
Tie-Breaking in A* as Satisficing Search

Masataro Asai, Alex Fukunaga
Graduate School of Arts and Sciences

University of Tokyo

Abstract

Best-first search algorithms such as A* need to apply tie-
breaking strategies in order to decide which node to expand
when multiple search nodes have the same evaluation score.
Recently, these tiebreaking strategies were shown to have
significant impact on the performance of A* especially on
domains with 0-cost actions, and a new method was pro-
posed. In this paper, we propose a framework for interpreting
A* search as a series of satisficing searches within plateaus
consisting of nodes with the same f-cost. This new frame-
work motivates a new class of tie-breaking strategy, a multi-
heuristic tie-breaking strategy which embeds inadmissible,
distance-to-go variations of various heuristics within an ad-
missible search. This is shown to further improve the perfor-
mance in combination with the depth metric proposed in the
previous work.

1 Introduction
In this paper, we investigate tie-breaking strategies for cost-
optimal A∗. A∗ is a standard search algorithm for finding
an optimal cost path from an initial state s to some goal
state g ∈ G in a search space represented as a graph (Hart,
Nilsson, and Raphael 1968). It expands the nodes in best-
first order of f(n) up to f∗, where f(n) is a lower bound
of the cost of the shortest path that contains a node n and
f∗ is the cost of the optimal path. In many combinatorial
search problems, the size of the last layer f(n) = f∗ of
the search, called a final plateau, accounts for a signifi-
cant fraction of the effective search space of A∗. Figure 1
(p.1) compares the number of states in this final plateau with
f(n) = f∗ (y-axis) vs. f(n) ≤ f∗ (x-axis) for 1104 prob-
lem instances from the International Planning Competition
(IPC1998-2011). For many instances, a large fraction of the
nodes in the effective search space have f(n) = f∗: The
points are located very close to the diagonal line (x = y),
indicating that almost all states with f(n) ≤ f∗ have cost
f∗.

Figure 2 depicts this phenomenon conceptually. On the
left, we show one natural view of the search space that con-
siders the space searched by A∗ as a large number of closed
nodes with f < f∗, surrounded by a thin layer of final
plateau f(n) = f∗. This intuitive view accurately reflects
the search spaces of some real-world problems such as 2D
pathfinding on an explicit graph.

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

Total Number of Nodes

airport
barman-opt11
blocks
cybersec
depot
driverlog
elevators-opt11
floortile-opt11
freecell
grid
gripper
hanoi
logistics00
miconic
mprime
mystery
nomystery-opt11

openstacks-opt11
parcprinter-opt11
parking-opt11
pathways
pegsol-opt11
pipesworld-notankage
pipesworld-tankage
psr-small
rovers
scanalyzer-opt11
sokoban-opt11
storage
tidybot-opt11
tpp
transport-opt11
visitall-opt11
woodworking-opt11
zenotravel

y=x

N
um

be
r o

f N
od

es
 w

ith
 f

=
 f

*

Figure 1: The number of nodes with f = f∗ (y-axis) com-
pared to the total number of nodes in the search space (x-
axis) with f ≤ f∗ on 1104 IPC benchmark problems. This
experiment uses a modified Fast Downward with LMcut
which continues the search within the current f after any
cost-optimal solution is found. This effectively generates all
nodes with cost f∗.

f = f*
f > f*

Optimal solution(some nodes are expanded by A*)
(all nodes are expanded by A*)f < f*

expansion

Initial
Node

Large final plateau

Goal
 node

expansion

Initial
Node

expansion

expansion

(entire search space, A* never expands outside ellipse)

Figure 2: (Left) One possible class of search space which
is dominated by the states with cost f < f∗. (Right) This
paper focuses on another class of search space, where the
plateau containing the cost-optimal goals (f = f∗) is large,
and it even accounts for most of the search effort required
by A∗.

However, for many other classes of combinatorial search
problems, e.g., the IPC Planning Competition Benchmarks,
the figure on the right is a more accurate depiction – here,
the search space has a large plateau for f = f∗. Classical
planning problems in the IPC benchmark set are clearly the
instances of such combinatorial search problems.

For the majority of such IPC problem domains where the
last layer (f(n) = f∗) accounts for a significant fraction of
the effective search space, a tie-breaking strategy, which de-
termines which node to expand among nodes with the same
f -cost, can have a significant impact on the performance of
A∗. It is widely believed that among nodes with the same
f -cost, ties should be broken according to h(n), i.e., nodes
with smaller h-values should be expanded first. While this is
a useful rule of thumb in many domains, it turns out that tie-
breaking requires more careful consideration, particularly
for problems where most or all of the nodes in the last layer
have the same h-value.

In this paper, we provide an alternative view to the tie-
breaking behavior of A*. More specifically, cost-optimal
search using A∗ can be considered as a series of satisficing
searches on each plateau. This allows the problem of tie-
breaking to be reduced to satisficing search within a plateau
(Section 3), opening a wide variety of future work.

Based on this insight, we then investigate an admissible
tie-breaking strategy which uses an inadmissible distance-
to-go estimate, a heuristic function which treats every action
to have the unit costs (Section 4), for tie-breaking. Although
distance-to-go estimates are inadmissible, it does not com-
promise the admissibility of A∗ as long as it is used only for
tie-breaking.

[This paper presents work from Sections 7-8 from a re-
cent journal paper (Asai and Fukunaga 2017). This work
has not been previously presented in any conference or
workshop.]

