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Abstract

HTN Planning is a powerful technique for problem-
solving. Modelling an HTN domain is a cumbersome
task that requires time and skill. Planning domain learn-
ing is a successful technique that allows reducing the
bottleneck of writing HTN domains. This paper de-
scribes the first stage of an algorithm for obtaining HTN
domains from a set of plan traces. These domains are
learned using Process Mining and Data Mining tech-
niques. Process Mining is used to learn the domain’s
hierarchical structure and Data mining is used to learn
to action model of the domain’s primitive tasks and de-
composition methods.

1 Introduction

Hierarchical Task Network (HTN) planning is an effective
method for problem-solving (Ghallab, Nau, and Traverso
2004) that has been successfully used in a great number
of real-world applications (Georgievski and Aiello 2015).
HTN planning was developed with the objective of express-
ing planning problems in a structured way (Erol, Hendler,
and Nau 1994). The bases of HTN planning are: actions,
or primitive operators, that are non-decomposable activities
which encode changes in the world, and high-level tasks,
or compound tasks, that may be decomposed into simpler
tasks (primitives or other compound tasks). A compound
task can have different reduction schemes, or methods, that
are selected if some preconditions are true. Figure 1 shows
the codification of a primitive task and a compound task in
HPDL(Castillo et al. 2006), a PDDL extension for HTN.
Other HTN features are:

e The initial state is a set of literals that describe the world
at the beginning of the problem.

e The goal is a partially ordered set of tasks that need to be
carried out.

e The HTN planning algorithm takes the goal, explores the
space of possible decompositions replacing it by its com-
ponent activities until there are only primitive actions.

HTN domains describe how primitive tasks affect the
world and how they relate to other tasks, following a hi-
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Figure 1: The basics of HTN planning domains in the HPDL
domain language: (a) A compound task with two different
methods of decomposition. (b) A primitive action.

erarchical relation. Defining an HTN domain is a cumber-
some task traditionally done by knowledge engineers that
requires time and skill. Additionally, this task is very diffi-
cult even for domain designers because it requires a lot of
domain knowledge-engineering effort. Alleviating this issue
can help to extend the use of HTN planning in several fields.

Planning domain learning has become a successful tech-
nique to reduce the bottle-neck in the process of writing
HTN planning domains. Planning domain learning algo-
rithms take as input the plan execution traces of previously
solved problems and discover the planning domain that gen-
erates such traces. Planning domain learning, and particu-
larly HTN domain learning, has been already addressed by
different approaches with relative success. A common lim-
itation of current HTN domains learners is that they lack
enough expressiveness to deal with real-world problems
(like numerical predicates or time-resources management)
and that they require some extra structural information of
the domain to work.

In order to avoid the need of extra information and pro-



vide a higher degree of expressiveness HTN domain learner
we present this paper: a first step to develop an HTN domain
learning process that overcomes the limitations of current
approaches, integrating Process Mining and inductive learn-
ing techniques.

On the one hand, our approach uses Process Mining (PM)
procedures as a supporting technique to learn the structure
of the HTN domain. Process Mining (Weijters and van der
Aalst 2001) is a set of techniques that allow the discov-
ery of process models from event traces, to extract infor-
mation from those models and to check the conformance of
the models with real-world processes. The problem of learn-
ing planning domains’ structures have been dealt previously
using other techniques (Gopalakrishnan, Muifioz-Avila, and
Kuter 2016), but Process Mining techniques allow us to get
closer to real-world problems.

On the other hand, with the structural information and
the plan traces, we can learn the tasks definition using in-
ductive learning data mining techniques. Specifically, from
inductive learning, we are interested in rule learning algo-
rithms. Because as opposed to other approaches (Mourao et
al. 2012), rule learning classification algorithms allows us to
learn not only logic predicates but also numerical functions
and time and resources constraints.

The main difference between PM and traditional Data
Mining (DM) is that DM focus in learning of relations be-
tween data attributes and PM tries to detect patterns of data
that explain a certain behaviour. We use this difference to
learning the needed information in each step of the algo-
rithm. The major challenge of the approach presented in this
paper is to deal with this difference too. Planning, PM and
DT requires the proper type of data to carry out its goals
and we have to adequate the data in each step to guide them
and solve the problem. Although, the advantage of using this
array of techniques is that we can learn some information in-
stead of providing it, minimising the input of the algorithm.

