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About you

Target audience:

Ideally, you are..

.. familiar with Classical Planning Formalisms (FDR/SAS+).

.. familiar with Planning as Heuristic Search.

.. aware of an important issue in Explicit State Space Search
→ State Space Explosion

Don’t hesitate to ask questions if something is unclear!
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Classical Planning

Definition. A planning task is a 4-tuple Π = (V,A, I,G) where:

V is a set of state variables, each v ∈ V with a finite domain Dv.

A is a set of actions; each a ∈ A is a triple (pre(a), eff (a), c(a)), of
precondition and effect (partial assignments), and the action’s cost
c(a) ∈ R0+.

Initial state I (complete assignment), goal G (partial assignment).

Running Example: l1 l2 l3

V = {t, p1, p2, p3, p4}
with Dt = {l1, l2, l3} and Dpi = {t, l1, l2, l3}.

A = {load(pi, x), unload(pi, x), drive(x, x′)}
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Semantics – The State Space of a Planning Task

Definition. Let Π = (V,A, I,G) be an FDR planning task. The state space of
Π is the labeled transition system ΘΠ = (S,L, c, T, I, SG) where:

The states S are the complete variable assignments.

The labels L = A are Π’s actions; the cost function c is that of Π.

The transitions are T = {s a−→ s′ | pre(a) ⊆ s, s′ = s[[a]]}.
If pre(a) ⊆ s, then a is applicable in s and, for all v ∈ V ,
s[[a]][v] := eff (a)[v] if eff (a)[v] is defined and s[[a]][v] := s[v] otherwise.

If pre(a) 6⊆ s, then s[[a]] is undefined.

The initial state I is identical to that of Π.

The goal states SG = {s ∈ S | G ⊆ s} are those that satisfy Π’s goal.

→ Solution (“Plan”): Action sequence mapping I into s ∈ SG.
Optimal plan: Minimum summed-up cost.
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A successful approach: Heuristic Search

goal
init

dista
nce estim

ate hdistance estimate h

distance estimate h

distance estimate h

→ Forward state space search. Heuristic function h maps states s to an
estimate h(s) of goal distance.
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Alternatives to State Space Search (not covered here)

Planning as SAT: Extensions use, e. g., heuristics, symmetry breaking.
Kautz and Selman (1992, 1996); Ernst et al. (1997); Rintanen (1998,
2003, 2012)

Property Directed Reachability
Bradley (2011); Eén et al. (2011); Suda (2014)

Planning via Petri Net Unfolding
Godefroid and Wolper (1991); McMillan (1992); Esparza et al. (2002);
Edelkamp et al. (2004); Hickmott et al. (2007); Bonet et al. (2008, 2014)

Partial-order Planning
Sacerdoti (1975); Kambhampati et al. (1995); Younes and Simmons
(2003); Bercher et al. (2013)

Factored Planning (details later)
Knoblock (1994); Amir and Engelhardt (2003); Brafman and Domshlak
(2006); Kelareva et al. (2007); Brafman and Domshlak (2008, 2013);
Fabre et al. (2010)

. . .
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State Space Explosion

goal
init

...

?...
...

Huge branching factor → state space explosion.

Helmert and Röger (2008)
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D. Gnad, Á. Torralba Decoupled State Space Search 11/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

Star-Topology Decoupling

Running Example: l1 l2 l3

V = {t, p1, p2, p3, p4}.

A = {load(pi, x), unload(pi, x), drive(x, x′)}, where:
pre(load(pi, x)) = {(t, x), (pi, x)} and eff (load(i, x)) = {(pi, t)},
pre(unload(pi, x)) = {(t, x), (pi, t)} and eff (unload(i, x)) = {(pi, x)}.

Causal Graph: Dependencies across (components of) state variables.

precondition precondition

precondition precondition

Decomposition: “Instantiate center to break the conditional dependencies”.