2 Preliminaries
We first define some notation and the terminology used
throughout the rest of the paper. h(n) denotes the estimate
of the cost from the current node n to the nearest goal node.
g(n) is the current shortest path cost from the initial node
to the current node. f(n) = g(n) + h(n) is the estimate of
the resulting cost of the path to a goal containing the current
node. We omit the argument (n) unless necessary. h∗, g∗ and
f∗ denotes the true optimal cost from n to a goal, from the
start to n, or from the start to a goal through n, respectively.

A sorting strategy for a best first search algorithm tries to
select a single node from the open list (OPEN). Each sorting
strategy is denoted as a vector of several sorting criteria,
such as [criterion1, criterion2, . . ., criterionk], which means:
First, select a set of nodes from OPEN using criterion1. If
there are still multiple nodes remaining in the set, then break
ties using criterion2 and so on, until a single node is selected.
The first-level sorting criterion of a strategy is criterion1, the
second-level sorting criterion is criterion2, and so on.

Using this notation, A∗ without any tie-breaking can be
denoted as [f], and A∗ which breaks ties according to h
value is denoted as [f, h]. Similarly, GBFS is denoted as [h].

Unless stated otherwise, we assume the nodes are sorted in
increasing order of the key value, and BFS always selects a
node with the smallest key value.

A sorting strategy fails to select a single node when some
nodes share the same sorting keys. In such cases, a search
algorithm must select a node according to a default tie-
breaking criterion, criterionk, such as fifo (first-in-first-out),
lifo (last-in-first-out) or ro (random ordering). For example,
an A∗ using h and fifo tie-breaking is denoted as [f, h, fifo].
By definition, default criteria are guaranteed to return a sin-
gle node from a set of nodes. When the default criterion does
not matter, we may use a wildcard ∗ as in [f, h, ∗].

Given a search algorithm with a sorting strategy, a
plateau (criterion . . .) is a set of nodes in OPEN whose el-
ements share the same sort keys according to non-default
sorting criteria and therefore are indistinguishable. In a case
of A∗ using tie-breaking with h (sorting strategy [f, h, ∗]),
the plateaus are denoted as plateau (f, h), the set of nodes
with the same f cost and the same h cost. We can also
refer to a specific plateau with f = fp and h = hp by
plateau (fp, hp).

Recently, Asai and Fukunaga proposed a Random Depth
tiebreaking (2016) and its deterministic version (2017), re-
sulting in significant performance improvements in a new
set of benchmark domains called Zerocost domains 1.

Random Depth tiebreaking and its deterministic version
diversify the search within each plateau using the depth met-
ric d(n), a distance from the current node n to the nearest
ancestor that has the different f -value and the h-value. Each
node in a h-plateau is stored into a bucket of the correspond-
ing depth d, and the expansion happens on a node in a bucket
that is selected at random, or in a round-robin manner (de-
terministic version). Such a configuration of A∗ is denoted
as [f, h, 〈d〉, ∗].

Zerocost domains are the modified version of the stan-
dard IPC domains which characterizes the more practical
cost-minimization problems where the most important ac-
tions directly related to resource usage incur the non-zero
costs. We use this Zerocost domains for evaluation through-
out the paper.

3 A∗ as a Series of Satisficing Search
While A∗ requires the first sorting criterion f to use an ad-
missible heuristic in order to find an optimal solution, there
are no requirements on the second or later sorting criterion.
This means that the search within the same f plateau can be
an arbitrary satisficing search without any cost minimization
requirement (as opposed to the “satisficing” track setting in
IPC which also seeks to minimize the plan cost with anytime
algorithms). For example, if we ignore the first sorting crite-
rion in the standard admissible strategy [f, h, fifo], we have
[h, fifo], which is exactly the same configuration as a Greedy
Best First Search (GBFS) using fifo default tie-breaking.
This means that within a particular f -cost plateau, [f, h, fifo]
is performing a satisficing GBFS. As another example, the
reason for the poor performance of [f, fifo] is clearly that it is

1github.com/guicho271828/zerocost-opt

running [fifo], an uninformed satisficing breadth-first search
in the plateau.

From this perspective, we can reinterpret A∗ as in Algo-
rithm 1: A∗ expands the nodes in best-first order of f value.
When the heuristic function is admissible, the f values of
the nodes expanded by A∗ never decreases during the search
process. Thus, the entire process of A∗ can be considered as
a series of search episodes on each plateau (f). The search
on each plateau terminates when the plateau is proven to
contain no goal nodes (UNSAT), or when a goal is found
(SAT). When the plateau is UNSAT, then the search contin-
ues to the plateau with the next smallest f value. Figure 3
also illustrates this framework.

Algorithm 1 Reinterpretation of A∗ as iterations of satisfic-
ing search on plateaus

loop
Search plateau (f) for any goal state, using satisficing
search algorithm
if plateau (f) contains some goal (Plateau is SAT)
then

return solution
else

Increase f

f=0 : UNSAT
Initial
Node

Goal
Node

f=1 : UNSAT

f=2 : UNSAT f=3 : SAT

Figure 3: The concept of A∗ as a sequence of satisficing
searches.

This is somewhat similar to the standard approach to
model-based planning using SAT/IP/CP solvers (Kautz and
Selman 1992; van den Briel and Kambhampati 2005), based
on an iterative strategy where a planning problem is con-
verted to a corresponding constraint satisfaction problem
with a finite horizon t (plan length / makespan). The search
starts from the horizon 0 and tests if the problem is satis-
fiable. If not, then it increases the horizon, add constraints
excluding solutions below t, and retests the same problem
with additional constraints for a new horizon t+ 1.