The rest of the paper is organized as follows. The next
section discusses related work in more detail. Section 3 de-
fines the problem of domain learning from plan traces and
presents our solution. Section 4 explains our domain learner
algorithm. Section 5 shows the experimental results. And fi-
nally, Section 6 discusses the conclusions obtained during
this research and presents some future work.

2 Related Work

There are several proposed solutions to learn planning do-
mains (Jiménez et al. 2012). These solutions can be clas-
sified into two types: action model learners, solutions that
learn how the domain’s tasks relate with the world. And
search control learners, algorithms that learn how the tasks
relate between themselves.

On the one hand, the action model learners workspace
is the preconditions and effects learning problem. This is a
problem that can be categorised by the observability (full or
partial) of the world states and the type of the tasks’ effects
(deterministic or stochastic).

ARMS, one of the most successful solutions, uses a
MAX-SAT solver to learn STRIPS-like action models from

incomplete plan traces (Yang, Wu, and Jiang 2007). This ap-
proach codifies logic predicates, restrictions between them,
and domain information in a single logic formula, and then,
using a weighted MAX-SAT solver extracts information of
preconditions and effects of the domain’s tasks. This ap-
proach works even if some information about intermediate
states is missing.

The problem with ARMS is that although it can handle
missing state information, it can not work with noisy plan
traces. AMAN (Zhuo and Kambhampati 2013) considers all
plan traces as noisy and creates a set of different action mod-
els from them. Finally, AMAN selects the action model that
better fits the plan traces.

Also, there are new approaches that use classic machine
learning algorithms to learn tasks definitions. For example,
(Mourao et al. 2012) uses a support vector machine (SVM)
to learn rules that model the preconditions and effects of
tasks. This SVM approach trains a set of classifiers for each
task and then creates a rule from each set. These rules corre-
spond to the preconditions and effects of the domain’s tasks.

On the other hand, the search control problem ranges from
the learning of macro-actions to the learning of heuristics
for a planner or the learning of decomposition methods for
high-level tasks into simpler ones. As we only care about
the problem of learning decomposition methods, specifically
the decomposition in a hierarchical way, we are going to
discuss only the control search learners that concern about
this problem.

HTNMaker (Hogg, Muiioz-Avila, and Kuter 2008) learns
the methods structure incrementally using a bottom-up strat-
egy using a set of plan traces and a collection of annotated
tasks. An annotated task is a tuple < Task, Pre, Eff >
where T'ask is a task or HTN method, Pre are its precondi-
tions and Post are its effects. HTNMaker traverses the plan
traces and if there is an annotated task whose effects match
the state S;, and whose preconditions match the state S;,
it returns the set of tasks T'ask;, ..., T'ask; ., as a reduction
scheme of the annotated task matched. The main problem of
HTNMaker is that it can’t handle incomplete or noisy plan
traces.

HTNLearn (Zhuo, Mufioz-Avila, and Yang 2014) takes
the idea of ARMS and improves it with structural informa-
tion. This is done by coding the annotated tasks of HTN-
Maker as a logic constraint to be solved by a MAX-SAT al-
gorithm. The benefits of this approach are that not only can
work with missing intermediate states, but it can learn with
incomplete annotated tasks.

WORD2HTN (Gopalakrishnan, Mufioz-Avila, and Kuter
2016) uses text semantics analysis to learn the domain’s
structure. It identifies sub-goals in the plan traces and clus-
ters tasks with the same purpose. The main problem of this
solution is that is very affected by noise.

Finally, we can find pHTN (Li et al. 2010). This algorithm
defines each compound task’s reduction scheme as a tuple
< p,t > where p is the probability of the reduction scheme
to be executed and t the correspondent list of tasks.This ap-
proach’s weak point is that it rely only on probability to con-
trol the flow of the planner rather than a deterministic logic
preconditions.



3 Developing an HTN domain learning
process using Process Mining and Data
Mining techniques

The main problem with the solutions proposed in the last
section is that very few of them addresses the whole
structured planning domain learning problem. And even
HTNLearn, the only solution that solves both problems to-
gether, can’t handle noise or other information than logic
predicates. Another problem that can impede the extension
of HTN planning as a solution to solve real-world prob-
lems is that some of these algorithms need extra information
rather than the plan traces.

This paper presents the firsts steps of a solution to these
problems by providing an algorithm that can learn the ac-
tions models of a planning domain and the relation between
the domain’s tasks in a hierarchical way. We aim to solve the
problem without the need of extra structural information and
using incomplete and noisy plan traces. Another goal of this
solution is to be able to handle numerical information and
manage time or resources consumption. To achieve this, we
present an approach to learn HTN planning domains using
process mining techniques and inductive learning.

