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Answer Set Programming

Introduction

Answer set programming is a new programming paradigm. It was
introduced in the late 90’s and manages to attract the intention of
different groups of researchers thanks to its:

declarativeness: programs do not specify how answers are computed;

modularity: programs can be developed incrementally;

expressiveness: answer set programming can be used to solve
problems in high complexity classes (e.g. Σ2

P , Π2
P , etc.)

Answer set programming has been applied in several areas: reasoning
about actions and changes, planning, configuration, wire routing,
phylogenetic inference, semantic web, information integration, etc.
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Answer Set Programming Syntax

Rules and Constraints

r : b1 ∨ . . . ∨ bm ← a1, . . . , an, not an+1, . . . , not an+k

ai , bj : atom of a language L (L can either be propositional or first
order)

not a: a negation-as-failure atom (naf-atom).

Reading 1

If a1, . . . , an are true and none of an+1, . . . , an+k can be proven to be true
then at least one of b1, . . . , bm must be true.

Reading 2

If a1, . . . , an are believed to be true and there is no reason to believe that
any of an+1, . . . , an+k is true then at least one of b1, . . . , bm must be true.
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Answer Set Programming Syntax

Notations

r : b1 ∨ . . . ∨ bm︸ ︷︷ ︸
head(r)

← a1, . . . , an, not an+1, . . . , not an+k︸ ︷︷ ︸
body(r)

head(r) = {b1, . . . , bm}
pos(r) = {a1, . . . , an} (also: body +(r) = {a1, . . . , an})
neg(r) = {an+1, . . . , an+k} (also: body−(r) = {an+1, . . . , an+k})

Special cases

n = k = 0: r encodes a fact;

k = 0: r is a positive rule; and

m = 0: r encodes a constraint.
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Answer Set Programming Syntax

Program

Program: a set of rules.

Herbrand universe: the set of ground terms constructed constructed
from function symbols and constants occurring in the program. (Uπ)

Herbrand base: the set of ground atoms constructed from predicate
symbols and ground terms from the Herbrand universe. (Bπ)

Rule with variables: shorthand for the collection of its ground
instances. (ground(r))

Program with variables: collection of ground instances of its rules.
(ground(π))
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Answer Set Programming Examples of Propositonal Programs

L is a propositional language

L: set of propositions such as p, q, r , a, b ...

P1 =


a←
b ← a, c
c ← a, p
c ←

P2 =


a← not b
b ← not a, c
p ← a, not p
c ←

P3 =

{
a←
b ← c
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Answer Set Programming Examples of Propositonal Programs

L is a first order language

L has one function symbol f (arity: 1) and one predicate symbol p (arity 1)

Q1 =
{

p(f (X ))← p(X )

Q2 =
{

p(f (f (X ))← p(f (X )), not p(X )

Q3 =

{
p(f (X ))←
p(f (f (f (X ))))← p(X )

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 9 / 241



Answer Set Programming Examples of Propositonal Programs

Semantics: Positive Propositional Programs

For a program without not and every rule m = 1. So, every rule in P is
of the form: a← a1, . . . , an

Definition

For a positive program P,

TP(X ) = {a | ∃(a← a1, . . . , an) ∈ P.[∀i .(ai ∈ X )]}

Observations

every fact in P belongs to TP(X ) for every X

If X ⊆ Y then TP(X ) ⊆ TP(Y )

∅ ⊆ TP(∅) ⊆ TP(TP(∅)) ⊆ . . . ⊆ T n
P(∅) ⊆ and T n(∅) for n→∞

converges to lfp(TP)
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Answer Set Programming Examples of Propositonal Programs

Computing TP : Example 1

L: set of propositions such as p, q, r , a, b ...

P1 =


a←
b ← a, c
c ← a, p
c ←

TP1(∅) = {a, c}
T 2
P1

(∅) = TP1(TP1(∅)) = TP1(({a, c}) = {a, c , b}
T 3
P1

(∅) = TP1(T 2
P1

(∅)) = TP1({a, c , b}) = {a, c , b} = lfp(TP1)
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Answer Set Programming Examples of Propositonal Programs

Computing TP : Example 2

L: set of propositions such as p, q, r , a, b ...

P2 =


a← b
b ← a, c
p ← a, p
c ←

TP2(∅) = {c}
T 2
P2

(∅) = TP2(TP2(∅)) = TP2({c}) = {c} = lfp(TP2)
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Answer Set Programming Examples of Propositonal Programs

Computing TP : Example 3

P3 =

{
a←
b ← c

TP3(∅) = {a}
T 2
P3

(∅) = TP3(TP3(∅)) = TP3({a}) = {a} = lfp(TP3)
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Answer Set Programming Examples of Propositonal Programs

Computing TP : Example 4 and 5

P4 =

{
a← b
b ← a

TP4(∅) = ∅ = lfp(TP4)

P5 =

{
a←
b ← a, b

TP5(∅) = {a}
T 2
P5

(∅) = TP5(TP5(∅)) = TP5({a}) = {a} = lfp(TP5)
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Answer Set Programming Programs with FOL Atoms

Terminologies – many borrowed from classical logic

variables: X ,Y ,Z , etc.

object constants (or simply constants): a, b, c , etc.

function symbols: f , g , h, etc.

predicate symbols: p, q, etc.

terms: variables, constants, and f (t1, . . . , tn) such that ti ’s are terms.

atoms: p(t1, . . . , tn) such that ti s are terms.

literals: atoms or an atom preceded by ¬.

naf-literals: atoms or an atom preceded by not.

gen-literals: literals or a literal preceded by not.

ground terms (atoms, literals) : terms (atoms, literals resp.) without
variables.
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Answer Set Programming Programs with FOL Atoms

FOL, Herbrand Universe, and Herbrand Base

L – a first order language with its usual components (e.g., variables,
constants, function symbols, predicate symbols, arity of functions and
predicates, etc.)

UL – Herbrand Universe of a language L: the set of all ground terms
which can be formed with the functions and constants in L.

BL – Herbrand Base of a language L: the set of all ground atoms
which can be formed with the functions, constants and predicates in
L.

Example: Consider a language L1 with variables X ,Y ; constants a, b;
function symbol f of arity 1; and predicate symbol p of arity 1.

UL1 = {a, b, f (a), f (b), f (f (a)), f (f (b)), f (f (f (a))),
f (f (f (b))), . . .}.

BL1 = {p(a), p(b), p(f (a)), p(f (b)), p(f (f (a))), p(f (f (b))),
p(f (f (f (a)))), p(f (f (f (b)))), . . .}.
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Answer Set Programming Programs with FOL Atoms

Programs with FOL Atoms

r : b1 ∨ . . . ∨ bm ← a1, . . . , an, not an+1, . . . , not an+k

The language L of a program Π is often given implicitly.

Rules with Variables

ground(r , L): the set of all rules obtained from r by all possible
substitution of elements of UL for the variables in r .

Example

Consider the rule “p(f (X ))← p(X ).” and the language L1 (with variables
X ,Y ; constants a, b; function symbol f of arity 1; and predicate symbol p
of arity 1). Then ground(r , L1) will consist of the following rules:
p(f (a))← p(a).
p(f (b))← p(b).
p(f (f (a)))← p(f (a)).
p(f (f (b)))← p(f (b)).
...
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Answer Set Programming Programs with FOL Atoms

Main Definitions

ground(r , L): the set of all rules obtained from r by all possible
substitution of elements of UL for the variables in r .

For a program Π:

ground(Π, L) =
⋃

r∈Π ground(r , L)
LΠ: The language of a program Π is the language consists of the
constants, variables, function and predicate symbols (with their
corresponding arities) occurring in Π. In addition, it contains a
constant a if no constant occurs in Π.
ground(Π) =

⋃
r∈Π ground(r , LΠ).
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Answer Set Programming Programs with FOL Atoms

Example 2

Π:
p(a). p(b). p(c).
p(f (X ))← p(X ).

ground(Π):
p(a)←.
p(b)← .
p(c)← .
p(f (a))← p(a).
p(f (b))← p(b).
p(f (c))← p(c).
p(f (f (a)))← p(f (a)).
p(f (f (b)))← p(f (b)).
p(f (f (c)))← p(f (c)).
...
p(f k+1(x))← p(f k(x)). for x ∈ {a, b, c}
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Answer Set Programming Programs with FOL Atoms

Herbrand Interpretation I

Definition

The Herbrand universe (resp. Herbrand base) of Π, denoted by UΠ (resp.
BΠ), is the Herbrand universe (resp. Herbrand base) of LΠ.

Example For Π = {p(X )← q(f (X ), g(X )). r(Y )←}
the language of Π consists of two function symbols: f (arity 1) and g
(arity 2); two predicate symbols: p (arity 1), q (arity 2) and r (arity 1);
variables X ,Y ; and a (added) constant a.
UΠ = ULΠ

= {a, f (a), g(a), f (f (a)), g(f (a)), g(f (a)),
g(g(a)), f (f (f (a))), g(f (f (g(a)))), . . .}

BΠ = BLΠ
= {p(a), q(a, a), r(a), p(f (a)), q(a, f (a)), r(f (a)),

q(f (g(a)), g(f (f (a)))), . . .}
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Answer Set Programming Programs with FOL Atoms

Herbrand Interpretation II

Definition (Herbrand Interpretation)

A Herbrand interpretation of a program Π is a set of atoms from its
Herbrand base.
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Answer Set Programming Programs with FOL Atoms

Semantics – Positive Programs without Constraints I

Let Π be a positive proram and I be a Herbrand interpretation of Π.
I is called a Herbrand model of Π if for every rule “a0 ← a1, . . . , an” in
ground(Π), a1, . . . , an are true with respect to I (or {a1, . . . , an} ⊆ I ) then
a0 is also true with respect to I (or a0 ∈ I ).

Definition

The least Herbrand model for a program Π is called the minimal model of
Π and is denoted by MΠ.

Computing MP . Let Π be a program. We define a fixpoint operator TΠ

that maps a set of atoms (of program Π) to another set of atoms as
follows.

TΠ(X ) = {a | a ∈ BΠ,
there exists a rule

a← a1, . . . , anin Π s. t. ai ∈ X}
(1)
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Answer Set Programming Programs with FOL Atoms

Semantics – Positive Programs without Constraints II

Note: By a0 ← a1, . . . , an in ground(Π) we mean there exists a rule
b0 ← b1, . . . , bn in Π (that might contain variables) and a ground
substitution σ such that a0 = b0σ and ai = biσ.

Remark

The operator TΠ is often called the van Emden and Kowalski’s iteration
operator.
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Answer Set Programming Programs with FOL Atoms

Some Examples

For Π = {p(f (X ))← p(X ). q(a)← p(X ).}
we have

UΠ = {a, f (a), f (f (a)), f (f (f (a))), . . .} = {f i (a) | i = 0, 1, . . . , }

and
BΠ = {q(f i (a)), p(f i (a)) | i = 0, . . . , }

Computing TΠ(X ):

For X = BΠ, TΠ(X ) = {q(a)} ∪ {p(f (t)) | t ∈ UΠ}.
For X = ∅, TΠ(X ) = ∅.
For X = {p(a)}, TΠ(X ) = {q(a), p(f (a))}.
We have that MΠ = ∅.
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Answer Set Programming Programs with FOL Atoms

Properties of TΠ

TΠ is monotonic: TΠ(X ) ⊆ TΠ(Y ) if X ⊆ Y .

TΠ has a least fixpoint that can be computed as follows.

1 Let X1 = TΠ(∅) and k = 1
2 Compute Xk+1 = TΠ(Xk). If Xk+1 = Xk then stops and return Xk .
3 Otherwise, increase k and repeat the second step.

Note: The above algorithm will terminate for positive program Π with
finite BΠ.
We denote the least fix point of TΠ with T∞Π (∅) or lfp(TΠ).

Theorem

MΠ = lfp(TΠ).

Theorem

For every positive program Π without constraint, MΠ is unique.
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Answer Set Programming Programs with FOL Atoms

Semantics – General Logic Programs without Constraints I

Recall that a program is a collection of rules of the form

a← a1, . . . , an, not an+1, not an+k .

Let Π be a program and X be a set of atoms, by ΠX we denote the
program obtained from ground(Π) by

1 Deleting from ground(Π) any rule
a← a1, . . . , an, not an+1, not an+k for that
{an+1, . . . , an+k} ∩ X 6= ∅, i.e., the body of the rule contains a
naf-atom not al and al belongs to X ; and

2 Removing all of the naf-atoms from the remaining rules.
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Answer Set Programming Programs with FOL Atoms

Semantics – General Logic Programs without Constraints II

Remark

The above transformation is often referred to as the Gelfond-Lifschitz
transformation.

Remark

ΠX is a positive program.

Definition

A set of atoms X is called an answer set of a program Π if X is the
minimal model of the program ΠX .

Theorem

For every positive program Π, the minimal model of Π, MΠ, is also the
unique answer set of Π.
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Answer Set Programming Programs with FOL Atoms

Detailed Computation

Consider Π2 = {a← not b. b ← not a.}. We will show that its has
two answer sets {a} and {b}

S1 = ∅ S2 = {a} S3 = {b} S4 = {a, b}
ΠS1

2 : ΠS2
2 : ΠS3

2 : ΠS4
2 :

a← a←
b ← b ←
M

Π
S1
2

= {a, b} M
Π
S2
2

= {a} M
Π
S3
2

= {b} M
Π
S4
2

= ∅
M

Π
S1
2

6= S1 M
Π
S2
2

= S2 M
Π
S3
2

= S3 M
Π
S4
2

6= S4

NO YES YES NO

Remark

A program may have zero, one, or more than one answer sets.
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Answer Set Programming Programs with FOL Atoms

Further intuitions behind the semantics I

A set of atoms S is closed under a program Π if for all rules of the
form a0 ← a1, . . . , am,not am+1, . . . ,not an. in Π, {a1, . . . , am} ⊆ S
and {am+1, . . . , an} ∩ S = ∅ implies that a0 ∈ S .

A set of atoms S is said to be supported by Π if for all p ∈ S there
is a rule of the form p ← a1, . . . , am,not am+1, . . . ,not an.
in Π, such that {a1, . . . , am} ⊆ S and {am+1, . . . , an} ∩ S = ∅.
A set of atoms S is an answer set of a program Π iff (i) S is closed
under Π and (ii) there exists a level mapping function λ (that maps
atoms in S to a number) such that for each p ∈ S there is a rule in Π
of the form p ← a1, . . . , am,not am+1, . . . ,not an. such that
{a1, . . . , am} ⊆ S , {am+1, . . . , an} ∩ S = ∅ and λ(p) > λ(ai ), for
1 ≤ i ≤ m.

