
Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2015a.
An empirical case study on symmetry handling in cost-
optimal planning as heuristic search. In Hölldobler, S.;
Krötzsch, M.; Peñaloza-Nyssen, R.; and Rudolph, S., eds.,
Proceedings of the 38th Annual German Conference on Ar-
tificial Intelligence (KI 2015), volume 9324 of Lecture Notes
in Artificial Intelligence, 151–165. Springer-Verlag.
Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015b. Factored symmetries for merge-and-shrink
abstractions. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3378–3385.
AAAI Press.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.

74

Strengthening Canonical Pattern Databases with Structural Symmetries
Silvan Sievers and Martin Wehrle and Malte Helmert

University of Basel, Switzerland
{silvan.sievers,martin.wehrle,malte.helmert}@unibas.ch

Michael Katz
IBM Watson Health, Haifa, Israel

katzm@il.ibm.com

Abstract

Symmetry-based state space pruning techniques have proved
to greatly improve heuristic search based classical plan-
ners. Similarly, abstraction heuristics in general and pattern
databases in particular are key ingredients of such planners.
However, only little work has dealt with how the abstraction
heuristics behave under symmetries. In this work, we inves-
tigate the symmetry properties of the popular canonical pat-
tern databases heuristic. Exploiting structural symmetries, we
strengthen the canonical pattern databases by adding sym-
metric pattern databases, making the resulting heuristic in-
variant under structural symmetry, thus making it especially
attractive for symmetry-based pruning search methods. Fur-
ther, we prove that this heuristic is at least as informative as
using symmetric lookups over the original heuristic. An ex-
perimental evaluation confirms these theoretical results.

Introduction
Heuristic search is a state-of-the-art approach to cost-
optimal classical planning. There are two main components
that speed up current planners based on heuristic search. The
first one is informative admissible heuristics. Over the years,
multiple admissible heuristic classes have been introduced
for planning. One such class is abstraction heuristics, with
a famous representative being the pattern database (PDB)
heuristics (Culberson and Schaeffer 1998; Edelkamp 2001;
Haslum et al. 2007). The second component is search space
pruning techniques, with a prominent representative being
symmetry-based pruning search algorithms (Pochter, Zo-
har, and Rosenschein 2011; Domshlak, Katz, and Shleyf-
man 2012; 2015). The approach is based on finding and ex-
ploiting state space automorphisms. These automorphisms
essentially define symmetries between states, allowing to
modify the search algorithms to take advantage of this in-
formation by pruning states that are symmetric to previously
seen ones.

When using symmetry-based pruning in heuristic search,
it is important to understand how the chosen heuristic in-
teracts with symmetries. Shleyfman et al. (2015) perform
such an investigation for all major planning heuristic classes,
with the exception of abstraction heuristics. They show that
many heuristics are either invariant under symmetry or can

This work has been published at SoCS 2017.

be easily adjusted to become such. This is an important re-
sult that affects the choice of the actual search algorithm.
If the heuristic is not invariant under symmetry, the choice
which of the (symmetric) search nodes to prune can greatly
affect the outcome. In classical heuristic search, one pop-
ular technique to offset the consequences of this decision
is symmetric lookups, also known as dual lookups, which
compute the heuristic values also for the symmetric states
(Felner et al. 2005; 2011). If the heuristic in use is in-
variant under symmetry, such symmetric lookups are of
course not useful. Sievers et al. (2015a) investigated the ef-
fect of symmetric lookups for classical planning. In partic-
ular, they applied symmetric lookups to several abstraction
heuristics, such as merge-and-shrink (Helmert et al. 2014;
Sievers, Wehrle, and Helmert 2014), CEGAR (Seipp and
Helmert 2014) and canonical pattern databases (CPDBs)
(Haslum et al. 2007).

Another way to use information from symmetries is to
exploit them to strengthen existing heuristics. Sievers et
al. (2015b) use factored symmetries to enrich merge-and-
shrink heuristics. We continue this line of work with the
CPDB heuristic in this paper, exploiting structural symme-
tries (Shleyfman et al. 2015) to strengthen the CPDB heuris-
tic by adding symmetric PDBs. As a result, we obtain a
heuristic that is invariant under symmetry, making it appeal-
ing to be used in symmetry-based pruning search algorithms.
Furthermore, the resulting heuristic is at least as informative
as using symmetric lookups over the original CPDB heuris-
tic. As the enhanced heuristic operates over a larger collec-
tion of PDBs, in order to reduce the memory consumption,
we propose keeping symmetric PDBs implicitly, generaliz-
ing previously used domain-dependent techniques (Felner
et al. 2005; Helmert and Röger 2010) to classical domain-
independent planning. We perform an empirical investiga-
tion, showing the benefits of the suggested approach in terms
of both increased informativeness and improved memory
consumption for PDB storage.

Background
We consider planning tasks in the SAS+ formalism
(Bäckström and Nebel 1995), augmented with action costs.
In this formalism, a planning task is a tuple Π =
〈V,O, s0, s?〉, where V is a finite set of finite state variables
v, each associated with a domain D(v). A partial state s

75

A1

p1

t2

A2

A3
p4

A4 t1

43

43

43

30

B1

B2

p3

B3 p5

B4

35 17

39

23

47

C1

p2

C2C3C4
292142

139

19
0

15
7

Figure 1: Instance #5 of the transport-opt11 domain,
with symmetric packages and trucks highlighted.

assigns each variable v ∈ vars(s) a value from D(v), de-
noted s[v], where vars(s) ⊆ V . If vars(s) = V , s is called
a state. Two partial states s and s′ comply if s[v] = s′[v] for
all v ∈ vars(s) ∩ vars(s′). O is a finite set of operators o,
each of the form o = 〈pre(o), eff (o), cost(o)〉, where both
pre(o) and eff (o) are partial states and cost(o) ∈ N+

0 is the
non-negative cost of the operator. s0 is the initial state and
s? is the goal description, a partial state.

The semantics of a planning task is defined as follows.
An operator o ∈ O is applicable in a state s if pre(o)
complies with s. Its application in s results in the state s′,
denoted s(o), that complies with eff (o) and for all v 6∈
vars(eff (o)), s′[v] := s[v]. An s-plan is a sequence of op-
erators π = 〈o1, . . . , on−1〉 such that it is iteratively appli-
cable starting in s and finally leads to some goal state sn,
i. e. a state that complies with s?. Formally, there must exist
states s1, . . . sn with s1 = s such that oi is applicable in si
and si+1 = si(oi). An s-plan is called a plan if s = s0. The
cost of such a plan π is the sum of its operators’ cost, i. e.
cost(π) =

∑n
i=1 cost(oi). An optimal plan is a plan with

minimal cost among all plans. Optimal planning deals with
finding optimal plans.

Figure 1 shows our running example (ignoring the col-
ors for the moment), instance #5 of the TRANSPORT do-
main from the optimal sequential track of the International
Planning Competition 2011. There are three cities A, B, and
C, each with four locations 1, . . . , 4. Locations of cities are
connected by roads of a certain length as shown in the figure.
There are five packages p1, . . . , p5, drawn at their initial lo-
cations, that must be delivered to the locations indicated by
dotted arrows. To achieve this, there are two trucks t1 and
t2, drawn at their initial locations, each with a capacity of
carrying up to three packages. The planning task has three
types of operators: PICK-UP and DROP for loading and un-
loading of packages in and from trucks, incurring cost of 1,
and DRIVE for moving trucks between two locations if there
is a road connecting them, incurring cost equal to the length
of the road. A typical SAS+ task uses five state variables vpi
for the packages pi, encoding at which location or in which
truck a package is, and four state variables vti and vci , en-
coding the location and the available capacity of the trucks
ti, respectively.

For the remainder of this section, we assume that a plan-

ning task Π = 〈V,O, s0, s?〉 with states S is given. A
heuristic is a function h : S 7→ N+

0 that assigns each state
s an estimate of the cost-to-go to reach a goal state. The
perfect heuristic h∗ assigns each states s the true minimal
cost of reaching a goal state. A heuristic h is admissible if
it never overestimates the true cost, i. e. h(s) ≤ h∗(s) for
all states s. Combining the A∗ search algorithm (Hart, Nils-
son, and Raphael 1968) with an admissible heuristic results
in finding optimal plans.

Pattern Databases
A pattern database (PDB) (Culberson and Schaeffer 1998)
is a heuristic defined by a subset of the planning task’s vari-
ables, P ⊆ V , called the pattern. The pattern induces an ab-
straction of the original planning task by considering states
equivalent iff they agree on all variables from the pattern,
i. e. states s and s′ are considered equivalent iff s[v] = s′[v]
for all v ∈ P . We note that for the case of SAS+ tasks,
the abstract planning task ΠP = 〈P,OP , sP0 , sP? 〉 can be
obtained from Π by simply syntactically removing all ref-
erences to variables not contained in P . A PDB for pattern
P , denoted hP , stores perfect heuristic values for ΠP and a
perfect hash function to map states s of Π to their abstract
counterparts sP of ΠP . PDBs are admissible heuristics due
to the nature of the state space abstraction.

Heuristics in general and PDBs in particular are additive
if their heuristic values can be summed without violating ad-
missibility of the resulting heuristic for all states. Formally, a
set of patterns (also called pattern collection) {P1, . . . , Pn}
for Π is additive (and hence the set of PDBs {hP1 , . . . , hPn}
is additive) if the heuristic h(s) :=

∑n
i=1 h

Pi(s) is admissi-
ble for all states s ∈ S.

A simple additivity criterion (a sufficient, but not neces-
sary condition of additivity), has been presented by Haslum
et al. (2007). Two patterns P and Q for Π are disjoint-
additive if there is no operator o ∈ O such that variables
v ∈ P and v′ ∈ Q are both affected by o, i. e. v, v′ ∈
vars(eff (o)). A set of patterns is disjoint-additive if all pat-
terns of the set are pairwise disjoint-additive. Given a pattern
collection C and the collection A of all maximal (w.r.t. set
inclusion) disjoint-additive subsets of C, the canonical PDB
(CPDB) heuristic (Haslum et al. 2007) for a state s is defined
as

hCC (s) = max
B∈A

hB(s) = max
B∈A

∑

P∈B
hP (s).

Informally, the CPDB heuristic computes the sum over
PDBs whenever this is admissible, and the maximum other-
wise. Note that this is the best way of admissibly combining
the patterns in C for the disjoint additivity criterion. Haslum
et al. (2007) also presented a hill climbing (HC) procedure
that performs a search in the space of pattern collections,
aiming at obtaining pattern collections which yield the best
results with the CPDB heuristic. In a nutshell, the HC pro-
cedure initializes the pattern collection with singleton pat-
terns for all variables mentioned in the goal. It then itera-
tively considers adding new patterns to the collection that
are one-variable extensions of patterns from the current col-
lection (patterns are extended by adding one causally rele-

76

Init {vp1} {vp2} {vp3} {vp4} {vp5}

Iter #1 {vp1} {vp2} {vp3} {vp4} {vp5}{vt1 , vp1}

Iter #2 {vp1} {vp2} {vp3} {vp4} {vp5}{vt1 , vp1}

{vt1 , vt2 , vp1}

Prune {vp2} {vp3} {vp4} {vp5} {vt1 , vt2 , vp1}

Figure 2: Several iterations of HC on instance #5 of the
transport-opt11 domain, showing the current pattern
collections and their maximal disjoint-additive subsets.

vant variable to it). These candidate patterns are evaluated
by computing the CPDB heuristic that would result from
including the candidate pattern on sample states. The pro-
cedure stops if no significant improvement can be obtained
or a time limit is reached. At the end, all patterns that are
only part of maximal disjoint-additive subsets that are dom-
inated by others are pruned from the collection. The com-
bination of the CPDB heuristic with pattern collections ob-
tained through HC is commonly denoted by iPDB in the lit-
erature.

Figure 2 shows two exemplary iterations of the HC pro-
cedure. At each step, it lists the current pattern collec-
tion and depicts the maximal disjoint-additive subsets by
dashed boxes around the patterns they contain. The initial
pattern collection contains all singleton patterns for goal
variables. In the first iteration, an extension of {vp1} with
{vt1} is added to the collection, and in the second iteration,
{vt1 , vt2 , vp1} is added, introducing new maximal disjoint-
additive subsets. After pruning the dominated patterns {vp1}
and {vt1 , vp1} and the maximal disjoint-additive subsets
they are part of in an optimization step, all remaining pat-
terns are pairwise disjoint-additive, and hence a single max-
imal disjoint-additive subset remains, shown in black in the
figure. A computation of the CPDB heuristic hence adds all
heuristic values of the PDBs for the individual patterns, i. e.
hCC (s) = h{v

p2}(s)+h{v
p3}(s)+h{v

p4}(s)+h{v
p5}(s)+

h{v
t1 ,vt2 ,vp1}(s).

Structural Symmetries
Shleyfman et al. (2015) defined structural symmetries for
STRIPS planning tasks. Later, the definition was adapted
to SAS+ for Fully Observable Non-deterministic Planning
(Winterer, Wehrle, and Katz 2016). Here, we restrict the def-
inition of Winterer, Wehrle, and Katz (2016) to the classical
setting.

Definition 1 (Structural Symmetry). For a SAS+ planning
task Π = 〈V,O, s0, s?〉, let F be the set of Π’s facts, i. e.,
pairs 〈v, d〉 with v ∈ V , d ∈ D(v). A structural symmetry
for Π is a permutation σ : V ∪ F ∪O → V ∪ F ∪O, where

1. σ(V) = V and σ(F) = F such that σ(〈v, d〉) = 〈v′, d′〉
implies v′ = σ(v);

2. σ(O) = O such that for o ∈ O, σ(pre(o)) = pre(σ(o)),
σ(eff (o)) = eff (σ(o)), cost(σ(o)) = cost(o);

3. σ(s?) = s?;

where σ({x1, . . . , xn}) := {σ(x1), . . . , σ(xn)}, and for a
partial state s, s′ := σ(s) is the partial state obtained from s
such that for all v ∈ vars(s), σ(〈v, s[v]〉) = 〈v′, d′〉 implies
s′[v′] = d′.

Note that given a structural symmetry σ, its application
to sets or tuples X is naturally defined as the set/tuple of
element-wise applications of σ. The set of all structural sym-
metries ΓΠ of a planning task Π forms a group under the
composition operation. In practice, a set of structural sym-
metries that generates (a subgroup of) the symmetry group
ΓΠ can be efficiently computed using off-the-shelf tools for
discovery of automorphisms in explicit graphs (Shleyfman
et al. 2015). For simplicity, in what follows, by a symmetry
group Γ we refer to a subgroup of the symmetry group ΓΠ

of the planning task Π.
In the running example shown in Figure 1, we find a set

of symmetry generators Σ consisting of three elements. One
generator permutes the variables vp1 and vp2 , another one
the variables vp2 and vp3 , which together cover the symme-
tries between the packages p1, p2, and p3 that all need to be
delivered to the same goal location (highlighted in blue in
the figure).1 The third generator permutes the variables of
the trucks, i. e. it swaps vt1 with vt2 , and vc1 with vc2 , hence
covering the symmetry between the trucks (highlighted in
red in the figure). By composing these three generators, we
obtain a symmetry group of the planning task.

Symmetry-based pruning search algorithms use symme-
tries to prune some of the symmetric states encountered dur-
ing search (if previously seen symmetric states have been
reached with the same or lower cost). DKS (Domshlak,
Katz, and Shleyfman 2012) is such an algorithm. It runs A∗

and performs additional duplicate pruning with structural
symmetries. This preserves optimality because due to the
structure-preserving property of goal-stable automorphisms,
a plan from state s exists iff the plan under symmetry (hence
of the same cost) exists from the symmetric state s′. In our
running example, any two states that only differ in that the
positions of p1 and p2 are swapped are symmetric under the
first symmetry generator and hence it is enough to consider
only one of the two states in a forward search.

Symmetric lookups for classical planning (Sievers et al.
2015a) are a technique to exploit (structural) symmetries
during search such as A∗. For a given heuristic h, a state
s and a symmetry group Γ, the symmetric lookup heuris-
tic over h is defined as hSL(s) := maxs∈S h(s), where
S := {s, s1, . . . , sm} is a set of states symmetric to s un-
der structural symmetries from Γ, including s itself. S can
be chosen arbitrarily to trade off computation time against
informativeness of the symmetric lookups, i. e. m = 0 is

1Domshlak, Katz, and Shleyfman (2012) showed that for use in
a forward search, structural symmetries do not need to stabilize the
initial state.

77

possible as well as computing the set of all states symmetric
to s under Γ.

Symmetric Patterns and Implicit PDBs
Our method to enhance the CPDB heuristic is based on com-
puting symmetric patterns of the pattern collection obtained
via HC and adding the PDBs for these symmetric patterns to
the CPDB heuristic.

Definition 2 (Symmetric Patterns and PDBs). Given a pat-
tern P = {v1, . . . , vn}, the symmetric pattern under struc-
tural symmetry σ is defined as σ(P) = {σ(v1), . . . , σ(vn)}.

Our first result establishes that a symmetric PDB has the
same heuristic values as the original PDB for all states under
the mapping of the symmetry.

Theorem 1. Let Π be a SAS+ planning task, P be a pattern,
and σ be a structural symmetry of Π. For each state s of Π
we have hP (s) = hσ(P)(σ(s)).