On the one hand, process mining allows us to learn the
structure of the domain. This is achieved by treating plan
traces as event logs and using a process discoverer with
them. Process discovery is the branch of process mining
that takes care of learning models that fit a given event log.
Process mining techniques are widely used with real-world
problems, and they are very robust against noise and incom-
pleteness. The ability to discover the structural information
eliminates the need of providing our approach with extra
structural knowledge and enables our HTN domain learner
to manage real-world problems.

On the other hand, when the domain’s structure has been
learned we use inductive learning to learn the preconditions
and effects of tasks and methods. The inductive learning
techniques try to find a hypothesis that explains a set of given
observed instances. We consider the problem of learning the
task’s definition as a rule-based classification problem where
the observed instances are the states of the plan traces. The
rule-based classification algorithm is used to find the rules
that model the pre-states and post-states for each primitive
task and method of the domain. We are interested on us-
ing rule-based learning algorithms because rules are easy
to interpret from a human point of view and they explicitly
show the relationships among the variables involved in the
learning problem. Another benefit of using inductive learn-
ing techniques is that these algorithms can not only deal with
logic predicates but to learn numerical values or time/re-
sources consumption too. This property allows us to propose
an approach that can produce more expressive models that
can be applied to more complex problems.

Next section will explain in detail how our algorithm
works, what kind of techniques uses and how it combine
them to learn an HTN domain.

4 Algorithm overview

Given a set of plan traces PT', we want to learn an HTN
planning domain capable of solving the problems from
which the plan traces were generated. To achieve this we
use process mining and data mining techniques. We divide
the problem of learning HTN domains in two subproblems:

1. Learn the structure of the HTN domain.

2. Learn the action model of the tasks and methods of the
domain.

First, define a plan trace as an ordered set of primitive
tasks and states such as:

PlanTrace = {So,To,S1,T1,52, .-y Sy Try Snt1}

Where Sy is the initial state of the problem, S,, 1 a the
goal state, S;|(0 < i < n+ 1) are intermediate states and 7
are primitive tasks. For every task 73, S; is its pre-state and
S;+1 1s its post-state.

Both the problem of learning HTN structures as the prob-
lem of learning require different techniques and our algo-
rithm tries to join them. This implies that in every step our
algorithm must adapt the data so they can be used by every
technique, and at the end, it must fuse the output of both
kind of techniques in a single valid output. An overview of
our algorithm is as follows:

HTN Domain Learner.

Input: A set of plan traces PT'.
Output: An HTN planning domain D.

1. Create an event log L from PT. Each plan of PT is
considered an event trace. Those event traces groups a col-
lection of events. These events correspond to each plan’s
tasks. Each event is included in the event trace following
the order of appearance in the plan. Finally, every event
trace is grouped in an event log FL

2. Create a valid process model from EL. In this step, we
use Inductive Miner (IM) (Leemans, Fahland, and van der
Aalst 2013), a process discovery algorithm, to find a pro-
cess tree T that fits EL. IM takes F'L and extracts the
events recursively splitting the event log, trying to find
the relation between them. IM follows a divide and con-
quer strategy to do so and returns a process tree capable
of reproducing L. T' can be seen as a representation of
the hierarchical structure of the domain.

3. Create sets of pre-states and post-states using P71’ and the
information provided by T'. Starting from PT, our algo-
rithm takes the pre-state and post-state of each task of PT".
Then, using the domain’s structural information contained
in T the algorithm arranges the tasks of PT" in hierarchi-
cal methods using a bottom-up strategy. Finally, the algo-
rithm proceeds to calculate the corresponding pre-states
and post-states of each of them. As a result, this process
creates a set of pre-states and post-states for every task
and method in the domain.

4. Calculation of the schema form of the pre-states and post-
states and building of datasets. For each state in the sets



of pre-states and post-states, the algorithm calculates its
schema form. This is done by substituting the constants in
the state’s predicates by a generalised form of the param-
eters of his associated task. Finally, the algorithm builds
a dataset for every task and method of the domain, using
the schematized predicates as attributes.

5. Learning of tasks and methods preconditions and ef-
fects from the datasets. By considering the preconditions
and effects learning problem has a classification problem
where the classes are “pre-state” and ”post-state” our al-
gorithm learns the action model of every task and method
of the HTN domain using a rule learner classifier. The
classifier tries to find the combination of attributes (state’s
predicates) models the pre-states and post-states of each
task and method. The algorithm used to do so is NSLV.
This algorithm uses fuzzy rules (Zadeh 1965) to represent
classification hypothesis and a genetic algorithm to learn
them.