Note that (ii) above implies that S is supported by Π.

It is known that if S is an answer set of Π then
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Answer Set Programming Programs with FOL Atoms

Further intuitions behind the semantics II

1 S must be closed under Π and
2 S must be supported by Π.

The above notions are useful for the computation of answer sets. They
allow us to eliminate possible answer sets quickly. Consider
Π3 = {p ← a. ; a← not b. b ← not a.}

1 For X0 = ∅. Take a← not b: its set of positive atoms in the body is
empty and its set of negative atoms in the body of this rule is {b}
and {b} ∩ X0 = ∅. So, X0 violates the closedness condition hence it is
not closed under Π3. As such, X0 cannot be an answer set of Π3.

2 For X7 = {p, a, b}t. Take a ∈ X7: the only rule in Π3 whose head is a
is the rule a← not b. The set of positive atoms in the body of this
rule is empty and the set of negative atoms in the body of this rule is
{b} and {b} ∩ X7 6= ∅. This means that a has no rule to support it in
Π3 and hence X7 cannot be an answer set of Π3.
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Answer Set Programming Programs with FOL Atoms

Answer Sets of Programs with Constraints I

For a set of ground atoms S and a constraint c of the form

← a0, . . . , an, not an+1, . . . , not an+k

we say that c is satisfied by S if {a0, . . . , an} \ S 6= ∅ or
{an+1, . . . , an+k} ∩ S 6= ∅.
Let Π be a program with constraints. Let

ΠO = {r | r ∈ Π, r has non-empty head} and ΠC = Π \ ΠO

(ΠO and ΠC : set of normal logic program rules and constraints in Π,
respectively.

Definition

A set of atoms S is an answer sets of a program Π if it is an answer set of
ΠO and satisfies all the constraints in ground(ΠC ).
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Answer Set Programming Answer Set Solver: clingo (How To?)

Answer Set Solver clingo

Download from https://github.com/potassco/, set up, etc.

Run clingo <params>

For example, if Π2 = {a← not b. b ← not a.} is stored in a file
named test.lp, clingo test.lp would output something like the
following:
clingo test.lp

clingo version 5.2.0

Reading from test.lp

Solving...

Answer: 1

a

SATISFIABLE

...
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Answer Set Programming Answer Set Solver: clingo (How To?)

Answer Set Programming
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Answer Set Programming Idea

General Methodology

Problem Solutions

Logic Program

Modeling

Solver Answer Sets

Interpreting

Answer Set Programming

Traditional Approach
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Answer Set Programming Examples

Graph Coloring I

Problem

Given a undirected graph G . Color each node of the graph by red, yellow,
or blue so that no two adjacent nodes have the same color.

Approach

We will solve the problem by writing a logic program ΠG such that each
answer set of ΠG gives us a solution to the problem. Furthermore, each
solution of the problem corresponds to an answer set.

The program ΠG needs to contain information about the graph and then
the definition of the problem. So,

Graph representation:
– The nodes: node(1), . . . , node(n).
– The edges: edge(i , j).
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Answer Set Programming Examples

Graph Coloring II

Solution representation: use the predicate color(X ,Y ) - node X is
assigned the color Y .

Generating the solutions: Each node is assigned one color. The three
rules

color(X , red) ← not color(X , blue), not color(X , yellow). (2)

color(X , blue) ← not color(X , red), not color(X , yellow). (3)

color(X , yellow) ← not color(X , blue), not color(X , red). (4)

Checking for a solution: needs to make sure that no edge connects
two nodes of the same color. This can be represented by a constraint:

← edge(X ,Y ), color(X ,C ), color(Y ,C ). (5)
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Answer Set Programming Examples

Graph Coloring III

%% description of the graph
node(1). node(2). node(3). node(4). node(5).
edge(1,2). edge(1,3). edge(2,4).
edge(2,5). edge(3,4). edge(3,5).

%% generating solution: each node is assigned a color
color(X,red):- node(X), not color(X,blue), not color(X, yellow).
color(X,blue):- node(X), not color(X,red), not color(X, yellow).
color(X,yellow):- node(X), not color(X,blue), not color(X, red).

%% enforcing the constraint
:- edge(X,Y), color(X,C), color(Y,C).

(Informal) Theorem

Let G be a graph and ΠG be a program constructed from G . Each
solution of G corresponds to an answer set of ΠG and vice versa.
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Answer Set Programming Extensions of Logic Programming

Syntactic Extensions of Logic Programming

Choice Atoms

color(X,red):- node(X), not color(X,blue), not color(X, yellow).
color(X,blue):- node(X), not color(X,red), not color(X, yellow).
color(X,yellow):- node(X), not color(X,blue), not color(X, red).
replaced by

1 {color(X, C) : is color(C)} 1 :- node(X).

and a set of atoms
is color(yellow). is color(red). is color(blue).

Choice atoms allow for a succinct representation. General form of choice
atoms is

l {p1, p2, . . . , pk} u

where 0 ≤ l ≤ u are integers and pi ’s are atoms. Expression of the from
{p(~X ) : q( ~Y )} where all variables in ~Y appear in ~X . A choice atom is true
with respect to a set of atoms S if l ≤ |{pi | pi ∈ S}| ≤ u.
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Answer Set Programming Extensions of Logic Programming

Syntactic Extensions of Logic Programming

Weighted Atoms

l{l0 = w0, . . . , lk = wk , not lk+1 = wk+1, . . . , not lk+n = wk+n}u where
li ’s are atoms, wi are integers, and l ≤ u are integers. This atom is true
with respect to a set of literals S if l ≤

∑0≤j≤k
lj∈S wj +

∑k+1≤j≤k+n
lj 6∈S wj ≤ u.

Special case: choice atom – wi = 1 for every i .

Aggregates

Sum(Ω), Count(Ω), Average(Ω), Min(Ω), Max(Ω) where Ω denotes a
multiset (e.g., {p(a,X ) | X ∈ {1, 2, 3}})

Semantics of extensions are well-defined. All features are implemented in
answer set solvers.
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Answer Set Programming Extensions in Use

n-Queens

Problem: Place n queens on a n × n chess board so that no queen is
attacked (by another one).
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Answer Set Programming Extensions in Use

n-Queens

Representation: the chess board
can be represented by a set of
cells cell(i , j) and the size n.

Solution: Each cell is assigned a
number 1 or 0. cell(i , j) = 1
means that a queen is placed at
the position (i , j) and
cell(i , j) = 0 if no queen is placed
at the position (i , j)

Generating a possible solution:
cell(i , j) is either true or false
select n cells, each on a column,
assign 1 to these cells.

Checking for the solution:
ensures that no queen is attacked
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Answer Set Programming Extensions in Use

n-Queens – writing a program

Use a constant n to represent the size of the board
col(1..n). // n columns
row(1..n). // n rows

Since two queens can not be on the same column, we know that each
column has to have one and only one queen. Thus, using the choice atom
in the rule

1{cell(I , J) : row(J)}1← col(I ).
we can make sure that only one queen is placed on one column. To
complete the program, we need to make sure that the queens do not
attack each other.
• No two queens on the same row

← cell(I , J1), cell(I , J2), J1 6= J2.
• No two queens on the same column (not really needed)

← cell(I 1, J), cell(I 2, J), I 1 6= I 2.
• No two queens on the same diagonal

← cell(I 1, J1), cell(I 2, J2), |I 1− I 2| = |J1− J2|
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Answer Set Programming Extensions in Use

Code

% representing the board, using n as a constant
col(1..n). % n column
row(1..n). % n row
% generating solutions
1 {cell(I,J) : row(J) } 1:- col(I).
% two queens cannot be on the same row/column
:- col(I), row(J1), row(J2), J1!=J2, cell(I,J1), cell(I,J2).
:- row(J), col(I1), col(I2), I1!=I2, cell(I1,J), cell(I2,J).
% two queens cannot be on a diagonal
:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 > I2, cell(I1,J1),
cell(I2,J2), I1 - I2 == J1 - J2.
:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 < I2, cell(I1,J1),
cell(I2,J2), I2 - I1 == J1 - J2.
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Constraint Logic Programming

Outline

1 Answer Set Programming

2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning

6 Scheduling

7 Goal Recognition Design

8 Generalized Target Assignment and Path Finding

9 Distributed Constraint Optimization Problems

10 Conclusions
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Constraint Logic Programming Motivations

Explore alternative approaches to encode action languages (e.g., B)
using different logic programming (LP) paradigms

Explore advantages offered by different paradigms
Relate action language features with features from the LP paradigm

Influence action language design (e.g., BMV )

Comparative experimental performance testing
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Constraint Logic Programming Intuition

Intuition

Traditional Logic Programming:

Terms are uninterpreted
p(X) :- X=square(2).

?- p(X). ?- 3=2+1. ?- 3=X+1.

X=square(2) no no

Prolog: extra-logical predicates
p(X,Y) :- X is Y*2.

?- p(6,Y).

ERROR: is/2: Arguments not instantiated

Prolog: forces a generate & test style
p(X,Y) :- domain(X), domain(Y), X > Y.

CLP:

Embed interpreted syntax fragments (predefined function symbols and
predicates)
Embed dedicated solvers to handle them
Enable a constrain & generate style
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Constraint Logic Programming Intuition

• LP paradigm
generate then test
Þ many unuseful branches explored

• CLP paradigm
test then generate
Þ cuts branches soon, avoiding exploration
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Constraint Logic Programming Intuition

Constraint Logic Programming

S E N D
M O R E

+

M O N E Y
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Constraint Logic Programming Intuition

Constraint Logic Programming

Declarative
1,393,690 Backtrackings
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Constraint Logic Programming Intuition

Constraint Logic Programming

Less Declarative
More Efficient
Requires Order of Execution
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Constraint Logic Programming

Declarative
More Efficient
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Constraint Logic Programming Intuition

declarative programming

Constraint Solving
(CS)

Logic Programming
(LP)

Constraint Logic Programming
(CLP)
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Constraint Logic Programming Intuition

Logic programming extended with terms and predicates defined on
non-Herbrand domains

CLP(X): X is the constraint domain

Meaning of constraint formulae defined by theory X, not by rules

X #< Y :- 
                …..

Prolog solving accumulates substitutions

CLP solving accumulates constraints (conditions on variables)

Replace unification with constraint solving

Constraint Solvers

Verify consistency (existence of solutions)
Simplify/solve constraints (e.g., reduces to Variable = Value)
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Constraint Logic Programming Intuition
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X #< Y :- 
                …..

X Y X#<Y

0 0

0 1 ✔

0 2 ✔

1 0
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Constraint Logic Programming Intuition

Certain symbols in the syntax have predefined meaning (e.g., +, ∗, /)

Variables in constraint terms have specific domains (e.g., integers)

Note difference:

Prolog: X = Y + 3 variable assigned term Y + 3
CLP: X = Y + 3 value of X is an integer that satisfies the condition
Y + 3

For Example:
:- use module(library(clpr)).

p(X,Y) :- {X=Y*3}, q(X,Y).

q(X,Y) :- {X - 2 = Y}.

:- p(X,Y).

X=3.0

Y=1.0
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Constraint Logic Programming Intuition

prog(X,Y) :-
     Y #=< -2/5*X+2,
     10*Y #>= 10 + X*7,
     Y #=< (X-2)*5/3.

?- prog(X,Y).
No
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Constraint Logic Programming Intuition

Syntax: CLP(X)

X is a constraint theory

A signature ΣX = (FX ,ΠX )
An interpretation structure D
A class L of legal formulate (constraints)

Typically closed under propositional combination
Typically closed under variable renaming

Atomic formulae in L: primitive constraints
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Constraint Logic Programming Intuition

Example: CLP(X)

ΣX = (FX ,ΠX ) where

FX = {+,−}
ΠX = {=, 6=,≤} ∪ {∈mn | n ≤ m}

D = Z
Primitive Constraints: atoms based on =, 6=, ≤, and ∈mn
Constraints in L:

Conjunctions of primitive constraints
Each variable should appear in a ∈mn constraint
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Constraint Logic Programming Syntax

Various X have been formalized

Instance Sort Solver

CLP(FD) Finite Domains Local Consistency

CLP(R) Real, Linear Constraints Simplex

CLP(Q) Rationals, Linear Constraints Simplex

CLP(SET ) Hereditarily Finite Sets Ad-Hoc, ACI

Prolog-II Finite Trees Ad-Hoc

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 55 / 241



Constraint Logic Programming Syntax

Signature Σ = (F ,Π) where

F = FX ∪ FP

Π = ΠX ∪ ΠP

Program Rule:
p(t1, . . . , tn) : −B1, . . . ,Bk

where each Bi is a ΠP atom or Bi ∈ L

Goal:
?− B1, . . . ,Bk

where Bi is a ΠP atom or Bi ∈ L

Example: In a farmyard, there are only chickens and rabbits. It is
known that there are 18 heads and 58 feet. How many chickens and
rabbits are there?
counting(Ch,Ra) :- [Ch,Ra] ins 1..58,

X+Y #= 18, 2*X+4*Y #= 58.
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Constraint Logic Programming Operational Semantics

Semantics

State: 〈G ,C 〉 where C ∈ L and G is a goal
〈∅,C 〉 success if consistent(C )
〈G ,C 〉 failed if ¬consistent(C )

Selection Function: α(G ) = Bi

Derivation Step: 〈G ,C 〉 ⇒ 〈G ′,C ′〉 if α(G ) = Bi and

Bi = p(s1, . . . , sn) is a ΠP atom and there is a rule p(t1, . . . , tn) : −~B
then

G ′ = G \ {Bi} ∪ ~B ∪ {s1 = t1, . . . , sn = tn}
C ′ = C

Bi ∈ L then

C ′ = C ∧ {Bi}
G ′ = G \ {Bi} if consistent(G ′) or
G ′ = ∅ if ¬consistent(G ′)

Derivation: S0 ⇒ S1 ⇒ · · · ⇒ Sn where
S0 = 〈G , true〉
Si ⇒ Si+1 for 0 ≤ i < n
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Constraint Logic Programming Operational Semantics

CLP(FD)

ΠX = {=, 6=, <,>,≤,≥} ∪ {∈nm | n ≤ m}
FX = {+,−, ∗, /}
SWI-Prolog

X in 1..10 Y in 1..4 \/ 9..12

X+1 #= Y X-2#\=Y+1

X in 1..10, X #< 2 #\/ X #> 9

Global Constraints:

sum([X,Y,Z], #>, 10)

all_different([X,Y,Z])

During resolution:

Check consistency
Possibly simplify constraints:
?- X in 1..10, X#>8.