Proof. Let Q = σ(P) and let ΠP and ΠQ be the abstract
planning tasks. Note that σ maps ΠP to ΠQ, mapping vari-
ables, operators, and the goal. Let sP be the partial state ob-
tained from s by restricting s to the variables in P . Then sP
is a state in ΠP . Similarly, let tQ be the partial state obtained
from t := σ(s) by restricting t to the variables inQ. Then tQ
is a state in ΠQ. Further, note that σ(sP) = tQ, i. e., σ maps
sP to tQ. Since σ is a structural symmetry, there is a 1:1 cor-
respondence between the paths from s and t in the original
state space of Π. As ΠP and ΠQ are both abstractions of the
same state space (that of Π), abstract paths from sP and tP
correspond to paths from s and t, and hence there is also a
1:1 correspondence between these paths in the abstractions,
giving us the desired result.

Based on this result, which is in the spirit of symmetric
lookups, we suggest the following implicit representation of
symmetric PDBs that avoids to compute the actual PDB. For
a pattern P and a symmetric pattern Q such that σ(Q) = P
for some structural symmetry σ, instead of storing the PDBs
(i. e. computing the abstract state distances) for both P and
Q, we can compute the PDB for P and only keep the tu-
ple 〈P, σ〉 as an implicit representation of the PDB for Q.
When computing a heuristic value for state s with the sym-
metric PDB forQ, we can exploit Theorem 1 and reduce this
computation to a lookup in the PDB for P by the following
computation: hQ(s) = hP (σ(s)).

To make the computation of the lookup in the symmetric
PDB more efficient, we do not need to permute the entire
state s, but only the partial state sQ, i. e. the part of s relevant
to Q. Hence it is enough to store the part of σ relevant to Q,
which allows us to map sQ to the partial state σ(s)P , i. e.
the symmetric partial state relevant to P . Then we can look
up the heuristic value in hP and return it. While this still
incurs a slight runtime overhead when computing heuristic
values compared to lookups in a fully computed PDB, the
computation time required to compute the full symmetric
PDB and the memory required to store it can be avoided.

Canonical PDBs and Structural Symmetries
We now turn our attention to dealing with pattern collections
as used by the CPDB heuristic. Our first definition, however,
is independent of the way the pattern collection is obtained.

Definition 3. Given a symmetry group Γ, a pattern collec-
tion C is closed under symmetry group Γ if for all structural
symmetries σ ∈ Γ and for all patterns P ∈ C, σ(P) ∈ C.

Informally, the pattern collection is closed under symme-
try if all symmetric patterns of all patterns are already part of
the collection. Naturally, not all collections are closed under
symmetry. Given a collection C that is not closed under Γ,
adding all symmetric patterns to the collection results in the
symmetric closure C that is closed under symmetry group Γ.

From here on, we focus on pattern collections that are
disjoint-additive, as required by the CPDB heuristic.

Theorem 2. Given a structural symmetry σ and a disjoint-
additive pattern collection C, the pattern collection σ(C) is
disjoint-additive.

Proof. Let P and Q be two patterns in C. Since C
is disjoint-additive, for all operators o ∈ O we have
vars(eff (o)) ∩ P = ∅ or vars(eff (o)) ∩ Q = ∅, and thus
vars(eff (σ(o)))∩σ(P) = ∅ or vars(eff (σ(o)))∩σ(Q) = ∅
because σ is a structural symmetry. Hence σ(P) and σ(Q)
are disjoint-additive, and since this holds for any pair of pat-
terns from C, also σ(C) is disjoint-additive.

With this result, we can now state that the CPDB heuristic
is invariant under a given symmetry group if used with a
pattern collection that is closed under the symmetry group.

Theorem 3. Given a symmetry group Γ and a pattern col-
lection C, if C is closed under Γ, then for each state s and
for each structural symmetry σ ∈ Γ, we have hCC (s) =
hCC (σ(s)).

Proof. Let A be a maximal disjoint-additive subset of C.
Then, from Theorem 2 we have that σ(A) is also disjoint-
additive. Further, by Definition 3, since C is closed under Γ,
we have σ(A) ⊆ C. Assume to the contrary of maximal-
ity of σ(A) that there exists a pattern P in C \ σ(A), such
that σ(A)∪{P} is disjoint-additive. Then, from Theorem 2,
A ∪ {Q} for some Q such that σ(Q) = P is also disjoint-
additive. Further, Q 6∈ A, since P 6∈ σ(A), contradicting the
maximality of A.

Heuristics that are invariant under symmetry are particu-
larly attractive for search techniques that use structural sym-
metries for pruning such as DKS. DKS prunes a search node
if the state s of the node is symmetric to the state s′ of a pre-
viously seen node. If the heuristic in use is invariant under
symmetry, then the search effort from these two states on-
ward is the same, whilst if the heuristic is not invariant under
symmetry, it might be beneficial to continue with the state s
instead of pruning it and relying on s′.

Another direct consequence of Theorem 3 is that there is
no theoretical added value in performing symmetric lookups
over the CPDB heuristic with pattern collections that are
closed under symmetry. In fact, in general the symmetric

78

lookups heuristic over the CPDB heuristic with C is domi-
nated by the CPDB heuristic with the symmetric closure C,
as the next theorem shows.

Theorem 4. Given a symmetry group Γ and a pattern col-
lection C, for each state s, hCCSL(s) ≤ hCC (s).

Proof. Since C ⊆ C, we have hCC (s′) ≤ hCC (s′) for all
states s′. In particular, it holds for each s′ = σ(s) for some
σ ∈ Γ. From Theorem 3 we have that hCC (s) = hCC (s′) for
all s′ = σ(s), and thus hCC (σ(s)) ≤ hCC (s) for all σ ∈ Γ,
giving us the desired result.

Implementation
Building on the theoretical results of the previous sections,
we present the following approach to enhance the CPDB
heuristic through using structural symmetries. The algo-
rithm begins with computing symmetries of the given plan-
ning task. In practice, a symmetry group Γ is usually not
given explicitly as a collection of its elements (the symme-
try group ΓΠ of a task Π is not known to be polynomially
computable), but rather via a set of symmetry generators Σ
that span the group Γ. Such symmetry generators can be
computed in low-order polynomial time in the size of the
planning task with off-the-shelf tools for discovery of auto-
morphisms in explicit graphs.2

The algorithm then continues with the computation of a
pattern collectionC with the HC procedure as usual and then
turns this collection C into the symmetric closure C. After-
wards, it prunes patterns from dominated maximal disjoint-
additive subsets as usual (to avoid storing unnecessary PDBs
and performing unnecessary heuristic computations also for
the symmetric PDBs), and then computes the PDBs of the
patterns of the final pattern collection for the CPDB heuris-
tic, possibly using the implicit representation for PDBs.
From Theorem 3, we know that the resulting heuristic is in-
variant under symmetry. Additionally, from Theorem 4 we
also know that this approach is at least as good using sym-
metric lookups with the CPDB heuristic on the original col-
lection C.

Besides using HC and computing PDBs, the main ingre-
dient of our algorithm is the computation of the symmetric
closure C given a pattern collection C. Performing a com-
plete breadth-first search in the space of symmetric patterns,
we can compute C from C for any given pattern collection
C, independent of its origin. The open list of the search is
initialized with all patterns from C. Expanding a pattern P
consists in applying each structural symmetry σ from Σ to
P once, adding the symmetric patterns σ(P) to the open
list. After expansion, P is added to the closed list to avoid
generating duplicates. The search runs until the open list is
empty, at which point it generated all symmetric patterns
for all P ∈ C (i. e. applying all symmetries of the group
Γ given implicitly through the generators Σ to all patterns).

2We only need to consider generators σ that do not stabilize
variables, i. e. for which σ(v) 6= v for at least one variable v, other-
wise we would have σ(P) = P for any pattern P , and hence iden-
tical perfect heuristic values for both PDBs (that also means if val-
ues of variables are permuted, the heuristic value cannot change).

While the the runtime of this algorithm is exponential in the
variables V of the planning task in the worst case, the com-
putation is very fast in practice.

The basic variant of our approach where we compute full
PDBs for the entire pattern collectionC is called HC-CPDB-
symm. The alternative is to compute implicit PDBs for all
symmetric patterns added to C, i. e. for patterns in C \ C.
This requires to compute full PDBs for all patterns in C and
to adapt the above algorithm to not only generate the sym-
metric patterns, but also the symmetry mappings from the
symmetric patterns back to their original patterns (in C). We
call this approach HC-CPDBS-symm-impl.

We note that the original pattern collection might already
include some patterns that are symmetric to each other and
further savings might be obtained by keeping the PDBs of
these patterns implicitly as well. However, detecting these
symmetry relations amongst patterns and deciding which of
the PDBs to keep implicit is computationally expensive, and
hence in this work, we restrict the use of implicit PDBs to
only the newly generated symmetric patterns.

Experiments
In this section, we evaluate our approach which we imple-
mented in Fast Downward (Helmert 2006). Our benchmark
set comprises the planning domains of the optimal sequen-
tial tracks of all International Planning Competitions (IPCs)
up to 2014, which gives rise to 1667 tasks in 57 domains.
The experiments were run on machines with Intel Xeon E5-
2660 CPUs running at 2.2 GHz, with each run limited to
30 minutes and 2GB of memory. All configurations use a
time limit of 900s for the hill climbing procedure HC as sug-
gested by Scherrer, Pommerening, and Wehrle (2015), and
the (Fast Downward) default maximum sizes of 2000000
states for each PDB and 20000000 states for all PDBs in
total.3 Symmetries are computed with the graph automor-
phism tool Bliss (Junttila and Kaski 2007) as described by
e. g. Shleyfman et al. (2015), and the total time budget for
all computations related to symmetries is 300s. In all ex-
periments, when not using the DKS search algorithm for
symmetry-based pruning, we use A∗. In both cases, when re-
porting the number of expansions, we always report expan-
sions until last f -layer to avoid tie-breaking issues, aggre-
gated over commonly solved tasks. The runtimes displayed
in the tables are in seconds, averaged over commonly solved
tasks either by using the geometric mean (gm) or the arith-
metic mean (am). Best results are highlighted in bold.

A∗ Search
We begin our evaluation with using A∗ to eliminate the in-
fluence of symmetry-based pruning of the DKS algorithm
which we evaluate afterwards. We compare the original
heuristic HC-CPDB (corresponding to iPDB (Haslum et al.

3We also experimented with (much) smaller and somewhat
larger size limits to investigate their potential influence, but found
no change in the relative performance of the different heuristics,
and also the absolute performance only changed marginally (max-
imum change of 6 solved tasks). Hence we only report results for
the default size limits as used in Fast Downward.

79

HC-CPDB

orig symm symm-impl SL

Coverage (# solved tasks) 814 813 813 809
Expansions 85th percentile 513000 429290 429290 429290
Expansions 90th percentile 926373 880093 880093 909015
Expansions 95th percentile 3378274 2661710 2661710 2698737
Search out of memory 774 736 730 483
Search out of time 70 109 115 366
Search time (gm) 0.43 0.42 0.43 0.82
Total time (gm) 4.10 4.14 4.08 5.79
Symmetric PDBs time (gm) - 0.00 0.00 -
Symmetric PDBs time (am) - 3.02 0.00 -

Table 1: A∗ with the HC-CPDB heuristic in different vari-
ants: the original heuristic, the heuristic enhanced with sym-
metric PDBs (full PDBs and implicit PDBs), and using sym-
metric lookups over all symmetric states.

2007) as implemented in Fast Downward (Sievers, Ortlieb,
and Helmert 2012)) to the two variants of our approach,
i. e. HC-CPDB-symm and HC-CPDB-symm-impl. Further-
more, to test the practical implications of Theorem 4, we in-
clude the combination of the CPDB heuristic with symmet-
ric lookups, denoted HC-CPDB-SL (Sievers et al. 2015a),
where we compute the set of all symmetric states for a
given state, using a similar complete breadth-first search as
to compute all symmetric patterns.4 Table 1 shows coverage,
number of expansions (different percentiles over commonly
solved tasks), the number of tasks for which the search hit
the memory and time limits, the search time, the total time
(which in contrast to search time includes the time to com-
pute symmetries and the time to perform HC), and the time
required to compute the symmetric closure of the pattern
collection and the PDBs for the additional symmetric pat-
terns (also included in total time but not in search time).

The first observation we make is that compared to the
baseline, coverage increases with neither of the approaches
of using symmetries. In particular, using symmetric lookups,
coverage decreases slightly, as already noted by Sievers
et al. (2015a). While using symmetric lookups only mod-
erately decreases the number of expansions required, our
approaches require the fewest expansions. In fact, as can
be seen from the scatter plot shown in Figure 3, our ap-
proach HC-CPDB-symm-impl (the same as HC-CPDB-
symm) dominates HC-CPDB, requiring strictly fewer ex-
pansions (in 194 tasks across 33 domains). While not shown,
the same is true for HC-CPDB-symm(-impl) compared to
HC-CPDB-SL, hence indeed confirming Theorem 4. Table 2
shows the summed expansions of all four variants for the 33
domains in which these variants require different amounts
of expansions. Differences between HC-CPDB-symm and
HC-CPDB-symm-impl are due to the HC procedure hitting
the time limit in different iterations.

4Sievers et al. (2015a) instead report results for a set of 10 ran-
domly generated symmetric states, but this configuration solves 5
tasks less than using the full set in our experiments.

100 102 104 106 108

100

102

104

106

108

u
n
s.

unsolved

HC-CPDB

H
C
-C

P
D
B
-s
y
m
m
-i
m
p
l

Figure 3: Expanded states for HC-CPDB vs HC-CPDB-
symm-impl.

HC-CPDB

orig symm symm-impl SL

BARMAN-OPT11 16836883 15368212 15368212 15368292
DEPOT 1445907 1345976 1345976 1355988
DRIVERLOG 2958328 2683812 2683812 2695195
ELEVATORS-OPT08 6314143 6212113 6212113 6212113
ELEVATORS-OPT11 5311976 5209946 5209946 5209946
GED-OPT14 27170082 9065556 9065556 10038602
GRIPPER 12533069 12532583 12532583 12532801
LOGISTICS00 218153 217441 217441 217441
LOGISTICS98 286292 259265 259265 267515
MICONIC 90265550 88049903 88049903 88134507
MPRIME 1229963 1109620 1109620 1229639
MYSTERY 1455463 1443841 1443841 1455250
NOMYSTERY-OPT11 11935954 8383343 8383343 8493587
OPENSTACKS 747591 746430 746430 746542
PEGSOL-08 1150308 466075 465372 538683
PEGSOL-OPT11 1363689 676404 669728 750551
PIPESWORLD-NOTANK. 33275583 33235577 33235577 33266046
PIPESWORLD-TANKAGE 8574679 8514265 8514265 8514265
PSR-SMALL 5155732 5155718 5155718 5155718
SCANALYZER-08 17195126 17035042 17035042 17105413
SCANALYZER-OPT11 17195120 17035036 17035036 17105407
SOKOBAN-OPT08 18173615 14928222 14928222 15142916
SOKOBAN-OPT11 5132629 4542038 4542038 4555111
STORAGE 5988362 5665472 5665472 5926753
TETRIS-OPT14 639332 524044 524044 635909
TIDYBOT-OPT11 2197242 2020309 2020309 2163974
TIDYBOT-OPT14 3824249 3653359 3653359 3791913
TPP 4138020 4137980 4137980 4137990
TRANSPORT-OPT08 1293570 1052443 1052443 1052443
TRANSPORT-OPT11 1291983 1050856 1050856 1050856
TRANSPORT-OPT14 13063876 13062044 13062044 13062044
TRUCKS 14194832 13379703 13379703 13379703
ZENOTRAVEL 1518693 1517833 1517833 1517895

Table 2: Expansions summed for each domain where the
configurations of Table 1 require a different amount of ex-
pansions.

80

C {vp2} {vp3} {vp4} {vp5} {vt1 , vt2 , vp1}

C

{vt1 , vt2 , vp1}

{vp3} {vp4} {vp5} {vp2}

{vp1}{vt1 , vt2 , vp2} {vt1 , vt2 , vp3}

Figure 4: Computing the symmetric closureC fromC as ob-
tained by HC on instance #5 of the transport-opt11
domain, including dominance pruning; showing the pattern
collections and their maximal disjoint-additive subsets.

Coming back to our example from Figure 1, the baseline
(HC-CPDB) computes the pattern collection as shown in the
example computation in Figure 2. This pattern collection C
yields a heuristic value of hCC (s0) = 2 + 2 + 2 + 2 + 180 =
188 for the initial state, while the optimal plan cost is 614.
Note that all PDBs for packages not at a goal contribute ex-
actly 2 to the heuristic value, for loading and unloading the
package. The PDB with the two truck variables (in addition
to a package variable) computes a value of 139 + 39 + 2, for
driving t2 twice and loading and unloading p1.

Our approach HC-CPDB-symm continues from this pat-
tern collection C as illustrated in Figure 4. To obtain the
symmetric closure of C from C, the symmetric patterns
are added to C as shown. This results in two additional
maximal disjoint-additive subsets, shown in red and blue in
the figure. The maximal disjoint-additive subset that groups
all singleton PDBs for each pi is dominated by all oth-
ers and pruned (not shown). With C, the CPDB heuris-
tic computes the maximum over the black, red, and blue
maximal disjoint-additive subsets, e. g. for the initial state,
hCC (s0) = max{180 + 2 + 2 + 2 + 2, 476 + 2 + 2 + 2 +
2, 180 + 2 + 2 + 2 + 2} = 484, a considerable increase, due
to the addition of the pattern {vt1 , vt2 , vp2}. This exemplar-
ily explains the fewer expansions required to solve this task
with HC-CPDB-symm (c. f. Table 2).

