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Abstract

With the growth of the Internet-of-Things and online Web
services, more services with more capabilities are available
to us. The ability to generate new, more useful services from
existing ones has been the focus of much research for over a
decade. The goal is, given a specification of the behavior of
the target service, to build a controller, known as an orches-
trator, that uses existing services to satisfy the requirements
of the target service. The model of services and requirements
used in most work is that of a finite state machine. This im-
plies that the specification can either be satisfied or not, with
no middle ground. This is a major drawback, since often an
exact solution cannot be obtained. In this paper, we suggest a
probabilistic model for service composition: we annotate the
target service with probabilities describing the likelihood of
requesting each action in a state, and rewards for being able
execute actions. We show how to solve the resulting problem
by solving a certain Markov decision process (MDP) derived
from the service and requirement specifications. The solution
to this MDP induces an orchestrator that coincides with the
exact solution if a composition exists, and otherwise, it pro-
vides an approximate solution that maximizes the expected
sum of values of user requests that can be serviced.

1 Introduction
With the growth of the Internet-of-Things (IoT) and on-
line Web services, more and more services with more and
more capabilities are available to us. By combining the
functionalities offered by multiple services, we can provide
much added value. A classic example is the ability to of-
fer a complete vacation by combining Web services that
offer (functionalities for buying) flights, ground transporta-
tion, accommodations, and event tickets. But as more phys-
ical devices are controlled through the Web via services,
this can also be used to orchestrate the behavior of vari-
ous kitchen devices, home entertainment systems, and home
security services (De Giacomo, Mecella, and Patrizi 2014;
Bronsted, Hansen, and Ingstrup 2010).

The problem of service composition has been considered
in the literature for over a decade, starting from seminal
manual approaches, e.g., (Medjahed, Bouguettaya, and El-
magarmid 2003; Yang and Papazoglou 2004; Cardoso and
Sheth 2004), which mainly focussed on modeling issues as
well as on automated discovery of services described mak-
ing use of rich ontologies, to automatic ones based on plan-

ning, e.g., (Wu et al. 2003; Pistore et al. 2005) or on KR
techniques, e.g., (McIlraith and Son 2002), or on automated
synthesis (Berardi et al. 2003; Hu and De Giacomo 2013;
De Giacomo, Patrizi, and Sardiña 2013). The reader inter-
ested in a survey of approaches can refer to (Hull 2008;
Su 2008; De Giacomo, Mecella, and Patrizi 2014). Here we
concentrate on the latter approach, known in literature as
the “Roman model” 1 Actually for sake of simplicity in our
mathematical treatment we will consider the Roman model
in its most pristine form. Though we will describe several
extension in the discussion section.

In the Roman model, composition is as follows: each
available (i.e., to be used in the composition, therefore re-
ferred to as component) service is modeled as a finite state
machines (FSM), in which at each state, the service offers a
certain set of actions, where each action changes the state of
the service in some way. The designer is interested in gen-
erating a new service (referred to as composite, or target)
from the set of existing services. The required service (the
requirement) is specified using a FSM, too. The computa-
tional problem is to see whether the requirement can be sat-
isfied by properly orchestrating the work of the component
services. That is, by building a scheduler (called the orches-
trator) that will use actions provided by existing services to
implement action request of the requirement. Thus, a new
service is synthesized using existing services.

Unfortunately, it is not always possible to synthesize a ser-
vice that fully conforms with the requirement specification.
Furthermore, a deterministic model (adopted in many ap-
proaches) is inappropriate for most services. Many services
have various failure modes and different potential transitions
for the same action. This can be addressed by allowing for
non-determinism, but satisfying the requirement in this case
can be even harder. This zero-one situation, where we can
either synthesize a perfect solution or fail, should be im-
proved. Rather than returning no answer, we need a notion
of the “best-possible” solution, and the main contribution of
this paper is to provide a solution to this problem.