Search over center actions; handle each leaf component separately.
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“Conditional Independence”

l1 l2 l3

Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
(a) l1 t l2

load(p1, l1) unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)

:
(a) l3 t l2

load(p3, l3) unload(p3, l2)

(b) l3 t l1
load(p3, l3) unload(p3, l1)

We can choose (a) or (b) for each of p1 and p3 independently
=⇒ Maintain the compliant paths for each leaf separately.
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Exponential Reduction of the State Space

Reachable State Space. Right: Average over Instances Commonly Built
Success Representation Size (in Thousands)

Domain Std POR Unfold. Decoupled Std POR Decoupled

Solvable Benchmarks: From the International Planning Competition (IPC)

Depots 4 4 2 5 30,954.8 30,954.8 3,970.0
Driverlog 5 5 3 10 35,632.4 35,632.4 127.2
Elevators 21 17 3 41 22,652.1 22,651.1 186.7
Logistics 12 12 11 27 3,793.8 3,793.8 8.2
Miconic 50 45 30 145 52,728.9 52,673.1 2.4
NoMystery 11 11 7 40 29,459.3 25,581.5 10.0
Pathways 4 4 3 4 54,635.5 1,229.0 11,211.9
PSR 3 3 3 3 39.4 33.9 11.1
Rovers 5 6 4 5 98,051.6 6,534.4 4,032.9
Satellite 5 5 5 4 2,864.2 582.5 352.7
TPP 5 5 4 11 340,961.5 326,124.8 .8
Transport 28 23 11 34 4,958.6 4,958.5 173.3
Woodworking 11 20 22 16 438,638.5 226.8 9,688.9
Zenotravel 7 7 4 7 17,468.0 17,467.5 99.4

Unsolvable Benchmarks: Extended from Hoffmann and Nebel (2001)

NoMystery 9 8 4 40 85,254.2 65,878.2 3.8
Rovers 4 4 0 4 697,778.9 302,608.9 20,924.4∑

186 181 116 398

Decoupled Search can be viewed as a form of Petri Net Unfolding, exploiting the star topology
to avoid the hardness of detecting the reachable markings.
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Star Factorings

Factoring F := A partitioning of V into non-empty subsets.

Definition F is a star factoring if |F| > 1 and there exists FC ∈ F such
that, for every action a where V(eff (a)) ∩ FC = ∅, there exists F ∈ F
with V(eff (a)) ⊆ F and V(pre(a)) ⊆ F ∪ FC .

Center interacts with leaves arbitrarily, no direct leaf-leaf interaction.

Notation conventions:

F = {FC} ∪ FL. (center + leaves)

Center Actions AC : affect (have an effect on) a variable v ∈ FC .

Leaf Actions AL: affect only one leaf FL ∈ FL.

Center States sC : complete assignment to FC .

Leaf States sL: complete assignment to an FL ∈ FL.
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Decoupled States

Definition Let F be a star factoring with center FC and leaves FL. A
decoupled state sF is a triple (πC(sF ), center(sF ), prices(sF )) where
πC(sF ) is a center path, center(sF ) is a center state, and prices(sF ) is
a pricing function, prices(sF ) : SL 7→ R0+ ∪ {∞}, mapping each leaf
state to a non-negative price.

l1 l2 l3 t = l1

l1 t l2 l3
p1 0 1∞∞

l1 t l2 l3
p2 0 1∞∞

l1 t l2 l3
p3∞∞∞ 0

l1 t l2 l3
p4∞∞∞ 0
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The Compliant-Path Graph

Definition Let πC = 〈aC1 , . . . , aCn 〉 be a center path traversing center states
〈sC0 , . . . , sCn 〉. The πC-compliant-path graph for a leaf FL ∈ FL, denoted
CompG[πC , FL], is the arc-labeled weighted directed graph whose vertices are
{sLt | sL ∈ SL[FL], 0 ≤ t ≤ n}, and whose arcs are:

(i) sLt
aL

−−→ s′
L
t with weight c(aL) whenever sL, s′L ∈ SL[FL] and

aL ∈ AL[FL] \AC are such that sCt [V(pre(aL)) ∩ FC ] = pre(aL)[FC ],

sL[V(pre(aL)) ∩ FL] = pre(aL)[FL], and sL[[aL]] = s′
L

.

(ii) sLt
0−→ s′

L
t+1 with weight 0 whenever sL, s′

L ∈ SL[FL] are such that

sL[V(pre(aCt )) ∩ FL] = pre(aCt )[FL] and sL[[aCt ]] = s′
L

.

Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:

(a) l1 t l2
load(p1, l1)unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)
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D. Gnad, Á. Torralba Decoupled State Space Search 18/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

The Compliant-Path Graph

Definition Let πC = 〈aC1 , . . . , aCn 〉 be a center path traversing center states
〈sC0 , . . . , sCn 〉. The πC-compliant-path graph for a leaf FL ∈ FL, denoted
CompG[πC , FL], is the arc-labeled weighted directed graph whose vertices are
{sLt | sL ∈ SL[FL], 0 ≤ t ≤ n}, and whose arcs are:

(i) sLt
aL

−−→ s′
L
t with weight c(aL) whenever sL, s′L ∈ SL[FL] and

aL ∈ AL[FL] \AC are such that sCt [V(pre(aL)) ∩ FC ] = pre(aL)[FC ],

sL[V(pre(aL)) ∩ FL] = pre(aL)[FL], and sL[[aL]] = s′
L

.

(ii) sLt
0−→ s′

L
t+1 with weight 0 whenever sL, s′

L ∈ SL[FL] are such that

sL[V(pre(aCt )) ∩ FL] = pre(aCt )[FL] and sL[[aCt ]] = s′
L

.

Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:

(a) l1 t l2
load(p1, l1)unload(p1, l2)

(b) l1 t l3
load(p1, l1) unload(p1, l3)
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The Compliant-Path Graph – Example

Center path πC :

l1

l2 l3 l2

CompG[πC , {p1}]:

(p1 = t)0

(p1 = l1)0

(p1 = t)1

(p1 = l1)1

(p1 = l2)1

(p1 = t)2

(p1 = l1)2

(p1 = l2)2

(p1 = l3)2

(p1 = t)3

(p1 = l1)3

(p1 = l2)3

(p1 = l3)3

(un)load(p1, l1)1

0

0

0

0

0

0

0

0

0

D. Gnad, Á. Torralba Decoupled State Space Search 19/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

The Compliant-Path Graph – Example

Center path πC :

l1 l2

l3 l2

drive(l1, l2)

CompG[πC , {p1}]:

(p1 = t)0

(p1 = l1)0

(p1 = t)1

(p1 = l1)1

(p1 = l2)1

(p1 = t)2

(p1 = l1)2

(p1 = l2)2

(p1 = l3)2

(p1 = t)3

(p1 = l1)3

(p1 = l2)3

(p1 = l3)3

(un)load(p1, l1)1

0

0

0

0

0

0

0

0

0
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The Compliant-Path Graph – No-Empty Example

Center path πC : pre(drive(lx, ly,pz)) = {t = lx,pz = t}
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Decoupled State Space

Definition The decoupled state space is a labeled transition system
ΘF

Π = (SF , AC , c|AC , TF , IF , SF
G ) as follows:

(i) SF is the set of all decoupled states.

(ii) IF is the decoupled initial state, where center(IF ) := I[FC ],
πC(IF ) := 〈〉, and, for every leaf FL ∈ FL and leaf state sL ∈ SL[FL],
prices(IF )[sL] is the cost of a cheapest path from I[FL]0 to sL0 in
CompG[〈〉, FL].

(iii) SF
G are the decoupled goal states sG, where G[FC ] ⊆ center(sG) and, for

every FL ∈ FL, there exists a leaf goal state sL ∈ SL[FL] s.t.
G[FL] ⊆ sL and prices(sG)[sL] <∞.
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Decoupled State Space – Cont.

Definition The decoupled state space is a labeled transition system
ΘF

Π = (SF , AC , c|AC , TF , IF , SF
G ) as follows:

(i) The transition labels are the center actions AC , the cost function is that of
Π, restricted to AC .

(ii) TF contains a transition (sF
aC

−−→ tF ) ∈ TF whenever aC ∈ AC and
sF , tF are such that:

1. πC(sF ) ◦ 〈aC〉 = πC(tF );
2. center(sF )[V(pre(aC)) ∩ FC ] = pre(aC)[FC ];
3. center(sF )[[aC ]] = center(tF );
4. for every FL ∈ FL where V(pre(aC)) ∩ FL 6= ∅, there exists

sL ∈ SL[FL] s.t. sL[V(pre(aC)) ∩ FL] = pre(aC)[FL] and
prices(s)[sL] <∞; and

5. for every leaf FL ∈ FL and leaf state sL ∈ SL[FL], prices(tF )[sL] is
the cost of a cheapest path from I[FL]0 to sLn in CompG[πC(tF ), FL],
where n := |πC(tF )|.
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D. Gnad, Á. Torralba Decoupled State Space Search 22/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

Decoupled State Space – Cont.