It is also reminiscent of the behavior of iterative deepen-
ing A∗ (Korf 1985), which executes a series of satisficing
searches with an f -cost limit which increases on each it-
eration. However, “A∗-as a sequence of satisficing search”
differs from IDA* in that IDA*, in order to achieve lin-
ear memory usage, repeats previous work on each iteration.
Instead of searching a particular plateau in each iteration,
IDA* searches through the union of several plateaus.

The framework of “A∗ as a series of satisficing searches”

suggests that we can directly apply satisficing search tech-
niques to optimal search using A∗, especially for each f -
cost plateau search. In the following sections, we show that
this framework (1) provides a better understanding of depth-
diversification (Section 3.1) and (2) allows us to improve the
performance of A∗ on Zerocost domains (Section 4).

3.1 Depth Diversification and Satisficing Search
Within this framework, the implementation of depth diversi-
fication can be viewed as a variant of the Type-based diver-
sification approach (Xie et al. 2014), specifically tailored for
Zerocost domains.

Xie et al. proposed type based buckets, an implementa-
tion of the OPEN list which partitions the nodes into buck-
ets according to some set of key values (types). They pro-
posed several types such as 〈1〉, 〈g〉, 〈h〉 or 〈g, h〉. At each
type-based expansion, a randomly selected node from a ran-
domly selected single bucket is selected. For example, with
type 〈g, h〉, a node with g = 5 and h = 3 is put into a bucket
〈5, 3〉. This mechanism diversifies the search so that it re-
moves the cardinality bias in terms of the distance of a node
from the initial state or the goal states. They then proposed
Type-GBFS, which alternates the expansion between a nor-
mal GBFS [h, fifo] and the type-based expansion [〈g, h〉, ro].

In our framework of A∗ as a sequence of satisfic-
ing searches, depth diversification after h tie-breaking
([f, h, 〈d〉, ∗]) can be viewed as the combination of (1) an
implicit transformation of all 0-cost edges within a single
plateau (f, h) to unit-cost edges, and (2) a pure type-based
exploration within that plateau (unlike Type-GBFS, which
alternates GBFS and type-based buckets).

The notion of depth counts the number of 0-cost actions,
which does not change the f value and h value, on the path
from the entrance to the current plateau, to the current node.
Thus, depth-diversification treats the problem of finding an
exit from a particular plateau as a unit-cost satisficing search
problem – the depth is analogous to a g-value which is calcu-
lated with unit costs and is restricted to a particular plateau.

4 Tie-Breaking with Distance-to-Go
Estimates

In the previous section, we proposed a framework which
views cost-optimal A∗ search as a series of satisficing
searches on each f -cost plateau, and argued that the prob-
lem of tie-breaking can be reduced to a satisficing search.
We showed that the depth diversification tie-breaking crite-
rion, which is highly effective on Zerocost domains, is in
fact a case where a previously studied technique for satisfic-
ing search (type-based exploration) turns out to be highly ef-
fective when applied to tie-breaking. In this section, we push
this insight further and propose another approach to improv-
ing the search performance in plateaus produced by Zero-
cost domains – using inadmissible distance-to-go estimates
(heuristics) as a tie-breaking criterion within an admissible
A∗ search.

Distance-to-go estimates are a class of heuristics which
treat all actions as if they have unit cost. Even when 0-cost
actions are present, these estimates can predict the number

of operations required to reach a goal. In general, the esti-
mates are inadmissible (unless the estimates are guaranteed
to underestimate the number of required actions and all ac-
tions in the original domain have unit cost). Previous work
on distance-to-go-heuristics has focused on their use for sat-
isficing planning.

A∗
ε (Pearl and Kim 1982) is one of the earliest algorithms

that combines distance-to-go estimates with the cost esti-
mates. It is a bounded-suboptimal search which expands
nodes from the focal list, the set of nodes with f(n) ≤
w · fmin where weight w serves as a suboptimality bound,
similar to weighted A∗, and fmin is the minimum f value in
the OPEN list. While f is based on an admissible heuristic
function, the nodes in the focal list are expanded in increas-
ing order of an inadmissible distance-to-go estimate ĥ. Since
the search does not follow the best-first order according to f ,
it is not admissible, and is instead w-admissible. One excep-
tion is the case of w = 1 where the focal list is equivalent to
the f plateau and the expansion order in the focal list corre-
sponds to the tie-breaking on plateaus. In our notation, this
algorithm can be written2 as a BFS with the following sort-
ing criteria:

[d f

w · fmin
e, ĥ, ∗]

This notation is derived from the fact that the focal list
“blur”s f up to w ·fmin. For example, when w = 2, fmin =
5 and f(n) = 5, 9, 11, then d f

w·fmin
e = 1, 1, 2 respectively.

Continuing this line of work, Thayer and Ruml (2009;
2011) evaluated various distance-to-go configurations of
Weighted A∗, Dynamically Weighted A∗ (Pohl 1973) and
A∗
ε , where some configurations use distance-to-go as part

of tie-breaking. This work focused on bounded-suboptimal
search rather than cost-optimal search. Cushing, Benton, and
Kambhampati (2010) pointed out the danger of relying on
cost estimates in a satisficing search by investigating “ε-cost
traps” and other pitfalls caused by cost estimators for search
guidance. Finally, the FD/LAMA2011 satisficing planner
incorporates distance-to-go estimates in its iterated search
framework (Richter, Westphal, and Helmert 2011). The first
iteration of LAMA uses distance-to-go estimates combined
with various satisficing search enhancements.