In this paper we discuss and elaborate upon a probabilistic
model for the service composition problem, first presented
in (Yadav and Sardiña 2011). In this model, an optimal so-

1The original paper (Berardi et al. 2003) was awarded the most
influential SOC paper of the decade prize at ICSOC 2013.



lution can be found by solving an appropriate probabilis-
tic planning problem (a Markov decision process – MDP)
derived from the services and requirement specifications.
Specifically, it is natural to make the requirement probabilis-
tic, associating a probability with each action choice in each
state. This probability captures how likely the user is to re-
quest the action in that state. Such information can be, ini-
tially, supplied by the designer, but can also be learned in
the course of service operation in order to adapt the com-
position to user behavior. Next, a reward is associated with
the requirement behavior. This reward can be defined in dif-
ferent ways depending on the designer’s objectives. For ex-
ample, we can associate a reward with different states that
represent achieving certain milestones, so that solutions that
make sure that the service is able to reach these milestones
will be preferred. Or, we can associate a reward with actions
at a state, modeling how important it is to be able to provide
the user with this option at this state. Thus, if certain actions
represent crucial aspects of the service, they will be asso-
ciated with high rewards, whereas actions that have added
value, but are less important, can be associated with lower
rewards.

We observe that rewards can be related to Quality-of-
Service (QoS), which is often considered crucial in mod-
eling Web services (Menasce 2002; Zeng et al. 2004). Re-
wards on some states represent situations that the designer
wants to enforce in order to guarantee QoS, while rewards
on actions represent non-functional QoS requirements. As
we discuss later on, one can use complex reward specifica-
tions in the form of transducers, or formulas in expressive
logics such as LTLf and LDLf – linear-time temporal logic
and dynamic logic on finite traces (De Giacomo and Vardi
2013).

Given a set of available services and a probabilistic re-
quirement specification, we formulate a new MDP that ag-
gregates this information – it is very similar in spirit to the
product automata used to solve the non-stochastic case –
such that an optimal policy for this MDP generates an or-
chestrator that maximizes the expected sum of rewards. In
some sense, the orchestrator will ensure that target transi-
tions of highest value are provided for the longest possible
time.

This model can also accommodate various useful exten-
sions. For example, we can associate a cost with existing
service actions or service states – e.g., energy use in the case
of smart homes or service cost in the case of travel services.
If these costs are commensurable with the value of services
offered by the synthesized service, we still obtain a standard
MDP. Otherwise, we obtain a multi-objective MDP (if we
want to optimize both aspects) or a constrained MDP (if we
have an energy or travel budget). Both models have been
studied in literature and solution algorithms for them exist.
In the last section, we discuss a number of such useful ex-
tensions.

Before continuing, we observe that our probabilistic ex-
tension to service composition is orthogonal to that proposed
in (Nain, Lustig, and Vardi 2014), where available services
are probabilistic, but the target specification (expressed as
ω-regular languages, there) is not and the orchestrator is re-

quired to satisfy the target specification with probability 1.
The paper is structured as follows: Section 2 introduce our

model of services, whereas Section 3 presents the model for
the requirement and the solution of the proposed problem.
In Section 5 we conlcude with a discussion some extensions
of the basic framework.

2 The Non-Stochastic Model
We adopt the Roman model for service composition (De Gi-
acomo, Mecella, and Patrizi 2014), in its most pristine form
(Berardi et al. 2003), which we describe below. A service is
defined as a tuple S = (Σ, σ0, F,A, δ), where:
• Σ is the finite set of service’s states;
• σ0 ∈ S is the initial state;
• F ⊆ Σ is the set of service’s final states;
• A is the finite set of service’s actions;
• δ ⊆ S ×A 7→ S is the service’s transition (partial) func-

tion, i.e., actions are deterministic.

We interchange notations s′ ∈ δ(σ, a) and σ a−→ σ′ in δ, pos-
sibly keeping implicit δ when no ambiguity arises. Finally,
we write A(σ) to denote {a ∈ A : δ(σ, a) is defined} – the
set of actions available at s.