Definition The decoupled state space is a labeled transition system
ΘF

Π = (SF , AC , c|AC , TF , IF , SF
G ) as follows:

(i) The transition labels are the center actions AC , the cost function is that of
Π, restricted to AC .

(ii) TF contains a transition (sF
aC

−−→ tF ) ∈ TF whenever aC ∈ AC and
sF , tF are such that:

1. πC(sF ) ◦ 〈aC〉 = πC(tF );
2. center(sF )[V(pre(aC)) ∩ FC ] = pre(aC)[FC ];
3. center(sF )[[aC ]] = center(tF );
4. for every FL ∈ FL where V(pre(aC)) ∩ FL 6= ∅, there exists

sL ∈ SL[FL] s.t. sL[V(pre(aC)) ∩ FL] = pre(aC)[FL] and
prices(s)[sL] <∞; and

5. for every leaf FL ∈ FL and leaf state sL ∈ SL[FL], prices(tF )[sL] is
the cost of a cheapest path from I[FL]0 to sLn in CompG[πC(tF ), FL],
where n := |πC(tF )|.
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Decoupled Search – Example

l1 l2 l3

t = l1

l1 t l2 l3
p1 0 1∞∞

l1 t l2 l3
p2 0 1∞∞

l1 t l2 l3
p3 ∞∞∞ 0

l1 t l2 l3
p4 ∞∞∞ 0

t = l2

l1 t l2 l3
p1 0 1 2∞

l1 t l2 l3
p2 0 1 2∞

l1 t l2 l3
p3 ∞∞∞ 0

l1 t l2 l3
p4 ∞∞∞ 0

t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1∞ 0

l1 t l2 l3
p4 ∞ 1∞ 0
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Decoupled Search – No-Empty Example
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Hypercubes

Definition A state p in Π is a member state of a decoupled state sF , if
p[FC ] = center(sF ) and, for all leaves FL ∈ FL,
prices(sF )[p[FL]] <∞. We say that p has cost costsF (p) in sF , where
costsF (p) :=

∑
FL∈FL prices(sF )[p[FL]]. The hypercube of sF , denoted

[sF ], is the set of all member states of sF .

t = l3

l1 t l2 l3
p1 ∞ 1 2 2

l1 t l2 l3
p2 ∞ 1∞ 2

l1 t l2 l3
p3 ∞ 1∞ 0

l1 t l2 l3
p4 ∞ 1∞ 0

tl3, p1t, p2l3, p3l3, p4l33
tl3, p1l3, p2l3, p3t, p4t6

tl3, p1t, p2t, p3t, p4l33

tl3, p1l3, p2t, p3t, p4l34

tl3, p1t, p2l3, p3t, p4t5
. . .

Decoupled State sF Hypercube [sF ] (24 member states!)

Hypercube dimensions = Leaves; Axis values = Leaf States.
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Hypercubes II

[sF ] contains all states reachable via a path π that contains πC(sF ).

Center path:

l1 l2 l3 l2 l1
drive(l1, l2) drive(l2, l3) drive(l3, l2) drive(l2, l1)

:
l1 t l2

load(p1, l1) unload(p1, l2)

. . .

l1 t l3
load(p1, l1) unload(p1, l3)

:
l3 t l2

load(p3, l3) unload(p3, l2)

. . .

l3 t l1
load(p3, l3) unload(p3, l1)
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State Space Size Reduction

Illustrative Example:

A B C D E

..

E.g. loading the packages at A:
2n reachable standard states but only a single decoupled state!

Standard state space size here is 5 ∗ 6n; decoupled is 15.
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Exponential Blow-Up

Illustrative Example:

A

B

C

D

E

F

G . . .

Drive to D via B or C:
Standard state space → identical state
Decoupled state space → different states! (pricing function)

Decoupled state “remembers” the taken center path.

ΘFΠ exponentially larger than ΘΠ!

Multiple packages: both effects occur.
Length of map vs. # of packages.
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Agenda

1 About this Tutorial

2 Classical Planning: Models, Approaches

3 Decoupling – Intuition

4 Decoupled Search

5 Heuristics in Decoupled Search

6 Dominance Pruning – a.k.a. Duplicate Checking

7 Factoring Strategies

8 Implementation

9 Open Topics
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Planning Heuristics

Definition A heuristic h is a function h : S 7→ R+
0 ∪ {∞}. Its value h(s)

for a state s is referred to as the state’s heuristic value, or h value.