In principle, the HC procedure could find this “better” pat-
tern directly, but this is very unlikely to happen for the fol-
lowing reasons. Only variables of trucks (location and ca-
pacity) are causally relevant to the variables of packages.
Hence the only candidate variables for extending patterns
are the variables of trucks. In particular, because there is at
most one variable of a package in each pattern for the same
reason, adding the capacity variable of any truck can never
improve the heuristic. To summarize, the only possibility of
extending patterns is to add the location variable of a truck.
However, adding a single location variable of a truck to any
of the initial singleton patterns only increases the maximum
heuristic value of the PDB from 2 to 3. This increase in
heuristic in quality is high when the first pattern containing a
variable of a truck is added, but after the collection contains
the pattern {vt1 , vt2 , vp1}, extending any of the other pat-
terns does not yield a notable heuristic improvement. Only
adding the location variables of both trucks simultaneously
would allow the HC procedure to find the “better” pattern

100 102 104 106 108

100

102

104

106

108

u
n
s.

unsolved

HC-CPDB-symm

H
C
-C

P
D
B
-s
y
m
m
-i
m
p
l

Figure 5: Estimated number of integers required to be stored
for symmetric PDBs, comparing using full against implicit
PDBs.

we get via adding symmetric patterns.
Going back to the overview shown in Table 1, compar-

ing the reasons of failure of search for the baseline and our
approaches, we observe a trade-off, i. e. our approaches hit
the time limit more frequently and the memory limit less fre-
quently than the baseline. In general, although the number of
expansions decreases, for the majority of tasks, both search
time and total time are very comparable for the baseline and
our approaches. The runtime does not decrease although the
expansions decrease because the number of PDB lookups
required by the CPDB heuristic on the larger symmetric clo-
sures of pattern collections increases considerably. In par-
ticular, for tasks where adding symmetric patterns results in
many new maximal disjoint-additive subsets of the pattern
collection, the number of PDB lookups required to compute
heuristic values with the CPDB heuristic can increase by up
to two orders of magnitude. This is prohibitively large and
results in the search not completing within the 30 minute
time limit. An example task where this happens is the in-
stance 11-1 of the LOGISTICS00 domain, which is solved
by the baseline but not by our approaches.

Comparing computing full symmetric PDBs against com-
puting implicit symmetric PDBs, we note that as expected,
search time is slightly higher with implicit PDBs due to the
additional computation required to map the abstract state
from the implicit PDB to the original full PDB. Still, the
total runtime is lower. One possible reason for this is the
time required to compute symmetric patterns and PDBs.
Looking at these runtimes, we first note that the overhead
caused by this computation is in general negligible (geo-
metric mean rounded to 0 seconds). Second, looking at the
arithmetic mean, we see that computing full PDBs requires
more time compared to computing implicit PDBs. We also
assess the memory consumption of both our approaches. As
an estimate of memory consumption, Figure 5 shows a scat-
ter plot comparing the number of integers required to store
full PDBs and implicit PDBs. As expected, using implicit
PDBs strictly saves memory compared to storing full PDBs.

81

HC-CPDB with DKS

orig symm symm-impl SL

Coverage (# solved tasks) 887 893 891 886
Expansions 85th percentile 379185 341430 341430 351576
Expansions 90th percentile 819599 788324 788324 816721
Expansions 95th percentile 3510224 2584593 2584593 2745883
Search out of memory 490 475 472 336
Search out of time 281 290 294 436
Search time (gm) 0.56 0.54 0.54 0.86
Total time (gm) 5.33 5.37 5.22 6.60

Table 3: The DKS search algorithm with the HC-CPDB
heuristic in different variants: the original heuristic, the
heuristic enhanced with symmetric PDBs (full PDBs and
implicit PDBs), and using symmetric lookups over all sym-
metric states.

Symmetry-based Pruning with DKS
After having established that our approach increases heuris-
tic informativeness, we now evaluate our improved CPDB
heuristic, which is invariant under symmetries, in conjunc-
tion with the symmetry-based pruning search algorithm
DKS. Table 3 shows the results for the same comparison as
Table 1.

While using symmetric lookups again only helps in terms
of expansions but not in terms of coverage, we observe that
using our symmetry-improved CPDB heuristics indeed in-
crease coverage compared to the original CPDB heuristic if
combined with the DKS algorithm. The difference in cov-
erage between using full PDBs and implicit PDBS is due
to two tasks where the increased time required to com-
pute heuristic values with implicit PDBs is too large. Fig-
ure 6 compares expansions, confirming the aggregated re-
sults shown in the table. Note that here as well, our im-
proved heuristic strictly dominates the original one in terms
of expansions. Concerning the number of times the search
reaches the time or memory limit, and search and total time,
the results are very similar to the ones with regular A∗. We
conclude that as suspected, using the now invariant-under-
symmetry heuristic HC-CPDB-symm helps improving the
performance of the symmetry-based pruning search algo-
rithm DKS.

Conclusions
In this work, we applied structural symmetries to strengthen
the canonical pattern databases heuristic. In particular, our
approach computes symmetric patterns of the pattern col-
lection used with the canonical pattern databases heuristic,
thus computing the symmetric closure of the pattern collec-
tion. As a result, we obtain a heuristic that is invariant un-
der symmetry, which makes it particularly appealing to be
used with symmetry-based pruning search algorithms. We
also prove that the resulting heuristic dominates the sym-
metric lookups heuristic over the original canonical pat-
tern databases heuristic. Further, in order to allow for stor-
ing the larger symmetry-enhanced pattern collection with-
out significantly increasing the memory consumption, we

100 102 104 106 108

100

102

104

106

108

u
n
s.

unsolved

HC-CPDB

H
C
-C

P
D
B
-s
y
m
m
-i
m
p
l

Figure 6: Expanded states for HC-CPDB vs HC-CPDB-
symm-impl, both combined with DKS.

suggest storing the symmetric pattern databases implicitly,
generalizing an approach previously suggested for domain-
dependent heuristic search to domain-independent classical
planning. Our empirical evaluation shows that it is benefi-
cial to enrich the canonical pattern database heuristic with
symmetric patterns, both improving heuristic informative-
ness and reducing memory consumption of storing the pat-
tern databases if using the implicit representation.

Acknowledgments
This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning
about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In McCluskey, L.; Williams, B.; Silva, J. R.;
and Bonet, B., eds., Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2015. Sym-
metry breaking in deterministic planning as forward search:
Orbit space search algorithm. Technical Report IS/IE-2015-
03, Technion, Haifa.
Edelkamp, S. 2001. Planning with pattern databases. In
Cesta, A., and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In Kaelbling, L. P.,

82

and Saffiotti, A., eds., Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI 2005),
103–108. Professional Book Center.
Felner, A.; Zahavi, U.; Holte, R.; Schaeffer, J.; Sturtevant,
N.; and Zhang, Z. 2011. Inconsistent heuristics in theory
and practice. Artificial Intelligence 175:1570–1603.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M., and Röger, G. 2010. Relative-order abstrac-
tions for the pancake problem. In Coelho, H.; Studer, R.;
and Wooldridge, M., eds., Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), 745–750.
IOS Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Pro-
ceedings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX 2007), 135–149. SIAM.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In Burgard,
W., and Roth, D., eds., Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011), 1004–
1009. AAAI Press.
Scherrer, S.; Pommerening, F.; and Wehrle, M. 2015. Im-
proved pattern selection for PDB heuristics in classical plan-
ning (extended abstract). In Lelis, L., and Stern, R., eds.,
Proceedings of the Eighth Annual Symposium on Combina-
torial Search (SoCS 2015), 216–217. AAAI Press.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2014), 289–297. AAAI Press.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3371–3377.
AAAI Press.
Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2015a.
An empirical case study on symmetry handling in cost-
optimal planning as heuristic search. In Hölldobler, S.;
Krötzsch, M.; Peñaloza-Nyssen, R.; and Rudolph, S., eds.,
Proceedings of the 38th Annual German Conference on Ar-
tificial Intelligence (KI 2015), volume 9324 of Lecture Notes
in Artificial Intelligence, 151–165. Springer-Verlag.

Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015b. Factored symmetries for merge-and-shrink
abstractions. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI 2015), 3378–3385.
AAAI Press.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Borrajo, D.; Felner, A.; Korf, R.; Likhachev,
M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SoCS 2012), 105–111. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI 2014), 2358–2366. AAAI Press.
Winterer, D.; Wehrle, M.; and Katz, M. 2016. Structural
symmetries for fully observable nondeterministic planning.
In Kambhampati, S., ed., Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2016), 3293–3299. AAAI Press.

83

From Qualitative to Quantitative Dominance Pruning for Optimal Planning

Álvaro Torralba
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

torralba@cs.uni-saarland.de

Abstract

Dominance relations compare states to determine whether
one is at least as good as another in terms of their goal dis-
tance. We generalize these qualitative yes/no relations to
functions that measure by how much a state is better than
another. This allows us to distinguish cases where the state is
strictly closer to the goal. Moreover, we may obtain a bound
on the difference in goal distance between two states even if
there is no qualitative dominance.
We analyze the multiple advantages that quantitative domi-
nance has, like discovering coarser dominance relations, or
trading dominance by g-value. Moreover, quantitative dom-
inance can also be used to prove that an action starts an op-
timal plan from a given state. We introduce a novel action
selection pruning that uses this to prune any other successor.
Results show that quantitative dominance pruning greatly re-
duces the search space, significantly increasing the planners’
performance.

Introduction
Most classical planners focus on reducing the search space.
Their success greatly depends on their ability to exploit the
structure of the problem in the form of heuristics or pruning
methods. Pruning methods reduce the search effort by elim-
inating redundant states (Pochter, Zohar, and Rosenschein
2011) or avoiding the application of some actions (Wehrle
and Helmert 2012) while preserving at least one optimal
plan. Dominance pruning methods automatically construct
a relation that compares states, to eliminate those that are
dominated by others. Previous approaches define a qualita-
tive relation, �, in which t is said to dominate s (s � t) if it
is at least as close to the goal (Hall et al. 2013). In that case,
s may be safely pruned if its g-value is not lower than that
of t.

We generalize the label-dominance (LD) simulation
method originally devised to compute qualitative domi-
nance (Torralba and Hoffmann 2015) to a quantitative ver-
sion. Instead of a relation, we define a functionD : S×S →
R ∪ {−∞} that measures “by how much” does t dominate
s. A positive valueD(s, t) > 0 means that t is strictly closer
to the goal than s. Negative values bound the difference in
goal distance between t and s.

Theoretically, quantitative dominance has several advan-
tages. First, it may find coarser relations, hereby strength-

ening previous dominance pruning methods. Second, and
more importantly, novel pruning methods may take advan-
tage of the additional information. One way is to trade-off
dominance and g-value. IfD(s, t) > 0 we may prune s even
if its g-value is lower. If D(s, t) < 0 there is no qualitative
dominance but, we can still prune s if its g-value is large
enough. Another way is to use quantitative dominance to
prove that an action a starts an optimal plan from a given
state s, whenever the successor dominates s by an amount
equal to the action cost. We introduce a novel type of prun-
ing, which we call action selection pruning, that prunes any
other successor reducing the branching factor to one.

Empirically, we show that quantitative dominance can
greatly reduce the search space in many benchmark do-
mains, even when compared to the qualitative version. How-
ever, there is a big overhead to perform as much pruning as
possible so approximation methods may be desirable. Ac-
tion selection, on the other hand, achieves an impressive
amount of pruning with very low overhead. Moreover, it
is complementary to previous dominance pruning methods
and it greatly improves their performance in many domains.

Background
A planning task is a tuple Π = 〈V,A, I,G〉. V is a finite
set of variables v, each with a finite domain Dv . A partial
state is a function s on a subset V(s) of V , so that s(v) ∈ Dv

for all v ∈ V(s); s is a state if V(s) = V . I is the initial
state and the goal G is a partial state. A is a finite set of
actions. Each a ∈ A is a tuple 〈prea, eff a, ca〉 where prea
and eff a are partial states, called its precondition and effect,
and c(a) ∈ R+

0 is its cost. An action a is applicable in a
state s if s(v) = prea(v) ∀v ∈ V(prea). In that case, the
result of applying a in s, denoted sJaK, is another state s.t.
sJaK(v) = eff a(v) if v ∈ V(eff a), and sJaK(v) = s(v)
otherwise.

A labeled transition system (LTS) is a tuple Θ =
〈S,L, T, sI , SG〉 where S is a finite set of states, L is a fi-
nite set of labels each associated with a label cost c(l) ∈ R+

0 ,
T ⊆ S × L × S is a set of transitions, sI ∈ S is the start
state, and SG ⊆ S is the set of goal states. A planning
task defines a state space, which is an LTS where: S is the
set of all states; sI = I; s ∈ SG iff G ⊆ s; L = A, and
s
a−→ sJaK ∈ T if a is applicable in s. We will use s ∈ Θ to

84

refer to states in Θ and s a−→ t to refer to their transitions.
A plan for a state s is a path from s to any sG ∈ SG. The

cost of a cheapest plan for s is denoted h∗(s), and the cost
of a cheapest path from I to s is denoted g∗(s). A plan for
s is optimal iff its cost equals h∗(s) and is strongly optimal
if its number of 0-cost actions (denoted h∗0(s)) is minimal
among all optimal plans for s.

We consider a representation of the planning task as a set
of LTSs on a common set of labels, {Θ1, . . . ,Θk} (Helmert,
Haslum, and Hoffmann 2007; Helmert et al. 2014). When-
ever it is not clear from the context, we will use subscripts
to differentiate states in the state space, Θ (s, s′, t) and
in the individual components Θi (si, s′i, ti). The synchro-
nized product of two LTSs Θ1 ⊗ Θ2 is another LTS with
states S = {(s1, s2) | s1 ∈ Θ1 ∧ s2 ∈ Θ2}, transitions
T = {(s1, s2)

l−→ (s′1s
′
2) | s1

l−→ s′1 ∧ s2
l−→ s′2}, s.t.

(s1, s2) ∈ SG iff s1 ∈ SG1 and s2 ∈ SG2 .

Simulation-Based Qualitative Dominance
This section describes the label-dominance (LD) simula-
tion method we build upon (Torralba and Hoffmann 2015).
Given a planning task with states S, a dominance relation is
a relation �⊆ S × S where s � t implies h∗(t) < h∗(s)
or h∗(t) = h∗(s) and h∗0(t) ≤ h∗0(s). Such relation can
be used to prune states during the search: A search node
ns (representing state s) can be pruned at any point if there
exists a node nt ∈ open ∪ closed s.t. g(nt) ≤ g(ns) and
s � t.

A relation � is goal-respecting if whenever s � t, t ∈
SG ∨ s 6∈ SG. � is a simulation relation if, whenever s � t,
for every s l−→ s′, there exists a transition t l−→ t′ s.t. s′ �
t′. A cost-simulation allows the transition from t to use a
different label of lower or equal cost, i.e., whenever s � t,

for every s l−→ s′, there exists a transition t l′−→ t′ s.t. s′ � t′

and c(l′) ≤ c(l).
In a compositional approach, we take as input a set of

LTSs {Θ1, . . . ,Θk} and compute a relation �i on each Θi

to obtain a goal-respecting cost-simulation of the whole state
space Θ1⊗. . .⊗Θk. LD simulation computes all of them si-
multaneously, using label dominance to ensure that the prop-
erty still holds after merging every Θi.

Definition 1 (LD Simulation) A set {�1, . . . ,�k} of rela-
tions�i⊆ Si×Si is a label-dominance (LD) simulation for
{Θ1, . . . ,Θk} if all �i are goal-respecting and, whenever

s �i t, for all s l−→ s′ ∈ Θi, there exists a transition t l′−→ t′

in Θi s.t. s′ �i t′, c(l′) ≤ c(l), and for all j 6= i, l′ dom-
inates l in Θj given �j . We say that l′ dominates l in Θj

given �j if for all s l−→ s′ ∈ Θj there exists s l′−→ t′ ∈ Θj

s.t. s′ � t′.
Intuitively, t dominates s in Θi if, for every outgoing tran-

sition from s, t has an at least as good transition where the
targets are compared according to�i and the labels are com-
pared in all other Θj to ensure that there is no negative side
effect. For any LD simulation {�1, . . . ,�k}, we can define
a relation � s.t. s � t iff si �i ti for each Θi. This rela-

TA TB
dr

lA lB

(a) Θ1 (truck)

PA PT PB

lA lB

dr drdr

(b) Θ2 (package)

Figure 1: LTSs describing our logistics running example.

tion is a goal-respecting cost-simulation and hence, a valid
dominance relation for the state space Θ ≡ Θ1 ⊗ . . .⊗Θk.

A typical example is a logistics task where a single truck
must transport n packages from location A to B. Figure 1
shows the LTSs of the case with a single package. In this
example, LD simulation finds a relation where PA � PT �
PB , i.e., having a package at its destination is at least as good
as having it in the truck, which is at least as good as having
it anywhere else. This holds independently of the position
of the truck or the other packages in case there are any. This
allows to prune, for example, state 〈TA, PA〉 if 〈TA, PT 〉 has
lower or equal g-value. This is quite useful, as it prunes
away any state in which a package has been unloaded in
any location other than its destination. However, in the next
sections we see that quantitative dominance can do much
more.