X in 9..10
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Constraint Logic Programming Operational Semantics

CLP(FD)

Search:

labeling(+Options,+Variables)
Variable Selection Strategies:

ff

ffc

leftmost

Branching Strategy:

step: X#=V or X#\=V
enum: X=V1 or X=V2 or . . .
bisect: X #< M or X #>= M

Alternating Labeling and propagation

Optimization: labeling([max(Expression)], Variables)
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Constraint Answer Set Programming

Outline

1 Answer Set Programming

2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning

6 Scheduling

7 Goal Recognition Design

8 Generalized Target Assignment and Path Finding

9 Distributed Constraint Optimization Problems

10 Conclusions
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Constraint Answer Set Programming

Constraint Satisfaction: Syntax

A Constraint Satisfaction Problem (CSP) is a triple 〈X ,D,C 〉, where:

X = {x1, . . . , xn} is a set of variables

D = {D1, . . . ,Dn} is a set of domains, such that Di is the domain of
variable xi (i.e. the set of possible values that the variable can be
assigned)

C is a set of constraints.

Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ is a list of variables and
ρ is a subset of the Cartesian product of the domains of such variables.
Intensional representation of constraints: an expression involving variables,
e.g.

x < y

A global constraint is a constraint that captures a relation between a
non-fixed number of variables, such as sum(x , y , z) < w and
all different(x1, . . . , xk).
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Constraint Answer Set Programming

Constraint Satisfaction: Example

Find three integers between 1 and 10 whose sum is 23.

Additional constraint: only odd integers are allowed.

– How can we formalize it as a CSP? –

P = 〈
{x , y , z},
{{1, 2, . . . , 10}, {1, 2, . . . , 10}, {1, 2, . . . , 10}},
{sum(x , y , z) = 23, x % 2 = 1, y % 2 = 1, z % 2 = 1}
〉
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Constraint Answer Set Programming

Constraint Satisfaction: Semantics

Definition

An assignment is a pair 〈xi , a〉, where a ∈ Di

Intuitive meaning: variable xi is assigned value a.

Definition

A compound assignment is a set of assignments to distinct variables
from X .

A complete assignment is a compound assignment to all the variables
in X .

Intuitively, a constraint 〈σ, ρ〉 specifies the acceptable assignments for the
variables from σ. We say that such assignments satisfy the constraint.

Definition

A solution to a CSP 〈X ,D,C 〉 is a complete assignment satisfying every
constraint from C .
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Constraint Answer Set Programming

Constraint Satisfaction: Example (cont’d)

Find three integers between 1 and 10 whose sum is 23.

Additional constraint: only odd integers are allowed.

P = 〈
{x , y , z},
{{1, 2, . . . , 10}, {1, 2, . . . , 10}, {1, 2, . . . , 10}},
{sum(x , y , z) = 23, x % 2 = 1, y % 2 = 1, z % 2 = 1}
〉

x := 0 does not satisfy the constraint x % 2 = 1.

x := 1 satisfies the constraint x % 2 = 1.

{x := 9, y := 9, z := 5} is a solution to the CSP.
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Constraint Answer Set Programming

Constraint ASP (CASP)

Combines ASP and CSP languages.

Provides a way of describing a CSP using ASP. Unlike Prolog, host
and embedded language feature similar KR paradigms

Example:
given variables: x , range [1, 10]; y , range [1, 10]; z , range [1, 10]

sum(x , y , z) = 23.
x % 2 = 1.
y % 2 = 1.
z % 2 = 1.
- Answer set: {sum(x , y , z) = 23, x % 2 = 1, y % 2 = 1, z % 2 = 1}
- Automatically translated to a CSP
- Solved using a CSP solver

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 65 / 241



Constraint Answer Set Programming

Leveraging both ASP and CSP

given variables: x , range [1, 10]; y , range [1, 10]; z , range [1, 10]

hard ∨ ¬hard .

sum(x , y , z) = 23.
x % 2 = 1.
y % 2 = 1← hard .
z % 2 = 1← hard .

- Answer sets under the ASP semantics:
1: {hard , sum(x , y , z) = 23, x % 2 = 1, y % 2 = 1, z % 2 = 1}
2: {¬hard , sum(x , y , z) = 23, x % 2 = 1}

- Each answer set is translated to a CSP
- A solution is found when an answer set yields a feasible CSP
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Constraint Answer Set Programming

Theoretical Foundations of CASP: Language ezcsp

Syntax: extends ASP by pre-interpreted atoms (CSP atoms) that encode
CSP constraints:

1 domain(d): domain declaration, e.g.
- domain(fd) for numerical constraints over finite domains
- domain(nlp) for non-linear constraints

2 var(x): x is a CSP variable
Variant: var(x , l , u): x is a CSP variable with range [l , u].

3 required(γ): γ is required to be in the CSP.

Possible, but out-of-scope: using ezcsp beyond CASP
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Constraint Answer Set Programming

Example of Syntax

% Resources
resource(1). resource(2). resource(3).
available(I )← resource(I ), not ¬available(I ).
¬available(2).

% CSP definition:
% 0 < x(I ) < 5 for every I that is available
domain(fd).

var(x(I ))← available(I ).

required(x(I ) > 0)← available(I ).
required(x(I ) < 5)← available(I ).
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Constraint Answer Set Programming

ezcsp Semantics: Translation Function

Assumed to exist for a given CSP language

Bijective

Maps every CSP constraint η to a valid ASP ground term γ

E.g.: τ(x > 2.4) is gt(x , “2.4”)
For illustration proposes, we abuse notation and still write x > 2.4

Inverse τ−1: extended to a literal l :

τ−1(l) =

{
η if l is of the form required(γ) and γ = τ(η)
> otherwise

Example:
τ−1(required(gt(x , “2.4”))) is x > 2.4
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Constraint Answer Set Programming

Answer Sets under the ezcsp Semantics

Given program Π:

Answer set A of Π “under the ASP semantics”: as defined for ASP

V (A) = {v | var(v) ∈ A}

Definition

A pair 〈A,N〉 is an answer set of a program Π under the ezcsp semantics
(or an ezcsp solution) if-and-only-if:

A is an answer set of Π under the ASP semantics; and

N is a solution of the CSP 〈V (A), τ−1(A)〉.
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Constraint Answer Set Programming

Example of Semantics

resource(1). resource(2). resource(3).
available(I )← resource(I ), not ¬available(I ).
¬available(2).
domain(fd).
var(x(I ))← available(I ).
required(x(I ) > 0)← available(I ).
required(x(I ) < 5)← available(I ).

Answer set of Π under ASP semantics:
A = {resource(1), resource(2), resource(3),

available(1),¬available(2), available(3),
domain(fd), var(x(1), var(3),
required(x(1) > 0), required(x(1) < 5), required(x(3) > 0), . . .}
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Constraint Answer Set Programming

Example of Semantics

Answer set of Π under ASP semantics:
A = {resource(1), resource(2), resource(3),

available(1),¬available(2), available(3),
domain(fd), var(x(1), var(3),
required(x(1) > 0), required(x(1) < 5), required(x(3) > 0), . . .}

V (A) = {x(1), x(3)}
τ−1(A) = {x(1) > 1, x(1) < 5, x(3) > 1, x(3) < 5}
Solutions of 〈V (A), τ−1(A)〉:
{x(1) = 1, x(2) = 1}, {x(1) = 1, x(2) = 2}, {x(1) = 1, x(2) = 3}, . . .

Answer sets of Π under the ezcsp semantics:
〈A, {x(1) = 1, x(2) = 1}
〈A, {x(1) = 1, x(2) = 2}
. . .
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Constraint Answer Set Programming

Advanced Example

An object that can travel with linear motion or be idle.

The object is rotated at an angle of 30 degrees w.r.t. the horizontal
axis.

If the object is held, it remains idle.

If it is (being) pushed, it travels with constant velocity of 1 m/s in the
direction it is facing, unless it is stuck, in which case it remains idle.

If the object is not stuck and is pushed, what is its position relative to
the origin after 2 seconds?
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Constraint Answer Set Programming

Advanced Example

Non-linear dynamics
domain(nlp).
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Constraint Answer Set Programming

Advanced Example

If the object is held, it remains idle.

var(x). var(y).
¬in motion← held .
required(x = 0)← ¬in motion.
required(y = 0)← ¬in motion.
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Constraint Answer Set Programming

Advanced Example

If it is (being) pushed, it travels with constant velocity of 1 m/s in the
direction it is facing, unless it is stuck, in which case it remains idle.

var(a). var(t).
in motion← pushed , not ¬in motion.
required(x = cos(a · π/180) · t)← in motion.
required(y = sin(a · π/180) · t)← in motion.
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Constraint Answer Set Programming

Advanced Example

The object is rotated at an angle of 30 degrees w.r.t. the horizontal axis.
If the object is not stuck and is pushed, what is its position relative to the
origin after 2 seconds?

required(a = 30).
required(t = 2).
pushed .
¬stuck .
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Constraint Answer Set Programming

Advanced Example

Consider Π1 as above and A1 = Q1 ∪ P1 where:
Q1 = {pushed ,¬stuck , in motion}

P1 =


domain(nlp),
var(x), var(y), var(a), var(t),
required(x = cos(a · π/180) · t), required(y = sin(a · π/180) · t),
required(a = 30), required(t = 2)

Clearly:

τ−1(A1) = τ−1(P1) =


x = cos( a·π

180 ) · t
y = sin( a·π

180 ) · t
a = 30
t = 2

Hence, 〈A1, {t = 2, a = 30, x = 1.7305081, y = 1}〉 is the answer set of Π1

under the ezcsp semantics
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Constraint Answer Set Programming

ezcsp as a Research Tool

Yes/No (+S)

CSP

Ground
Program

EZCSP Solver

CASP
Solution

Grounding 
Tool

Integration
Module

ASP Solver
CSP

Translator
CSP Solver

CASP2T
Extractor

Checking Component

Candidate
T-Solution

T-Checker

T-Solution

EZCSP
Program

T-Requirements

T-Problem

T2EZCSP
Transform

T2CASP
Expansion

Additional
Rules

ASP solver finds an answer set. CP solver finds assignments
Arbitrary ASP and CP solvers

CLP: Sicstus, SWI-Prolo, B-Prolog
CSP: Gecode, any Minizinc solvers
Algebraic modeling: GAMS
Adding new solvers: small translation functions

Support various degrees of loose-coupling and tight-coupling
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Yes/No (+S)

CSP

Ground
Program

EZCSP Solver

CASP
Solution

Grounding 
Tool

Integration
Module

ASP Solver
CSP

Translator
CSP Solver

CASP2T
Extractor

Checking Component

Candidate
T-Solution

T-Checker

T-Solution

EZCSP
Program

T-Requirements

T-Problem

T2EZCSP
Transform

T2CASP
Expansion

Additional
Rules

T2EZCSP Transform: T -problem → ezcsp, preserving T -solutions

CASP2T Extractor: answer set → candidate T -solution

T -checker: verifies candidate T -solution

T2CASP Expansion: rejected candidate T-solution → ezcsp rules

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 79 / 241



Constraint Answer Set Programming
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Yes/No (+S)

CSP

Ground
Program

EZCSP Solver

CASP
Solution

Grounding 
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Integration
Module

ASP Solver
CSP

Translator
CSP Solver

CASP2T
Extractor

Checking Component

Candidate
T-Solution

T-Checker

T-Solution

EZCSP
Program

T-Requirements

T-Problem

T2EZCSP
Transform

T2CASP
Expansion

Additional
Rules

Use case: PDDL+ planning

T-problem: a PDDL+ model
T2EZCSP Transform: PDDL+ to ezcsp
CASP2T Extractor: extracts plans from answer sets
T -checker: VAL [Howey et al., 2004] for extended invariant check
T2CASP Expansion: adds invariants violated by previous answer sets
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Constraint Answer Set Programming

Performance of ezcsp

Absolute performance not a main focus...

...but still competitive for practical applications

Allows for prototyping of solving architectures

Domains ezcsp CASP solvers
clasp+bp clasp+mzn clasp+gecode pclasp+bp clingcon ezcsp+z3

RF (11) 10,093.93 N/A N/A (10) 9,697.69 (2) 1,383.02 −
WS (30) 18,000.00 (30) 18,000.00 (30) 18,000.00 (13) 7,800.00 (0) 182.58 −
IS (16) 11,176.68 N/A (14) 8,960.42 (15) 10,182.94 (12) 7,445.32 −

IS* (21) 14,372.70 (19) 12,466.03 (14) 9,449.68 (20) 13,854.50 N/A (5) 3,113.78

* ASP/CASP competition problems

Domain ezcsp CASP solvers
clasp+bp cmodels+bp wasp+bp pclasp+bp clingcon ezsmt+z3

Car (0) 0.42 (0) 0.43 (0) 0.78 (0) 2.38 (0) 0.08 −
Generator (2) 1,430.95 (4) 2,400.97 (3) 1,854.91 (1) 855.54 (5) 3,3123.84 −

* PDDL+ planning, linear domains
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Action Description Languages

Outline

1 Answer Set Programming

2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning

6 Scheduling

7 Goal Recognition Design

8 Generalized Target Assignment and Path Finding

9 Distributed Constraint Optimization Problems

10 Conclusions
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Action Description Languages

Motivation

Research on planning requires the resolution of two key problems
[GelfondL91]:

Declarative and Elaboration Tolerant Languages to describe planning
domains

Efficient and Scalable Reasoning Algorithms

Action Description Languages are formal models to represent knowledge
on actions and change (e.g., A and B Gelfond and Lifschitz (1991))

Specifications are given through declarative assertions that permit

to describe actions and their effects on states

to express queries on the underlying transition system
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Action Description Languages

Action description languages for planning

A planning domain D can be described through an action domain
description, which defines the notions of

Fluents i.e., variables describing the state of the world, and whose
value can change

States i.e., possible configurations of the domain of interest: an
assignment of values to the fluents

Actions that affect the state of the world, and thus cause the
transition from a state to another

A Planning Problem P = 〈D, I ,O〉 includes

Description (complete or partial) of the Initial state

Description of the Final state
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Action Description Languages

The language B

Let a be an action and ` be a Boolean literal. We have:

Executability conditions:
executable(a, [list-of-preconditions])

asserting that the given preconditions have to be satisfied in the
current state for the action a to be executable

Dynamic causal laws:
causes(a, `, [list-of-preconditions])

describes the effect (the fluent literal `) of the execution of action a

in a state satisfying the given preconditions

Static causal laws:
caused([list-of-preconditions], `)
describes the fact that the fluent literal ` is true in a state satisfying
the given preconditions

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 84 / 241



Action Description Languages

The language B: Initial State and Goal

Initial state

initially(`)

asserts that ` holds in the initial state.