Benton et al. (2010) proposed an inadmissible technique
for temporal planning where short actions are hidden be-
hind long actions and do not increase makespan. Such ac-
tions cause “g-value plateaus”, which are similar to the
large plateaus caused by 0-cost actions in sequential plan-
ning. They implemented an inadmissible heuristic function
combined with distance-to-go estimates as an extension of
Temporal Fast Downward (Eyerich, Mattmüller, and Röger
2009).

4.1 Embedding Distance-to-Go Estimates in
Admissible Search

Although previous work on distance-to-go estimates assume
a satisficing context, we show that distance-to-go estimates

2However, an actual implementation may differ due to dynamic
updates to fmin.

can be useful for cost-optimal search. Since the admissibility
of the sorting strategy and the optimality of the solution are
not affected by the second or later levels of sorting criteria,
it is possible to use an inadmissible distance-to-go estimate
in these subsequent sorting criteria without sacrificing the
optimality of the solution found. This means inadmissible
heuristics can be used for tie-breaking.

Let h be an admissible heuristic function, and ĥ be a
distance-to-go variation of h, i.e., ĥ uses essentially the same
algorithm as h, except that while h uses the actual action
costs for the problem domain, ĥ replaces all action costs
with 1. Since h is admissible, multi-heuristic sorting strate-
gies such as [g + h, h, ĥ] or [g + h, ĥ] are admissible.

Moreover, we can even use a multi-heuristic strategy
which uses an inadmissible heuristic for tie-breaking which
is unrelated to the primary, admissible heuristic h. For ex-
ample, [g + hLMcut, ĥFF] is an admissible sorting strategy
because the first sorting criterion f = g + hLMcut uses
an admissible LMcut heuristic. Its second sorting criterion,
the distance-to-go FF heuristic (Hoffmann and Nebel 2001),
does not affect the admissibility of this entire sorting strat-
egy.

A potential problem with sorting strategies which use
multiple heuristics is the cost of computing additional
heuristic estimates. For example, [g + hLMcut, ĥFF] requires
more time to evaluate each node compared to a standard tie-
breaking strategy such as [g + hLMcut, hLMcut] because com-
puting the ĥFF heuristic incurs significant overhead per node
while the results of hLMcut can be reused by a caching mech-
anism. When the inadmissible heuristic for tie-breaking is ĥ,
i.e. a distance-to-go (unit cost) variant of the primary, admis-
sible heuristic h, it may be possible to reduce this overhead
to some extent by implementing h and ĥ so that they share
some of the computation – this is a direction for future work.

Combining Distance-to-Go Estimates with Default Tie-
Breaking and Depth Diversification Tie-breaking using
distance-to-go estimates can still leave a set of nodes which
are equivalent up to the distance-to-go criterion (multiple
nodes can have the same f , h, and ĥ values), so additional
level(s) of tie-breaking are necessary in order to select a sin-
gle node. By adding a standard default criterion such as fifo,
lifo, ro, we obtain a sorting strategy that imposes a total
order. For example, [fLMcut, ĥFF, fifo] applies fifo after the
distance-to-go estimate ĥFF.

Furthermore, it is possible to combine depth diversity
based tie-breaking with distance-to-go estimates by apply-
ing the depth-diversity criterion after the distance-to-go es-
timate. For example, [fLMcut, ĥFF, 〈d〉, fifo] applies depth di-
versification criterion after the ĥFF distance-to-go estimate.
As we shall see below, a sorting strategy which performs
tie-breaking using both distance-to-go estimates and depth
diversity results in the best performance overall.

4.2 Evaluation of Distance-to-Go Estimates as
Tie-Breaking Criteria for Admissible Search

We tested various admissible sorting strategies on IPC do-
mains and Zerocost domains. In all configurations, the first
sorting criterion is the f = g + h value where h is an ad-
missible heuristic (either LMcut or M&S) using the actual
action-cost based cost calculation. As the second (and third)
criteria, we used ĥ, the distance-to-go version of the origi-
nal heuristic function h, as well as a distance-to-go variation
of FF heuristic (ĥFF). We also added configurations with the
depth metric within plateau

(
f, ĥFF

)
. Detailed per-domain

results are shown in Table 1.

Evaluation on Zerocost Domains In Zerocost domains,
we see that ĥ tie-breaking outperforms h tie-breaking for
both LMcut (e.g. 256 → 295 with fifo) and M&S (e.g.
280 → 308 with fifo). Also, combining h and ĥ can fur-
ther improve performance when the heuristic is LMcut (e.g.
295 → 305 with fifo). The results of combining h and ĥ

were comparable to ĥ when the main heuristic function h

is M&S. Yet more surprisingly, using ĥFF further improved
the performance for both LMcut (e.g. [f, h, ĥ, fifo] : 305 →
[f, ĥFF, fifo] : 337) and M&S (e.g. [f, h, ĥ, fifo] : 307 →
[f, ĥFF, fifo] : 336). Thus, when the depth diversity criterion
is not used, the best configurations are those which use ĥFF.

The reason for the good performance of [fLMcut, ĥFF, ∗] is
not surprising: ĥFF is by itself known to be a powerful inad-
missible heuristic function for satisficing GBFS, and if we
ignore the first sorting criterion, [fLMcut, ĥFF, ∗] is a GBFS
with [ĥFF, ∗].