Quantitative Dominance
First, we generalize the definition of dominance relations.

Definition 2 (Quantitative Dominance Function) A func-
tion D : S × S → R ∪ {−∞} is a quantitative dominance
function for an LTS Θ iff D(s, t) ≤ h∗(s) − h∗(t) and, if
h∗(s) = h∗(t) and h∗0(s) < h∗0(t), then D(s, t) < 0.

Intuitively, if D(s, t) > 0, then t is strictly closer to the
goal than s; if D(s, t) = 0 then t is at least as close to the
goal as s; and if −∞ < D(s, t) < 0, t can get as close
to the goal as s by paying a price of −D(s, t). Finally, if
D(s, t) = −∞, we did not discover any dominance of t over
s. The second part of the definition ensures that the pruning
is safe in domains with 0-cost actions, where s should not be
dominated by t if it is in the path from t to the goal. Given a
function D, we can define dominance relations based on it.

Definition 3 (Quantitative Dominance Relation) Let D
be a quantitative dominance function on an LTS Θ and let
C ∈ R be a constant. We define the C-dominance relation
as s �CD t iff D(s, t) ≥ C.

This generalizes qualitative dominance, since �0
D is a

qualitative dominance relation. For any other �CD, we dis-
tinguish between positive and negative dominance relations
depending on whether C > 0 or C < 0. For unspecified C,
s �CD t serves as a shorthand for D(s, t) > −∞.

Quantitative Compositional LD Simulation
We follow a compositional approach. Given a set of LTSs
{Θ1, . . . ,Θk}, we define a quantitative dominance for each
of them so that their aggregation is a quantitative dominance

85

function of the state space of the planning task, Θ1 ⊗ . . . ⊗
Θk.

To operationalize this definition, we draw upon LD simu-
lation relations. Let s and t be two states for which s � t.
Then, in the standard notion of simulation any plan πs for s
must also be a plan for t. As this is too restrictive for deriv-
ing useful dominance relations, LD simulation allows to use
different labels in the plan πt from t and, if a noop action is
considered, πt can be shorter than πs. A limitation is that
it still requires the plan for t not to be longer than that from
s. This is fine in qualitative dominance because there is usu-
ally a strong correlation between plan cost and length (Radzi
2011). However, it is an impediment to infer negative dom-
inance since if there exists a path t→∗s of cost c we would
like to infer that D(s, t) ≥ −c. Consider the position of the
truck in our example. In an LD simulation, TA 6�1 TB be-

cause of the transition TA
lA−→ TA for which TB does not

have any counterpart (noop or lB do not dominate lA in the
other LTSs). However, since the movements of the truck do
not depend on any other variable, D1(TA, TB) = −1 be-
cause from TB we can always reach TA without having any
side effects on other variables.

We avoid this restriction by considering weak simulation
relations (Hennessy and Milner 1985). Weak simulations
consider a set of internal τ -labels that are not relevant to de-
scribe the behavior of the system. Therefore, each transition
s

l−→ s′ can be simulated by a path t τ−→∗u l−→ u′
τ−→∗t′

s.t. s′ � t′. In our case, τ -labels are those that do not have
any preconditions or effects in other LTSs, like dr for the
position of the truck in our example.

Definition 4 (τ -label) Let {Θ1, . . . ,Θk} be a set of LTSs.

Label l is a τ -label for Θi iff s l−→ s ∈ Θj ∀Θj 6= Θi, s ∈
Θj .

The particular actions in a τ -path are not relevant, only its
cost is. We model this by defining the τ -distance between
any two states.

Definition 5 (τ -distance) Let s and t be two states in an
LTS Θ. The, τ -distance from s to t, written hτ (s, t), is the
cost of a minimum-cost path from s to t in Θ using only
transitions with τ labels or∞ if no such path exists. 0-cost
transitions are considered to have an infinitesimal cost ε.

A non-goal state can only dominate a goal state if it has
a τ -path to the goal, so we define a goal-respecting function
in terms of the τ -distance.

Definition 6 (Goal-respecting function) A function D is
goal-respecting for Θ iff for all s ∈ SG and t ∈ S,
D(s, t) ≤ maxsg∈SG −hτ (t, sg).

Finally, we extend the definition of label dominance to
the quantitative case, by defining a function DL(l, l′) that
captures the relation between labels.

Definition 7 (Label-dominance function) Let D be a
function for Θ, we define its corresponding label-dominance
function asDL(l, l′) = min

s
l−→s′∈Θ

max
s
l′−→s′′∈Θ

D(s′, s′′)

IfDL(l, l′) > 0, then every time that we can apply l in any
state s, applying l′ will lead us to a better state. If −∞ <
DLj (l, l′) < 0, we could reach an at least as good state if we
pay the corresponding price.

Definition 8 (QLD Simulation) Let DF = {D1, . . . ,Dk}
be a set of goal-respecting functions for T = {Θ1, . . . ,Θk}.
DF is a quantitative label-dominance (QLD) simulation
for T if for all Θi ∈ T and s, t ∈ Θi, Di(s, t) ≤
fQLD(T ,DF , i, s, t) where fQLD(T ,DF , i, s, t) :=

min
s
l−→s′

max
u
l′−→u′

Di(s′, u′)−hτ (t, u)+c(l)−c(l′)+
∑

j 6=i
DLj (l, l′)

where s l−→ s′ ∈ Θi, u
l′−→ u′ ∈ Θi

Intuitively, we compare all transitions from s (s l−→ s′),
against the best alternative from t (t τ−→∗u l−→ u′)1 by
summing up the difference in goal-distance of the targets
(Di(s′, u′)), the cost of the transition from s (c(l)), mi-
nus the cost that it takes to apply the transition from t
(hτ (t, u)+c(l′)). Finally,

∑
j 6=iDLj (l, l′) estimates the ben-

efit or penalty for using l′ instead of l in the other LTSs.
Applying this definition to our example, we now find some
dominance for the truck D1(TA, TB) = D1(TB , TA) =
−1. For the package, we find that D2(PA, PT) = 1,
D2(PT , PB) = 1 so D2(PA, PB) = 2. This is similar to the
result of LD simulation PA � PT � PB , but with the addi-
tional information that is strictly closer instead of at least as
close to the goal.

Theorem 1 A unique maximal QLD simulation always ex-
ists.

Proof Sketch: An QLD simulation always exists because
the “identity” function s.t. Di(si, ti) = −∞ if si 6= ti and
0 otherwise is always an QLD simulation. Given any two
QLD simulations, their maximum is also an QLD simulation
so a unique maximal simulation exists. �

Theorem 2 Let DF = {D1, . . . ,Dk} be an QLD simula-
tion on T = {Θ1, . . . ,Θk}. Then, D1 + · · · + Dk is a
quantitative dominance function on Θ1 ⊗ . . .⊗Θk.

A proof is included in the appendix.

Computing Quantitative LD Simulations
Algorithm 1 shows how to compute an QLD simulation for
a set of LTSs T , given a parameter, K. Each Di is ini-
tialized as the maximal goal-respecting function. Then, at
each iteration it checks whether the property Di(s, t) ≤
fQLD(T ,DF , i, s, t) is violated for some Di(s, t). In that
case, it updates the value and repeats until the result is a
valid QLD simulation. For sufficiently large K (e.g., if K is
greater than the maximum cost of any plan of the task, which
can be easily bounded by |Θ1 ⊗ . . . ⊗ Θk|(maxl∈L c(l))),
Algorithm 1 will find the maximal QLD simulation.

Theorem 3 Algorithm 1 has a worst-case running time
polynomial in |Θ1|× . . . × |Θk|×|L|×maxsi∈Θi(h

∗(si) +
K)× gcd({cl | l ∈ L}).

1The path u′
τ−→∗t′ is implicitly considered by D(s′, u′).

86

Algorithm 1: Quantitative LD simulation
Input: LTSs: T = {Θ1, . . . ,Θk}, Limit: K ∈ N
Output: Dominance Function DF = {D1, . . . ,Dk}

1 Di[s, t]← maxsg∈SGi −h
τ (t, sg) ∀t ∈ Θi, s ∈ SGi

2 Di[s, t]← h∗(s)− h∗(t) ∀t ∈ Θi, s 6∈ SGi
3 while ∃i ∈ [1, k], s, t ∈ Θi s.t.
Di[s, t] > fQLD(T ,DF , i, s, t)

4 if fQLD(T ,DF , i, s, t) > −K then
5 Di[s, t]← fQLD(T ,DF , i, s, t)
6 else
7 Di[s, t]← −hτ (t, s)
8 return {D1, . . . ,Dk}

Proof Sketch: Each iteration takes polynomial time in
the size of the input, i.e., the LTSs and L. At each it-
eration the value of some Di(s, t) decreases by at least
gcd({cl | l ∈ L}), so the number of iterations is polyno-
mially bounded by the number of times the number can de-
crease. The maximum value in the initialization is bounded
by maxsi∈Θi h

∗(si), and the minimum by -K. �
In practice we set K to a lower value. While this di-

minishes the power to infer negative dominance below −K,
those are of little use anyway, since they will only be use-
ful to prune states with very large g-value. Note that,
even though the algorithm does not run in polynomial time
(since h∗(si) may be exponential in the size of the in-
put, depending on the labels’ cost), this is not a major in-
convenience in practice. Other pruning techniques, like
symmetry pruning (Pochter, Zohar, and Rosenschein 2011;
Domshlak, Katz, and Shleyfman 2012), also rely on non-
polynomial algorithms in their precomputation phase. This
is not a problem, as soon as the algorithm finishes in a rea-
sonable amount of time for tasks that are solvable without
any pruning.

Advantages of Quantitative LD Simulation
Qualitative dominance pruning methods prune a node ns if
there exists another nt s.t. g(nt) ≤ g(ns) and s � t. An
advantage of quantitative dominance is that, even when re-
stricted to this type of pruning, QLD simulations will find
coarser relations.

Theorem 4 Let � and D be the coarsest qualitative and
maximal quantitative LD simulation, respectively. Then,
�⊆�0

D and there are cases where �⊂�0
D.

Proof Sketch: For �⊆�0
D. Define D(s, t) = 0 if s � t and

−∞ otherwise. Then, D is an QLD simulation.
For �⊂�0

D, consider our example where no qualitative
dominance can possibly be found for states that differ in the
position of the truck. However, TBPA �0

D TAPT , since
D(TA, TB) = −hτ (TB , TA) = −1, and D(PA, PT) = 1,
we can compensate the truck being at a different location if
we have picked up or delivered more packages. �

Moreover, we can trade off dominance and g-value to fur-
ther increase the amount of pruning.

Theorem 5 Let D be a dominance function. Let ns be a
search node with state s. If there exists nt ∈ open ∪ closed
s.t.Dε(s, t)+g(ns)−g(nt) ≥ 0 whereDε(s, t) = D(s, t)−
ε if D(s, t) < 0 and D(s, t) otherwise. Then, pruning ns
preserves completeness and optimality of the algorithm.

Proof Sketch: Since g(nt) + h∗(t) ≤ g(ns) + h∗(s), if an
optimal plan from I to G goes through ns, then g(ns) =
g∗(s) and there is another optimal plan through nt. If s is
in the path from t to the goal, then D(s, t) < 0. This means
that g(nt)+h∗(t)+ε = g∗(s)+h∗(s)+ε ≤ g(ns)+h∗(s),
so g∗(s) < g(ns), reaching a contradiction. �

Theorem 5 generalizes the qualitative pruning condition.
For nodes ns, nt s.t. g(ns) = g(nt) nothing changes, since
ns is pruned iff s �0

D t. However, if g(ns) 6= g(nt) we can
leverage quantitative dominance to get more pruning:

• If g(ns) < g(nt), qualitative dominance cannot prune ns.
Now, ns may still be pruned if D(s, t) is high enough.
This is specially relevant in A∗. If there is some nt in
the closed list with a higher g-value than that of ns, nt
was preferred by the heuristic, so there are chances of
D(s, t) > 0, assuming that dominance and the heuristic
are correlated.

• If g(nt) < g(ns), we replace the relation �0
D by the

coarser �g(nt)−g(ns)+εD . This may be useful in practice
because the successors of t do not necessarily dominate s
or its successors according to �0

D.

Action Selection Pruning
Instead of pruning states that are deemed worse than oth-
ers, we may use quantitative dominance to perform action
selection. Upon expansion of a node ns, if there exists an
applicable action a s.t. s �c(a)

D sJaK, then only that succes-
sor needs to be generated, reducing the branching factor to
1. This is safe because a starts an optimal plan from s if one
exists.

Theorem 6 LetD be a dominance function. Let s be a state
and a an applicable action on s. If D(s, sJaK) ≥ c(a), then
a starts an optimal plan from s to the goal if one exists.

Proof Sketch: As D(s, sJaK) ≥ c(a), then h∗(s) ≥
h∗(s[a]) + c(a). If c(a) > 0, sJaK is strictly closer to the
goal. If c(a) = 0, then h∗(s) = h∗(t). By the definition of
dominance function, h∗0(sJaK) ≤ h∗0(s). Therefore, s[a]
has a path to the goal that does not go through s. �

In our running example, this is extremely powerful.
Whenever a package may be loaded into the truck or un-
loaded at its destination this is automatically done. Since
the state resulting of unloading a package in any other lo-
cation is dominated by its parent, combining both types of
pruning the search will only branch over driving actions.

Action selection pruning is related to other heuristic
or learning methods that detect useless actions (Wehrle,
Kupferschmid, and Podelski 2008) or even directly decide
what action(s) to apply in certain states (Leckie and Zuker-
man 1998; de la Rosa et al. 2011; Krajnansky et al. 2014).
Contrary to our pruning, these methods do not preserve

87

Blind LM-cut
Qualitative Quantitative Action Selection POR # Qualitative Quantitative Action Selection POR

� �0−
D �0

D Dτ D — �pD D � �0−
D �0

D Dτ D — �pD D
Airport(50) 15 1.3 1.3 1.3 1.3 1.3 1.1 1.1 1.3 4.3 24 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Driverlog(20) 7 12.6 13.3 20.8 12.6 21.1 3.7 6.9 27.4 1.0 13 1.4 1.5 2.3 3.6 4.3 1.5 1.8 4.3 1.0
Floortile(40) 2 140.5 140.5 140.5 140.5 140.5 1.0 140.5 140.5 1.2 13 3.5 3.5 3.5 3.5 3.5 1.0 3.5 3.5 1.0
Gripper(20) 7 2.0 2.1 2.1 2.0 2.1 1.0 1.0 2.1 1.0 7 2.0 2.1 2.1 2.8 2.8 1.0 1.0 2.8 1.0

Logistics(63) 12 16.8 67.4 149.1 16.8 150.9 35.0 46.5 166.0 1.1 26 1.4 4.9 47.4 80.5 81.2 29.6 30.2 83.9 2.3
Maintenance(5) 5 8848.4 8848.4 35338.8 8848.4 36181.5 11617.2 46540.2 102514.3 3513.7 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Miconic(150) 50 23.9 75.9 325.2 23.9 328.1 7.6 142.6 376.4 1.0 141 1.0 1.4 1.4 1.7 1.7 1.2 1.2 1.7 1.0
Mystery(30) 11 1.3 1.3 1.3 1.3 1.3 1.0 1.0 1.3 1.0 16 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0

NoMystery(20) 8 693.3 693.3 891.5 693.3 891.5 605.8 1249.2 10538.4 1.1 14 4.0 4.0 4.0 45.3 45.3 16.7 18.4 52.7 1.0
OpenStack(100) 30 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 35 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.9 1.2

ParcPrint(50) 16 815.3 840.7 955.5 820.5 955.5 622.9 942.8 3542.1 16446.1 31 7.0 7.2 7.4 78.4 78.9 25.3 29.3 94.8 1455.6
Path-noneg(30) 4 11.1 13.4 23.2 11.1 23.2 1.6 12.5 26.8 29.7 5 1.7 1.9 2.7 3.3 3.4 1.3 2.0 3.4 9.4

Psr-small(50) 48 1.9 1.9 1.9 1.9 1.9 1.7 1.9 1.9 1.2 48 1.7 1.7 1.7 1.7 1.7 1.5 1.6 1.7 1.1
Rovers(40) 5 29.6 93.7 396.9 29.6 396.9 62.8 203.9 1065.8 34.7 7 2.3 3.7 9.6 10.9 12.2 3.7 5.1 14.8 4.4

Satellite(36) 5 90.9 100.7 142.8 90.9 142.8 1.0 39.5 142.8 122.4 7 2.1 2.2 2.6 2.9 2.9 1.0 2.0 2.9 25.7
Scanalyzer(50) 9 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.0 19 1.0 1.0 1.2 2.1 2.1 1.0 1.0 2.1 1.0

Sokoban(50) 21 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.3 1.0 40 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Tidybot(20) 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.4 9 10.3 10.3 10.3 10.3 10.3 1.0 1.0 10.3 1.3

TPP(30) 6 16.3 17.5 86.5 16.3 86.5 6.6 10.9 102.4 1.0 6 1.8 1.8 2.5 5.9 6.7 24.7 24.7 30.9 1.0
Trucks(30) 6 44.1 44.1 44.2 44.1 44.3 1.3 7.2 44.3 1.0 10 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.2 1.0

VisitAll(40) 12 27.8 31.1 31.1 27.8 34.9 1.0 1.0 35.2 1.0 14 5.9 6.0 6.0 5.9 6.1 1.0 1.0 6.1 1.0
Woodwork(50) 11 1626.8 1796.1 2818.2 1630.5 2820.0 480.5 2618.2 10795.6 549.5 29 5.8 5.9 8.6 52.2 52.5 2.8 2.8 76.5 133.7
Zenotravel(20) 7 5.5 8.8 21.5 5.5 21.5 2.1 2.5 22.5 1.1 13 3.9 4.0 4.7 7.3 7.3 1.3 1.5 7.5 1.0

Table 1: Ratio of expansions until the last f -layer by each method against the baseline in commonly solved instances (#).
Domains where none of the methods obtains at least a ratio of 1.2 are excluded.

completeness and optimality. Partial-order reduction tech-
niques like strong stubborn sets (Wehrle and Helmert 2012;
Wehrle et al. 2013; Wehrle and Helmert 2014) also reduce
the branching factor. However, they are based on a different
notion of action interference, and indeed they do not apply
in our running example because (un)load actions interfere
with driving actions.