Goal

goal(`)

asserts that ` is required to hold in the final state.
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Action Description Languages

Action description: Example I

To say that initially, the turkey is walking and not dead, we write
initially(¬dead) and
initially(walking)

Initially, the gun is loaded:
initially(loaded)

Shooting causes the turkey to be dead if the gun is loaded can be
expressed by

causes(shoot, dead , [loaded ]) and
causes(shoot,¬loaded , [loaded ])

Un/Loading the gun causes the gun to be un/loaded
causes(load , loaded , []) and
causes(unload ,¬loaded , [])

Dead turkeys cannot walk
caused(¬walking , [dead ])
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Action Description Languages

Action description: Example II

A gun can be loaded only when it is not loaded
executable(load ,¬loaded)

So, an action theory for the Yale Shooting problem is

Iy = { initially(¬dead), initially(walking), initially(loaded)}

and

Dy =



causes(shoot, dead , [loaded ])
causes(shoot,¬loaded , [loaded ])
causes(load , loaded , [])
causes(unload ,¬loaded , [])
caused(¬walking , [dead ])
executable(shoot, [])
executable(load , [¬loaded ])
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Action Description Languages

B vs. PDDL (mostly a 1-1 correspondence, difference in
static causal laws)

Domain: Dy in PDDL representation

(define (domain yale)

(:predicates (dead))

(:action shoot

:precondition (and (loaded))

:effect (and (dead) (not loaded)))

...

)

Problem: Initial State and Goal in PDDL representation

(define (problem yale-1) (:domain yale)

(:objects )

(:init walking )

(:goal (not dead)))
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Action Description Languages

B vs PDDL

B PDDL

Action
√

Fluent Predicate
Conditional Effect

√

Executability condition Precondition
Static causal law (allow cyclic) Defined fluent or axiom

(no cyclic)
Ground Instantiations Typed Variables
(Variables: shorthand)

Notes

1 Dealing directly with static causal laws is advantageous Thiebaux
et al. (2003).

2 Not many planners deal with static causal laws directly.
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Action Description Languages

Action language B (Semantics) — Intuition

Given an action theory (D, δ), the action domain D encodes a transition
system consisting of elements of the form 〈s1, a, s2〉 where s1 and s2 are
states of the theory and a is an action that, when executed in s1, changes
the state of the world from s1 into s2.

Example

Execution of the action shoot in the domain Dy in the initial state creates
the transition 〈s1, shoot, s2〉:

walking
¬dead
loaded

¬walking
dead

¬loaded

shoot

s1 s2
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Action Description Languages

Action language B, Complete Information (Semantics)

Given an action domain D, a fluent literal l , sets of fluent literals σ and ψ

σ |= l iff l ∈ σ; σ |= ψ iff σ |= l for every l ∈ ψ.

σ satisfies a static causal law ϕ if ψ if σ |= ψ implies that σ |= ϕ.

Closure: CnD(σ), called the closure of σ, is the smallest set of literals
that contains σ and satisfies all static causal laws

State: complete and consistent set of fluent literals which satisfies all
static causal laws.

Transition Function:
Φ : Actions × States → States where

Φ(a, s) =


{s ′ | s ′ = CnD(de(a, s) ∪ (s ∩ s ′))}
if D contains a executableϕ and s |= ϕ

Φ(a, s) = ∅ otherwise
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Action Description Languages Examples

Bomb-In-The-Toilet

There may be a bomb in a package. Dunking the package into a toilet disarms
the bomb. This action can be executed only if the toilet is not clogged. Flushing
the toilet makes it unclogged.

Fluents: armed , clogged

Actions: dunk, flush

Action domain:

Db =


causes(dunk,¬armed , [armed ])
causes(flush,¬clogged , [])
executable(dunk, [¬clogged ])
executable(flush, [])∗

(∗ — present unless otherwise stated)

Entailments: (Db, {armed , clogged}) |= ¬armed after 〈flush, dunk〉
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Action Description Languages Examples

Dominoes

n dominoes 1, 2, . . . , n line up on the table such that if domino i falls
down then i + 1 also falls down.

Dd =

{
caused(down(n + 1), [down(n)])
causes(touch(i), down(i), [])

It can be shown that

(Dd , δd) |= down(n) after touch(i)

for every δd and i .
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Action Description Languages Examples

Gas Pipe

n + 1 sections of pipe (pressured/unpressured) connected through n valves
(opened/closed) connects a gas tank to burner. A valve can be opened only if the valve
on its right is closed. Closing a valve causes the pipe section on its right side to be
unpressured. The burner will start a flame if the pipe section connecting to it is
pressured. The gas tank is always pressured.

Fluents: flame, opened(V ),
pressured(P), 0 ≤ V ≤ n,
0 ≤ P ≤ n + 1,

Actions: open(V ), close(V )

Action domain:

Dg =



executable(open(V ), [¬opened(V + 1)])
causes(open(V ), opened(V ), [])
causes(close(V ),¬opened(V ), [])
caused(pressured(V + 1), [opened(V ), pressured(V )])
caused(pressured(0), [])
caused(flame, [pressured(n + 1)])
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Answer Set Planning and CLP Planning

Outline

1 Answer Set Programming

2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning

6 Scheduling

7 Goal Recognition Design

8 Generalized Target Assignment and Path Finding

9 Distributed Constraint Optimization Problems

10 Conclusions
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Answer Set Planning and CLP Planning

ASP & CLP in Classical Planning
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Answer Set Planning and CLP Planning

Classical Planning Complexity

Definition (Planning Problem)

Given: an B-action theory (D, δ), where δ is a state of D, and a set
of fluent literals G .

Determine: a sequence of actions α such that (D, δ) |= G after α

From [Liberatore (1997); Turner (2002)]:

Theorem (Complexity)

(D, δ) is deterministic: NP-hard even for plans of length 1,
NP-complete for polynomial-bounded length plans (Classical
Planning).

(D, δ) is non-deterministic: Σ2
P -hard even for plans of length 1,

Σ2
P -complete for polynomial-bounded length plans (Conformant

Planning in non-deterministic theories).
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Answer Set Planning and CLP Planning

Early Development of Answer Set Planning

1 Start with [Dimopoulos et al. (1997); Lifschitz (2002); Subrahmanian
and Zaniolo (1995)]

2 Planning using answer set programming: prototypical implementation

Given a planning problem P = (D, I ,G ) in the language B and an integer
N, P is encoded as a program Π(P,N) consisting of the following sets of
rules for

1 declaring the fluents, actions (constants)
2 defining the initial state
3 defining when an action is executable
4 generating action occurrences
5 computing effects of actions, solving frame problem, ramification

problem
6 for checking goal conditions

Theorem

Answer sets of Π(P,N) 1-to-1 correspond to solutions of length ≤ N of P.
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Answer Set Planning and CLP Planning

ASP Encoding of B

Ideas from [Gelfond and Lifschitz 92]

We designed a Prolog program that translate an action description D,
with initial and final constraints O and a plan length N, in an ASP
program ΠD(N,O).

time(0..N)

fluent(f ). action(a).

literal(F ): −fluent(F ). literal(neg(F )): −fluent(F ).
complement(F , neg(F )). complement(neg(F ),F ).
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Answer Set Planning and CLP Planning

ASP Encoding of B
The predicate holds(FluentLiteral,Time) is defined using the axioms:

executable(a, [`1
1, . . . , `

1
r1

]), . . . , executable(a, [`h1, . . . , `
h
rh

]):

possible(a,T ): −time(T ), holds(`1
1,T ), . . . , holds(`1

r1
,T ).

· · ·
possible(a,T ): −time(T ), holds(`h1,T ), . . . , holds(`hrh ,T ).

Static causal laws: caused([`1, . . . , `r ], `):

holds(`,T ): −time(T ), holds(`1,T ), . . . , holds(`r ,T ).

Dynamic causal laws: causes(a, `, [`1, . . . , `r ]):

holds(`,T + 1) : − time(T ), occ(a,T ),
holds(`1,T ), . . . , holds(`r ,T ).
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Answer Set Planning and CLP Planning

ASP Encoding of B

State consistency:

: −time(T ), fluent(F ), holds(F ,T ), holds(neg(F ),T ).

Frame problem:

holds(L,T + 1) : − time(T ), literal(L), holds(L,T ),
complement(L, L1),not holds(L1,T + 1).

Initial state and goal:

holds(L, 0): −initially(L). : −goal(L),not holds(L,N).

One action per time:

1{occ(A,T ) : action(A)}1: −time(T ),T < N.
: −action(A), time(T ), occ(A,T ),not possible(A,T ).

In absence of static laws a simplified mapping has been implemented (leading to

smaller ASP programs, but not always to faster executions)
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Answer Set Planning and CLP Planning

Example: Bomb-in-the-Toilet

%fluents and actions
fluent(armed). fluent(clogged). action(dunk). action(flush).

% executable(dunk, [¬clogged ])
executable(dunk,T ): −time(T ), holds(neg(clogged),T ).
% executable(flush, [])
executable(dunk,T ): −time(T ), holds(neg(clogged),T ).

% causes(dunk,¬armed , [armed ])
holds(neg(armed),T ): −time(T ), occ(dunk,T ), holds(armed ,T ).
% causes(flush,¬clogged , [])
holds(neg(clogged),T ): −time(T ), occ(flush,T ).
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Answer Set Planning and CLP Planning

CLP in Classical Planning
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

From [Dovier et al. (2010)]

Action descriptions are mapped to finite domain constraints

Constrained variables are introduced for fluents and action
occurrences

Executability conditions and causal laws are rendered by imposing
constraints

Solutions of the constrains identify plans and trajectories
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Why?

Declarative encoding, highly elaboration tolerant

Propagation techniques to prune planning search space

Sophisticated search techniques

Global constraints to capture trajectory properties (e.g., control
knowledge)

Natural extensions to action languages (e.g., multi-valued fluents,
non-Markovian, costs)
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Main idea

i i+1

Fi Fi+1
Ai

For all states si (0 ≤ i ≤ N):

Every fluent F is represented by Boolean variable F i :
F i is the value of fluent F in state si

Every action A is represented as a Boolean variable Ai (i < N):
Ai = 1 iff action A is executed in state si
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Main idea

State State
si si+1

Ai
1

Ai
2

Ai
p

F1
i

F2
i

F3
i

Fn
i

F1
i+1

F2
i+1

F3
i+1

Fn
i+1∑ Ai

j = 1
j=1

p

F i+1 = 1 ⇔ Action a sets F to true (Ai = 1), or
No action that sets F to false is fired and F i = 1
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Some Terminology

Formula Projection

ϕi : formula ϕ projected to state si

(at(door , x) ∧ ¬door(closed))i ⇒ at(door , x)i ∧ ¬door(closed)i

α̂j condition of action Aj making F true

β̂k condition of action Ak making F false

δ̂h conditions of static causal law making F true

γ̂h conditions of static causal law making F false

η̂r condition in one of executability conditions for action Ar
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Some constraints

General Conditions

Ai
j = 1 →

∨q
j=1 η̂

i
rj

Only executable actions can occur∑
aj∈A Ai

j = 1 Single action at a time

Positive Fluent F

PosFiredi
f = 1 ⇔ PosDyni

f = 1 ∨ PosStati+1
f = 1

PosDyni
f = 1 ⇔

∨m
j=1(α̂i

j ∧ Ai
tj

= 1)

PosStatif = 1 ⇔
∨h

j=1 δ̂
i
j
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Some constraints

Negative Fluent F

NegFiredi
f = 1 ⇔ NegDyni

f = 1 ∨ NegStati+1
f = 1

NegDyni
f = 1 ⇔

∨p
j=1(β̂ij ∧ Ai

zj
= 1)

NegStatif = 1 ⇔
∨k

j=1 γ̂
i
j

Target for F

PosFiredi
f = 0 ∨ NegFiredi

f = 0

F i+1 = 1 ⇔ PosFiredi
f = 1 ∨ (NegFiredi

f = 0 ∧ F i = 1)

Constraints for State

C i
F conjunction of all constraints for F and i

C i
F conjunction of all C i

F for each F ∈ F set of fluents in the language
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Some Theoretical Results

State u represented by variable assignment σu

Action occurrence A in state i represented by variable assignment σiA

Theorem

Given an action theory D, if the transition 〈si ,A, si+1〉 is possible in the
transition system of D, then σsi ∪ σsi+1 ∪ σA is a solution of C si

F .

Reverse is not as trivial
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Some Theoretical Results

Action theory with F = {f , g , h} and action A = {a} such that a is
always executable and

causes(a, f , true) caused(g , h) caused(h, g)

Transition: s0 = {¬f ,¬g ,¬h} a−→ s1 = {f ,¬h,¬g}
Constraints:

F 1 = 1⇔ F 0 = 1 ∨ A0 = 1
G 1 = 1⇔ G 0 = 1 ∨ H1 = 1
H1 = 1⇔ H0 = 1 ∨ G 1 = 1

F i ∈ {0, 1} ∧ G i ∈ {0, 1} ∧ H i ∈ {0, 1}

If we set F 0 = 0,G 0 = 0,H0 = 0 and A0 = 1, there are two solutions:

1 F 1 = 1,G 1 = 0,H1 = 0

2 F 1 = 1,G 1 = 1,H1 = 1.
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Answer Set Planning and CLP Planning Modeling B in CLP(FD)

Some Theoretical Results

Problem: cyclic dependencies generated by static causal laws

Dependency Graph of static causal laws: caused([`1, . . . , `k ], `)
creates edges (`i , `).