Adding the depth diversity criterion further improves the
performance of the ĥFF-based strategies, although the im-
pact was small. The coverage increased in both h = hLMcut

(fifo: 337 → 340, lifo: 340 → 342, ro: 341 → 344.3) and
h = hM&S (fifo: 336 → 337, lifo: 331 → 333). When
the default tie-breaking was ro and the heuristic is M&S,
[f, ĥFF, 〈d〉, ro] performed slightly worse than [f, ĥFF, ro],
but the difference was very small (337.9 → 337.6) and 〈d〉
made the performance slightly more robust (smaller stan-
dard deviation: 2.1→ 1.3).

Evaluation on Standard IPC Domains For the standard
IPC benchmark instances, the overhead due to the additional
computation of ĥ or ĥFF tends to harm the overall perfor-
mance. Therefore, the best configuration using LMcut was
[f, h, 〈d〉, lifo] which uses depth and does not impose the
cost of additional heuristics, and the best result using M&S
was [f, h, lifo] which imposes no overhead including the
depth.

Delving into the detailed results, we observed the
following: In Cybersec, distance-to-go variants (e.g.
[fLMcut, ĥFF, lifo]:5) improve upon the standard strat-
egy (e.g. [fLMcut, hLMcut, lifo]:3), but does not im-
prove upon depth (e.g. [f, h, 〈d〉, lifo]: 12). When
h = hM&S, all coverages are zero. Overheads by
ĥFF also slightly degrade the performance in Open-

stacks (e.g. [fLMcut, hLMcut, lifo]:18, [fLMcut, ĥFF, lifo]:17,
[fLMcut, hLMcut, 〈d〉, lifo]: 18; Also, [fM&S, hM&S, lifo]:19,
[fM&S, ĥFF, lifo]:18, [fM&S, hM&S, 〈d〉, lifo]: 19). Thus, in
these two domains, although there are some improvements
in search efficiency due to the guidance by ĥFF or ĥ, the
runtime overhead of computing the distance-to-go heuristics
outweighed the benefit.

In the domains with only positive cost actions (all IPC
domains except Openstacks and Cybersec), ĥ or ĥFF only
harm the overall performance due to the overhead. When the
primary heuristics is LMcut, we do not observe a significant
difference between single-heuristics strategies except for the
fractional difference in the configurations using ro. When
the primary heuristic is M&S, [fM&S, hM&S, lifo] performs
slightly better than other default tie-breaking strategies; It
also outperforms the depth-based variants.

4.3 Simple Dynamic Configuration for Overall
Performance

In practice, the performance degradation when using multi-
heuristic strategy in domains with only positive cost actions
does not pose a problem. We can easily avoid the overhead
incurred by the distance-to-go heuristics in those domains
by applying the following simple policy: If there are any 0-
cost actions, use a multi-heuristic strategy; Otherwise, use a
single-heuristic strategy.

Since the impact of such a check on the total runtime is
negligible, we can extrapolate the result of applying this rule
based on the previously obtained results. Coverage results in
Table 2 show the total coverage of Zerocost and IPC bench-
mark domains. The bottom two rows, labeled as dynamic
configuration, are the extrapolated results when the switch-
ing policy is applied – this dynamic configuration achieves
the highest overall coverage.

When the configuration rule is applied to standard IPC in-
stances, the domains with 0-cost actions are Cybersec and
Openstacks only. They are solved using a multi-heuristic
strategy while other domains are solved in the best perform-
ing single-heuristic strategy. In Zerocost instances, all do-
mains are solved using the multi-heuristic strategy.

We only tested this relatively simple dynamic configura-
tion that switches between two strategies based on the pres-
ence of 0-cost operators. However, domain-specific solvers
(as opposed to domain-independent solvers, which are the
main focus of this paper) can benefit from fine-tuning the
tiebreaking strategy so that it is most suited to the target do-
main.

5 Related Work

Previous work on escaping search space plateaus has fo-
cused on non-admissible search. DBFS (Imai and Kishimoto
2011) adds stochastic backtracking to Greedy Best First
Search (GBFS) to avoid being misdirected by the heuris-
tic function. Type based buckets (Xie et al. 2014) classify
plateaus in GBFS according to the [g, h] pair and distributes

h = LMcut

[f
,h

,fifo
]

[f
,h

,lifo
]

[f
,h

,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

[f
,ĥ

,fifo
]

[f
,ĥ

,lifo
]

[f
,ĥ

,ro
]

[f
,h

,ĥ
,fifo

]

[f
,h

,ĥ
,lifo

]

[f
,h

,ĥ
,ro

]

[f
,ĥ

FF,fifo
]

[f
,ĥ

FF,lifo
]

[f
,ĥ

FF,ro
]

[f
,ĥ

FF,〈d〉,fifo
]

[f
,ĥ

FF,〈d〉,lifo
]

[f
,ĥ

FF,〈d〉,ro
]