Experiments
We run experiments on all the optimal-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on a
cluster of Intel Xeon E5-2650v3 machines with time (mem-
ory) cut-offs of 30 minutes (4 GB). Our main objective
is to compare quantitative and qualitative dominance. We
run A∗ with the blind heuristic and LM-cut (Helmert and
Domshlak 2009). We use the same initial set of LTSs for
all configurations, derived by running M&S with the merge
DFP strategy (Dräger, Finkbeiner, and Podelski 2006; 2009;
Sievers, Wehrle, and Helmert 2014), without label reduction
nor any shrinking, and with a time limit of 10 000 abstract
transitions and 300 seconds. We use K = 10.2 These limits
are adequate to finish the precomputation phase in a reason-
able time (under 30s in most domains, though it runs out of
time in a few cases). For comparison against other pruning
methods, we include partial-order reduction (POR) based on
strong stubborn sets (Wehrle and Helmert 2014).

Pruning power
We start by analyzing the potential of action selection (AS)
and dominance pruning based on comparing each node
against previously expanded states. Table 1 shows the ra-
tio of expansions until the last f -layer of each configuration

2Larger values forK are possible, but they were not observed to
significantly affect the results during our preliminar experiments.

compared to the baseline without pruning. We consider mul-
tiple variants, ranging from qualitative pruning (�) to full
quantitative pruning (D). In the middle, we consider sev-
eral approximations to analyze where the gain comes from.
�0−
D and�0

D perform the same pruning as�, constructing a
qualitative relation out of the quantitative dominance func-
tion. �0−

D defines each �i as si �i ti iff Di(si, ti) ≥ 0 and
then composes them. �0

D is always stronger since it trades
negative dominance in one Di by positive dominance in an-
other. Quantitative dominance methods use the full strength
of the quantitative function by comparing against states with
different g value. Dτ disables τ -labels to measure their rel-
evance.

To implement all of the above, we adapt the BDD-based
method used by (Torralba and Hoffmann 2015) in which for
each possible g-value they generate a BDD with all the states
dominated by any state expanded with that g-value. For
quantitative dominance, every time a state t is expanded, we
insert the sets of states dominated by it in the corresponding
g(t)−D(s, t) bucket. This has an important computational
overhead in the qualitative case, which often becomes pro-
hibitive with quantitative dominance. To obtain a more prac-
tical method, we use an approximation �pD that prunes any
state that is dominated by its parent. This greatly reduces the
overhead since it ignores all previously expanded states.

Obs. 1: Quantitative dominance is applicable in the same
domains as qualitative dominance, but has a larger pruning
potential. The only exception is Scanalyzer where quali-
tative dominance does not achieve any pruning, but positive
dominance has synergy with the LM-cut heuristic. However,
among the domains where both techniques apply, quanti-
tative dominance reduces the number of states in one or
two orders of magnitude more than qualitative dominance.
The gain comes from difference sources. In some domains,
�0−
D is already stronger than �, showing the ability of QLD

simulation to find coarser relations. Trading off negative
and positive dominance to construct a relation (�0

D) already

88

Blind LM-cut
B � AS POR B � AS POR
� �TH �pD �

0
D � �TH �pD �

0
D

Airport(50) 22 15 15 22 15 21 28 28 28 27 26 29
Driverlog(20) 7 9 9 10 8 7 13 13 13 13 14 13
Elevators(50) 26 25 25 26 24 26 40 40 40 40 40 40
Floortile(40) 2 11 11 16 11 2 13 16 16 16 16 13
FreeCell(80) 20 20 20 20 20 14 15 15 15 15 15 15
Gripper(20) 8 8 14 8 8 8 7 7 14 7 7 7
Hiking(20) 11 11 11 11 11 8 9 9 9 9 9 9

Logistics(63) 12 21 20 27 25 12 26 26 26 33 28 27
Miconic(150) 55 60 61 77 62 50 141 141 141 142 141 141

Mprime(35) 20 19 19 20 19 19 22 22 22 22 22 22
Mystery(30) 15 11 12 15 11 15 17 16 17 17 17 17

NoMystery(20) 8 16 18 20 20 8 14 20 20 20 20 14
OpenStack(100) 49 51 53 55 56 50 47 51 48 52 53 49

ParcPrint(50) 16 32 31 44 28 50 31 35 31 48 40 50
Path-noneg(30) 4 4 4 5 4 4 5 5 5 5 5 5

PipesNT(50) 17 17 17 17 17 14 17 17 17 17 17 17
PipesT(50) 12 13 12 12 13 9 12 12 12 12 12 12

Psr-small(50) 49 49 49 48 48 49 49 49 49 48 48 49
Rovers(40) 6 8 8 8 8 7 7 9 9 10 8 10

Satellite(36) 6 6 6 6 6 6 7 10 10 12 11 12
Scanalyzer(50) 21 19 21 17 17 13 27 21 23 23 23 27

Sokoban(50) 41 43 44 43 43 39 50 49 48 49 49 50
Tetris(17) 9 9 9 8 8 5 6 6 5 6 6 6

Tidybot(40) 16 1 1 15 1 7 23 10 14 22 10 22
TPP(30) 6 6 6 6 6 6 7 7 7 8 8 6

Transport(70) 24 24 24 24 24 23 23 23 23 23 23 23
Trucks(30) 6 8 8 8 8 6 10 10 10 10 10 10

VisitAll(40) 12 13 13 12 13 12 15 16 16 15 16 15
Woodwork(50) 11 30 30 38 36 24 29 48 43 50 50 46
Zenotravel(20) 8 9 9 9 8 8 13 13 13 13 13 13

Others(231) 91 91 91 91 91 91 112 112 112 112 112 112
Total(1612) 610 659 671 738 669 613 835 856 856 896 869 881

Table 2: Coverage of the baseline (B), qualitative domi-
nance, action selection (AS) with quantitative dominance,
and partial-order reduction (POR).

10−1 101 103 105 107

10−1

101

103

105

107

Expansions LM-cut

E
xp

an
si

on
s

L
M

-c
ut

A
S

+
�

p D

10−1 100 101 102 103

10−1

100

101

102

103

Search time (s) LM-cut

Se
ar

ch
tim

e
(s

)L
M

-c
ut

A
S

+
�

p D

Figure 2: Expansions until last f -layer and search time of
AS + �pD against the baseline with LM-cut.

achieves most of the pruning in several domains, specially
in blind search. Trading off dominance and g-value (D) is
more relevant with heuristics (e.g., NoMystery). The poten-
tial of quantitative dominance is also reflected in the compar-
ison against POR, since it is able to achieve stronger pruning
in most domains. Finally, the consideration of τ labels can
be seen important in around half of the domains, sometimes
increasing the pruning in one order of magnitude.

Obs. 2: Action selection pruning is highly complemen-
tary to previous dominance pruning methods. In most do-
mains, the combination of both methods is stronger than any
of them. Moreover, since the overhead of action selection is
quite low, it is almost always worth to use it whenever a
quantitative dominance function has been computed.

Overall Performance
Table 2 compares the coverage of our two best methods,
AS with pruning against the parent or against previously ex-

panded nodes, against qualitative dominance and POR. For
a fair comparison, we include qualitative pruning with the
same input LTSs as our approach (D) and the configuration
used by Torralba and Hoffmann(2015) (�TH) which uses
exact label reduction (Sievers, Wehrle, and Helmert 2014),
bisimulation shrinking (Nissim, Hoffmann, and Helmert
2011) and a larger LTS size (100k). All configurations ex-
cept �pD use the “safety belt” that disables the method if no
pruning has been achieved after 1000 expansions.

Obs. 3: AS + �pD has huge pruning power and low over-
head, greatly increasing the capabilities of heuristic search
planners. It obtains the best overall coverage, solving 128
instances over the baseline in blind search and 61 with LM-
cut, much higher than POR or qualitative dominance. Some
domains like NoMystery that are hard even when using good
heuristics, become simple under the analysis of quantitative
dominance, which even with blind search is able to solve
all tasks. Figure 2 directly compares the number of ex-
panded nodes and search time of AS + �pD against the base-
line. It obtains reductions of several orders of magnitude
in the number of expansions with little overhead. Note that
this ignores the precomputation time (which can be of up to
300s to compute the LTSs plus the computation of the QLD
simulation), but, as the coverage improvement shows, the
precomputation time is highly compensated by the search
space reduction in instances that are not quickly solved by
the baseline.

Obs. 4: The overhead of current methods for exploiting
the full potential of quantitative dominance (D) is too high
to pay off. The D configuration did not improve the other
methods anywhere and was excluded from the table. This
contrasts with the results of Table 1 that show a great poten-
tial. However, there are a few domains where the additional
pruning when using �0

D to complement AS pays off like
Driverlog, Openstacks or VisitAll. Further exploring this
trade-off between pruning power and overhead (e.g., using
dominance-based methods for irrelevance pruning (Torralba
and Kissmann 2015)) is an interesting topic for future work.

Conclusion
We have introduced the notion of quantitative dominance
for optimal planning, which extends previous approaches of
qualitative dominance. This extension is more effective at
analyzing the structure of the task, which leads to stronger
pruning. More importantly, the quantitative information en-
ables new ways of pruning. We introduced action selec-
tion pruning, a novel pruning method that applies a single
action on a state if the action starts an optimal plan from
the state according to the quantitative dominance function.
Our experiments show that action selection is highly com-
plementary to previous dominance pruning methods, greatly
extending the capabilities of heuristic search planners.

Proofs
In this section we provide a detailed proof of Theorem 2.
First, Lemma 1 shows that the property holds if there is only
a single LTS T = {Θ}.

89

Lemma 1 Let D be a goal-respecting function
for Θ such that for all s, t ∈ Θ, D(s, t) ≤
min

s
l−→s′∈Θ

max
u
l′−→u′∈Θ

D(s′, u′)−hτ (t, u)+c(l)−c(l′).

Then, D is a quantitative dominance function for Θ.

Proof: If s ∈ SG, then D(s, t) ≤ maxsg∈SG −hτ (t, sg) ≤
−h∗(t). So,D(s, t) ≤ h∗(s)−h∗(t) = 0−h∗(t). Note that
if h∗(t) = 0 but t 6∈ SG then hτ (t, sg) ≥ ε so D(s, t) < 0.

If s 6∈ SG, we use induction on plan length. Let s l−→ s′

be the first action in a shortest optimal plan for s. Then,
there exists a path t τ−→∗u l−→ u′ s.t. D(s, t) ≤ Di(s′, u′) −
hτ (t, u) + c(l) − c(l′). By induction D(s′, u′) ≤ h∗(s′) −
h∗(u′). So, D(s, t) ≤ (c(l) + h∗(s′)) − (h∗(u′) + c(l′) +
hτ (t, u) ≤ h∗(s)− h∗(t). �

Next, Lemmas 2 to 5 prove certain properties that will be
needed for proving that the property of being an QLD simu-
lation is invariant under the synchronized product operation.

Lemma 2 Let {D1, . . .Dk} be the maximal QLD simula-
tion on T = {Θ1, . . .Θk}. Then, for any si, ti ∈ Θi and
sj , tj ∈ Θj , there exist states (sisj), (titj) ∈ Θi ⊗ Θj and
hτ (sisj , titj) ≤ hτ (si, ti) + hτ (sj , tj).

Proof: Let Lτi and Lτj be the set of τ -labels for Θi and Θj

respectively, and Lτi,j the set of τ labels for Θi ⊗Θj . Then,
Lτi ∪ Lτj ⊆ Lτi,j because all labels in Lτi and Lτj do not
affect any LTS in T \ {Θi,Θj}. Therefore, for any paths of
τ -labels si

πi−→ ti and sj
πj−→ tj , we have a path (sisj)

π1−→
(tisj)

π2−→ (titj). �

Lemma 3 Let {D1, . . .Dk} be the maximal QLD simula-
tion on {Θ1, . . .Θk}. Then, for all i ∈ [1, k]:

(i) ∀s, t, u ∈ Θi Di(s, t) +Di(t, u) ≤ Di(s, u)

(ii) ∀l1, l2, l3 ∈ L DLi (l1, l2) +DLi (l2, l3) ≤ DLi (l1, l3).

Proof: First we prove (i) by contradiction. Assume that
there exist states s, t, u s.t. Di(s, t) + Di(t, u) > Di(s, u).
Then, define D’ by setting D′ = D and iteratively as-
signing D′i(s, u) = Di(s, t) + Di(t, u) for any s, t, u s.t.
Di(s, t) +Di(t, u) > Di(s, u) until a fixpoint is reached.

Then, D’ is also an QLD simulation. Increasing Di(s, u)
can only cause the values of DL and fQLDto increase.
Therefore, the inequality Di(x, y) ≤ fQLD(T ,DF , i, x, y)
still holds for any 〈x, y〉 6= 〈s, u〉. The inequalityD′i(s, u) ≤
fQLD(T ,DF , i, s, u) also holds because for any s

l−→
s′ there exists a path t

τ−→∗ta l′−→ t′ s.t. D(s, t) ≤
Di(s′, t′)− hτ (t, ta) + c(l)− c(l′) +

∑
j 6=iDLj (l, l′). Same

for D(t, u) where there exists a path u
τ−→∗ua l′′−→ u′

s.t. D(t, u) ≤ Di(t′, u′) − hτ (t, ta) + c(l′) − c(l′′) +∑
j 6=iDLj (l′, l′′). Adding both inequalities we obtain

D′(s, u) ≤ fQLD(T ,DF , i, s, u). Therefore, D was not the
maximal function satisfying this property.

(s1, s2) (s′1, s
′
2)

(t1, t2)

l

�
C1
2

l

(u1, u2) (u′1, u
′
2)

τ ∗ l′

�
C1
2

(a) Θ1 ⊗Θ2

s1 s′1

t1

ll

�
C1

u1

ua1

u′1

τ ∗
la

l′

�
C1

�
C1

(b) Θ1

s2

s′2

t2

ll

�
C2

u2

sa2

u′2
τ ∗

la

l′

�
C2

�
C2

(c) Θ2

Figure 3: Illustration for the proof of Theorem 2. We use
a color code to highlight what holds by assumption and the
definition of synchronized product (in black), what we need
to prove (red), and the intermediate deduction steps (blue).

Claim (ii) follows from (i):
DLi (l1, l2) +DLi (l2, l3) =

min
s
l1−→t

max
s
l2−→u

Di(t, u) + min
s
l2−→u

max
s
l3−→v

Di(u, v) ≤

min
s
l1−→t

max
s
l2−→u

Di(t, u) + max
s
l3−→v

Di(u, v) ≤

min
s
l1−→t

max
s
l3−→v

Di(t, v) = DLi (l1, l3)

�
Lemma 4 Let D1 and D2 be two goal-respecting functions
for Θ1 and Θ2, respectively. Then, D1 + D2 is a goal-
respecting function for Θ1 ⊗Θ2.
Proof: Consider any goal state (s1, s2) and non-
goal state (t1, t2) in Θ1 ⊗ Θ2. By the defini-
tion of synchronized product, s1 and s2 are goal
states in Θ1 and Θ2, respectively. Therefore,
D1(s1, t1) + D2(s2, t2) ≤ maxsg1∈SG1 −h

τ (t1, s
g
1) +

maxsg2∈SG2 −h
τ (t2, s

g
2). By Lemma 2, this cannot be

greater than max(sg1 ,s
g
2)∈SG −hτ ((t1, t2), (sg1, s

g
2)). �

Lemma 5 Let D1 and D2 be two functions for Θ1 and Θ2,
respectively, andD1,2 := D1+D2 be a function for Θ1⊗Θ2.
Then, DL1 (l, l′) +DL2 (l, l′) ≤ DL1,2(l, l′).