In the Roman model, we focus on the interface that ser-
vices expose, which capture a conversational model of the
service, i.e., one that represents the sequences of requests a
service can serve, as the interaction with a client goes on.
More specifically, from a given state, a service can serve
only requests for actions that “label” an outgoing transition.
Such actions, although atomic from the client perspective,
correspond, in general to complex activities that may in-
clude, e.g., conversations with software modules or interac-
tions with external users. Upon execution of the requested
action, the service moves to a successor state, i.e., a state
reachable from the current one via a transition labeled with
the executed action.

A history h of a service S is a, possibly infinite, sequence
alternating states and actions (necessarily ending with a
state)

σ0 · a1 · σ1 · a2 · · · · · an · σn · · · ·

s.t. σ0 = σ0 and σi
ai+1−−−→ σi+1, for all i ≥ 0. That is, a

possible progression of the states of the service, annotated
by an appropriate action. Note that the above implies that
ai ∈ A(σi−1).

We assume we have a finite set of available services Si =
(Σi, σi0, Fi, A, δi), over the same set of actions A. The set
of all such services is referred to as the service community,
denoted as S = {S1, . . . , Sn}.

Given S, (De Giacomo, Mecella, and Patrizi 2014)
defines a target service as a further service T =
(Σt, σt0, Ft, A, δt), again over the actions A. The target ser-
vice provides a formal characterization of a desired service
that may not be available in the community. We denote the
set of possible target service histories by Ht.

Informally, the target represents a business process that
one would like to offer to clients, where each state repre-
sents a decision point. At each state, the client is provided



with a set of options to choose among, each corresponding
to an action available in the state. Notice that typically the
target service is not available. Further, the only entities able
to execute actions, i.e., activities, are the available services.
Thus, one cannot build the target service by simply com-
bining the actions of the target service, but has to resort to
the available services, which impose constraints on the ex-
ecution of actions, depending on the conversations they can
actually carry out.

The goal of service composition is to combine the avail-
able services in an appropriate way so as to mimic, from
a client point of view, the behavior of the target service.
This can be done by interposing an orchestrator between the
available services and the client. The orchestrator delegates
the current action requested by the client to some available
service, waits for the service to fulfill it, then notifies the
client, receives a new request, delegates it again, waits, and
so on. In order to do this correctly, one not only needs to find
a service that is able to execute the current action, but also
has to choose the service so that all possible future requests
compliant with the target service can be fulfilled.

To formally define the computational problem and its so-
lution, we require some preliminary notions: The system ser-
vice of S is the service Z = (Σz, σz0 , Fz, Az, δz), s.t.:
• Σz = Σ1 × · · · × Σn;
• σz0 = (σ10, . . . , σn0);
• Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n}
• Az = A×{1, . . . , n} is the set of pairs (a, i) formed by a

shared action a and the index i of the service that executes
it;

• σ (a,i)−−−→ σ′ iff, for σ = (σ1, . . . , σn) and σ′ =

(σ′1, . . . , σ
′
n), it is the case that σi

a−→ σ′i in δi, and
σj = σ′j , for j 6= i.

Intuitively, Z is the service stemming from the product of
the asynchronous execution of the services in S . This is a
virtual entity, i.e., without any actual counterpart, that offers
a formal account of the evolution of the available services,
when the community is seen as a whole. Note that in the
transitions of Z, the service executing the corresponding ac-
tion, is explicitly mentioned. Also (a, i) ∈ A(σz) indicates
that a can be executed by service i in the current state. We
denote the set of system service histories by Hz .

An orchestrator for a community S is a partial function2:

γ : Σz ×A 7→ {1, . . . , n}.

Intuitively, γ is a decision maker able to keep track of the
way the services in S have evolved up to a certain point, and
that, in response to an incoming action request, returns the
index of a service.