Zerocost (620) 256 279 261.9 284 264 288.1 295 303 301.0 305 309 305.9 337 340 341 340 342 344.3
airport-fuel(20) 15 13 13.8 14 13 14 13 12 12.7 14 12 12.8 13 11 11.7 13 11 11.7

blocks-stack(20) 17 17 17 17 17 17 15 15 15.0 15 15 15 17 17 17 17 17 17
elevators-up(20) 7 13 7 7 9 9.1 20 20 19.9 20 20 20 20 20 20 20 20 20

freecell-move(20) 4 19 4.9 17 10 16.4 12 14 13.3 12 14 13.2 17 18 17.9 17 18 18.3
miconic-up(30) 16 17 16.6 19 18 20.3 14 17 15.1 14 17 15.1 15 21 17.9 15 21 18

mprime-succumb(35) 15 14 17.1 22 14 20.1 19 16 19.1 20 16 20.1 30 23 28.3 30 27 29.3
mystery-feast(20) 7 5 7.7 6 5 7.2 7 6 6.9 6 5 5.9 8 8 8 8 8 8

parking-movecc(20) 0 0 0 0 0 0 13 14 14.3 13 15 14.4 20 20 20 20 20 20
pipesnt-pushstart(20) 8 8 8.4 8 8 9.8 7 8 7.7 8 8 7.8 9 9 9 9 9 9

pipesworld-pushend(20) 3 4 3.8 3 3 4.8 5 6 5.1 5 5 5 7 8 7.1 7 7 7.7
scanalyzer-analyze(20) 9 9 9.1 9 10 9.2 8 11 10.1 16 18 15.3 15 15 15 15 15 15
sokoban-pushgoal(20) 18 18 18 18 18 18 16 16 16.0 16 16 16 17 17 17 17 17 17

tidybot-motion(20) 16 16 16 16 16 16 14 14 14.0 14 14 14 15 16 16 16 16 15.9
tpp-fuel(30) 8 11 8 11 10 11 8 10 8.7 8 10 8.2 8 10 9.1 10 10 10

woodworking-cut(20) 5 7 7 8 5 8.2 20 20 20.0 20 20 20 19 20 20 19 20 20
IPC benchmark (1104) 558 565 558.9 571 575 571.4 534 534 534 536 535 534.7 564 562 563.7 563 560 561.9

airport(50) 27 26 25.7 27 26 25.7 24 25 23.9 24 24 23.8 25 24 24.8 25 24 24.6
cybersec(19) 2 3 3.9 8 12 10 5 3 5.9 6 4 5.4 6 6 5.9 6 5 5.6

openstacks-opt11(20) 11 18 11.7 18 18 18 10 10 10 10 10 9.9 17 17 17 17 17 17

h = M&S

[f
,h

,fifo
]

[f
,h

,lifo
]

[f
,h

,ro
]

[f
,h

,〈d〉,fifo
]

[f
,h

,〈d〉,lifo
]

[f
,h

,〈d〉,ro
]

[f
,ĥ

,fifo
]

[f
,ĥ

,lifo
]

[f
,ĥ

,ro
]

[f
,h

,ĥ
,fifo

]

[f
,h

,ĥ
,lifo

]

[f
,h

,ĥ
,ro

]

[f
,ĥ

FF,fifo
]

[f
,ĥ

FF,lifo
]

[f
,ĥ

FF,ro
]

[f
,ĥ

FF,〈d〉,fifo
]

[f
,ĥ

FF,〈d〉,lifo
]

[f
,ĥ

FF,〈d〉,ro
]

Zerocost (620) 280 301 287.7 302 288 308.1 308 305 307.3 307 306 307.8 336 331 337.9 337 333 337.6
airport-fuel(20) 5 5 5 5 5 5 1 1 1 1 1 1 5 5 5 5 5 5
depot-fuel(22) 5 5 6 6 5 6 6 6 6 6 6 6 4 4 4 4 4 4

elevators-up(20) 8 14 8.6 9 13 11 19 19 19 19 19 19 20 20 20 20 20 20
floortile-ink(20) 8 8 8 7 7 6.9 8 8 8 8 8 8 9 8 8.8 9 8 8.8

freecell-move(20) 5 17 6.7 17 15 17.3 13 14 12.7 13 13 12.7 17 17 17.4 17 17 17.3
hiking-fuel(20) 13 13 12.8 13 12 12.1 13 13 12.1 13 13 12.1 11 11 11 11 11 11
miconic-up(30) 29 30 30 30 30 30 22 22 22 22 22 22.1 30 30 30 30 30 30

mprime-succumb(35) 21 19 19.6 25 15 23.4 21 17 20.4 21 17 20.4 28 23 27.4 28 25 27.7
mystery-feast(20) 4 4 5.9 4 4 6 5 5 5 5 5 5 3 3 3 3 3 3

parking-movecc(20) 0 0 0 0 0 0 2 2 2 2 2 2 10 10 10.3 10 10 10.3
pipesnt-pushstart(20) 3 3 3.4 5 3 5 1 2 1.9 1 2 1.8 5 5 5 5 5 5

pipesworld-pushend(20) 5 9 7.7 5 6 9 8 7 7.8 8 8 8 5 5 5.4 5 5 5.6
scanalyzer-analyze(20) 11 11 11 11 11 11 15 14 15 14 15 15 15 16 15.4 15 15 15.2
sokoban-pushgoal(20) 19 19 18 18 18 18 17 17 17 17 17 17 18 18 18.2 18 18 18

tpp-fuel(30) 9 10 9.6 11 10 11 9 10 9.4 9 10 9.8 10 11 10.9 11 11 10.9
woodworking-cut(20) 7 7 8 8 7 9 20 20 20 20 20 20 20 20 20 20 20 20