Proof: Let s l−→ s′ ∈ Θ1,2 be the transition that minimizes

the value of DL1,2(l, l′). Then, there exist s1
l−→ s′1 ∈ Θ1

and s2
l−→ s′2 ∈ Θ2. So, there exists s1

l′−→ t1 ∈ Θ1 s.t.
DL1 (l, l′) ≤ D1(s′1, t1) and analogously for Θ2. Therefore,

there exists t = (t1, t2) ∈ Θ1,2 s.t. s l′−→ t′ and the following
inequality holds:

DL1 (l, l′) +DL2 (l, l′) ≤
D1(s′1, t1) +D2(s′2, t2) = D1,2(s′, t) ≤ DL1,2(l, l′)

�

90

D1(s1, t1) ≤ D1(s′1, u
a
1)− hτ (t1, t

′
1) + c(l)− c(la) +

∑

j∈2,...,k

DLj (l, la) (1)

DL2 (l, la) ≤ D2(s′2, s
a
2) (2)

D2(s2, t2) ≤ D2(sa2 , u
′
2)− hτ (t1, t

′
1) + c(la)− c(l′) +

∑

j∈2,...,k

DLj (la, l′) (3)

DL1 (la, l′) ≤ D1(ua, u′1) (4)
∀Θi ∈ {Θ1, . . . ,Θk} ∀s,t,u∈Θi Di(s, t) +Di(t, u) ≤ Di(s, u) (5)

∀Θi ∈ {Θ1, . . . ,Θk}∀l,l′,l′′ DLi (l, l′) +DLi (l′, l′′) ≤ DLi (l, l′′) (6)
hτ ((s1, s2), (t1, t2)) ≤ hτ (s1, t1) + hτ (s2, t2) (7)

D1,2((s1, s2), (t1, t2)) = D1(s1, t1) +D2(s2, t2) (8)

D1,2(s, t) = D1(s1, t1) +D2(s2, t2)

(by 1, 3) ≤ D1(s′1, u
a
1) + c(l)− c(la)− hτ (t1, u1) +

∑

j 6=1

DLj (l, la) +D2(sa2 , u
′
2) + c(la)− c(l′)− hτ (t2, u2) +

∑

j 6=2

DLj (la, l′)

(by 2, 4) ≤ D1(s′1, u
a
1) +D1(ua1 , u

′
1) +D2(s′2, s

a
2) +D2(sa2 , u

′
2) + c(l)− c(l′)− hτ (t1, u1)− hτ (t2, u2) +

∑

j>2

(DLj (l, la) +DLj (la, l′))

(by 5, 6) ≤ D1(s′1, u
′
1) +D2(s′2, u

′
2) + c(l)− c(l′)− hτ (t1, u1)− hτ (t2, u2) +

∑

j>2

DLj (l, l′)

(by 7, 8) ≤ D1,2((s′1, s
′
2), (u′1, u

′
2)) + c(l)− c(l′)− hτ ((t1, t2), (u′1, u

′
2)) +

∑

j>2

DLj (l, l′)

Figure 4: Derivation of the inequality required by the proof of Theorem 2. Inequalities that have already been proven (above)
and how are they applied to reach the desired inequality (below).

Theorem 2 Let DF = {D1, . . . ,Dk} be an QLD simula-
tion on T = {Θ1, . . . ,Θk}. Then, D1 + · · · + Dk is a
quantitative dominance function on Θ1 ⊗ . . .⊗Θk.

Proof: We assume thatDF is the maximal QLD simulation.
Note that if it is a dominance function any other QLD sim-
ulation must be as well because decreasing the values of the
function cannot possibly cause the condition of dominance
function to become false.

If there is a single LTS, the proof follows from Lemma 1.
Next we show that the property of being an QLD simula-
tion is invariant under the synchronized product operation.
Assume WLOG that we merge Θ1 and Θ2 to obtain T ′ =
{Θ1 ⊗ Θ2,Θ3, . . . ,Θk}, and D′F = {D1,2,D3, . . . ,Dk}
where D1,2 = D1 + D2. In the following we show that D′F
is an QLD simulation for T ′.

Lemma 4 ensures that D1,2 is goal-respecting. Next,
we show that the Di(s, t) ≤ fQLD(T ′,D′F , i, s, t) holds
after merging Θ1 and Θ2. First, let’s consider the case
of other LTSs where i > 2. In order for the inequality
Di(s, t) ≤ fQLD(T ′,D′F , i, s, t) to be preserved, the val-
ues of DL must not decrease after merging Θ1 and Θ2,
i.e., DL1 (l, l′) + DL2 (l, l′) ≤ DL1,2(l, l′). This is ensured by
Lemma 5.

Figure 3 illustrates the main case, where i = (1, 2),
s = (s1, s2), and t = (t1, t2). The inequality holds automat-
ically if D1(s1, t1) = −∞ or D2(s2, t2) = −∞ so we may
assume that s1 �CD1 t1 and s2 �CD2 t2. We need to show

that for any transition s = (s1, s2)
l−→ (s′1, s

′
2) = s′, there

exists a transition (u1, u2)
l′−→ (u′1, u

′
2) s.t. D1,2(s, t) ≤

D1,2(s′, u′) + c(l)− hτ (t, u)− c(l′) +
∑
j∈3,...,k DLj (l, l′).

We first prove the existence of such s′, u, and u′ states and
then we show that the inequality holds.

In Θ1, since s1 �CD1 t1, there must exist u1
la−→ ua1 s.t.

(E1) D1(s1, t1) ≤ D1(s′1, u
a
1)− hτ (t1, u1) + c(l)− c(la) +∑

j∈2,...,k DLj (l, la). This implies that l �L2 la. In Θ2,

since l �L2 la and s2
l−→ s′2, there must exist s2

la−→ sa2 s.t.
(E2) DL2 (l, la) ≤ D2(s′2, s

a
2). Now, since s2 �CD2 t2 there

must exist u2
l′−→ u′2 s.t. (E3) D2(s2, t2) ≤ D2(sa2 , u

′
2) −

hτ (t1, u1) + c(la)− c(l′) +
∑
j∈2,...,k DLj (la, l′). This im-

plies that la �L1 l. Going back to Θ1, since la �L1 l, there

must exist u1
l′−→ u′1 s.t. (E4) DL1 (la, l′) ≤ D1(ua, u′1).

To prove that the inequality holds D1,2(s, t) =
D1(s1, t1) + D2(s2, t2) ≤ D1,2(s′, u′) + c(l) − c(l′) −
hτ (t, u)+

∑
j=3,...,k DLj (l, l′), we substitute in the left parts

the inequalities (E1-E4), the results of Lemmas 3 (E5 and
E6) and 2 (E7) and the fact that D1,2 is defined as the sum
of D1 and D2 (E8). Figure 4 shows all these equations and
the substitutions in a step by step manner.

�

91

Acknowledgments
Work supported by the German Federal Ministry of Educa-
tion and Research (BMBF) CISPA, grant no. 16KIS0656.
Thanks to Rosa Moreno and Daniel Gnad for helpful dis-
cussions concerning this work.

References
de la Rosa, T.; Celorrio, S. J.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational decision
trees. Journal of Artificial Intelligence Research 40:767–
813.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Bonet, B.; McCluskey, L.; Silva, J. R.;
and Williams, B., eds., Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12). AAAI Press.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., Proceedings of the 13th International SPIN
Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer-Verlag.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. In-
ternational Journal on Software Tools for Technology Trans-
fer 11(1):27–37.
Hall, D.; Cohen, A.; Burkett, D.; and Klein, D. 2013. Faster
optimal planning with partial-order pruning. In Borrajo,
D.; Fratini, S.; Kambhampati, S.; and Oddi, A., eds., Pro-
ceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13). Rome, Italy: AAAI
Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Boddy, M.; Fox, M.; and Thiebaux, S., eds., Proceedings of
the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), 176–183. Providence, Rhode
Island, USA: Morgan Kaufmann.
Hennessy, M., and Milner, R. 1985. Algebraic laws for non-
determinism and concurrency. Journal of the Association for
Computing Machinery 32(1):137–161.
Krajnansky, M.; Buffet, O.; Hoffmann, J.; and Fern, A.
2014. Learning pruning rules for heuristic search planning.
In Schaub, T., ed., Proceedings of the 21st European Confer-
ence on Artificial Intelligence (ECAI’14), 483–488. Prague,
Czech Republic: IOS Press.

Leckie, C., and Zukerman, I. 1998. Inductive learning
of search control rules for planning. Artificial Intelligence
101(1–2):63–98.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Com-
puting perfect heuristics in polynomial time: On bisim-
ulation and merge-and-shrink abstraction in optimal plan-
ning. In Walsh, T., ed., Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’11),
1983–1990. AAAI Press/IJCAI.
Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Ex-
ploiting problem symmetries in state-based planners. In Bur-
gard, W., and Roth, D., eds., Proceedings of the 25th Na-
tional Conference of the American Association for Artificial
Intelligence (AAAI’11). San Francisco, CA, USA: AAAI
Press.
Radzi, M. 2011. Multi-objective planning using linear pro-
gramming. Ph.D. Dissertation, University of Strathclyde.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Gener-
alized label reduction for merge-and-shrink heuristics. In
Brodley, C. E., and Stone, P., eds., Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI’14),
2358–2366. Austin, Texas, USA: AAAI Press.
Torralba, Á., and Hoffmann, J. 2015. Simulation-based ad-
missible dominance pruning. In Yang, Q., ed., Proceedings
of the 24th International Joint Conference on Artificial In-
telligence (IJCAI’15), 1689–1695. AAAI Press/IJCAI.
Torralba, Á., and Kissmann, P. 2015. Focusing on what
really matters: Irrelevance pruning in merge-and-shrink. In
Lelis, L., and Stern, R., eds., Proceedings of the 8th Annual
Symposium on Combinatorial Search (SOCS’15), 122–130.
AAAI Press.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12). AAAI
Press.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn sets
and expansion core. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13). Rome, Italy: AAAI Press.
Wehrle, M.; Kupferschmid, S.; and Podelski, A. 2008.
Useless actions are useful. In Rintanen, J.; Nebel, B.;
Beck, J. C.; and Hansen, E., eds., Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling, ICAPS 2008, Sydney, Australia, September 14-
18, 2008, 388–395. AAAI Press.

92

Optimal Solutions to Large Logistics Planning Domain Problems

Gerald Paul
Boston University

Boston, Massachusetts, USA
gerryp@bu.edu

Gabriele Röger and Thomas Keller and Malte Helmert
University of Basel
Basel, Switzerland

{gabriele.roeger,tho.keller,malte.helmert}@unibas.ch

Abstract

We propose techniques for efficiently determining optimal
solutions to large logistics planning domain problems. We
map a problem instance to a directed graph and show that
no more than one vehicle per weakly connected component
of the graph is needed for an optimal solution. We propose
techniques for efficiently finding the vehicles which must be
employed for an optimal solution. Also we develop a strong
admissible heuristic based on the analysis of a directed graph,
the cycles of which represent situations in the problem state in
which a vehicle must visit a location more than once. To the
best of our knowledge, ours is the first method that determines
optimal solutions for large logistics instances (including the
largest instances in the IPC 1998 and IPC 2000 problem sets).

Introduction
The LOGISTICS domain (McDermott 2000) is a classical
planning domain where packages must be delivered inside
and between cities, using trucks and airplanes. It has been
used in the International Planning Competition 1998 and
2000 (McDermott 2000; Bacchus 2001). While plans for
LOGISTICS tasks can be found in polynomial time, it is NP-
complete to decide whether there is a plan within a given
cost-bound (Helmert 2003). Therefore, it is not possible to
generate optimal plans in polynomial time unless P = NP.
LOGISTICS also does not admit a polynomial-time approx-
imation scheme unless P = NP (Helmert, Mattmüller, and
Röger 2006; Helmert 2008), but there is a polynomial 4/3-
approximation algorithm (Helmert, Mattmüller, and Röger
2006; Helmert 2008). In this work, we solve large LOGIS-
TICS problem instances optimally.

The core of our approach uses A∗ search with an admissi-
ble heuristic. However, the presence of many trucks and air-
planes increases the difficulty of the problem significantly.
To address this issue, we describe a process of multi-vehicle
simplification; using a mapping of the problem to a directed
graph, we show that no more than one airplane (truck) per
weakly connected component of the graph is necessary for
an optimal solution and we describe a method to determine
the necessary vehicles. We also apply some domain-specific

An archival version of this paper has been published at SoCS
2017.

search space pruning techniques. For the heuristic, we ex-
tend the idea of a recently proposed heuristic for FreeCell
solitaire games (Paul and Helmert 2016) to handle the ad-
ditional complications inherent in logistics problems. The
FreeCell heuristic is based on breaking cycles in a state-
specific graph. Our generalization is based on the new in-
sight that actually this graph encodes orderings between dis-
junctive action landmarks and we hope that in the future we
can further generalize this idea into a domain-independent
heuristic. We conclude the paper with an experimental eval-
uation.

LOGISTICS Tasks
A LOGISTICS task consists of locations situated in cities
within which trucks can transport packages initially assigned
to these locations. One or more trucks are assigned to each
city and one location in each city is designated as an airport.
One or more airplanes can travel between airports trans-
porting packages between the cities, loading and unloading
packages at airports. The goal is to move packages from
their initial locations to designated goal locations.
Definition 1 (LOGISTICS Task). A LOGISTICS task is given
as a tuple 〈L,C, P, T,A, city, airport, origin, dest〉, where
• L is a finite set of locations,
• C is a finite set of cities,
• P is a finite set of packages,
• T is a finite set of trucks,
• A is a finite set of airplanes,
• city : L→ C assigns each location a city,
• airport : C → L assigns each city an airport location in

this city, i. e. city(airport(c)) = c for all c ∈ C,
• origin : P ∪ T ∪ A → L specifies the origin location of

each package, truck and airplane, where the origin of an
airplane is always an airport location, and

• dest : P → L defines a destination for each package.
A vehicle is a truck or an airplane. A state s of a LOGIS-

TICS task maps each vehicle v to a location s(v) and each
package p to a location, truck or airplane s(p). The initial
state is given by origin. There are four types of operators:
• Vehicles v can load packages p at the same location:

load(v, p, l) is applicable in state s if s(v) = s(p) = l
and leads to state s′ that only differs from s in s′(p) = v.

93

• Vehicles v can unload loaded packages p: unload(v, p, l)
is applicable in state s if s(p) = v and s(v) = l, and leads
to state s′ that only differs from s in s′(p) = l.

• Trucks t can drive to locations l in the same city:1
drive(t, l) is applicable in state s if city(s(t)) = city(l)
and leads to state s′ that only differs from s in s′(t) = l.

• Airplanes a can fly to all airport locations l: fly(a, l) is
applicable in state s if l = airport(c) for some city c. The
resulting state s′ only differs from s in s′(a) = l.

A plan is a sequence of operators that are successively
applicable to the initial state and lead to a state sG with
sG(p) = dest(p) for all packages p ∈ P . The cost of a plan
is the length of the operator sequence. A plan is optimal if it
has minimum cost among all plans.

We call packages that have the origin and the destination
in the same city intracity packages and all other packages
intercity packages. If a package p is in a vehicle at location
l or it is directly at l, we refer to l as the position poss(p)
of p in state s; formally, poss(p) = s(p) if s(p) ∈ L and
poss(p) = s(s(p)) if s(p) ∈ T ∪ A. We use the term region
to denote all locations of a city (a truck region) or all airports
(a plane region).

Delivery Graphs
If a package is not at its destination location, it must be trans-
ported there somehow. As trucks can only move inside cities
and airplanes only between airports, a package whose cur-
rent position is not in the same city as its destination must
be transported from the airport of the current city to the air-
port of the destination city. Moreover, if the current posi-
tion and/or the destination location is not the airport, it must
be transported to/from the airport. Based on such insights,
we can identify pairs of cities or locations between which a
package must be transported in every plan by the same type
of vehicle (trucks or airplanes). We represent this kind of
information in so-called delivery graphs.

Definition 2 (Airplane Delivery Graph). For state s of
logistics task 〈L,C, P, T,A, city, airport, origin, dest〉, the
airplane delivery graph is the directed graph DA

s =
(C,E), where E = {(c, c′) | there is a p ∈ P s.t. c =
city(poss(p)) 6= city(dest(p)) = c′}.
Definition 3 (Truck Delivery Graph). For state s of logistics
task 〈L,C, P, T,A, city, airport, origin, dest〉 and city c ∈
C, the truck delivery graph for c is the directed graph Dc

s =
(V,E), where

• V = {l ∈ L | city(l) = c} are the locations in city c, and
• E contains the following edges for each package p with

poss(p) 6= dest(p):
– If city(poss(p)) = city(dest(p)) = c then there is an

edge poss(p)→ dest(p).
– If city(poss(p)) = c, city(dest(p)) 6= c and poss(p) 6=

airport(c) there is an edge poss(p)→ airport(c).

1In contrast to a typical PDDL representation, we do not make
the departure location in movement actions explicit because we are
not restricted by the limitations of the STRIPS formalism.

– If city(poss(p)) 6= c, city(dest(p)) = c and dest(p) 6=
airport(c) there is an edge airport(c)→ dest(p).

Multi-vehicle Simplification
Our objective in this section is to prove the following theo-
rem, which will help us optimally solve LOGISTICS tasks by
reducing the number of possibilities we need to consider.

Theorem 1. Every solvable LOGISTICS task has an optimal
solution which only uses a single vehicle for each weakly
connected component of each delivery graph for the initial
state.

For simplicity and brevity, we focus on the case where all
delivery graphs are (essentially) weakly connected:

Theorem 2. Consider a solvable LOGISTICS task where
each delivery graph has exactly one non-trivial weakly con-
nected component, i.e., one weakly connected component
plus zero or more isolated locations.2 Then there is an opti-
mal plan using one truck from each city and one airplane.

Once we have proved Theorem 2, it is not difficult to show
Theorem 1 by observing that whenever there are multiple
weakly connected components in a delivery graph, an op-
timal solution can be obtained by considering the subtasks
for each component independently and combining their so-
lutions. Hence, we focus on Theorem 2 from now on.