Notice that, in general, γ is not guaranteed to return a ser-
vice able to execute the requested action, nor that delegating

2In the original orchestrator definition γ is a function of the
entire history instead of the system service’s current state only. It
can be shown that if an orchestrator of the previous form exist then
one of the current form exists (Berardi et al. 2003; De Giacomo,
Patrizi, and Sardiña 2013). So we adopt this simpler notion.

the action to the returned service guarantees that all possible
future requests can be served. Obviously, only the orches-
trator that guarantees such features can be actually used to
realize the desired service, as formalized below.

The dynamics of the system is deterministic given the
actions selected by the user. Hence, together with the or-
chestrator choice, it determines a system history. That is,
an orchestrator defines a partial function from target-service
histories to system histories, based on the (partial) map-
ping from system state and action to a service and the (par-
tial) mapping from system state, action, and service, to the
next system state. We denote this mapping by τ . More for-
mally, τ : Ht 7→ Hz is defined inductively as follows:
τ(σt0) = σz0. Let τ(ht) = hz , and let st, sz denote the
last states, respectively, in ht, hz . Then, τ is also defined on
ht · a · s′t provided: a ∈ A(st) and s′t = δt(st, a), and that
γ is defined on (sz, a), and (a, γ(sz, a)) ∈ A(sz). That is,
provided the orchestrator function is defined on sz and a,
assigning some value i, and δz is well defined on (sz, i),
we have τ(ht · a · s′t) = hz · a · δz(sz, (a, i)). Otherwise,
τ(ht · a · s′t) is undefined.

If τ(ht) is well defined, we say that target history ht is
realizable by the orchestrator.

The orchestrator γ is said to realize a target service Z if
it realizes all histories of Z. In this case, γ is also called a
composition of Z (on S).

The problem of service composition in known to be
EXPTIME-complete, in fact exponential on the number of
the available services (Berardi et al. 2003; Muscholl and
Walukiewicz 2008) and techniques based on model check-
ing, simulation, and LTL synthesis are available (De Gi-
acomo, Mecella, and Patrizi 2014). Also, several variants
have been studied, including the case of nondeteministic
(i.e., partially controllable but fully observable) available
services (De Giacomo, Patrizi, and Sardiña 2013).

3 The Valued Requirement Model
The main limitation of the composition approach outlined
above is that if a composition does not exists, no notion of
a “good” or “approximate” solution exists. An interesting
notion of unique supremal composition has been introduced
in (Yadav et al. 2013). But this notion puts the burden on
the client executing the target to foresee in advance what re-
quests it will ask in the future, and this may be too limiting
in various contexts. Furthermore, in actual applications, re-
quests are not usually of uniform importance. Some parts
of the target service may be good to have, but not essential,
while other parts may be central to its functionality. And typ-
ically, different requests are not equally likely. These consid-
erations are not captured by the above model and its solution
concepts. Hence, we propose a modified model that takes
these considerations into account, thus obtain a richer, finer
grained, formulation of the objective that allows us to define
appealing notions of “optimal” compositions.

To model the value and likelihood of requets, we aug-
ment the target service model with two additional elements.
Pt will be a distribution over the actions given the state.
Pt(s, a) is the likelihood that a user will request a in target



state t. Technically, Pt(s) returns a distribution over the ac-
tions, or the empty set, when s is a terminal state on which
no actions are possible. Rt is the reward function, associ-
ating a non-negative reward with the ability to provide the
action requested by a user.Rt(s, a) is the value we associate
with being able to provide action a in state s. Formally,
a target service is T = (Σt, σt0, Ft, A, δt, Pt, Rt), where
Σt, σt0, Ft, A, δt are defined as before, Pt : Σt → π(A) ∪ ∅
is the action distribution function, and Rt : Σt × A → R is
the reward function. We assume rewards are non-negative.

One can specialize this definition in various ways: Rt can
depend on Σt only, if for example, we assume that the re-
ward is given for reaching a final state, or some particular
“normal” finite states, capturing the fact that the service has
completed appropriately. Rt could simply assign an identi-
cal positive value to every pair (σ, a) such that a ∈ A(σ).
This essentially implies that what we care about is the abil-
ity to service as many actions as possible in a state.