IPC benchmark (1104) 491 496 489.4 487 487 485.6 477 475 470.4 476 475 470.9 458 457 457 457 457 456.8
airport(50) 9 9 9 9 9 9 7 7 7 7 7 7 9 9 9 9 9 9
blocks(35) 22 22 22 22 21 21.9 22 21 21 21 21 21 21 20 20.1 20 20 20
depot(22) 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4

elevators-opt11(20) 13 13 13 12 12 12 13 13 12 13 13 12 10 10 10 10 10 10
freecell(80) 17 17 16 16 16 16 15 15 15 15 15 15 14 14 14 14 14 14

miconic(150) 73 73 73.2 73 73 72.2 72 72 72 72 72 72 69 69 69.2 69 69 69.2
mprime(35) 23 24 23.7 23 24 23.4 19 19 19.3 20 19 19.3 21 21 21.1 21 21 21.2

nomystery-opt11(20) 18 18 18 18 18 18 18 18 18 18 18 18 16 16 16 16 16 16
openstacks-opt11(20) 15 19 15.4 19 19 19 18 19 18 18 19 18 18 18 18 18 18 17.7

pegsol-opt11(20) 19 19 19 19 19 19 19 19 19 19 19 19 17 17 17 17 17 17
pipesworld-notankage(50) 10 10 9.9 10 9 9.8 6 5 5.7 6 5 5.9 9 9 8.7 9 9 8.8

pipesworld-tankage(50) 13 13 13.2 13 13 13 12 12 12 12 12 12 9 9 9 9 9 9
rovers(40) 8 8 8 8 8 7.1 8 8 6 7 8 6.1 6 6 6 6 6 6

scanalyzer-opt11(20) 10 10 10 10 10 10 10 10 9.9 10 10 9.8 7 7 6.8 7 7 6.8
sokoban-opt11(20) 20 20 20 19 19 19 18 18 18 18 18 18 19 19 19 19 19 19

zenotravel(20) 12 12 12 10 10 10.1 12 11 10.9 12 11 10.9 10 10 10 10 10 10

Table 1: Coverage results with LMcut (top) and M&S (bottom) for computing f , and various tie-breaking strategies, on 620
Zerocost instances and 1104 IPC instances. We only show the domains when the difference between the maximum and the
minimum coverage exceeds 2, and highlight the best results.

LMcut M&S
[f, h, lifo] 844 797
[f, h, 〈d〉, fifo] 855 789
[f, h, 〈d〉, lifo] 839 775
[f, h, 〈d〉, ro] 859.5 793.7
Multi-heuristic strategies
[f, ĥFF, 〈d〉, fifo] 903 794
[f, ĥFF, 〈d〉, lifo] 902 790
[f, ĥFF, 〈d〉, ro] 906.2 794.4
Dynamic Configuration
If a problem contains zerocost actions:
[f, ĥFF, 〈d〉, ro] ; Else [f, h, 〈d〉, lifo] 911.9

If a problem contains zerocost actions:
[f, ĥFF, 〈d〉, ro] ; Else [f, h, lifo] 832.3

Table 2: Summary Results: Coverage comparison, the to-
tal of IPC domains and Zerocost domains (the num-
ber of instances solved in 5min, 4GB) between sev-
eral sorting strategies, plus a dynamic configuration strat-
egy. [f, h, fifo], [f, h, ro], [f, ĥ, ∗], [f, h, ĥ, ∗], [f, ĥFF, ∗] are
not shown because they achieve smaller coverage.

the effort.3 Marvin (Coles and Smith 2007) learns plateau-
escaping macros from the Enhanced Hill Climbing phase of
the FF planner (Hoffmann and Nebel 2001). Hoffmann gives
a detailed analysis of the structure of the search spaces of
satisficing planning (2005; 2011).

Benton et al. (2010) proposes inadmissible technique for
temporal planning where short actions are hidden behind
long actions and do not increase makespan. Wilt and Ruml
(2011) also analyzes inadmissible distance-to-go estimates.
This differs from our work on cost-optimal search because
admissible and inadmissible search differ significantly in
how non-final plateaus (plateaus with f < f∗) are treated:
Inadmissible search can skip or escape plateaus whenever
possible, while admissible search cannot, unless it is the
plateau with f = f∗ where the goals can immediately be
found.

In their work on combining multiple inadmissible heuris-
tics in a planner, Röger and Helmert (2010) considered a
tie-breaking approach which works as follows: When com-
bining two heuristics h1 and h2, h1 is used as the primary
criterion, and h2 is used to break ties among nodes with the
same h1 — [h1, h2, fifo]. This did not perform well in their
work on satisficing planning compared to the approaches
based on alternation queues and Pareto-optimal queue selec-
tion. Since their focus is on how to combine multiple heuris-
tics, this tie-breaking-based approach is just one instance of
various implementations of OPEN lists. In contrast, this pa-
per provides a focused, in-depth investigation of various tie-
breaking strategies, and shows how tie-breaking enables the
efficient search on the plateau created by the earlier levels of
sorting criteria.

3The relationship between Type-GBFS and our work is dis-
cussed in detail in Section 3.1.

6 Conclusions and Future Work
We introduced a new interpretation of cost-optimal A∗

search as a series of satisficing searches among f -cost
plateaus of an increasing order of f . This perspective led to
a novel approach for effective tie-breaking in Zerocost do-
mains, the use of inadmissible distance-to-go estimates as
part of a multi-heuristics tie-breaking strategy. Combination
of depth diversification and distance-to-go estimates results
in the best overall performance. Although there is an addi-
tional cost to compute multiple heuristic values, the over-
head can be eliminated by a simple case-based configuration
which only uses multiple heuristics when 0-cost actions are
present in the problem instance.