Theorem 2 does not immediately tell us which truck from
each city and which airplane should be considered. However,
just knowing that only one vehicle is needed in each delivery
graph already significantly reduces the space of states that
needs to be explored. To apply the theorem when search-
ing for optimal solutions of LOGISTICS tasks, we exhaus-
tively explore all possible choices of vehicles for each deliv-
ery graph, compute an optimal solution for the given set of
choices, and then select the overall best one.

To limit the search space further, we impose additional
restrictions on the vehicles we consider for a given deliv-
ery graph D. (It is easy to show that these restrictions pre-
serve optimality.) We call a vehicle in D useful if its initial
location has an outgoing edge in D, indicating that the first
action that this vehicle performs in a plan might be a load ac-
tion. If there are useful vehicles in D, then we only consider
the useful vehicles. If there is a useful vehicle whose initial
location has no ingoing edge in D we can remove all other
vehicles from consideration. If no vehicle in D is useful, we
can pick an arbitrary vehicle for D, as no matter which ve-
hicle we choose, its first action must be a movement, giving
no vehicle a benefit over another. Finally, if multiple vehi-
cles in D have the same initial location, we only consider
one of them, which suffices for symmetry reasons.

In the rest of this section, we describe a proof of Theo-
rem 2. Due to space limitations, we only provide a sketch of
the full argument. The full proof is available as a technical
report (Paul et al. 2017).

2Isolated locations are ones where no package must be un-
loaded or loaded. They may serve as starting locations of vehicles,
but are otherwise of no use.

94

No Unnecessary Load/Unload Actions
It is easy to see that in an optimal plan, a package is never
transported by a truck within a city other than its city of ori-
gin or its destination city, that intracity packages are never
transported by airplanes, and that intercity packages never
re-enter their city of origin after they have first reached its
airport or leave their destination city after they have first
reached its airport. We now show that we can also assume
that no reloading of packages between vehicles happen in
any single “stage” of transportation (for example, transport-
ing a package within its city of origin).

Lemma 1. If the task is solvable, then there is an optimal
plan that does not reload packages from truck to truck or
airplane to airplane.

Proof. We show the lemma for trucks; the same argu-
ment works for airplanes. Let π be a plan with a (usually
non-contiguous) subsequence load(t, p, l), unload(t, p, l′),
load(t′, p, l′), where t, t′ are trucks, p is a package, l, l′
are locations in the same city, and no load/unload ac-
tions for p happen in between these three actions. We
modify π by removing the first pair of load/unload ac-
tions and replacing the action load(t′, p, l′) by the “macro”
drive(t′, l), load(t′, p, l), drive(t′, l′). This removes two ac-
tions and adds two actions, so does not increase the plan
cost. Repeat such replacements until no further replace-
ments can be made. At this point, every package is only
loaded/unloaded by a truck (at most) once per city.

Together with the preceding comments, the lemma im-
plies that we can restrict attention to plans where each pack-
age is loaded/unloaded the minimal required number of
times. A plan can never be improved by adding load/unload
actions to reduce the number of movement actions.

Partitioning to Subtasks
Next, we show that we can restrict attention to subtasks in-
volving only airplanes or only trucks of one city. Consider
an optimal plan π. Partition the plan into subsequences: one
subplan πc for each city c, containing all actions involving
trucks in this city, and one subplan πA for the airplanes, con-
taining all actions involving airplanes. To prove Theorem 2,
we must show that there is an optimal plan π where each
subplan πx (where x is a city or the set of airplanes A) only
uses one vehicle.

We prove this by a local replanning argument. Assume
we are given π such that some subplan πx uses multiple
vehicles. Then we modify only this subplan to form a new
subplan π′x that uses only one vehicle. We construct π′x in
such a way that it has the same cost as πx and is compati-
ble with the other subplans of π: the subplans of π, but re-
placing πx with π′x, can be interleaved to form a new valid
global plan. Considering local subplans of this kind that
can be pieced together to form a global plan is the essen-
tial idea of factored planning (Amir and Engelhardt 2003;
Brafman and Domshlak 2006). Clearly, if we can show that
this local replanning operation is always possible, Theo-
rem 2 follows by a sequence of replanning steps, one for
each subplan πx using multiple vehicles.

A critical aspect in local replanning is understanding
which constraints are imposed on π′x by the other subplans.
Firstly, π′x must solve the local delivery task for the packages
and vehicles in its delivery graph: for example, if there ex-
ists an intercity package to be transported from city c to city
c′, then π′A must transport it from airport(c) to airport(c′).
This aspect of local replanning can be viewed as a regular
LOGISTICS task, limited to the airports and airplanes (or al-
ternatively to the locations and trucks of one city).

Secondly, going beyond a regular LOGISTICS task, π′x
must respect certain ordering constraints on the delivery of
packages imposed by the other subplans. For example, if the
subplan πc (for city c) loads an incoming intercity package p
from airport(c) before it unloads an outgoing intercity pack-
age p′ at airport(c), then π′A must unload p at airport(c) be-
fore it loads p′ at airport(c). In such a situation, we say that
πc imposes the precedence constraint p ≺ p′ on π′A.

A key observation is that all relevant interactions between
subplans can be captured by precedence constraints of the
form p ≺ p′, where p and p′ are packages such that πA must
unload p at the same location where it must load p′. Intu-
itively, as long as each subplan delivers all packages it owes
to the other subplans “in time”, i.e., before loading packages
that it receives from these subplans at a later stage in the
original global plan π, combining the subplans into a global
plan is guaranteed to succeed.

In summary, it remains to show that each local task can
be optimally solved by using a single vehicle, where a local
task is an airplane-only or truck-only LOGISTICS task with
added precedence constraints of the form p ≺ p′, expressing
that package p must be dropped at its goal location before
p′ may be picked up at its initial location. Moreover, for all
such precedence constraints, dest(p) = origin(p′) in the lo-
cal task. (Note that it does not matter whether the vehicles
in a local task are airplanes or trucks, so we do not need to
consider two different “kinds” of local tasks.)

Replanning Local Tasks to Use a Single Vehicle
Assume we are given a local task Πx, w.l.o.g. represented as
a LOGISTICS tasks where all locations are airports and all
vehicles are airplanes, along with a set of precedence con-
straints on package delivery. We are also given an optimal
plan πx for Πx. Our aim is to construct another optimal plan
π′x for Πx that only uses one airplane.

We first consider the case where all airplanes are initially
located at isolated locations, i.e., locations that are not the
origin or destination of any package in Πx. We will consider
the general case afterwards. In the restricted case, π′x can be
constructed from πx as follows:

1. Select an arbitrary airplane v to use in π′x.

2. Let moves be the subsequence of movement actions in πx,
i.e., πx with load and unload actions removed.

3. Obtain a new sequence of movement actions moves′ from
moves by moving to exactly the same sequence of loca-
tions as in moves, but using airplane v for all movements.
In other words, v follows the movements of all airplanes
in πx, in the same order that the movements occur in πx.

95

4. Compute π′x from moves′ by inserting load and unload
actions for all packages at the appropriate times. It is suf-
ficient to do this opportunistically, i.e., performing each
action that loads a package from its origin or unloads it
at its destination as soon as the action becomes applicable
(taking into account the precedence constraints).

It is obvious that π′x only uses one airplane and has the
same cost as πx (both plans have the same number of move-
ment actions, and both have one load and unload action per
package). It is less obvious that step 4. in the algorithm is
always possible while satisfying all precedence constraints,
and we refer the reader to the previously mentioned techni-
cal report for a complete formal treatment.

We remark that the restriction to the case where the air-
planes begin at isolated locations is important for the con-
struction to work. Without it, v might not have the opportu-
nity to load packages in time (or at all) that are located at the
location of origin of some airplane used in πx.

We now consider the general case without this restriction.
Let Π̃x be a modified task obtained from Πx by changing the
initial location of each airplane to a new isolated location l̃.
Let V be the set of airplanes used in πx. Then Π̃x can be
solved by prefixing πx by |V | movements, flying each air-
plane in V from l̃ to its origin location in Πx. We denote this
plan for Π̃x by π̃x. Its cost is c∗ + |V |, where c∗ is the cost
of πx. Because Π̃x satisfies the conditions of the restricted
case (all airplanes originate at an isolated location), we can
convert π̃x to a plan π̃′x of the same cost c∗ + |V | that only
uses one airplane. Moreover, it is easy to see that π̃′x solves
not just the modified task Π̃x but also the original task Πx.

One problem remains: we need a single-airplane plan of
cost c∗, but the cost of π̃′x is c∗+|V |. To remedy this, we per-
mute the plan π̃x before converting it to single-airplane form
in such a way that it contains |V |−1 occurrences where two
subsequent movement actions (of different airplanes) move
to the same location, i.e., fly(v′, l) and fly(v′′, l) occur next
to each other in the plan. Intuitively, this is possible because
with a weakly connected delivery graph, the path traced by
each used airplane v′ must eventually intersect with the path
of another airplane. Until this point, the actions of v′ can be
commuted freely with the actions of the other airplanes, and
this allows us to interleave the subplans for the different air-
planes in such a way that v′ reaches the location l where it
joins the path of another airplane at the same time as another
airplane v′′ does. (Again, the full formal treatment is slightly
more complex, and we refer to the technical report.)

With |V | airplanes, there must be |V |−1 “join points” un-
til the travel paths of all airplanes are connected. At each join
point, the permuted plan π̃x contains consecutive actions
of the form fly(v′, l), fly(v′′, l). In the single-airplane plan
π̃′x, these become consecutive movements fly(v, l), fly(v, l),
where the second movement is clearly redundant and can be
omitted. Altogether, this argument permits us to save |V |−1
of the |V | extraneous actions.

To save the remaining action, we observe that by con-
struction, the first action in π̃′x flies (from the artificially in-
troduced isolated location l̃) to the origin location in Πx of

some airplane v ∈ V . By choosing this airplane as the single
airplane we use in the plan π̃′x, we can save this action and
reduce the cost of π̃′x to c∗, concluding the proof.

Search Space Pruning
To reduce the size of the search space, we apply two pruning
techniques: operator elimination removes a large number of
operators from consideration that are never part of an opti-
mal plan. Instant operator application can be seen as a form
of partial-order reduction or meta actions.

From Lemma 1, we know that it is never necessary to
reload packages between vehicles of the same type. The fol-
lowing operators can hence be ignored:

• For intracity packages p

– all operators load(v, p, l) where v is an airplane or l 6=
origin(p), and

– all operators unload(v, p, l) where v is an airplane or
l 6= dest(p).

• For intercity packages p with city(origin(p)) = c and
city(dest(p)) = d

– all operators load(v, p, l) where v is an airplane and
l 6= airport(c),

– all operators unload(v, p, l) where v is an airplane and
l 6= airport(d),

– all operators load(v, p, l) where v is a truck except
those where l = airport(d) 6= dest(p) or l = origin(p),

– all operators unload(v, p, l) where v is a truck ex-
cept those where l = airport(c) 6= origin(p) or l =
dest(p) 6= airport(d).

After the elimination of unnecessary operators, packages
can always be unloaded immediately, if such an operator be-
comes applicable. Moreover, if there is only one truck in
a city or there is only one airplane then packages can be
loaded whenever such an operator becomes applicable. This
optimization does not threaten the optimality guarantee of
A∗ because whenever a state has been reached by a prefix of
an optimal plan, then it is possible to extend this prefix to an
optimal plan, continuing with these operators.

Heuristics
The key to efficient A∗ search is a strong admissible heuris-
tic that, from any state in the search, accurately estimates the
cost of reaching a goal state.

Counting Heuristic
The simplest heuristic we consider is the single visit and
load/unload counting heuristic, h0. It includes estimates for
the number of vehicle movements and estimates for the num-
ber of applications of load and unload operators.

It is easy to see that if the position of a package is in the
same city as its destination location a package must be

• unloaded from a plane iff it is in a plane,

• loaded into a truck iff its position is not the destination
location and it is not in a truck, and

96

• unloaded from a truck iff its position is not the destination
location or it is in a truck.

Similarly, if the position of a package is not in the same
city as its destination a package must be

• loaded into a truck at its current position iff its position is
not an airport and it is not in a truck,

• unloaded from a truck at the airport of the current city iff
its position is not an airport or it is in a truck,

• loaded into a plane iff it is not in a plane,

• unloaded from a plane,

• loaded into a truck at the airport of the destination city iff
its destination location is not an airport, and

• unloaded from a truck in the destination city iff the desti-
nation location is not an airport.

The load/unload contributions to the heuristic estimate
are exact; in an optimal solution, packages should not be
reloaded between planes or between trucks in the same city.

Each location that a truck must visit to load or unload a
package contributes a value of one to the counting heuristic.
This is the case when a package must be brought to this loca-
tion or when it must be collected from the location but there
is currently no vehicle there. These locations can easily be
determined from the truck delivery graphs:

Definition 4 (Truck Landmark). For LOGISTICS task
〈L,C, P, T,A, city, airport, origin, dest〉, state s and city
c ∈ C, the set Ltruck

c of truck landmarks consists of the loca-
tions l that have an ingoing edge in the truck delivery graph
Dc

s or that have an outgoing edge and there is no t ∈ T with
s(t) = l.

Analogously, we can define a set of airplane landmarks
for the cities that must be visited by an airplane:

Definition 5 (Airplane Landmark). For LOGISTICS task
〈L,C, P, T,A, city, airport, origin, dest〉 and state s the set
Lairplane of airplane landmarks consists of the cities c that
have an ingoing edge in the airplane delivery graph Da

s
or that have an outgoing edge and there is no a ∈ A with
s(a) = airport(c).

The counting heuristic accounts
∑

c∈C |Ltruck
c |+ |Lairplane|

for the movements of vehicles.
Despite its simplicity, the quality of the counting heuris-

tic compares favorably with heuristics typically used for
domain-independent planning. In particular, it is not difficult
to see that for LOGISTICS tasks with one vehicle per weakly
connected component of each region, such as the tasks gen-
erated by the multi-vehicle simplification, it is equal to the
h+ heuristic, which is known to be very accurate for LOGIS-
TICS tasks compared to other domain-independent planning
heuristics (Helmert and Mattmüller 2008). For LOGISTICS
tasks with multiple vehicles per weakly connected compo-
nent, the counting heuristic may slightly underestimate h+;
however, h+ is known to be NP-hard to compute for arbi-
trary LOGISTICS states (Betz and Helmert 2009).

tp1 p2

p3

(a) One cycle

tp1 p2

p3

p4

(b) Two cycles

Figure 1: Example tasks: in both tasks it is necessary and
sufficient to visit one of the locations twice.

Cycle Heuristic
The estimate of the single visit and load/unload counting
heuristic is extremely optimistic. It does not account for the
fact that some locations must be visited more than once. We
illustrate this in Fig. 1a that shows a single city with four lo-
cations. There are three packages, where the edges indicate
the origin and the destination location. The truck is located
at an additional location. The edges in this graph form a cy-
cle and for all packages in this cycle to be delivered to their
goal locations, the truck in the city must visit one of the lo-
cations twice.

To derive a lower bound on the number of such locations
that must be visited more than once, we analyze dependen-
cies between the landmarks. For this purpose, we associate
each truck landmark l with the operators set {drive(t, l) |
t ∈ T} and each airplane landmark c with the operator set
{fly(a, l) | a ∈ A, airport(c) = l}. These are disjunctive ac-
tion landmarks that encode that at some point in each plan an
operator from this set must be applied. We take in addition
orderings between these action landmarks into account:
Definition 6 (Landmark Ordering). For two disjunctive ac-
tion landmarks L and L′, there is an ordering L → L′ if in
each plan the first application of an operator from L must
happen before the last application of an operator from L′.

This is a new notion of landmark orderings which is
different from earlier such notions such as necessary or
natural orderings (Hoffmann, Porteous, and Sebastia 2004;
Richter and Westphal 2010). It is easy to see that orderings
between two truck landmarks or two airplane landmarks can
be derived from the transportation graphs: there is an order-
ing if there is a package that must be moved between the
locations and there is no suitable vehicle at the package po-
sition. The following definition of landmark graphs captures
this information for individual cities and the air space:
Definition 7 (Landmark Graph of City and Air Space). For
state s of task 〈L,C, P, T,A, city, airport, origin, dest〉 and
city c ∈ C, the landmark graph for c is the directed graph
GLM

c,s = (Ltruck
c , E), where E contains an edge l → l′ if the

delivery graph Dc
s contains such an edge and there is no

t ∈ T with s(t) = l.
The landmark graphGLM

air,s for the air space is the directed
graph (Lairplane, E), where E contains an edge c→ c′ if the
airplane delivery graphDA

s contains such an edge and there
is no a ∈ A with city(s(a)) = c.

It would not be admissible to just count the number of
cycles in the landmark graphs: consider the example in Fig.

97

1b which shows a variation of the earlier example with one
additional package. In this example, the landmark graph for
the city corresponds to the non-trivial connected component
in the given graph, which contains two cycles. Still, it is suf-
ficient to only visit the origin location of package p4 twice.

However, we can derive an admissible estimate from the
size, MFVS, of a minimum feedback vertex set, which is a
set of vertices of minimum size whose removal renders the
graph acyclic. It is NP-hard to determine MFVS for a graph
(Karp 1972), but we will show in the experiments that the
resulting heuristic still is practically feasible.
Theorem 3. Let π be a plan for state s and let G = (V,E)
be a landmark graph encoding orderings between land-
marks. Then there are at least MFVS(G) different landmarks
in V for which π contains at least two applications of oper-
ators from the associated disjunctive action landmark.