6. HTN domain generation. Finally, our algorithm creates an
HTN planning domain written in HPDL from 7" and the
rules of the previous step. 7" allows generating the struc-
ture of the domain while the rules allow generating the
preconditions and effects of each task and method of the
domain.

In the next lines, we explain in further detail the algorithm
step by step. During these explanations, we provide the
background concepts needed to understand how the algo-
rithm works and a motivation example to help follow the
whole process.

Step 1

In process mining, an event trace is a record of a se-
quence of steps. These steps, called events, indicate a non-
decomposable activity performed at a particular time point.
An event trace is the definition of the steps necessary to carry
out a single high-level process. An event log consists of mul-
tiple event traces that carry out their tasks from start to finish.

On the other hand, a plan is a set of tasks partially ordered
by a temporal relation. Given this similarity, our algorithm
considers each task as an event and creates an event trace for
every plan of PT'. These event traces are grouped in an event
log E'L that will be used in the next steps of the algorithm.
Figure 2 shows exemplifies this process.

Step 2

In this step, our algorithm tries to learn the structure of
the domain contained in E'L. This is achieved by finding
a model that fits the event log produced in step 1. To dis-
cover this model we use Inductive Miner (IM) (Leemans,
Fahland, and van der Aalst 2013) a process discovery al-
gorithm based on Process Trees. A process tree is a repre-
sentation of a workflow net: a rooted tree in which leaves
are events or activities and all other nodes are operators. A
process tree describes a process model, and his operators de-
scribe how the subprocesses of their subtrees are executed.
Figure 3 shows an example of a process tree.

The standard operators defined for process trees are the
following: XOR (X) represents exclusive selection of one

Planl

@ UNSTACK @ PUTDOWN @ PICKUP

Plan2

@ UNSTACK STACK @ PICKUP

1 <log>

2 <trace>

3 <event>

4 <string key="task" value="UNSTACK"/>
5 </event>

6 <event>

7 <string key="task" value="PUTDOWN"/>
8 </event>

9 <event>
10 <string key="task" value="PICKUP"/>
11 </event>

12 </trace>
13 <trace>

14 <event>

15 <string key="task" value="UNSTACK"/>
16 </event>
17 <event>

18 <string key="task" value="STACK"/>
19 </event>
20 <event>
21 <string key="task" value="PICKUP"/>
22 </event>
23 </trace>
24 <[log>

Figure 2: Plan traces to event log example. Each plan trace
consists of a set of tasks and logic states. The result is a log
composed by event traces. Each task in the plan traces not
only contains the task’s name but its parameters instantiated.

UNSTACK PICKUP

Figure 3: Process tree representing the event log showed in
figure 2.

subtree, SEQUENCE (—) represents the sequential execu-
tion of all subtrees, XORLOOP ((X)) represents the loop of
any exclusively selected subtree, AND (A) represents the
parallel execution of all subtrees, and OR (+) represents the
execution of any combination of subtrees.

IM algorithm takes an event log, and using a divide and
conquer strategy, splits the event log extracting recursively
the events and their relation to the rest of events of the event
traces. IM selects the process tree operator that best fits £'L,
dividing the activities in log E'L into disjoint sets. E'L is split
into sublogs using these sets. Then, the sublogs are mined
recursively, until they contain a single event.

A process tree not only contains structural information
about the mined log but contains control information. If
we consider the events of the event log as primitive tasks
again this control information explains how the tasks relate
between them and simplifies the problem of HTN domain



Control Node | HTN Structure

SEQUENCE | Method,(Tasky,Tasks... Tasky)
AND Parallel[Tasky, Tasks.. Tasky]
XOR (Methody, Methodsy...Methody )
XORLOOP (Methody, Methods...Methody) (a)
OR (Methody, Methods...Methody) (b)

Table 1: Process Tree to HTN structure conversion table.

(a) Every method has a call to the parent task.

(b) The algorithm creates a method for each combination of
child nodes.

structure learning. By considering the process’ tree sub-trees
has sub-tasks of an HTN compound task we can generate
easily HTN compound tasks using the conversions of table
1 to the process’ tree internal nodes. Each operator is consid-
ered a compound task of the HTN domain and depending of
the operator its child subtrees are considered as methods of
its parent node or tasks of a single method compound task.