The definitions of an orchestrator, a target-request history,
a realizable target-request history, and a realizable target do
not change. But we can now define additional notions. First,
Pt induces a probability density function over the set of all
infinite target histories, which we will denote by P∞. (This
follows by the Ionescu Tulcea extension theorem.) Second,
Rt can be used to associate a value with every infinite his-
tory. The standard definition of the value of a history ht,
which we adopt here, is that of the sum of discounted re-
wards: v(σ0, a1, σ1, · · · ) =

∑∞
i=0 λ

iRt(σi, ai+1), where
0 < λ < 1 is the discount factor. The discount factor can
be viewed as measuring the factor by which the value of re-
wards is reduced as time progresses, capturing the intuition
that the same reward now is better than in the future.3 4

Given the above, we can define the expected value of an
orchestrator γ to be:

v(γ) = Eht∼P∞{v(ht) : ht is realizable in γ}
That is, the expected value of histories realizable in γ.
Finally, we define an optimal orchestrator to be γ =
arg maxorchestrator γ′ v(γ′). The following is reassuring:

Theorem 1. If the target is realizable and every target his-
tory has strictly positive value then γ realizes the target iff it
is an optimal orchestrator.
That is, if it is possible to realize the target requirement, then
any orchestrator realizing it is optimal, and any orchestrator
that does not realize some history, is non-optimal. The for-
mer stems from the fact that if the set of histories realizable
using orchestrator γ contains the set realizable using orches-
trator γ′, then v(γ) ≥ v(γ′). The latter stems from the fact
that if, in addition, the set of histories realizable by γ but
not by γ′ has positive probability, then v(γ) ≥ v(γ′). Now,
if h is not realizable by γ′, there exists a point in h where
γ′ does not assign the required action to a service that can

3It can also be viewed as quantifying the probability (1 − λ)
that the process will terminate at some state.

4An alternative notion, for which similar results can
be obtained is that of average reward, defined, e.g., as
lim infm→∞

1
m

∑m
i=0Rt(σi, ai+1), which requires more mathe-

matical sophistication to handle.

supply it. Thus, any history that extends the corresponding
prefix of h is not realisable, and the set of such histories
has non-zero probability. Since we assume all histories have
positive value, we obtain the desired result.

The importance of this new model is that we now have a
clear notion of an optimal orchestrator that works even when
the target service is not fully realizable, and this notion is
clearly an extension of the standard notion, coinciding with
it when the service is realizable by some orchestrator. An
optimal controller is simply one that is able to handle more
(in expectation) valued histories.

4 Computing an Optimal Orchestrator
We now explain how to solve the above model by formu-
lating an appropriate MDP. An MDP is a four-tuple M ′ =
(S′, A′, T r′, R′), where S′ is a finite set of states, A′ a finite
set of actions, Tr′ : S′ ×A′ → π(S′) is the transition func-
tion, and R : S′ × A′ → R is the reward function. The two
latter terms were defined above in the context of the valued
composition model.

The composition MDP is a function of the
system service and the target service as fol-
lows M(Z, T ) = (SM , AM , T rM , RM ), where
(i) SM = ΣZ ×ΣT ×A ∪ sM0 (ii) AM = {aM0, 1, . . . , n}
(iii) TrM (sM0, aM0, (σz0, σt0, a)) = Pt(σt0, a)
(iv) TrM ((σz, σt, a), i, (σ′z, σ

′
t, a
′)) = Pt(σ

′
t, a
′)

if σz
(a,i)−−−→ σ′z and σt

a−→ σ′t, and 0 otherwise.
(v) R((σz, σt, a), i) = Rt(σs, a) if (a, i) ∈ A(σz)
and 0 otherwise.