Definition For a state s ∈ S, the perfect heuristic value h∗ of s is the
cost of an optimal plan for s, or ∞ if there exists no plan for s.

→ Heuristic functions h estimate the remaining cost h∗.
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Decoupled Heuristic Functions

Definition. A decoupled heuristic is a function h from decoupled states
SF into R+

0 ∪∞.

The center-perfect heuristic hC∗ is that where hC∗(sF ) is the cost of a
cheapest center path reaching the goal from sF .

The star-perfect heuristic hS∗ is that where hS∗(sF ) is the minimum over
path-cost + goal-price for all center paths reaching the goal from sF .

We say that h is center-admissible if h ≤ hC∗, and
star-admissible if h ≤ hS∗.

Center heuristics hC estimate hC∗, and star heuristics hS estimate hS∗.

→ But how to compute such heuristics?
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Heuristic Compilation

Connect to standard classical planning heuristics!

Center heuristics: Set leaf action costs to 0,

include auxiliary
actions AL

aux allowing to achieve each leaf state sL reached in sF

at cost 0.

Star heuristics: Include auxiliary actions AL
aux allowing to achieve

each leaf state sL reached in sF at cost prices(sF )[sL].

AL
aux changes for every decoupled state sF !

t = l3

l1 t l2 l3
p1 0 1∞ 2

l1 t l2 l3
p2 0 1∞ 2

l1 t l2 l3
p3 ∞ 1 2 0

l1 t l2 l3
p4 ∞ 1 2 0

Can use standard heuristics via this compilation.

Heuristic admissible? → We can guarantee optimality!
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D. Gnad, Á. Torralba Decoupled State Space Search 32/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

Heuristic Compilation

Connect to standard classical planning heuristics!

Center heuristics: Set leaf action costs to 0, include auxiliary
actions AL

aux allowing to achieve each leaf state sL reached in sF

at cost 0.

Star heuristics: Include auxiliary actions AL
aux allowing to achieve

each leaf state sL reached in sF at cost prices(sF )[sL].

AL
aux changes for every decoupled state sF !

t = l3

l1 t l2 l3
p1 0 1∞ 2

l1 t l2 l3
p2 0 1∞ 2

l1 t l2 l3
p3 ∞ 1 2 0

l1 t l2 l3
p4 ∞ 1 2 0

Can use standard heuristics via this compilation.

Heuristic admissible? → We can guarantee optimality!
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D. Gnad, Á. Torralba Decoupled State Space Search 32/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

How to guarantee Optimality?

Search Space Reformulation:

Introduce a new goal state G′.

Give all decoupled goal states sF a transition sF
a−→ G′ with

c(a) = goal price at sF .

Extend hS by hS(G′) := 0.

t = l3

l1 t l2 l3
p1 0 1∞ 2

l1 t l2 l3
p2 0 1∞ 2

l1 t l2 l3
p3 ∞ 1 2 0

l1 t l2 l3
p4 ∞ 1 2 0

Goal price = 2 + 0 + 1 = 3
= price of cheapest member goal state in sF .

Any standard (complete/optimal) search on the modified graph yields a
(complete/optimal) decoupled search algorithm.

A∗ → DA∗

D. Gnad, Á. Torralba Decoupled State Space Search 33/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

How to guarantee Optimality?

Search Space Reformulation:

Introduce a new goal state G′.

Give all decoupled goal states sF a transition sF
a−→ G′ with

c(a) = goal price at sF .

Extend hS by hS(G′) := 0.

t = l3

l1 t l2 l3
p1 0 1∞ 2

l1 t l2 l3
p2 0 1∞ 2

l1 t l2 l3
p3 ∞ 1 2 0

l1 t l2 l3
p4 ∞ 1 2 0

Goal price = 2 + 0 + 1 = 3
= price of cheapest member goal state in sF .

Any standard (complete/optimal) search on the modified graph yields a
(complete/optimal) decoupled search algorithm.

A∗ → DA∗
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Hypercubes

tl3, p1t, p2l3, p3l3, p4l3 h = 5

tl3, p1l3, p2l3, p3t, p4t h = 7

tl3, p1t, p2t, p3t, p4l3 h = 4

tl3, p1l3, p2t, p3t, p4l3 h = 2

tl3, p1t, p2l3, p3t, p4t h = 5
. . .