Our reformulation of A∗ as a sequence of satisficing
searches points to an interesting direction for future work.
Although we evaluated only one relatively simple, satisfic-
ing configuration (ĥFF) in the experiments, many techniques
which have previously been developed for satisficing plan-
ning can be applied to enhance tie-breaking (plateau-search)
in cost-optimal search, including lazy evaluation (Richter
and Westphal 2010), alternating/Pareto open list (Röger and
Helmert 2010), helpful actions (preferred operators) (Hoff-
mann and Nebel 2001), random walk local search (Nakhost
and Müller 2009), macro operators (Botea et al. 2005;
Chrpa, Vallati, and McCluskey 2015), factored planning
(Amir and Engelhardt 2003; Brafman and Domshlak 2006;
Asai and Fukunaga 2015) and exploration-based search en-
hancements (Valenzano et al. 2014; Xie et al. 2014; Valen-
zano and Xie 2016).

References
Amir, E., and Engelhardt, B. 2003. Factored Planning. In Proc.
of International Joint Conference on Artificial Intelligence (IJ-
CAI).
Asai, M., and Fukunaga, A. 2015. Solving Large-Scale Plan-
ning Problems by Decomposition and Macro Generation. In
Proc. of the International Conference on Automated Planning
and Scheduling(ICAPS).
Asai, M., and Fukunaga, A. 2016. Tiebreaking Strategies for
Classical Planning Using A∗ Search. In Proc. of AAAI Confer-
ence on Artificial Intelligence.
Asai, M., and Fukunaga, A. 2017. Tie-Breaking Strategies
for Cost-Optimal Best First Search. J. Artif. Intell. Res.(JAIR)
58:67–121.
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.; and
Kambhampati, S. 2010. G-Value Plateaus: A Challenge for
Planning. In Proc. of the International Conference on Auto-
mated Planning and Scheduling(ICAPS).
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J. 2005.
Macro-FF: Improving AI Planning with Automatically Learned
Macro-Operators. J. Artif. Intell. Res.(JAIR) 24:581–621.
Brafman, R. I., and Domshlak, C. 2006. Factored Planning:
How, When, and When Not. In Proc. of AAAI Conference on
Artificial Intelligence.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2015. On the On-
line Generation of Effective Macro-Operators. In Proc. of In-
ternational Joint Conference on Artificial Intelligence (IJCAI).

Coles, A., and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. J. Artif. Intell.
Res.(JAIR) 28:119–156.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
Based Search Considered Harmful. In Proc. of Annual Sympo-
sium on Combinatorial Search.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Proc. of the International Conference on
Automated Planning and Scheduling(ICAPS).
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. Systems Science and Cybernetics, IEEE Transactions on
4(2):100–107.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. Intell.
Res.(JAIR) 14:253–302.
Hoffmann, J. 2005. Where ’Ignoring Delete Lists’ Works: Lo-
cal Search Topology in Planning Benchmarks. J. Artif. Intell.
Res.(JAIR) 24:685–758.
Hoffmann, J. 2011. Analyzing Search Topology Without Run-
ning Any Search: On the Connection Between Causal Graphs
and h+. J. Artif. Intell. Res.(JAIR) 41(2):155–229.
Imai, T., and Kishimoto, A. 2011. A Novel Technique for
Avoiding Plateaus of Greedy Best-First Search in Satisficing
Planning. In Proc. of AAAI Conference on Artificial Intelli-
gence.
Kautz, H. A., and Selman, B. 1992. Planning as Satisfiabil-
ity. In Proc. of European Conference on Artificial Intelligence,
volume 92, 359–363.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence 27(1):97–109.
Nakhost, H., and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Proc. of International Joint Con-
ference on Artificial Intelligence (IJCAI).
Pearl, J., and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. Pattern Analysis and Machine Intelligence, IEEE
Transactions on (4):392–399.
Pohl, I. 1973. The Avoidance of (Relative) Catastrophe, Heuris-
tic Competence, Genuine Dynamic Weighting and Computa-
tional Issues in Heuristic Problem Solving. In Proc. of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Richter, S., and Westphal, M. 2010. The LAMA Planner: Guid-
ing Cost-Based Anytime Planning with Landmarks. J. Artif.
Intell. Res.(JAIR) 39(1):127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA 2008
and 2011. In Proc. of the International Planning Competition,
117–124.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. of the International Conference on Automated Planning
and Scheduling(ICAPS).
Thayer, J. T., and Ruml, W. 2009. Using Distance Estimates in
Heuristic Search. In Proc. of the International Conference on
Automated Planning and Scheduling(ICAPS).
Thayer, J. T., and Ruml, W. 2011. Bounded Suboptimal Search:
A Direct Approach using Inadmissible Estimates. In Proc.

of International Joint Conference on Artificial Intelligence (IJ-
CAI).
Valenzano, R. A., and Xie, F. 2016. On the Completeness
of BestFirst Search Variants that Use Random Exploration. In
Proc. of AAAI Conference on Artificial Intelligence.
Valenzano, R. A.; Schaeffer, J.; Sturtevant, N.; and Xie, F. 2014.
A Comparison of Knowledge-Based GBFS Enhancements and
Knowledge-Free Exploration. In Proc. of the International
Conference on Automated Planning and Scheduling(ICAPS).
van den Briel, M., and Kambhampati, S. 2005. Optiplan:
Unifying IP-based and Graph-based Planning. J. Artif. Intell.
Res.(JAIR) 24:919–931.
Wilt, C. M., and Ruml, W. 2011. Cost-Based Heuristic Search
is Sensitive to the Ratio of Operator Costs. In Proc. of Annual
Symposium on Combinatorial Search.
Xie, F.; Müller, M.; Holte, R. C.; and Imai, T. 2014. Type-Based
Exploration with Multiple Search Queues for Satisficing Plan-
ning. In Proc. of AAAI Conference on Artificial Intelligence.