That is, the set of states is the product of the states of
the system service, the states of the target service, and the
set of actions. Intuitively, the state (σz, σt, a) denotes the
fact that the system state is currently σz , the target state
is currently σt and the requested action is a. In addition,
there is a distinguished initial state sM0. The actions cor-
respond to selecting the service that will provide the cur-
rent requested actions, together with a special initializing
action, aM0. A transition in state sM0 is defined only for
action aM0. From this state, we can get to state (σz0, σt0, a)
with probability that is equal to the probability that action
a would be requested from the target service at its initial
state. The state (σz0, σt0, a) represents the situation that the
system and target service are in their initial state, and that
a is requested of the target service. In general, the defintion
of Tr((σz, σt, a), i, (σ′z, σ

′
t, a
′)) captures the fact that if ser-

vice Si provides action a in system and target states σz and
σt, then the next system state is determined by (a, i) and the
previous system state, and the next target state is determined
by a and the previous target state. The probability associated
with this transition is the probability that action a′ will be re-
quested in the new target state. Finally, the reward function
associates a positive reward with states in which the assigned
service Si is able to perform the requested action a, and the
value of this reward is the value of doing actions a at the
target state.
Theorem 2. Let ρ be an optimal policy for M(Z, T ). Then,
the orchestrator γ such that γ((σz, σt), a) = ρ(σz, σt, a) is
an optimal orchestrator.



Above we assume that an optimal policy for the MDP is
one maximizing expected discounted sum of rewards with
discount factor λ. The result follows from the fact that there
is a one-to-one correspondence between orchestrators and
policies for M(Z, T ), via the relationship: γ((σz, σt), a) =
ρ(σz, σt, a), and the fact that the value of policy ρ so defined
equals v(γ).

5 Extensions
With the basic setting indtroduced, here we can now discuss
several possible extensions.

Stochastic available services. For the sake of simplic-
ity, we have assumed so far that the component and target
services are deterministic. Extending our model to capture
stochastic services, where the service transitions are prob-
abilistic too, is quite easy, see (Yadav and Sardiña 2011).
One needs to simply alter the relevant transition functions.
The precise definition of realizability now becomes slightly
more cumbersome to write, but the underlying intuitions are
the same. The MDP construction, too, need only be modi-
fied slightly to take into account the stochastic transitions of
the system state and target state.

Handling exceptions. Our current model does not ex-
plicitly capture a critical aspect of many real-world sce-
narios, exception handling (Pistore et al. 2004): if the tar-
get/composite service terminates before a terminal state has
been reached, work done so far has to be undone. This work
is distributed across different services. For example, if while
booking a vacation, we book a flight but cannot book a hotel,
we must cancel the flight reservation, which can be costly.
If we also booked a car by now, the cost would be higher.
We can augment the MDP defined earlier to take these costs
into account by adding a negative reward to states (sz, st, a)
and service choice i such that i cannot supply action a in its
current state. The size of the reward can depend on the states
of the various services, as reflected in sz , which reflects the
work that needs to be undone in each of the existing services.

Separate rewards specifications. In the setting consid-
ered here, we have coupled the rewards with the likelihood
of the client making certain action requests into the target
service to be realized. In fact it may be convenient to keep
the two specification separated, and use the target service
only to specify the likelihood of action request, in line with
what happens in the deterministic case. Rewards in this case
could be expressed dynamically on the history of actions ex-
ecuted so far by the target, through a transducer.

More precisely a transducer R = (Σ,∆, S, s0, f, g) is
a deterministic transition system with inputs and outputs,
where Σ is the input alphabet, ∆ is the output alphabet, S
is the set of states, s0 the initial state, f : S×Σ −→ S is the
transition function (which takes a state and an input symbol
and returns the successor state) and g : S × Σ −→ ∆ is the
output function (which returns the output of the transition).

In our case the input alphabet would be the set of actions
A, the output alphabet the possible rewards expressed as re-
als R. In this way the output function g : S × A −→ R,
would correspond the reward function. The point is that now
the rewards do not depend on the state of the target, but on
the sequence of actions executed so far. Interestingly if we
take the synchronous product of the target T (without re-
wards, but with stochastic transitions) and of R (which is
deterministic but outputs rewards), we get a target of the
form specified in Section 3, though this time computed from
the two separated specifications, and we can apply the MDP
construction presented here (or its extension with stochastic
available services discussed previously).