Estimate the minimum heuristic value of all member states.
→ Captured by AL

aux.

t = l3

l1 t l2 l3
p1 ∞ 1 2 2

l1 t l2 l3
p2 ∞ 1∞ 2

l1 t l2 l3
p3 ∞ 1∞ 0

l1 t l2 l3
p4 ∞ 1∞ 0
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Why no Duplicate Checking?

t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1∞ 0

l1 t l2 l3
p4 ∞ 1∞ 0

Decoupled states are complex!

→ Identical decoupled states are only generated very rarely.

Instead:

Dominance relation over decoupled states.

Prune newly generated states if dominated by already seen ones.

→ Guarantees finiteness of decoupled state space!
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Dominance over Decoupled States

When is a decoupled state “better” than another one?

New generated state:

t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1∞ 0

l1 t l2 l3
p4 ∞ 1∞ 0

Previously seen state:

t = l3

l1 t l2 l3
p1 0 1 2 2

l1 t l2 l3
p2 0 1 2 2

l1 t l2 l3
p3 ∞ 1 2 0

l1 t l2 l3
p4 ∞ 1 2 0

Definition A decoupled state sF dominates another state tF , if the
center state is the same and for all leaf states sL:
prices(sF )[sL] ≤ prices(tF )[sL].
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Hypercube Pruning

tl2, p1t, p2l3, p3t, p4l2
tl2, p1l3, p2l1, p3t, p4t

tl2, p1l3, p2l1, p3t, p4l3

tl2, p1l2, p2l1, p3t, p4l1
tl2, p1l1, p2l2, p3t, p4l2

. . .

tl2, p1t, p2l3, p3l3, p4l3
tl2, p1l3, p2l3, p3t, p4t

tl2, p1t, p2t, p3t, p4l3
tl2, p1l3, p2t, p3t, p4l3

tl2, p1t, p2l3, p3t, p4t
. . .

. . .

Given new state sF , seen states sF1 , . . . , s
F
n s.t. center(sFi ) = center(sF ).

Prune sF if

[sF ] \ [sF1 ] ∪ [sF2 ] ∪ · · · ∪ [sFn ] = ∅.

→ Size guarantee, but this is an NP-hard problem!
Cube elimination! Hoffmann and Kupferschmid (2005).

Extension to optimality? → Need to take prices into account.
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F
n s.t. center(sFi ) = center(sF ).

Prune sF if

[sF ] \ [sF1 ] ∪ [sF2 ] ∪ · · · ∪ [sFn ] = ∅.

→ Size guarantee, but this is an NP-hard problem!
Cube elimination! Hoffmann and Kupferschmid (2005).

Extension to optimality? → Need to take prices into account.
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1 About this Tutorial

2 Classical Planning: Models, Approaches

3 Decoupling – Intuition

4 Decoupled Search

5 Heuristics in Decoupled Search

6 Dominance Pruning – a.k.a. Duplicate Checking

7 Factoring Strategies

8 Implementation

9 Open Topics
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Variable Dependencies

Definition The causal graph of Π is the directed graph CG(Π) with
vertices V and an arc u→ v if u 6= v and there exists an action a ∈ A so
that either (i) there exists a ∈ A so that pre(a)[u] and eff (a)[v] are both
defined, or (ii) there exists a ∈ A so that eff (a)[u] and eff (a)[v] are both
defined.

Causal graphs capture variable dependencies.

Definition The interaction graph of Π given F is the directed graph
IGΠ(F), with vertices F , and an arc F → F ′ if F 6= F ′, and there exist
v ∈ F and v′ ∈ F ′, s.t. v → v′ is an arc in CG(Π).

The interaction graph is the quotient of CG(Π) over F .
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Factored Planning – Related Work

Factoring := partitioning of state variables.

Traditional Factoring: (e. g. Sacerdoti (1974); Knoblock (1994); Lansky and Getoor

(1995); Amir and Engelhardt (2003); Fabre et al. (2010); Brafman and Domshlak (2013))

Design factors motivated by abstraction hierarchies or agents.

Cater for arbitrary cross-factor interactions.

Star Factoring: Force the factoring to induce a star profile!