Construct a set of constraints CONS(`i ) to defeat self-sustaining
loop: loop `1, `2, . . . , `m

for each causes(aj , `i , α) add to constraint Au
j = 0 or F u

` = 0 for some
` ∈ α
for each caused(γ, `i ) add to constraint F u

` = 0 for some ` ∈ γ
add to constraint F u

`i
= 0 or F u+1

`i
= 0

Generate constraints c1 ∧ · · · ∧ cm ⇒ F u+1
`1

= 0 ∧ · · · ∧ F u+1
`m

= 0
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Answer Set Planning and CLP Planning The language BMV

The language BMV

(Multi-)Fluents: introduced through domain declarations:
fluent(f, v1, v2), fluent(f, Set)

Annotated Fluents: modeling backward references:
f−a with a ∈ N

Fluent Expressions:

FE ::= n | AF | abs(FE) | FE1 ⊕ FE2 | rei(FC)

with ⊕ ∈ {+,−, ∗, /, mod}
Fluent Constraints:

FC ::= FE1 op FE2

with op ∈ {=, 6=,≥,≤, <,>}
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Answer Set Planning and CLP Planning The language BMV

Action description specification

Dynamic causal laws
causes(a, C1, C)

Static causal laws
caused(C, C1)

Executability conditions
executable(a, C)

where a is an action, C1 is a fluent constraint, and C a conjunction of
fluent constraints.
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Answer Set Planning and CLP Planning The language BMV

Main advantages

It allows the compact representation of numerical domains.

An encoding in B is still possible, but the number of fluents explodes

Consider
causes(a, f = f −1 + 1, [])

with dom(f ) = [1..100].

In B:
causes(a, f2, [f1]). . . . causes(a, f100, [f99])

Alternative encodings (e.g., bit-based) incur analogous problems

The CLP(FD) mapping requires minor changes.
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Answer Set Planning and CLP Planning The language BMV

The Languager BMV

Sketch of encoding (no static causal laws); for fluent f :

F i
f ,F

i+1
f ∈ dom(f ) Fluent domains

Ai
a = 1 ⇒

∨
executable(a,δ) δ

i
Only executable actions

Ai
a = 1 ∧ αi ⇔ Dyni

a = 1 a has f in consequence; causes(a, C , α)

Dyni
a = 1 ⇒ C i+1

a has f in consequence; causes(a, C , α)∑
af affects f Dyni

af
= 0 ⇒ F i

f = F i+1
f Inertia
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Answer Set Planning and CLP Planning The language BMV

Experimental comparison: Benchmarks used

Hydraulic planning (by Michael Gelfond et al., ASP 2009)

Peg Solitaire (ASP 2009)

Sam Lloyd’s 15 puzzle (ASP 2009)

Towers of Hanoi (ASP 2009)

The trucks domain from the (IPC5)

A generalized version of the classical 3-barrels problem

The Gas Diffusion problem

The reverse folding problem.

The Tangram puzzle.
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Answer Set Planning and CLP Planning The language BMV

ASP (clasp) vs CLP (SICStus)

Sicsplan ASP both none

pe
rc

en
ta

ge
of

in
st

an
ce

s

100%

0%

Barrels Hanoi
towers

Hydraulic
planning

15-puzzle Peg
solitaire

Tangram Reverse
folding

Trucks Gas
diffusion

1
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Answer Set Planning and CLP Planning The language BMV

Experimental comparison

Instance Length ASP CLP BMV

Barrel-20-11-9 18 185+43.71 3+102 0.65
Barrel-20-11-9 21 189+4.39 2+80 0.53

Community C5 6 MEM 1946 888
Community D5 6 MEM 1519 1802

8-tile Puzzle I4 25 55+437 2+79 57

Wolf-Goat-Cabbage 35 0.2+1.39 0.15+0.54 0.4
Wolf-Goat-Cabbage 36 0.2+4.24 0.13+1.87 1.9

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 120 / 241



Answer Set Planning and CLP Planning The language BMV

B best vs BMV (CLP)
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Answer Set Planning and CLP Planning The language BMV

Planning with Preferences and Domain Knowledge
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Answer Set Planning and CLP Planning Planning with Preferences

Preferences

Common feature in several research areas

Mathematics and physics: minimum and maximum (e.g., greatest and
least fix-point solutions)
Economics: the best decision
AI: preferred solutions
. . .

Property of preferences

Soft constraint on solutions, i.e., not a “must be satisfied” property of
a solution
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Answer Set Planning and CLP Planning Planning with Preferences

Issues

Representation

languages for preferences representation
types of preferences

Semantics

combining preferences
incomplete and/or inconsistent preferences

Computation (algorithms, complexity for dealing with preferences)

Applications
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Answer Set Planning and CLP Planning Planning with Preferences

Example

Planning problem: Going to the airport

Several possible solutions

Drive (get into the car; drive to the airport)
Taxi (call a taxi; ask to be at the airport)
Train (go to the train station; take the train to the airport)
Walk (walk to the airport)

Question: which plan?
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Answer Set Planning and CLP Planning Planning with Preferences

Motivation

Motivation

Planning with Preferences

Several plans achieve the goal
Finding a plan is easy
Users have preference over the plans that will be executed

Preference vs. Goal

Goals — hard constraints
Preferences — soft constraints

Question: How to compute ‘preferred plans’ using ASP? If so, how?
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Answer Set Planning and CLP Planning Planning with Preferences

PP: A language for Planning with Preferences

Preferences are described through formulae of different complexity

Basic desires
Atomic preferences
General preferences

Preferences formulae will be evaluated with respect to trajectories (si :
state, ai : action)

α = s1a1s2a2 . . . ansn+1

A more preferred relationship between trajectories is defined

Most preferred trajectories will be computed
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Answer Set Planning and CLP Planning Planning with Preferences

Basic Desires

State preference (Point-wise preference)

occ(a): action a should occur in the current state
ψ: fluent formula ψ should hold in the current state
goal(ψ): fluent formula ψ should hold in the final state

Basic desires (Trajectory preference)
Temporal formulae over state preferences constructed using

propositional operators (∧,∨,¬)
temporal operators (next ©, eventually 3, always 2, until

⋃
)
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Answer Set Planning and CLP Planning Planning with Preferences

Preference Relation over Basic Desires

Given α = s1a1s2a2 . . . ansn+1 and basic desire ϕ. We say α satisfies
ϕ, denoted by α |= ϕ, if

ϕ = occ(a) and a1 = a; or
ϕ = ψ where ψ is a fluent formula and ψ holds in s1; or
ϕ = goal(ψ) and ψ holds in sn+1; or
ϕ = ϕ1 ∧ ϕ2 and α |= ϕ1 and α |= ϕ2 (similarly for ∨, ¬); or
ϕ = next(ϕ1) and α[1] |= ϕ1 where α[1] = s2a2 . . . ansn+1 (similarly for
eventually, always, until)

α preferred to β with respect to ϕ if α |= ϕ and β 6|= ϕ;

α indistinguishable to β with respect to ϕ if α |= ϕ iff β |= ϕ holds.
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Answer Set Planning and CLP Planning Planning with Preferences

Atomic Preferences and General Preferences

Idea:

Users often have a set of basic desires
Basic desires might be in conflict (time vs. cost, comfort vs. cost,
safety vs. time)

Need to have ways to combine these preferences

Atomic preference: ϕ1 �ϕ2 � . . . �ϕn where each ϕi is a basic desire;

General preference: formulae over atomic preference, constructed
using propositional (&, |, !, �)

Semantics:

Defining α |= ϕ where ϕ = ϕ1 � ϕ2 � . . . � ϕn, ϕ1&ϕ2, ϕ1 | ϕ2, or !ϕ1

Most preferred trajectories with respect to �:

those satisfying ϕ1,
if none exists then trajectories satisfying ϕ2, etc.
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Answer Set Planning and CLP Planning Planning with Preferences

Implementation in Answer Set Planning

Requirements

Encoding of preference formulae (basic desire, atomic preference, or
general preference)

Checking satisfiability of preference formula given a trajectory
α = s1a1 . . . ansn+1 which corresponds to an answer set of P(A, I ,G )
(notation: α[t] = statst+1at+1 . . . ansn+1)
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Answer Set Planning and CLP Planning Planning with Preferences

Implementation in Answer Set Planning

Idea

Defining satisy(ϕ,T ) — α[T ] satisfies basic desire ϕ

Associating weight to preference formulae such that if α is more
preferred than β with respect to ϕ then w(α) < w(β)

Use ASP construct minimize to find most preferred trajectories

Realization by logic programming rules for

defining satisy(ϕ,T )

computing an admissible weight function
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Answer Set Planning and CLP Planning Planning with Preferences

Encoding a Preference Formula ϕ by Πϕ

Standard encoding of a fluent formula using ASP rules: each formula
ϕ is encoded by a set of rules rϕ

Assigned a unique name nϕ

Πϕ: encoding of ϕ

if ϕ = goal(ϕ1) then Πϕ = {desire(nϕ), goal(nϕ)} ∪ rϕ1 ; or

if ϕ = occ(a) then Πϕ = {desire(nϕ), happen(nϕ, a)}; or

if ϕ is a fluent formula ϕ1 then Πϕ = {desire(nϕ)} ∪ rϕ1

if ϕ = ϕ1 ∧ ϕ2 then Πϕ = {desire(nϕ), and(nϕ, nϕ1 , nϕ2 )} ∪ Πϕ1 ∪ Πϕ2 ; or

if ϕ = ϕ1 ∨ ϕ2 then Πϕ = {desire(nϕ), or(nϕ, nϕ1 , nϕ2 )} ∪ Πϕ1 ∪ Πϕ2 ; or

if ϕ = ¬ϕ1 then Πϕ = {desire(nϕ), negation(nϕ, nϕ1 )} ∪ Πϕ1 ; or

if ϕ = next(ϕ1) then Πϕ = {desire(nϕ), next(nϕ, nϕ1 )} ∪ Πϕ1 ; or

if ϕ = always(ϕ1) then Πϕ = {desire(nϕ), always(nϕ, nϕ1 )} ∪ Πϕ1 ;
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Answer Set Planning and CLP Planning Planning with Preferences

Rules for satify(ϕ,T )

satisfy(F ,T ) ← desire(F ), goal(F ), satisfy(F , length).

satisfy(F ,T ) ← desire(F ), happen(F ,A), occ(A,T ).

satisfy(F ,T ) ← desire(F ), formula(F ,G ), h(G ,T ).

satisfy(F ,T ) ← desire(F ), and(F ,F 1,F 2),

satisfy(F 1,T ), satisfy(F 2,T ).

satisfy(F ,T ) ← desire(F ), negation(F ,F 1), notsatisfy(F 1,T ).

satisfy(F ,T ) ← desire(F ), until(F ,F 1,F 2), during(F 1,T ,T 1),

satisfy(F 2,T 1).

satisfy(F ,T ) ← desire(F ), always(F ,F 1), during(F 1,T , length + 1).

satisfy(F ,T ) ← desire(F ), next(F ,F 1), satisfy(F 1,T + 1).

during(F ,T ,T 1) ← T < T 1− 1, desire(F ), satisfy(F ,T ),

during(F ,T + 1,T 1).

during(F ,T ,T 1) ← T = T 1− 1, desire(F ), satisfy(F ,T ).
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Answer Set Planning and CLP Planning Planning with Preferences

Correctness of the Implementation

Given:

Planning problem (A, I ,G )
Basic desire formula ϕ

Πpref = P(A, I ,G ) ∪ Πϕ ∪ Πsatisfy

Property of Πpref :

Each answer set of Πpref corresponds to a most preferred trajectory
with respect to ϕ; and
Each preferred trajectory with respect to ϕ corresponds to an answer
set of Πpref .
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Answer Set Planning and CLP Planning Planning with Preferences

Implementation of General Preferences
Idea

Develop an admissible weight function: wϕ(α) such that if
wϕ(α) ≥ wϕ(β) then α is more preferred than β with respect to ϕ

Compute wϕ(α) and find answer set with maximal wϕ(α)

An Admissible Weight Function

Basic desires

wϕ(α) = 1 if α |= ϕ and wϕ(α) = 0 if α 6|= ϕ
max(ϕ, α) = 2

Atomic preferences ϕ = ϕ1 � ϕ2 � . . .� ϕn

wϕ(α) = 2n−1wϕ1(α) + . . .+ 20wϕn(α)

General preferences

if ϕ = ϕ1&ϕ2 then wϕ(α) = wϕ1 (α) + wϕ2 (α)
if ϕ = ϕ1 | ϕ2 then wϕ(α) = wϕ1 (α) + wϕ2 (α)
if ϕ =!ϕ1 then wϕ(α) = max(ϕ1, α)− wϕ1 (α)
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Answer Set Planning and CLP Planning Planning with Domain Knowledge

Domain Knowledge

Temporal knowledge: in order to get on the airplane, you first need to
be at the airport
(if the goal is to board the airplane, being at the airport must be true
at some point) i.e., �at airport must be true
Procedural knowledge: in order to repair a photocopy machine, one
needs to follow a procedure
(a procedure might have if-then statement, sensing actions, etc.)
e.g., if light1 is on then do xxx; else do yyy.
Hierarchical knowledge: assembling a car consisting of several tasks
(e.g., attaching the doors to the frame, putting the wheels on, etc.),
some might have to be done before another (e.g., the electrical
system needs to be completed before the wheels)

Advantage of using domain knowledge

Efficiency

Scalability
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Answer Set Planning and CLP Planning Planning with Domain Knowledge

Planning with Domain Knowledge [Son et al. (2006)]

Representation in ASP

Temporal knowledge: temporal formula

Procedural knowledge: procedural formula

Hierarchical knowledge: ordering formula

Implementation in ASP: similar to planning with preferences

For each type of formulas, define a set of rules that determine when a
formula is true.
satisfy(�f ,T )← holds(f ,T1),T1 ≤ n.
not satisfy(2f ,T )← not holds(f ,T1),T1 ≤ n.
satisfy(2f , n)← not not holds(f , n).

Add constraints that force the formula to be true:
← not satisfy(�f , n).
etc.
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Answer Set Planning and CLP Planning Planning with Domain Knowledge

Planning with Incomplete Information
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Answer Set Planning and CLP Planning Epistemic Planning

Conformant Planning and Complexity

Definition (Conformant Planning Problem)

Given: an AL-action theory (D, δ), where δ is a partial state, and a
set of fluent literals G .

Determine: a sequence of actions α such that (D, δ) |= G after α

From [Baral et al. (2000); Liberatore (1997); Turner (2002)]:

Theorem (Complexity)

Conformant Planning: (D, δ) is deterministic: Σ2
P -hard even for plans

of length 1, Σ2
P -complete for polynomial-bounded length plans.