Non-Markovian rewards. In line with the above point,
it has long been observed (Bacchus, Boutilier, and Grove
1996; Thiébaux et al. 2006) that many performance crite-
ria call for more sophisticated reward functions that do not
depend on the last state only.

For example, in Robotics (Lacerda, Parker, and Hawes
2015), we may want to reward a robot for picking up a cup
only if it was requested to do so earlier, where the pick-up
command may have been given a number of steps earlier.
Similarly, we may want to reward an agent for behavior that
is conditional on some past fact – for example, if the per-
son was identified as a child earlier, we must provide her
with food rich in protein, and if he is older, in food low in
sodium. Or we may want to reward the robot for following
some rules, such as executing an even number of steps back
and forth, so as to end up in the starting position.

All these proposal share the idea of specifying rewards
on (partial traces or histories) through some variant of
linear-time temporal logic over finite traces LTLf . The re-
search on variants of LTLf has become very lively lately
with promising results (De Giacomo and Vardi 2013; 2015;
De Giacomo and Vardi 2016; Torres and Baier 2015; Cama-
cho et al. 2017). A key point is that formulas in these logics
can be “translated” into standard deterministic finite state
automata DFAs that recognize exactly the traces that fulfill
the formula. Such DFAs can be combined with probabilistic
transition systems to generate suitable MDPs to be used for
generating optimal solutions. This can be done also in our
context. Essentially we replace (or enhance) the target spec-
ification with a declarative set of logical constraints. Then
we compute the synchronous product with a target transition
system that us the likelihood of action choice, hence getting
a target specification as that of Section 3, analogously to the
case of the transducer above. This can be solved by the tech-
niques presented earlier.

High-level programs as target services. Often certain
non-Markovian specifications can be expressed more natu-
rally by using procedural constraints (De Giacomo and Vardi
2015; Fritz and McIlraith 2007; Baier et al. 2008). In par-
ticular, we can introduce a sort of propositional variant of
GOLOG (Levesque et al. 1997):

δ ::= A | ϕ? | δ1 + δ2 | δ1; δ2 | δ∗ |
if φ then δ1 else δ2 | while φ do δ



Hence, we can assign rewards to traces that correspond to
successful computations of such programs.

For example in a smart environment such as that in (De
Giacomo et al. 2012) we could have a reward associated to
completing the following program:

while(true) do
if (cold ∧ windowOpen)) then

closeWindow;
turnOnFirePlace + turnOnHeating

which says that, all along, if it is cold and the window is
open, then immediately close the window and either turn on
the fire place or the heating system (no other actions can
interleave this sequence).

Note that if and while can be seen as abbreviations for
regular expression (Fischer and Ladner 1979), namely:

if φ then δ1 else δ2
.
= (φ?; δ1) + (¬φ?; δ2)

while φ do δ .
= (φ?; δ)∗;¬φ?

Hence these programs can also be translated into regular ex-
pressions and hence in DFA to be used as above.

Interestingly, we can combine procedural and declarative
temporal constraints by adopting a variant of LTLf , called
linear-time dynamic logic on finite traces, or LDLf , as spec-
ification language (De Giacomo and Vardi 2013). For exam-
ple we may write

[true∗]〈while(cold ∧ heatingOn)) do
(¬turnOffHeating∗; heat)〉

which says that at every point in time, while it is cold and
the heating is on then heat, possibly allowing other action
except turning off heating. Again we are able to transform
these formulas into DFAs and proceed as discussed above.

Finally these ideas are related to so called agent planning
programs (De Giacomo et al. 2016), where the target is spec-
ified as a network of declarative goals. Such programs can
also be extended to the stochastic setting presented here

Learning. Although we focus on this paper on model
specification and model-based solution techniques, we point
out that for Web services, statistics gathering is very simple,
and in fact, is carried out routinely nowadays. Consequently,
it is not difficult to learn the stochastic transition function of
existing services online, and use it to specify the probabilis-
tic elements of the model.
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