→ That is, choose factoring F so that the interaction graph has a center
incident to all arcs.
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Factoring Types

FC

FL1

FL2

FL3

FL4
Recap:
F is a star factoring if |F| > 1 and there exists
FC ∈ F such that, for every action a where
V(eff (a)) ∩ FC = ∅, there exists FL ∈ FL

with V(eff (a)) ⊆ F and V(pre(a)) ⊆ F ∪ FC .

Strict-Star Factoring:
Arbitrary center-leaf interaction; no dependencies between leaves directly.

Definition A factoring F is a strict-star factoring, if there exists a center
factor FC ∈ F such that the arcs in IGΠ(F) are in
{FC → FL | FL ∈ F \ {FC}} ∪ {FC ← FL | FL ∈ F \ {FC}}.
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How to automatically find a factoring?

Based on the SCCs of the causal graph:
Fork / Inverted-Fork Factorings:
Set leaves to causal graph leaf / root components.

Xshape Factoring:
First do fork factoring, then inverted-fork on resulting center.
Need to take care of leaf-leaf dependencies!

Important criteria:

Number of leaves factors → exponential gain.

Leaf flexibility → frozen leaves.

Leaf size (domain size product) → runtime/memory overhead.

Structure of leaf state space.
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Maximizing the Number of Leaves

Maximum number of leaves in a strict-star factoring?
→ size of a maximum independent set (MIS) of the causal graph.

MIS Strategy:

1 Seed factoring = MIS of causal graph (one MIS variables per leaf).

2 Apply post-process to increase flexibility.

3 Abstain if less than 2 leaves.
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A Greedy Approach – # Incident Arcs (IA)

What if computing an MIS is infeasible?
2

2

1

3

3

2

3

2

3

1

IA Strategy:

1 Move variables most densely connected in causal graph to center.

2 Leaves = weakly connected components in CG[V \ FC ].

3 Select factoring with maximum number of mobile leaves.

4 Abstain if less than 2 leaves.
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Factoring Time

F IF X MIS IA

70%

80%

90%

100%

≤ 0.1s ≤ 1s ≤ 5s ≤ 10s ≥ 10s
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Agenda

1 About this Tutorial

2 Classical Planning: Models, Approaches

3 Decoupling – Intuition

4 Decoupled Search

5 Heuristics in Decoupled Search

6 Dominance Pruning – a.k.a. Duplicate Checking

7 Factoring Strategies

8 Implementation

9 Open Topics
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The interesting stuff . . . after the break

Short Break (5 min)

Implementation in Fast Downward

Hands-On – Implement your own heuristic in decoupled search

Instructions:
hg clone https://bitbucket.org/dagnad/decoupled-fd

hg up icaps-tutorial

The relevant files are ../src/search/icaps heuristic.*

The URL is linked on http://fai.uni-saarland.de/software.html

(“Decoupled Fast Downward”).
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D. Gnad, Á. Torralba Decoupled State Space Search 48/60

https://bitbucket.org/dagnad/decoupled-fd
http://fai.uni-saarland.de/software.html


About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

Decoupled Search within Fast Downward (Helmert (2006))

Heuristics Pruning Techniques

Search Algorithms

State Representation Successor Generator
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Representing Decoupled States

Decoupled State Registry: In fact, many state registries!

Center state registry,

One registry for every leaf factor → store every leaf state only once.

Decoupled State: a pair of

Center State + auxiliary variable to distinguish decoupled states
with the same center,

Instance of “CompliantPathGraph” (many sub-classes).

→ Search Algorithms use (augmented) center state only.

→ Accessing pricing function via a vector indexed by aug. center state ID.
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D. Gnad, Á. Torralba Decoupled State Space Search 50/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

Representing Decoupled States II

CompliantPathGraphs:
Many different variants for optimal/satisficing planning, more elaborate
dominance pruning methods, symbolic leaves, . . .

Pricing Function (optimal planning):

A vector<int> for each leaf factor.

vector indexed by leaf state IDs.

Update of Pricing Function:

Run uniform-cost search from currently reached leaf states.

Cache entire leaf state spaces to be more efficient.

D. Gnad, Á. Torralba Decoupled State Space Search 51/60



About Planning Decoupling Decoupled Search Heuristic Search Dominance Factorings Implementation Open Topics

Representing Decoupled States II

CompliantPathGraphs:
Many different variants for optimal/satisficing planning, more elaborate
dominance pruning methods, symbolic leaves, . . .