Step 3

Given a set of plan traces PT our algorithm proceeds to sep-
arate each state of PT in sets of pre-states and post-states.
A pre-state .S; is the state where primitive task 7; is applied,
and a post-state S 1 is the state produced by 7;. LE. given
the first plan trace showed in figure 2 we can see that Sy is
the initial state of the problem solved by the plan, S is its
goal state, and UNSTACK, PUTDOWN and PICKUP are
the primitive tasks of the planning domain that solved the
problem. Every primitive task’s parameter P; is instantiated
with proper the constant.. We can separate the plan trace in
a set of tasks with associated states:

Task : UNSTACK (boos, booo) Pre : S1 Post : So

Task : PUTDOW N (boos) Pre : Sy Post : S5
Task : P]CKUP(bOOl) Pre: 53 Post : 54

Finally, using the structure information learned in step
2 our algorithm groups each primitive task in PT in high-
level compound tasks. Our algorithm first sorts the methods
learned by their dependencies. Then, it selects the first one
and tries to find a subset of tasks in a plan trace that matches
the reduction scheme of the method. If the algorithm finds a
match if substitutes the subset in the plan trace by its high-
level method. The algorithm follows a bottom-up strategy
selecting iteratively methods substituting tasks subsets with
them in PT'. For every new high-level task in PT, the algo-
rithm calculates its pre-state and post-state. To illustrate the
whole process we show the next example:

Given an HTN structure previously learned (figure 4) and
the plan trace presented earlier, our algorithm sorts the meth-
ods as CTy My, CTo My and CTs M7, and then, proceeds to
substitute them in the plan trace. First, selects C'T> M, and
CT, M, because every task they depend on already is in the
plan trace. Each occurrence of these tasks is substituted by
the proper C'T» M, method:

UNSTACK PICKUP

PUTDOWN STACK

Figure 4: HTN structure extracted from the process tree pre-
sented in figure 3.

Planl

O] o GO =] &

The algorithm then generates the pre-states and post-
states of the new method in the plan trace.

Task : UNSTACK (boos, booo) Pre : Sy Post : Sy

Task : PUTDOW N (bgoz) Pre : Sy Post : S3
Task : PICKUP(bg1) Pre : Ss Post : Sy
Task : CToMy(booo) Pre : Sy Post : S3

The algorithm selects C'T; M, the last method in the list,
and proceeds the substitutions. The algorithm takes into ac-
count empty reduction schemes when matching subsets of
tasks of the plan trace.

lanl

GO BB

And finally, the algorithm calculates the pre-states and
post-states of C'Ty1 My

Task : U]\/'STAC’.KV(b()()g,7 booo) Pre: Sl Post : SQ

Task : PUTDOW N (bgos) Pre: Sy Post : Ss
Task : PICKUP(byp1) Pre : Ss Post : Sy
Task : CToMy(booo) Pre : Sy Post : S3
Task : CTyMoy(boos, booo, boo1) Pre: Sy Post: Sy

This process is repeated for each plan trace. If there’s al-
ready a task in the list, the algorithm includes the respective
states in it pre-states and pos-states lists.

Step 4

To solve the preconditions and effects learning problem,
first, our algorithm creates a collection of datasets. These
datasets follows the next structure:

Atrib, Atriby Atrib,, Class
Valuey1 | Valueis Valuey, Labely
Values, | Valuegs Values, Labelsy
Value,1 | Valueny,s Value,,, || Label,,




where each row is a logic state defined by the predicates
Atrib; with values Value;;. Value;; is 0 if the atom is false
in the state. Value;; 1 if the atom is true. Label; value can
be pre-state of post-state depending the relation of the state
with a given task.

To do so, our algorithm first calculates the schema form
of every task and state. First, the algorithm assigns a
name to each parameter of the task and takes the value
of that parameter. This name is generated using the pa-
rameter’s order in the task header and is the same for ev-
ery task of the same type. Then, the algorithm looks for
the parameters values in the logic predicates of the associ-
ated states, substituting these values with the corresponding
name. For example, given a task UN ST ACK (bgos, booo)
and a state HOLDING(bgoz) A ONTABLE(byp1) A
ON (booo, boo1) A CLEAR(bogo) their schema form is:
UNSTACK(Py, P,) with a state HOLDING(P;) A
ONTABLE(bQOl) A O_]V(.Pg7 bOOl) A CLEAR(PQ) Fi-
nally our algorithm deletes every predicate of the state that
have not undergone at least one substitution.