Conformant Planning: (D, δ) is non-deterministic: Σ3
P -hard even for

plans of length 1, Σ3
P -complete for polynomial-bounded length plans.
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Answer Set Planning and CLP Planning Epistemic Planning

Epistemic planning

Need for reasoning about knowledge (or beliefs) of agents in planning

Example: Open the correct door and you get the gold; the wrong one and
meet a tiger!

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 141 / 241



Answer Set Planning and CLP Planning Epistemic Planning

Epistemic planning

Need for reasoning about knowledge (or beliefs) of agents in planning

Example: Open the correct door and you get the gold; the wrong one and
meet a tiger!

Real state of the world

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 141 / 241



Answer Set Planning and CLP Planning Epistemic Planning

Epistemic planning

Need for reasoning about knowledge (or beliefs) of agents in planning

Example: Open the correct door and you get the gold; the wrong one and
meet a tiger!

What is a plan? Open a door (left or right)? This does not guarantee
success.

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 141 / 241



Answer Set Planning and CLP Planning Epistemic Planning

Epistemic planning

Need for reasoning about knowledge (or beliefs) of agents in planning

Example: Open the correct door and you get the gold; the wrong one and
meet a tiger!

What is a plan? Open a door (left or right)? This does not guarantee
success.
A reasonable plan: determine where the tiger is (e.g., smell, or make noise
then listen, etc.) and open the other door.
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Answer Set Planning and CLP Planning Epistemic Planning

Rough classification

Conformant planning: initial state is incomplete, no sensing action,
actions might be non-deterministic; solution is a sequence of actions
(si is a belief state, ai is an action).

s1 s2 snsn-1

Initial State Goal State

a1 an-1

Conditional planning: initial state is incomplete, sensing action,
actions might be non-deterministic (probabilistic); plan is often a
policy or a conditional plan (with if-then constructs).

State of the art

Several approaches to planning with incomplete information and
sensing actions in single agent environment.

Available systems: generation of plan satisfying
(D, δ) |= ϕ after plan
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Answer Set Planning and CLP Planning Epistemic Planning

Approaches to Reasoning with Incomplete Information

Incomplete Information: initial state is not fully specified (e.g. δ in (D, δ)
might not be a state)

Possible world approach (PSW): Extension of the transition function
to a transition function over belief states.

Approximation: Modifying the transition function to a transition
function over approximation states.

Notation

Belief states (S and Σ) Approximation states (δ and ∆)

S a set of states a set of fluent literals δ
Σ a set of belief states a set of approximation states ∆
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Answer Set Planning and CLP Planning Epistemic Planning

Example (Bomb-In-The-Toilet Revisited)

There may be a bomb in a package. Dunking the package into a toilet
disarms the bomb. . . .

Fluents: armed , clogged

Actions: dunk, flush

Action domain:

Db =


causes(dunk,¬armed , [armed ])
causes(flush,¬clogged , [])
executable(dunk, [¬clogged ])

Initially, we know nothing about the value of armed and clogged .

PWS: the initial belief state S0 = {0, 1, 2, 3}.
Approximation: the initial approximation state δ0 = ∅.
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Answer Set Planning and CLP Planning Epistemic Planning

Definitions I

Approximation state/Partial state: a set of fluent literals which is a part of
some state.
Belief state: a set of states

Note

Not every set of fluent literals is a partial state:

In the airport example, {at(john, home)} is a partial state and
{at(john, home), at(john, airport)} is not;

In the dominoes example, ∅ is a partial state and
{down(1),¬down(2)} is not;

In a domain with the static causal law caused(l , [ϕ]), any set of
fluent literals δ satisfying δ |= ϕ and δ |= ¬l is not a partial state.
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Answer Set Planning and CLP Planning Epistemic Planning

Definitions II

For an action theory (D, δ0):

Initial approximation state: δ0 — a partial state

Initial belief state:

S0 = bef (δ0)

where

bef (δ) = {s | δ ⊆ s, s is a state}

A fluent formula ϕ true (false) in a belief state S if it true (false) in
every state s ∈ S ; it is unknown if it is neither true nor false in S .

A fluent literal l is true (false) in an approximation state δ if l ∈ δ
(¬l ∈ δ); unknown, otherwise. The truth value of a fluent formula ϕ
is defined in the usual way.
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Answer Set Planning and CLP Planning Epistemic Planning

Possible World Approach

S0 = bef (δ0)

Φc(a,S) =

{
∅ if a is not executable in some s ∈ S⋃

s∈S Φ(a, s) otherwise

Φc extended to Φ̂c in the usual way

(D, δ0) |=P ϕ after α if ϕ is true in the final belief state

Size of search space: n fluents → 22n belief states
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Answer Set Planning and CLP Planning Epistemic Planning

Planning Systems for Incomplete Domains

DLVK MBP CMBP SGP POND CFF KACMBP
Language K AR AR PDDL PDDL PDDL SMV
Sequential yes yes yes no yes yes yes
Concurrent yes no no yes no no no
Conformant yes yes yes yes yes yes yes

Table: Features of Planning Systems
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Answer Set Planning and CLP Planning Epistemic Planning

Planning Systems for Incomplete Domains

Heuristic search based planners (search in the space of belief states)

CFF: A belief state S is represented by the initial belief state (a CNF
formula) and the action sequence leading to S . To check whether a
fluent literal l is true is S , a call to a SAT-solver is made. (subset of)
PDDL as input.
POND: Graph plan based conformant planner. (subset of) PDDL as
input.

Translation into model checking: KACMBP (CMBP) – Input is a
finite state automaton. Employing BDD (Binary Decision Diagram)
techniques to represent and search the automaton. Consider
nondeterministic domains with uncertainty in both the initial state
and action effects.

Translation into logic programming: DLVK is a declarative, logic-based
planning system built on top of the DLV system (an answer set solver).
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Answer Set Planning and CLP Planning Epistemic Planning

General Considerations and Properties

Address the complexity problem of the possible world approach: give
up completeness for efficiency in reasoning/planning

Sound with respect to possible world semantics (formal proof is
provided in some work)

Representation languages and approaches are different

Situation calculus: [Etzioni et al. (1996); Goldman and Boddy (1994);
Petrick and Bacchus (2004)]
Action languages: [Son and Baral (2001); Son and Tu (2006); Son
et al. (2005b)]
Logic programming: [Son et al. (2005a); Tu et al. (2006, 2011)]
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Answer Set Planning and CLP Planning Approximation: Theories without Static Causal Laws

0-Approximation Approach [Son and Baral (2001)]

Initial partial state: δ0

Transition function is defined as

Φ0(a, δ) = (δ ∪ de(a, δ)) \ ¬pe(a, δ)

where

de(a, δ) is the set of “direct effects” of a in δ
pe(a, δ) is the set of “possible effects” of a in δ

(D, δ0) |=0 ϕ after α if ϕ is true in the final partial state

n fluents → 3n partial states

Incomplete

No static causal laws
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Answer Set Planning and CLP Planning Approximation: Theories without Static Causal Laws

0-Approximation Approach – Example

Db =


causes(dunk,¬armed , [armed ])
causes(flush,¬clogged , [])
executable(dunk, [¬clogged ])

δ0 = ∅
dunk is not executable in δ0

flush is executable in δ0, de(flush, δ0) = pe(flush, δ0) = {¬clogged}
Φ0(flush, δ0) = {¬clogged}

δ1 = {¬clogged}
dunk, flush are executable in δ1

de(dunk, δ1) = ∅ and pe(dunk, δ1) = {¬armed}
Φ0(dunk, δ1) = {clogged}
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Dealing with Static Causal Laws

How will the 0-approximation fare in the dominoes example?

Dd =

{
caused(down(n + 1), [down(n)])
causes(touch(i), down(i), [])

δ0 = ∅
touch(i) is executable for every i

de(touch(i), δ0) = {down(i)} and pe(touch(i), δi ) = {down(i)}
Φ0(touch(i), δ0) = {down(i)}

Intuitive result

{down(j) | i ≤ j ≤ n} ⊆ Φ0(touch(i), δ0)

Not good!
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Dealing with Static Causal Laws

δ′ = CnD(de(a, δ) ∪ (δ ∩ δ′))

The next state has three parts: (i) the direct effect de(a, δ); (ii) the
inertial; (iii) the indirect effects (the closure of CnD).
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Dealing with Static Causal Laws

Question

What will be the inertial part?

Ideas

A literal does not change its value if it belongs to δ and

either its negation cannot possibly hold in δ′;
⇒ possible holds approximation

or it cannot possibly change in δ′

⇒ possible change approximation
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Φph Approximation – Idea

A literal l possibly holds in the next state if

it possibly holds in the current state (i.e., l 6∈ ¬δ)

it does not belong to the negation of the direct effect of the action
(i.e., l 6∈ ¬ClD(de(a, δ))

there is some static causal law whose body possibly holds (i.e., there
exists some static causal law l if ϕ such that ϕ possibly holds)
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Φph Approximation – Definition

E (a, δ) = ClD(e(a, δ)) [always belongs to δ′]

ph(a, δ) =
∞⋃
i=0

phi (a, δ) [possiblly holds in δ′]

ph0(a, δ) = (pe(a, δ) ∪ {l | ¬l 6∈ δ}) \ ¬E (a, δ)

OBS: if l if ϕ in D and ϕ possibly holds then l possibly holds.

phi+1(a, δ) = phi (a, δ) ∪
{

l

∣∣∣∣ ∃[ l if ψ ] in D s.t. l 6∈ ¬E (a, δ),
ψ ⊆ phi (a, δ),¬ψ ∩ E (a, δ) = ∅

}
Definition

if a is not executable in δ then
Φph(a, δ) = ∅

otherwise,
Φph(a, δ) = ClD({l | l 6∈ ¬ph(a, δ)})
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Φph Approximation – Example

Dd =

{
down(i + 1) if down(i)
touch(i) causesdown(i)

Computation for δ0 = ∅
de(touch(i), δ0) = {down(i)} and pe(touch(i), δ0) = {down(i)}
E (touch(i), δ0) = {down(j) | i ≤ j ≤ n}
ph0(touch(i), δ0) = {down(j) | 1 ≤ j ≤ n} ∪ {¬down(j) | 1 ≤ j < i}
phk(touch(i), δ0) = {down(j) | 1 ≤ j ≤ n} ∪ {¬down(j) | 1 ≤ j < i}
Φph(touch(i), δ0) = {down(j) | i ≤ j ≤ n}
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Φpc Approximation – Idea

A literal l possibly changes if

it is not in δ

it is a possible effect a (i.e., there exists a dynamic law
causes(a, l , [ϕ]) and ϕ is not false in δ)

it is a possibly indirect effect of a (i.e., there exists a static causal law
caused(l , [ϕ]) and ϕ possibly changes )
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Φpc Approximation

pc(a, δ) =
∞⋃
i=0

pc i (a, δ)

pc0(a, δ) = pe(a, δ) \ δ

pc i+1(a, δ) = pc i (a, δ) ∪
{

l

∣∣∣∣ ∃[ l if ψ ] ∈ D s.t. , l 6∈ δ
ψ ∩ pc i (a, δ) 6= ∅, and ¬ψ ∩ E (a, δ) = ∅

}

Definition

if a is not executable in δ then
Φpc(a, δ) = ∅

otherwise,
Φpc(a, δ) = ClD(E (a, δ) ∪ (δ \ ¬pc(a, δ)))
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Φpc Approximation – Example

Dd =

{
down(i + 1) if down(i)
touch(i) causesdown(i)

Computation for δ0 = ∅
de(touch(i), δ0) = {down(i)} and pe(touch(i), δ0) = {down(i)}
E (touch(i), δ0) = {down(j) | i ≤ j ≤ n}
pc0(touch(i), δ0) = {down(i)}
pc1(touch(i), δ0) = {down(i), down(i + 1)}
pc(touch(i), δ0) = {down(j) | i ≤ j ≤ n}
Φpc(touch(i), δ0) = {down(j) | i ≤ j ≤ n}
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

Properties of Φph and Φpc Approximations

Behave exactly as 0-approximation in action theories without static
causal laws

Sound but incomplete (proofs in [Tu (2007)])

Support parallel execution of actions (formal proofs available)

Incompatibility between Φph and Φpc ⇒ could union the two to
create a better approximation

Deterministic: ΦA(a, δ) can be computed in polynomial-time

Polynomial-length planning problem w.r.t ΦA is NP-complete

Could improve the approximations
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

ASP Implementation

Replacing rules for computing effects of actions with the following:

Dynamic causal law: causes(A, L, ϕ)
de(L,T + 1)← occurs(A,T ), holds(ϕ,T )
ph(L,T )← occurs(A,T − 1),not holds(¬ϕ,T ),not de(¬L,T + 1)

Static causal law: caused(L, ϕ)
ph(L,T )← ph(ϕ,T )

Additional rule:
ph(L,T )← not holds(¬L,T − 1),not de(¬L,T )

Inertial rule:
holds(L,T )← not ph(¬L,T ), holds(L,T − 1)
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Answer Set Planning and CLP Planning Approximation: Theories with Static Causal Laws

What is good about the approximation?

Theorem (Complexity)

Conformant Planning: (D, δ) is deterministic: NP-complete for
polynomial-bounded length plans.

Consequence

If (D, δ) is complete, planners can use the 0-approximation (lower
complexity) instead of the possible world semantics. In fact, classical
planners can be used to solve conformant planning (change in the
computation of the next state.)
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Answer Set Planning and CLP Planning Approximation Based Conformant Planning

Approximation Based Conformant Planners

Earlier systems [Etzioni et al. (1996); Goldman and Boddy (1994)]:
approximation is used in dealing with sensing actions
(context-dependent actions and non-deterministic outcomes)

PKS [Petrick and Bacchus (2004)] is very efficient (plus: use of
domain knowledge in finding plans)

CpA and CPasp [Son et al. (2005b,a); Tu et al. (2007, 2006, 2011)]
are competitive with others such as CFF, POND, and KACMBP in
several benchmarks

Incompleteness
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Answer Set Planning and CLP Planning Approximation Based Conformant Planning

Application in Conformant Planning

CPasp:

Logic programming based
Uses Φph approximation
Can generate both concurrent plans and sequential plans
Can handle disjunctive information about the initial state
Competitive with concurrent conformant planners and with others in
problems with short solutions

CpA:

Forward, best-first search with simple heuristic function (number of
fulfilled subgoals)
Provides users with an option to select the approximation
Generates sequential plans only
Can handle disjunctive information about the initial state
Competitive with other state-of-the-art conformant planners
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Answer Set Planning and CLP Planning Approximation Based Conformant Planning

B vs. PDDL — Revisited

1 PDDL domains can be translated into B domains — 1-to-1

2 AL domains can be translated into PDDL — might need to
introduce additional actions (only polynomial number of actions)

Consequence

Planners using PDDL as their representation language can make use of the
approximations in dealing with unrestricted defined fluents.
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Why sensing actions?