Pricing Function (optimal planning):

A vector<int> for each leaf factor.

vector indexed by leaf state IDs.

Update of Pricing Function:

Run uniform-cost search from currently reached leaf states.

Cache entire leaf state spaces to be more efficient.
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Interface to Heuristics/Pruning/Successor Generator

CPGStorage::get cpg(State)

→ Global access to the pricing function of a decoupled state.

Access price/reachability of a leaf state by its ID + factor.

Functions:

has leaf state(id, factor),

get cost of state(id, factor),

get number state(factor),

goal reachable(factor).
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Wanna Take a Look at the Code?

It’s a trap mess!
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Hands-On Decoupled Search in Fast Downward

CPGStorage::get cpg(State)

→ Global access to the pricing function of a decoupled state.

Functions:

has leaf state(id, factor),

get cost of state(id, factor),

get number state(factor),

goal reachable(factor).

Hands-on:
Want to implement a simple heuristic function?

A mixture between goal-counting and PDB heuristic!

g min goal cost: precomputed minimum goal cost with “patterns” FL.
Build: ./build all

Execute: ./fast-downward.py [task-file] --decoupling "fork"

--search "astar(icaps)"
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A mixture between goal-counting and PDB heuristic!

g min goal cost: precomputed minimum goal cost with “patterns” FL.
Build: ./build all

Execute: ./fast-downward.py [task-file] --decoupling "fork"

--search "astar(icaps)"
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Agenda

1 About this Tutorial

2 Classical Planning: Models, Approaches

3 Decoupling – Intuition

4 Decoupled Search

5 Heuristics in Decoupled Search

6 Dominance Pruning – a.k.a. Duplicate Checking

7 Factoring Strategies

8 Implementation

9 Open Topics
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What’s Done

Basic Framework is Established! Gnad and Hoffmann (2015); Gnad et al. (2015)

+ lots of extensions:

Factoring methods, target-profile factoring. Gnad et al. (2017a)
→ Tomorrow at HSDIP!

Partial-order Reduction. Gnad et al. (2016)

Symmetry Breaking. Gnad et al. (2017c)
→ Friday morning!

Dominance Pruning. Torralba et al. (2016)

Combination with symbolic search, Gnad et al. (2017b)
BDDs to represent leaf state spaces.
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Alternative Planning Formulations

It works for Classical Planning, but what about . . .

Numerical Planning?

Probabilistic Planning?

Temporal Planning?

Generalized Planning?
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Beyond Delete-Relaxation

What we have:

hmax, hadd, hFF, hLM-cut

How to connect to other types of heuristics?

Abstraction Heuristics
Patter Database Heuristics (PDB)
Merge-And-Shrink
Cartesian Abstractions

Linear-Programming-based Heuristics
Operator Counting
Potential Heuristics

Landmark Heuristics

. . .
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Beyond Classical Planning

Why scramble for star topologies in IPC benchmarks when the world is
full of applications that have a star topology by definition?

Multiple agents (leaves) that interact on a set of shared variables
(center).

Model Checking! E.g., client-server architectures; parallel
processors with central memory (weak memory models).

Decoupled Search vs. Petri Net Unfolding.
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Take Home Message

Explicit Search is the most prominent approach to tackle classical
planning problems.

Full generality (A∗, GBFS, hill-climbing, . . . ).

Powerful heuristics.

Various search enhancements available (e. g., successor pruning)

Works well across all (IPC) domains.

Has its limitations!

Alternative State Representations like Decoupled Search offer:

More specialized way to exploit, e.g., conditional independence.

Potentially exponential gain over explicit search.

Easy to Use:
Implemented in Fast Downward.
Many heuristics + pruning methods applicable.
Factoring process is fast!
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via petri net unfolding. In Manuela Veloso, editor, Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07), pages
1904–1911, Hyderabad, India, January 2007. Morgan Kaufmann.
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D. Gnad, Á. Torralba Decoupled State Space Search 6/9



References

References VII

Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie Thiébaux. Factored planning
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Håkan L. S. Younes and Reid G. Simmons. VHPOP: versatile heuristic partial order
planner. Journal of Artificial Intelligence Research, 20:405–430, 2003.
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