Now the algorithm creates a dataset for every task and
method of the domain using propositionalization techniques
(Lachiche 2011). First, the algorithm selects the states
whose task type and parameters are the same. The attributes
of these datasets are the union of the different predicates of
the selected states, and the label of these states depend on
their relation to the given task. If a predicate doesn’t appear
in a state the value of the correspondent cell of the dataset is
set as Missing Value. Classification algorithm treats missing
values following the Open-World Assumption.

Step 5

For each dataset, our algorithm tries to find a hypothesis
that explains which attributes models the pre-states and post-
states of the dataset’s tasks or method. The algorithm used
to learn these hypothesis is NSLV (Garcia, Gonzalez, and
Pérez 2014). NSLV is a fuzzy rule-based classification al-
gorithm that learns using a genetic algorithm. NSLV is part
of the SLAVE(Gonzblez and Perez 1999) algorithms fam-
ily and that are based on the sequential covering strategy.
A description of this strategy can be seen in listing 1. We
select fuzzy models to learn the rules that define the states
because in real-world problems things aren’t entirely true or
false. Real-World noise and incompleteness affect the learn-
ing process and fuzzy models’ vagueness allow us to deal
with them more easily(Zadeh 1965).

function SEQUENTIAL-COVERING (X,Y.E)
Learned—rules « {}
rule «— LEARN-ONE-RULE(Y,X,E)
while PERFORMANCE(rule ,E) >0 do
Learned—rules <« Learned—rules +
rule
E <« E — examples correctly
classified by rule
rule <« LEARN-ONE-RULE(Y,X.E)
end while
return Learned—rules
end function

Listing 1: The Sequential Covering strategy.

As said earlier, NSLV is a fuzzy rule-based algorithm.
These rules follow the DNF rule model (Michalski 1983):

IF X118 A1 A Xois Ao Ao N X, 08 Ay,
THENY is B with weight w

where X1, ..., X,, are the attributes, A1, ..., A,, are the val-
ues taken for each attribute, each A; is a subset of D;, the
fuzzy domain of X;, Y is the consequent variable and B is
the value of the consequent variable. Finally, w is a measure
of the weight associated to the rule. These kind of rules are
very useful to the pre-states and post-states learning prob-
lem because they allow us to categorize continuous variables
under fuzzy sets. This feature not only simplifies the numer-
ical predicates learning problem but also provides a degree
of vagueness very useful to deal with real-world problems.

SLAVE takes a target attribute Y, a set of learn-
ing attributes X and a set of learning examples. The
output set LearnedRules is where the learned rules
will be keep, sorted by PERFORMANCE. While
PERFORMANCYE is positive SLAVE learns rules that
explain al least one element of £. PERFORMANCE
is a function that measures the contribution of a rule to
the Learned — rules set. Roughly, PERFORMANCE
measures the increase in the degree of completeness that
causes the last learned rule over the set of examples F.
SLAVE creates a new rule, and if it explains some exam-
ples, the algorithm deletes them from E and include the rule
in LearnedRules.

The LEARN-ONE-RULE function learns the rules using
a genetic algorithm. To represent of the rules in the genetic
algorithm, SLAVE uses a mixed codification based on lev-
els. First level uses binary code for representing the assign-
ment attribute/value. Meanwhile in the second level, uses
real code for representing the relevance of each attribute for
a specific value of the consequent variable. NSLV is a mod-
ified version of SLAVE that can learn several rules for dif-
ferent classes at once, improving the overall performance
of the LEARN-ONE-RULE function. NSLV allows us to ob-
tain descriptive rules. The most common rule in classifica-
tion algorithm is the predictive rule. In this kind of rule, in
the antecedent of the rule only appear the discriminant at-
tributes while in the descriptive rule appears all the relevant
attributes for describe the class. We able to get the descrip-
tive rules is important to the HTN domain learning problem
since to learn the model of the pre-states and post-states are
needed all of the predicates contained in these states.

At last, from each dataset, we extract 2 rules. These rules
models what predicates forms the pre-states (Pre) and post-
states (Post) of every task and method of the domain. Now
we only have to extract the preconditions and effect from
them. Construct the preconditions is trivial since we have
a model of the pre-state of the task. To learn the effects
of the task or method we simply calculate A(Pre, Post).
A(Pre, Post) is the difference between two states. It can
be seen as a list of added predicates in Post that were not
in Pre and a list of deleted predicates in Post that were in
Pre.