Some properties of the domain can be observed after some sensing
actions are executed

Cannot decide whether a package contains a bomb until we use a
special device to detect it
A robot cannot determine an obstacle until it uses a sensor to detect it

Two important questions:

What is a plan?
How to reason about sensing actions?
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Extending B to handle sensing actions

Allow knowledge-producing laws of the form

determines(a, θ)

“if sensing action a is executed, then the values of l ∈ θ will be known”

New language is called Bk
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Why sensing actions? — Example

One bomb, two packages; exactly one package contains the bomb

Initially, the toilet is not clogged. No flush action.

Bomb can be detected by only by X-ray.

D2 =


oneof {armed(1), armed(2)}
causes(dunk(P),¬armed(P), [])
causes(dunk(P), clogged , [])
executable(dunk(P), [¬clogged)
determines(x−ray , {armed(1), armed(2)})


No conformant plan for

P1 = (D2, {¬clogged}, {¬armed(1),¬armed(2)})
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

What is a plan in the presence of sensing actions?

Conditional Plans: take into account contingencies that may arise

If a is a non-sensing action and 〈β〉 is a conditional plan then 〈a, β〉 is
a conditional plan
If a is a sensing action that senses literals l1, . . . , ln, and 〈βi 〉 is a
conditional plan then 〈

a, cases

 l1 → β1

. . .
ln → βn

〉

is a conditional plan
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Example of Conditional Plan

〈
x−ray , cases

(
armed(1)→ dunk(1)
armed(2)→ dunk(2)

)〉
is a solution of

P1 = (D2, {¬clogged}, {¬armed(1),¬armed(2)})
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

How to reason about sensing actions?

Must take into account different outcomes of sensing actions!

Extending the function

Transition function: Actions × Partial States → 2Partial States

For each A ∈ {ph, pc}, we define a transition function ΦA
S as follows

for a non-sensing action a, ΦA
S is the same as ΦA

for a sensing action a, each partial state in ΦA
S corresponds to a literal

that is sensed by a

Result in four different approximations of Bk domain descriptions

Entailment |=A
S

(D, δ0) |=A
S ϕ after α

if ϕ is true in every final partial state of the execution of α

Properties

ΦA
S can be computed in polynomial time

the polynomial-length conditional planning: NP-complete
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Bk Approximations

Definition

If a is not executable in δ then
ΦA
S (a, δ) = ∅

If a is a non-sensing action then

ΦA
S (a, δ) =

{
∅ if ΦA(a, δ) is consistent
{ΦA(a, δ)} otherwise

If a is a sensing action associated with
a determines θ

then
ΦA
S (a, δ) = {ClD(δ ∪ {g}) | g ∈ θ and ClD(δ ∪ {g}) is consistent}
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Application in Conditional Planning

Conditional Planning Problem: P = (D, δ0,G)
A solution of P is a conditional plan α such that

(D, δ0) |=P G after α

ascp:

Implemented in logic programming (Rules similar to approximation)
Approximation: Φpc

S

Can generate both concurrent plans and sequential plans
Soundness and completeness of ascp are proved
Competitive with some other conditional planners
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Analysis of Experimental Results — Possible Improvements

1 Dealing directly with static causal laws (defined fluents) is helpful.

2 CPA (CPA+) is good in domains with high degree of uncertainty and
the search does not require the exploration of a large number of
states.

3 CPA (CPA+) is not so good in domains with high degree of
uncertainty and the search requires the exploration of a large number
of states.

4 Other heuristics can be used in CPA as well (preliminary results on a
new version of a CPA+ plus sum/max heuristics are very good)

5 Performance can be improved by running on parallel machine as well
(preliminary results on a parallel version of CPA+ and a parallel
version of FF show that parallel planning can solve larger instances
[Tu et al. (2009)]).
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Answer Set Planning and CLP Planning Incorporating Sensing Actions

Towards More Complex Domains

Transition functions have been defined for domains with

1 actions with durations, delayed effects

2 resources

3 processes

4 time and deadlines

Problems for planning systems in complex domains:

1 Representation: possibility of infinitely many fluents (e.g. resources
and time) ⇒ compact representation of state?

2 Search:
1 possibility of infinitely many successor states
2 concurrent actions

⇒ new type of heuristic?
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Scheduling

Outline

1 Answer Set Programming

2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning

6 Scheduling

7 Goal Recognition Design

8 Generalized Target Assignment and Path Finding

9 Distributed Constraint Optimization Problems

10 Conclusions
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Scheduling Basic Definitions

Scheduling

Problem

We have several tasks t1, . . . , tn. For every i , we have

a unique atom duration(ti , di ) that encodes the duration of the task ti (we
assume that di is a positive integer);

a collection of atoms of the form prec(ti , tj) which says that ti has to be
completed before tj can start.

a collection of atoms of the form non overlap(ti , tj) which says that ti and tj
cannot be overlapped.

Goal: find a schedule to complete the t1, . . . , tn with minimal span (total time).

0 1 2 3 4 5 6 7 time

t1

t2

t1, t2: OVERLAPPING

t3

t1 BEFORE t3

duration(t1, 3)

duration(t2, 3)

duration(t3, 2)
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Scheduling Basic Definitions

A Schedule for a Set of Tasks: Definition

A schedule for the set of tasks T = {t1, . . . , tn} is a mapping of T to the set of
non-negative integers N, denoted by start : T −→ N, such that

if prec(ti , tj) is true then start(ti ) + di ≤ start(tj) (ti completed before tj)

if non overlap(ti , tj) is true then start(ti ) + di ≤ start(tj) or
start(tj) + dj ≤ start(ti )

Given three tasks t1, t2, t3 with duration(t1, 3), duration(t2, 3), duration(t3, 2),

and the constraints prec(t1, t3), non overlap(t1, t2) then the assignment

represents in the top half of the figure is not a schedule for the set of tasks

{t1, t2, t3};

0 1 2 3 4 5 6 7 time

t1

t2

t3 NOT A SCHEDULE
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Scheduling Basic Definitions

A Schedule for a Set of Tasks: Definition

A schedule for the set of tasks T = {t1, . . . , tn} is a mapping of T to the set of
non-negative integers N, denoted by start : T −→ N, such that

if prec(ti , tj) is true then start(ti ) + di ≤ start(tj) (ti completed before tj)

if non overlap(ti , tj) is true then start(ti ) + di ≤ start(tj) or
start(tj) + dj ≤ start(ti )

Given three tasks t1, t2, t3 with duration(t1, 3), duration(t2, 3), duration(t3, 2),

and the constraints prec(t1, t3), non overlap(t1, t2) then the assignment

represents in the top half of the figure is not a schedule for the set of tasks

{t1, t2, t3}; the assignment represents in the bottom half is.

0 1 2 3 4 5 6 7 time

t1

t2

t3 NOT A SCHEDULE

A SCHEDULE
t1

t2

t3
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Scheduling Basic Definitions

Span of a Schedule: Definition

A schedule for the set of tasks T = {t1, . . . , tn} is a mapping of T to the set of
non-negative integers N, denoted by start : T −→ N, such that

if prec(ti , tj) is true then start(ti ) + di ≤ start(tj) (ti completed before tj)

if non overlap(ti , tj) is true then start(ti ) + di ≤ start(tj) or
start(tj) + dj ≤ start(ti )

The span of a schedule is defined by the formula span = max end −min start
where max end = max{start(ti ) + di | i = 1, . . . , n} and
min start = min{start(ti ) | i = 1, . . . , n}.

0 1 2 3 4 5 6 7 time

t1

t2

t3 span = 6

span = 7

t1

t2

t3
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Scheduling Basic Definitions

ASP Encoding for Scheduling

Input: assume that the problem is given ...

task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code
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Scheduling Basic Definitions

ASP Encoding for Scheduling

Input: task(t1), . . . ,, duration(t1, d1), . . . , prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
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Scheduling Basic Definitions

ASP Encoding for Scheduling

Input: task(t1), . . . ,, duration(t1, d1), . . . , prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
% checking prec
:- prec(T1,T2),start(T1,S1),start(T2,S2),duration(T1,D1), S2<S1+D1.
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Scheduling Basic Definitions

ASP Encoding for Scheduling

Input: task(t1), . . . ,, duration(t1, d1), . . . , prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
% checking prec
:- prec(T1,T2),start(T1,S1),start(T2,S2),duration(T1,D1), S2<S1+D1.
% non-overlap
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T1, D1),

S2 < S1+D1, S2 ≥ S1.
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T2, D2),

S1 < S2+D2, S1≥ S2.
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Scheduling Basic Definitions

ASP Encoding for Scheduling

Input: task(t1), . . . ,, duration(t1, d1), . . . , prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
1 { start(T, S) : time(S) } 1 :- task(T).
% checking prec
:- prec(T1,T2),start(T1,S1),start(T2,S2),duration(T1,D1), S2<S1+D1.
% non-overlap
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T1, D1),

S2 < S1+D1, S2 ≥ S1.
:- non overlap(T1,T2), start(T1, S1), start(T2,S2), duration(T2, D2),

S1 < S2+D2, S1≥ S2.
% minimizing span
max end(M):- M=#max {D+S : task(T),duration(T,D),start(T,S)}.
min start(MS) :- MS = #min {S : task(T), start(T,S)}.
span(MA - MS) :- max end(MA), min start(MS).
#minimize {S : span(S)}.
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Scheduling Basic Definitions

Scalability: An Experiment

5 tasks

Maximum task duration µ: increasing from 100 to 200

Task duration randomly generated between µ
2 and µ

prec(ti , tj) : set for 30% of 〈ti , tj〉 pairs, randomly selected

Simplifications: (1) no overlap constraints; (2) no span minimization

Execution times:
Maximum task duration

100 110 120 130 140 150 160 170 180 190 200
11.176 9.640 10.300 14.350 12.424 16.114 14.732 22.156 21.940 27.172 24.156

Times in seconds, averaged over 5 randomly generated trials for every configuration

Execution time increases with task duration

11+ sec for 5 tasks and no overlap constraints: too much?

Can we do better?
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Scheduling Basic Definitions

Scheduling with CASP

CSP features constructs for increased efficiency of scheduling...

Idea

Use CASP rather than ASP

Encode the qualitative parts of the problem in ASP

Encode the numerical parts using CSP, embedded in ASP
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Scheduling Basic Definitions

CASP Encoding for Scheduling

Input: assume that the problem is given ...

task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code
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Scheduling Basic Definitions

CASP Encoding for Scheduling

Input: assume that the problem is given ...

task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
var(st(T),0,length) :- task(T).
required(cumulative([st/1],[duration/2])).
% List notation
% [var/k] expands to [var(term1,. . . ,termk), . . .]
% e.g., [st/1] is expanded to [st(t1), st(t2), . . ., st(tn) ]
% [pred/k] expands to list of last arguments of all pred(term1,. . . ,termk)
% e.g., [duration/2] is expanded to [d1, d2, . . ., dn ]
% result: required(cumulative([st(t1), st(t2), . . ., st(tn) ],[d1, d2, . . ., dn ])).

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 185 / 241



Scheduling Basic Definitions

CASP Encoding for Scheduling

Input: assume that the problem is given ...

task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
var(st(T),0,length) :- task(T).
required(cumulative([st/1],[duration/2])).
% checking prec
required(st(T2) ≥ st(T1)+D1) :- prec(T1,T2), duration(T1,D1).
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Scheduling Basic Definitions

CASP Encoding for Scheduling

Input: assume that the problem is given ...

task(t1), . . . , task(tn), duration(t1, d1), . . . , duration(tn, dn)
prec(ti , tj), . . . , non overlap(ti , tj), . . . ,

Code

% generating start time
var(st(T),0,length) :- task(T).
required(cumulative([st/1],[duration/2])).
% checking prec
required(st(T2) ≥ st(T1)+D1) :- prec(T1,T2), duration(T1,D1).
% non-overlap
required(st(T2) ≥ st(T1)+D1 ∨ st(T1) ≥ st(T2)+D2) :-

non overlap(T1,T2), duration(T1, D1), duration(T2, D2).
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Scheduling Basic Definitions

Scalability: ASP vs CASP

5 tasks

Maximum task duration µ: increasing from 100 to 200

Task duration randomly generated between µ
2 and µ

prec(ti , tj) : set for 30% of 〈ti , tj〉 pairs, randomly selected

Simplifications: (1) no overlap constraints; (2) no span minimization

Execution times:

Maximum task duration
Tasks 100 110 120 130 140 150 160 170 180 190 200
ASP 11.176 9.640 10.300 14.350 12.424 16.114 14.732 22.156 21.940 27.172 24.156

CASP 0.039 0.041 0.040 0.042 0.041 0.040 0.048 0.050 0.042 0.060 0.045

Times in seconds, averaged over 5 randomly generated trials for every configuration

With CASP:

Execution time virtually independent of maximum task duration

Neglibile time for 5 tasks

But why CASP rather than CSP?
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Scheduling CASP in Practical Application

Scheduling in CASP in Practice

Print Shop Scheduling Problem

Constraints:

Multiple job phases (print, cut, bind, ...)

Multiple devices available for each phase

Different device capabilities and configurations

Various types of consumables (paper, ink, ...)

Constraints on which consumables can be used on which devices
(size, quality, . . . )

Ability to incrementally:

Add new jobs
Handle device failures

Include heuristics from shop operators
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Scheduling CASP in Practical Application

Print Shop Scheduling Encoding

% Start time of job J on device type D
var(st(D,J),0,MT) :- job(J), job device(J,D), max time(MT).
% assign start times; only up to N overlapping jobs for a device with N
instances
required(cumulative([st(D)/2],[len by dev(D)/3],N)) :- n instances(D,N)
% length of a job is the same on any suitable device
len by dev(D,J,L) :- job(J), job device(J,D), job len(J,L).