Proof. Let V ′ ⊆ V be the landmarks for which π con-
tains more than one operator application and assume |V ′| <
MFVS(G). Then the subgraph of G induced by V \ V ′ con-
tains a simple cycle Y = (L0, L1, . . . , Ln) with n > 1 and
L0 = Ln. For i ∈ {0, . . . , n − 1}, each plan must apply
an operator from the set associated with Li+1 after it has
already applied an operator from the operator set for Li.
Therefore there are at least n + 1 operator applications for
these n sets and π contains two operator applications for one
of the sets. As none of the Li can be in V ′ this is a contra-
diction to the definition of V ′.

Note that the disjunctive action landmarks for two truck or
airplane landmarks are disjoint. This allows us to admissibly
improve the estimate of the baseline heuristic h0.
Definition 8. For a task with set of citiesC, the cycle heuris-
tic hcycle for state s is defined as

hcycle(s) = h0(s) + MFVS(GLM
air,s) +

∑

c∈C
MFVS(GLM

c,s).

Theorem 4. The cycle heuristic is admissible.

Proof. Heuristic h0 only accounts for load and unload op-
erations and at most one drive and one fly operation to
each location. From Theorem 3 and the fact that the action
landmarks associated with the truck or airplane landmarks
are disjoint, we know that every plan must contain at least
MFVS(GLM

air,s) additional fly and
∑

c∈C MFVS(GLM
c,s) addi-

tional drive operators.

Integrated Cycle Heuristic
Up to this point, we have considered the regions separately.
However, this way we miss some orderings that can only
be derived when considering the transportation of a package
with vehicles of different types.

Each package induces up to six disjunctive action land-
marks (truck movement to package position and start city
airport, plane movement to start and destination city air-
port, truck movement to destination city airport and package
destination). From the 30 possible pairs of these landmarks
only nine can define valid orderings. Three of them are al-
ready covered by the landmark graphs of the cities and the

airspace. We introduce the remaining six as part of the fol-
lowing definition:
Definition 9 (Integrated Landmark Graph). For state s of
task 〈L,C, P, T,A, city, airport, origin, dest〉, the integrated
landmark graph GLM

s = (V,E) is the directed graph, where

• V = Lairplane ∪ ⋃c∈C L
truck
c consists of all truck and air-

plane landmarks, and
• E contains all edges from the landmark graphs for all

cities and the air space plus the following edges for each
package p with city(poss(p)) = c and city(dest(p)) =
d 6= c:
– if there is no t ∈ T with s(t) = poss(p) and nei-

ther poss(p) nor dest(p) is an airport, there is an edge
poss(p)→ dest(p);

– if there is no t ∈ T with s(t) = poss(p) and poss(p) is
not an airport, there is an edge poss(p)→ d;

– if neither poss(p) nor dest(p) is an airport, there is an
edge airport(c)→ dest(p);

– if poss(p) is not an airport, there is an edge
airport(c)→ d;

– if there is no a ∈ A with s(a) = airport(c) and dest(p)
is not an airport, there is an edge c→ dest(p);

– if dest(p) is not an airport, there is an edge d →
dest(p).

It is easy to verify that the edges correspond to landmark
orderings, keeping in mind that the city nodes are associated
with fly operators and the locations with drive operators.

Therefore, we can again exploit Theorem 3 to admissibly
improve the estimate of the cycle heuristic hcycle.
Definition 10. The integrated cycle heuristic hic for state s
is defined as

hic(s) = h0(s) + MFVS(GLM
s).

Theorem 5. hic dominates hcycle, i. e., hic ≥ hcycle.

Proof. As the size of an MFVS of a graph is equal to the sum
of the sizes of the MFVSs of its connected components, the
only difference between hic and hcycle are the additional arcs.
Since additional arcs can only cause additional cycles (and
not remove any), the minimum feedback vertex set can only
be larger, and hence hic(s) ≥ hcycle(s) for all states s.

Theorem 6. The integrated cycle heuristic is admissible.

Proof. As before, heuristic h0 only accounts for load and
unload operations and at most one drive and one fly oper-
ation to each location. The integrated cycle heuristic adds
the minimal number of move operations that are required to
satisfy cyclic ordering constraints of the disjunctive action
landmarks, which is an admissible estimate.

Experimental Evaluation
We have performed an evaluation of our algorithm on an
Intel core i3 4160 processor running at 3.60 GHz with a limit
of one million evaluated states.

Table 1 shows the results for the 35 LOGISTICS instances
of the International Planning Competition (IPC) 1998 and

98

all vehicles single vehicle
h0 hic h0 hic

inst. h∗ ∆ states ∆ states ∆ states ∆ states
01 26 1 131 0 48 1 16 0 16
02 32 0 177 0 177 0 33 0 33
03 54 0 354 0 354 0 43 0 43
04 58 0 532 0 532 0 57 0 57
05 22 0 0 45 0 18 0 18
06 69 0 288 0 472 1 1145 0 94
07 33 0 267 0 288 0 30 0 30
08 40 0 267 0 267 0 36 0 36
09 80 1 0 1 967 0 69
10 101 1 1 1 141 0 141
11 29 1 1196 1 1196 0 15 0 17
12 41 0 440 0 440 0 45 0 45
13 67 0 1192 0 1192 0 72 0 72
14 86 1 0 0 160 0 160
15 87 2 1 2 821 0 46
16 53 1 70393 1 70393 0 26 0 26
17 42 3 129289 3 129289 0 17 0 17
18 161 3 2 1 235085 0 271
19 135 3 2 3 3196 0 109
20 135 3 2 3 47579 0 124
21 99 2 1 1 6902 0 98
22 264 6 4 5 0 499
23 106 0 0 0 1276 0 138
24 40 1 194208 1 194208 0 25 0 25
25 180 1 1 0 245 0 245
26 183 0 0 0 558 0 558
27 136 1 1 0 113 0 113
28 251 2 0 2 0 304
29 295 9 4 6 0 632
30 128 1 1 0 157 0 157
31 13 0 17 0 17 0 9 0 9
32 20 0 35 0 35 0 11 0 11
33 27 1 353 0 66 1 29 0 16
34 45 1 1673 0 433 1 102 0 31
35 30 0 85 0 85 0 26 0 26

all vehicles single vehicles
h0 hic h0 hic

inst. h∗ ∆ states ∆ states ∆ states ∆ states
20-0 107 1 0 729 1 293 0 62
25-0 143 1 0 486182 1 153 0 83
30-0 175 3 1 3 1012 0 107
35-0 177 2 0 214062 2 5058 0 144
36-0 192 3 1 3 15719 0 171
37-0 223 5 2 4 28561 0 171
38-0 209 2 1 2 2195 0 150
39-0 224 4 2 4 139347 0 177
40-0 228 3 0 3 170652 0 208
50-0 286 3 2 3 191249 0 266
60-0 369 6 3 6 0 379
70-0 405 4 0 4 0 969
80-0 476 6 2 6 0 1262
90-0 513 5 3 5 0 679
90-1 529 6 1 1 0 712
91-0 534 6 4 6 0 1487
91-1 555 11 3 7 0 745
92-0 539 8 3 8 0 751
92-1 532 7 4 7 0 770
93-0 556 7 4 8 0 822
93-1 532 5 2 5 0 1420
94-0 550 6 2 6 0 787
94-1 554 7 2 7 0 757
95-0 579 7 1 7 0 827
95-1 564 9 3 8 0 785
96-0 577 7 3 7 0 1646
96-1 568 6 2 6 0 1594
97-0 563 8 4 7 0 819
97-1 556 8 4 8 0 853
98-0 581 7 3 7 0 830
98-1 539 7 3 7 0 824
99-0 588 8 3 8 0 1806
99-1 581 8 3 8 0 878

100-0 590 7 2 7 0 1787
100-1 589 6 4 7 0 887

Table 1: Results for LOGISTICS problems of IPC 1998 (left) and a subset of the IPC 2000 instances (right). The first column
gives the problem number, followed by the optimal cost. The next four sections, consisting of two columns each, show the
results without and with multi-vehicle simplification for h0 and hic. ∆ is the difference to h∗ and states is the number of
evaluated states. Blank entries represent instances that were not solved within the bound of 1 million evaluations.

a representative subset of the largest instances of the IPC
2000 Track 2 Additional benchmarks suite (which consists
of 170 instances). The IPC 1998 instances contain a wide
range of package quantities (4–57), number of cities (3–47),
sizes of cities (1–16), number of trucks (5–106) and num-
ber of planes (1–15). The IPC 2000 instances contain up
to 100 packages that are distributed among up to 34 cities
and can be transported by up to nine planes, but all have
in common that there are only one truck and two locations
(a non-airport and an airport location) per city. The table
shows results for h0 and hic, both with and without multi-
vehicle simplification. For each configuration, we report the
difference between the optimal plan length (h∗) and the ini-

tial heuristic estimate as ∆ = h∗ − h(s0), where h is the
corresponding heuristic. We furthermore include the number
of evaluated states, which may be smaller than the optimal
plan length due to instant operator applications. With multi-
vehicle simplification, we use an exhaustive search over the
possible choices of vehicles, skipping a sub-search if the f -
values already prove that it will not improve the currently
best solution. The number of states reports the sum over all
these searches. It can clearly be seen that considering only a
single vehicle and using a more sophisticated heuristic sig-
nificantly improve the baseline configuration.

Although the table only shows as subset of the IPC 2000
instances, with our best configuration (hic with multi-vehicle

99

simplification) we are able to solve all LOGISTICS instances
of both IPCs optimally, and are, to the best of our knowl-
edge, the first to report plan lengths for all considered IPC
instances. As a point of comparison, we performed exper-
iments with the winner of the IPC 2014 sequential opti-
mization track, the symbolic search planner SymBA∗ (Tor-
ralba, Linares López, and Borrajo 2016) and Fast Downward
(Helmert 2006) equipped with three heuristics from the lit-
erature: LM-cut (Helmert and Domshlak 2009), the state-
equation heuristic (Bonet 2013), and merge-and-shrink us-
ing bisimulation and the DFP merge strategy (Helmert et al.
2014; Sievers, Wehrle, and Helmert 2014). Most of the con-
sidered instances (as well as several of the smaller IPC 2000
Standard instances) cannot be solved by any of these state-
of-the-art domain-independent planning systems.

Betz and Helmert (2009) evaluated the performance of the
h+ heuristic on LOGISTICS with a domain-specific heuris-
tic implementation. Betz (2009) reports 7 solved instances
for this approach on the IPC 1998 instances. A set of sub-
optimal domain-specific approaches was compared in the
hand-tailored track of IPC 2000, with TALPlanner (Doherty
and Kvarnström 2001) being the clear winner on the domain.
The system solved all of the IPC 2000 Track 2 additional in-
stances very fast, but none of the instances reported in Table
1 optimally (with plan lengths varying between 3.7% and
9.5% longer than the optimal solution).

Table 2 shows results for a set of 26 randomly generated
instances with 6–34 cities, each containing five non-airport
and one airport location. There is only one plane and each
city is assigned one truck. The larger city size allows for the
presence of more complex graph cycles, and the assignment
of trucks and planes removes the difficulty associated with
multiple trucks per city and multiple planes. As there is only
one vehicle per region, we can concentrate on the compari-
son of h0, hcycle and hic. Both cycle-based heuristics show a
clear advantage over the baseline heuristic. Comparing hcycle
and hic, the integration of the individual landmarks graphs
results in an impressive improvement of heuristic accuracy,
with a reduction of evaluated states of up to three orders of
magnitude and five additional solved instances.

Data on computation time is omitted in both tables for
space reasons, but can be summarized briefly: most in-
stances are solved in less than a second or not solved within
the state budget of one million evaluated states at all, with no
measurable difference between the different configurations.
The few exceptions correspond to those instances where the
number of evaluated states is significantly larger.

Discussion and Future Work
We have combined three techniques to efficiently solve large
LOGISTICS problems optimally: multi-vehicle simplifica-
tion, search space pruning and strong admissible heuristics.
These techniques can be applied independently, but their im-
pact is not independent because search space pruning and the
heuristics benefit from multi-vehicle simplification.

The instant application of load operators requires that
there is only one vehicle in the relevant region, which is al-
most always the case with multi-vehicle simplification. A

h0 hcycle hic
inst. h∗ ∆ states ∆ states ∆ states
16-6 107 4 3453 0 89 0 89
20-7 127 6 1 4275 0 130
25-9 173 3 2400 0 258 0 258

30-10 204 5 122678 0 177 0 177
31-10 212 7 0 11953 0 249
32-10 215 5 224758 0 381 0 194
33-11 226 9 0 134024 0 300
34-12 232 9 0 14383 0 323
35-12 237 8 0 3939 0 296
36-12 249 10 1 357764 0 322
37-13 239 7 0 1865 0 239
38-13 250 8 0 489 0 272
39-13 255 9 0 591 0 591
40-14 278 10 1 1 23776
45-15
50-17 369 12 0 0 566
55-17 392 14 0 0 699
60-20 417 11 0 0 649
65-22 454 12 0 61282 0 1112
70-24
75-25
80-27
85-29 598 19 0 1422 0 1422
90-30 641 22 1 0 1541
95-32

100-34

Table 2: Results for randomly generated problems. Instance
x-y contains x packages and y cities. The second column
gives the optimal cost. There are three sections for h0, hcycle,
and hic, analogously to Table 1.

possible additional optimization would eliminate all oper-
ators where a vehicle operates on a connected component
of the delivery graph for which it is not “responsible”. We
excluded this pruning from consideration because it is only
applicable with multi-vehicle simplification.

A large number of vehicles also has a negative impact
on the presented heuristics because vehicles can reduce the
number of landmarks: an outgoing edge in the delivery
graph only justifies a landmark if there is no vehicle at this
location. For the cycle-based heuristics, this also means that
the minimum feedback vertex set is potentially smaller.

Efficiently solving LOGISTICS tasks optimally is already
a contribution in itself, and we compute for the first time op-
timal plans for all LOGISTICS tasks used in the International
Planning Competitions. However, a core question for future
work will be what aspects of the paper can be generalized
beyond LOGISTICS. In our opinion, the cycle heuristic is the
contribution that looks most promising for such a general-
ization. Similar ideas have been presented for Blocksworld
(Slaney 2014), using hitting sets, and solitaire games (Paul
and Helmert 2016). Indeed the heuristic by Paul and Helmert
can be seen as a special case of the cycle heuristic but it
has not been formulated in terms of disjunctive action land-

100

marks and landmark orderings. This new perspective makes
the underlying idea much more accessible and it is now
much clearer how it could be applied to domain-independent
heuristic search.

Acknowledgments
This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning
about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS).

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., and Walsh, T., eds., Proceedings of the 18th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI 2003), 929–935. Morgan Kaufmann.
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22(3):47–56.
Betz, C., and Helmert, M. 2009. Planning with h+ in theory
and practice. In Mertsching, B.; Hund, M.; and Aziz, Z.,
eds., Proceedings of the 32nd Annual German Conference
on Artificial Intelligence (KI 2009), volume 5803 of Lecture
Notes in Artificial Intelligence, 9–16. Springer-Verlag.
Betz, C. 2009. Komplexität und Berechnung der
h+-Heuristik. Diplomarbeit, Albert-Ludwigs-Universität
Freiburg.
Bonet, B. 2013. An admissible heuristic for SAS+ planning
obtained from the state equation. In Rossi, F., ed., Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2268–2274. AAAI Press.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when and when not. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence (AAAI
2006), 809–814. AAAI Press.
Doherty, P., and Kvarnström, J. 2001. TALplanner: A tem-
poral logic based planner. AI Magazine 22(3):95–102.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M., and Mattmüller, R. 2008. Accuracy of admis-
sible heuristic functions in selected planning domains. In
Proceedings of the Twenty-Third AAAI Conference on Arti-
ficial Intelligence (AAAI 2008), 938–943. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M.; Mattmüller, R.; and Röger, G. 2006. Approx-
imation properties of planning benchmarks. In Proceedings
of the 17th European Conference on Artificial Intelligence
(ECAI 2006), 585–589.

Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Helmert, M. 2008. Understanding Planning Tasks – Domain
Complexity and Heuristic Decomposition, volume 4929 of
Lecture Notes in Artificial Intelligence. Springer-Verlag.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Miller, R. E., and Thatcher, J. W., eds., Complexity
of Computer Computations. Plenum Press. 85–103.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Paul, G., and Helmert, M. 2016. Optimal solitaire game
solutions using A∗ search and deadlock analysis. In Baier,
J. A., and Botea, A., eds., Proceedings of the Ninth Annual
Symposium on Combinatorial Search (SoCS 2016), 135–
136. AAAI Press.
Paul, G.; Röger, G.; Keller, T.; and Helmert, M. 2017. Opti-
mal solutions to large logistics planning domain problems –
detailed proofs. Technical Report CS-2017-001, University
of Basel, Department of Mathematics and Computer Sci-
ence.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI 2014), 2358–2366. AAAI Press.
Slaney, J. 2014. Set-theoretic duality: A fundamental feature
of combinatorial optimisation. In Schaub, T.; Friedrich, G.;
and O’Sullivan, B., eds., Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), 843–848.
IOS Press.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2016. Ab-
straction heuristics for symbolic bidirectional search. In
Kambhampati, S., ed., Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016),
3272–3278. AAAI Press.

101