Step 6

In this final step, our algorithm takes the HTN structural in-
formation previously learned and creates an HTN Domain
encoded in HPDL. This incomplete HTN Domain lacks pre-
conditions and effects in their primitive tasks and methods.
To solve this problem our algorithm simply takes the pre-
conditions and effects learned in the previous step and fills
the gaps of the domain. If a method has no preconditions
and effects calculated, and it has a empty reduction scheme,
the algorithm sets its preconditions as the effects of the com-
pound parent task.

Finally, the algorithm calculates the parameters of the do-
main’s compound tasks following the next formula:

Params(CTask) = ParM, ﬂ ParM, ﬂ ﬂ ParM,,

where CT'ask is a compound task of the HTN domain and
ParM; is the union of the tasks’ parameters of method M;
of CTask

5 Experimental Evaluation and Results

As we said above, this paper presents the first stage of our
domain learning algorithm. The experiments presented in
this section are aimed to prove the validity of our approach
with the domain learning problem. To do so, the experiments
were carried out using a set of planning problems over vari-
ous synthetic planning domains.

We are going to measure the accuracy of our algorithm
solving a set of test problems. To do so, first, we are go-
ing to define the accuracy as accuracy = %
where total Problems is the total number of test problems
and problemsSolved the number of problems solved by the
HTN domain generated by our algorithm. A problem is con-
sidered solved if a planner can generate a plan that accom-
plish the problem’s goals. In this stage of the research, we
don’t care so much about the quality of the plans rather than
the fact of obtaining one.

One of the domains used in our experiments is a sim-
plified version of the Zeno-Travel domain presented from
the 3rd International Planning Competition (IPC-3). In this
planning domain, the problems involve using aeroplanes to
move people between cities, and they require fuel to fly. The
domain’s original version uses numerical predicates to man-
age the aeroplanes’ fuel, cargo and speed, but to simplify the
problem we create a domain without them.

The other domain used is Blocks-World presented from
the 2nd International Planning Competition (IPC-2). In this
planning domain, the problems involve a robotic arm stack-
ing blocks. This domain usually deals with interleaved goals,
for example, by unstacking others blocks to accomplish a
given task.

The experimental evaluation consists of 10 runs of exper-
iments using a set of 40 problems separated in a set of train-
ing examples and a set of test examples for each domain.
The problems generated for Zeno-Travel consist on carrying
various passengers to a given destination. The problems gen-
erated for Block-Worlds consist of make towers using vari-
ous blocks. We use SIADEX (de la Asuncién et al. 2005),
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Figure 5: Zeno-Travel Domain Experimental results

a temporal HTN planner, to solve these problems using a
handmade HTN planning domain and obtain a set of plan
traces. STADEX can handle numerical predicates and tem-
poral constraints. Then, with the training plan traces, we ob-
tain anew HTN domain. Finally, we use STADEX again with
the new domain learned and the test problems. These new
plan traces are compared with the test plan traces to measure
the accuracy of the algorithm. In each run, the percentage of
examples in the training and test sets varies ranging from the
5% of examples in the training set and the 95% in the test
sets to the 50% of examples in each set. To increase the re-
liability of the experiments we applied cross-validation with
10 subsets in each run.

The results presented in figure 5 corresponds with the ex-
periments of Zeno-Travel domain. Overall it shows from a
training set with the 25% of the examples our algorithm can
learn an HTN domain that can solve every test problem. This
implies that in fact, our algorithm can learn simple HTN
planning domains. These problems have a very straight for-
ward structure so with very few examples our algorithm can
get a high accuracy. Our algorithm learns several complex
tasks that simply call another compound tasks and can be
reduced. Comparing original domain and the learned one,
we can see that the primitive tasks are the same in both do-
mains and that the learned model has 4 compound tasks in
contraposition to the original that has 2 compound tasks. The
quality of the plans is the same with both domains as they
produce the same plans.

In the other hand, the experiments with the Blocks-World
domain showed that our approach can’t handle interleaved
goals. The learned domain can solve simple Blocks-World’s
subproblems it can’t detect the patterns necessaries to solve
a full Blocks-World problem.



6 Conclusions and Future Work

HTN planning is an effective method for problem-solving,
but design an HTN domain is a cumbersome task that re-
quires a lot of effort from knowledge engineers. To allevi-
ate this problem we have described the first stage of a new
HTN domain learning algorithm. This algorithm uses pro-
cess mining techniques to learn the domain’s structure and
machine learning techniques to learn the preconditions and
effects of the domain’s tasks and methods.

The algorithm presented in this paper takes a set of plan
traces and creates an event log from them. From this event
log, our algorithm extracts a process tree with the struc-
ture of the HTN domain using process discovery techniques.
With this structure, the algorithm calculates the pre-states
and post-states not only for the primitive tasks of the do-
main but for the methods of the domain’s compound tasks
too. Finally, the algorithm finds a rule for the preconditions
and effects of each task and method of the domain. And then,
joins them with the domain’s structure to create a full HTN
domain.

We have presented theoretical results showing that our al-
gorithm can learn simple HTN domains. The experiments
were carried out using a simplified version of the Zeno-
Travel planning problem and our algorithm was able to learn
how to solve them all.

Our next steps to expand this work will be in several di-
rections. First, we are going to work with numerical predi-
cates, trying to learn them and creating more complex HTN
domains. Secondly, our work will be focused on the learn-
ing of these domains from noisy and incomplete plan traces.
These two steps are very straight forward because the algo-
rithm used to learn the preconditions and effects of the do-
main’s tasks and methods is already designed to work with
this kind of information. In the other hand, we detected prob-
lems learning the domain’s structure of planning problems
with interleaved subgoals. Solving these problems is a pri-
ority in the next steps of the algorithm. As well as the sim-
plification of the domain’s structures.

7 Acknowledgements

This research is being developed and partially funded by the
Spanish MINECO R&D Project PLAN MINER TIN2005-
71618-R

References
Castillo, L. A.; Fernandez-Olivares, J.; Garcia-Pérez, ().;
and Palao, F. 2006. Efficiently handling temporal knowl-
edge in an htn planner. In ICAPS.
de la Asuncion, M.; Castillo, L.; Fdez-Olivares, J.; Garcia-
Pérez, O.; Gonzdlez, A.; and Palao, F. 2005. Siadex: An
interactive knowledge-based planner for decision support in
forest fire fighting. AI Commun. 18(4):257-268.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and expressivity. Proceedings of 20th AAAI
Conference 1123—-1128.
Garcia, D.; Gonzalez, A.; and Pérez, R. 2014. Overview of
the slave learning algorithm: A review of its evolution and

prospects. [International Journal of Computational Intelli-
gence Systems 7(6):1194-1221.

Georgievski, 1., and Aiello, M. 2015. Htn planning:
Overview, comparison, and beyond. Artificial Intelligence
222. 124-156.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Gonzblez, A., and Perez, R. 1999. Slave: a genetic learning
system based on an iterative approach. IEEE Transactions
on Fuzzy Systems 7(2):176-191.

Gopalakrishnan, S.; Mufioz-Avila, H.; and Kuter, U. 2016.
Word2HTN:learning task hierarchies using statistical se-
mantics and goal reasoning. The IJCAI-2016 Workshop on
Goal Reasoning. AAAI Press.

Hogg, C.; Mufioz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: learning HTNs with minimal additional knowl-
edge engineering required. Proceedings of the 23rd national
conference on Artificial intelligence - Volume 2 950-956.

Jiménez, S.; Rosa, T. D. L.; Fernandez, S.; Fernandez, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(4):433-467.

Lachiche, N. 2011. Propositionalization. In Encyclopedia
of Machine Learning. Springer. 812—-817.

Leemans, S. J. J.; Fahland, D.; and van der Aalst, W. M. P.
2013. Discovering block-structured process models from
event logs - a constructive approach. 34th International
Conference, PETRI NETS 311-329.

Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2010.
Learning probabilistic hierarchical task networks to capture
user preferences. arXiv preprint arXiv:1006.0274.

Michalski, R. 1983. A Theory and Methodology of Inductive
Learning. Symbolic Computation. Springer Berlin Heidel-
berg.

Mourao, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS operators from noisy and
incomplete observations. Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence.

Weijters, A. J. M. M., and van der Aalst, W. 2001. Process
mining: Discovering workflow models from event-based
data. Proceedings of the 13th Belgium-Netherlands Con-
ference on Artificial Intelligence (BNAIC 2001) 283-290.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence Journal. 107-143.

Zadeh, L. 1965. Fuzzy sets. Information and Control
8(3):338 — 353.

Zhuo, H. H., and Kambhampati, S. 2013. Action-model
acquisition from noisy plan traces. Proceedings of the
Twenty-Third international joint conference on Artificial In-
telligence. 2444-2450.

Zhuo, H. H.; Munoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial Intelligence Vol. 212. 134—157.