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 188 / 241



Scheduling CASP in Practical Application

Print Shop Scheduling Encoding

% Start time of job J on device type D
var(st(D,J),0,MT) :- job(J), job device(J,D), max time(MT).
% assign start times; only up to N overlapping jobs for a device with N
instances
required(cumulative([st(D)/2],[len by dev(D)/3],N)) :- n instances(D,N)
% length of a job is the same on any suitable device
len by dev(D,J,L) :- job(J), job device(J,D), job len(J,L).
% checking prec
required(st(D2,J2) ≥ st(D1,J1)+Len1) :-

job device(J1,D1), job device(J2,D2),
prec(J1,J2), job len(J1,Len1).
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Scheduling CASP in Practical Application

Introducing Incremental Updates

Problem:

A schedule has already been computed

We need to add new jobs

Jobs that are currently running must not be affected

Jobs that have already run should be disregarded

Input:
curr start(J,T): current schedule
curr device(J,D): current job-device assignment

curr time(CT): current (wall-clock) time

% identify jobs that have already started
already started(J) :- curr start(J,T), curr time(CT), CT > T.
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Scheduling CASP in Practical Application

Introducing Incremental Updates

Problem:

A schedule has already been computed

We need to add new jobs

Jobs that are currently running must not be affected

Jobs that have already run should be disregarded

Input:
curr start(J,T): current schedule
curr device(J,D): current job-device assignment

curr time(CT): current (wall-clock) time

% identify jobs that have already started
already started(J) :- curr start(J,T), curr time(CT), CT > T.
% determine which jobs must not be affected
must not schedule(J) :-

already started(J), not ab(must not schedule(J)).
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Scheduling CASP in Practical Application

Introducing Incremental Updates

Input:
curr start(J,T): current schedule
curr device(J,D): current job-device assignment

curr time(CT): current (wall-clock) time

% identify jobs that have already started
already started(J) :- curr start(J,T), curr time(CT), CT > T.
% determine which jobs must not be affected
must not schedule(J) :-

already started(J), not ab(must not schedule(J)).
% the start time of those jobs remains the same
required(st(D,J)=T) :-

curr device(J,D), curr start(J,T), must not schedule(J).
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Scheduling CASP in Practical Application

Introducing Incremental Updates

Input:
curr start(J,T): current schedule
curr device(J,D): current job-device assignment

curr time(CT): current (wall-clock) time

% identify jobs that have already started
already started(J) :- curr start(J,T), curr time(CT), CT > T.
% determine which jobs must not be affected
must not schedule(J) :-

already started(J), not ab(must not schedule(J)).
% the start time of those jobs remains the same
required(st(D,J)=T) :-

curr device(J,D), curr start(J,T), must not schedule(J).
% the start time of all future jobs must occur in the future
required(st(D,J)≥T) :-

curr device(J,D), curr start(J,T),
not must not schedule(J).Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 189 / 241



Scheduling CASP in Practical Application

What About Production Failures?

If a production failure occurs at runtime, each failed job must be
rescheduled, even though it is currently running.

Input:

production failed(J): production of J has failed

% determine which jobs must not be affected
must not schedule(J) :-

already started(J), not ab(must not schedule(J)).
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Scheduling CASP in Practical Application

What About Production Failures?

If a production failure occurs at runtime, each failed job must be
rescheduled, even though it is currently running.

Input:

production failed(J): production of J has failed

% determine which jobs must not be affected
must not schedule(J) :-

already started(J), not ab(must not schedule(J)).
% a failed job is abnormal w.r.t. non-rescheduling
ab(must not schedule(J)) :-

already started(J), production failed(J).
% the start time of all future jobs must occur in the future
required(st(D,J)≥T) :-

curr device(J,D), curr start(J,T),
not must not schedule(J).
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Scheduling CASP in Practical Application

What About Production Failures?

% determine which jobs must not be affected
must not schedule(J) :-

already started(J), not ab(must not schedule(J)).
% a failed job is abnormal w.r.t. non-rescheduling
ab(must not schedule(J)) :-

already started(J), production failed(J).
% the start time of all future jobs must occur in the future
required(st(D,J)≥T) :-

curr device(J,D), curr start(J,T),
not must not schedule(J).

Summarizing:

The parts in green leverage non-monotonicity of ASP to make
decisions about production failures

The parts in blue define the CSP accordingly
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Goal Recognition Design

Outline

1 Answer Set Programming

2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning

6 Scheduling

7 Goal Recognition Design

8 Generalized Target Assignment and Path Finding

9 Distributed Constraint Optimization Problems

10 Conclusions
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Goal Recognition Design

Goal Recognition

E

D

C

B

A

1 2 3 4 5

G1

G2

G3

Special form of plan recognition

Several applications (security, computer games, NLP, etc.)
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Goal Recognition Design

Goal Recognition
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Question: What is the goal of the
agent?

Assumption: agents act optimally.

Special form of plan recognition

Several applications (security, computer games, NLP, etc.)
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Goal Recognition Design

Goal Recognition
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G1

G2
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Question: What is the goal of the
agent?

Assumption: agents act optimally.

Left: G1

Special form of plan recognition

Several applications (security, computer games, NLP, etc.)
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Goal Recognition Design

Goal Recognition

E
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A
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G1

G2

G3

Question: What is the goal of the
agent?

Assumption: agents act optimally.

Left: G1

Up: G1 or G2 or G3

Special form of plan recognition

Several applications (security, computer games, NLP, etc.)
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Goal Recognition Design

Goal Recognition

E
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1 2 3 4 5

G1

G2

G3

Question: What is the goal of the
agent?

Assumption: agents act optimally.

Left: G1

Up: G1 or G2 or G3

Right: G2 or G3

Special form of plan recognition

Several applications (security, computer games, NLP, etc.)
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Goal Recognition Design

Goal Recognition Design∗
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Question: What is the goal of the
agent?

Assumption: agents act optimally.

Idea: Modify the planning problem
so we can recognize the goal as
early as possible!

∗Goal recognition design by Keren, S., Gal, A., and Karpas, E.,
ICAPS 2014.
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Goal Recognition Design

Goal Recognition Design∗
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Question: What is the goal of the
agent?

Assumption: agents act optimally.

Idea: Modify the planning problem
so we can recognize the goal as
early as possible!
How? Blocking actions.

∗Goal recognition design by Keren, S., Gal, A., and Karpas, E.,
ICAPS 2014.
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Goal Recognition Design

Goal Recognition Design∗

Question: What is the goal of the
agent?

Assumption: agents act optimally.

Idea: Modify the planning problem
so we can recognize the goal as
early as possible!
How? Blocking actions.
Which modification is the best?
Reducing Worst-Case
Distinctiveness (wcd)

∗Goal recognition design by Keren, S., Gal, A., and Karpas, E.,
ICAPS 2014.
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Goal Recognition Design

Worst-Case Distinctiveness

E
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wcd = The maximal number of
actions that the agent can execute
before revealing the goal.

wcd = 1? no

wcd = 2? no

wcd = 3? no

wcd = 4? yes (dashed path)
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Goal Recognition Design

Worst-Case Distinctiveness

E

D

C

B

A
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G1
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wcd = The maximal number of
actions that the agent can execute
before revealing the goal.

Original: wcd=4

Blocking up(E3-D3), up(C5-B5),
right(C4-C5) reduces wcd to 2.

Problems

Computing wcd?

Reducing wcd: given an integer k, identify a set of at most k actions
so that the wcd of the problem without these k actions is smallest?
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Goal Recognition Design

Approach

Goals

Computing wcd?

Reducing wcd: given an integer k, identify a set of at most k actions
so that the wcd of the problem without these k actions is smallest?

What’s new?

Previous approach: imperative language

use state-of-the-art off-the-shelf planning systems (Fast Downward) for
computing optimal plans
develop and implement algorithms for computing wcd and reducing
wcd

Our approach: declarative language

represent both problems as logic programs
use state-of-the-art off-the-shelf answer set solver (Clasp)
two different encodings - perform significantly better
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Goal Recognition Design Goal Recognition Design Using ASP

General Idea

Computing wcd: two different approaches

solving QBF problems using ASP (saturation based meta encoding).
extending traditional answer set planning to deal with multiple goals
(multi-shot encoding)

Reducing wcd:

Guess a set of actions (that will be removed) by using choice atoms:
{blocked(A) : action(A)}k .
Calculate wcd for new problem.
Identify the best answer (with smallest wcd).
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Goal Recognition Design Goal Recognition Design Using ASP

Computing wcd: Saturation Based Meta Encoding

Saturation based method in ASP: for solving QBF-problems

Computing wcd can be represented as a QBF problem

wcd

maximal number of actions before revealing the goal same as
longest common prefix between optimal plans of two different goals

wcd as QBF

vl(x , y , c): c is common prefix of two minimal cost plans π∗x and π∗y
(π∗g is an optimal plan for g).

∃x , y , c[vl(x , y , c) ∧ [∀x ′, y ′, c ′[vl(x ′, y ′, c ′)→|c |≥|c ′|]]

x , y , x ′, y ′ ∈ G
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Goal Recognition Design Goal Recognition Design Using ASP

Saturation Based Meta Encoding: Illustration

G1

G2

G3Start

G1

G2

G3Start

WCDvl(G1,G2,3)
vl(G1,G2,2)
vl(G1,G2,1)
vl(G1,G3,2)
vl(G1,G3,1)
vl(G2,G3,2)
vl(G2,G3,1)

…

Two different implementations: one needs one call to the solver; the other uses

two calls (computing the set of potential helpful actions in the first pass).
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Goal Recognition Design Goal Recognition Design Using ASP

Multi-Shot Encoding

Multi-shot ASP (clingo): new feature, allows for dealing with
continuous changes, Python+ASP.

Computing wcd:

Compute optimal cost of plan for each goal.
Compute answer sets containing minimal plans for all goals (one plan
per goal).
Calculate wcd (given an answer set).
Use optimization feature to identify wcd (answer set with the maximal
wcd).

Reducing wcd:

Guess a set of actions (that will be removed).
Calculate wcd for new problem.
Identify the best answer (with smallest wcd).
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Goal Recognition Design Goal Recognition Design Using ASP

Experimental Results

Use benchmarks from original package: four domains (Grid
Navigation, IPC+Grid, BlockWords, Logistics).

Timeout: 5 hours.

Parameters: k = 1 or k = 2 (suggested in original package).

Outcome: both methods perform very well.
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Goal Recognition Design Goal Recognition Design Using ASP

Experimental Results I (k = 1)

Domain wcd Runtime (s)
Instances reduction PR Sat-1 Sat-2 MS

g
r
id
-

n
a
v
ig
a
t
io
n 5-14 9→ 9 12 26 1 1

19-10 17→ 17 12 18 1 1
20-9 39→ 39 23 406 3 3

16-11 4→ 4 11 12 1 1
16-11 4→ 4 12 10 1 1

ip
c
–

g
r
id

+

5-5-5 4→ 3 14 9 1 1
5-10-10 11→ 11 194 475 14 11

10-5-5 12→ 10 46 36 2 1
10-10-10 19→ 19 2,661 1,257 33 30

b
l
o
c
k
-

w
o
r
d
s

8-20 10→ 10 946 timeout 64 48
8-20 14→ 14 809 timeout 121 71

l
o
g
is
t
ic
s 1-2-6-2-2-6 18→ 18 3,506 timeout 151 228

1-2-6-2-2-6 18→ 18 2,499 timeout 135 140
2-2-6-2-2-6 17→ 17 3,173 timeout 352 756
2-2-6-2-4-6 17→ 17 timeout timeout 5,377 1,943
2-2-6-2-6-6 16→ 16 timeout timeout 5,166 timeout
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Goal Recognition Design Goal Recognition Design Using ASP

Experimental Results II (k = 2)

(b) k = 2

Domain wcd Runtime (s)
Instances reduction PR Sat-1 Sat-2 MS

g
r
id
-

n
a
v
ig
a
t
io
n 5-14 9→ 8 50 811 2 12

19-10 7→ 17 12 488 1 18
20-9 39→ 39 23 2,980 3 74

16-11 4→ 3 24 147 1 8
16-11 4→ 3 24 63 1 5

ip
c
–

g
r
id

+

5-5-5 4→ 3 33 62 1 5
5-10-10 11→ 11 194 10,092 14 362

10-5-5 12→ 10 92 1,022 2 36
10-10-10 19→ 19 2,665 timeout 33 2,208

b
l
o
c
k
-

w
o
r
d
s

8-20 10→ 10 3,927 timeout 178 938
8-20 14→ 14 3,482 timeout 218 1,015

l
o
g
is
t
ic
s 1-2-6-2-2-6 18→ 18 3,527 timeout 155 639

1-2-6-2-2-6 18→ 18 2,496 timeout 137 483
2-2-6-2-2-6 17→ 17 timeout timeout 594 1,943
2-2-6-2-4-6 17→ 7 timeout timeout 6,752 6,065
2-2-6-2-6-6 16→ 16 timeout timeout 5,215 timeout

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 202 / 241



Goal Recognition Design Goal Recognition Design Using ASP

Two ASP-based encodings that exploit saturation based meta
encoding methodology and advanced features of answer set solver for
goal recognition design problems.

Proof of correctness of the implementations.

Demonstrate that answer set programming technologies are
competitive with others.
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Generalized Target Assignment and Path Finding

Outline
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2 Constraint Logic Programming
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4 Action Description Languages
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Generalized Target Assignment and Path Finding Problem

Grid map, some locations might
be blocked

A number of agents

Agents can move to connected
locations, one step at a time

Agents need to visit sequences
of locations (checkpoints)

Constraints: not swapping,
collision free, deadlines, group
completion

Optimal Target Assignment and Path Finding
for Teams of Agents

Hang Ma
Department of Computer Science
University of Southern California

hangma@usc.edu

Sven Koenig
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ABSTRACT
We study the TAPF (combined target-assignment and path-
finding) problem for teams of agents in known terrain, which
generalizes both the anonymous and non-anonymous multi-
agent path-finding problems. Each of the teams is given
the same number of targets as there are agents in the team.
Each agent has to move to exactly one target given to its
team such that all targets are visited. The TAPF problem
is to first assign agents to targets and then plan collision-
free paths for the agents to their targets in a way such that
the makespan is minimized. We present the CBM (Conflict-
Based Min-Cost-Flow) algorithm, a hierarchical algorithm
that solves TAPF instances optimally by combining ideas
from anonymous and non-anonymous multi-agent path-
finding algorithms. On the low level, CBM uses a min-
cost max-flow algorithm on a time-expanded network to
assign all agents in a single team to targets and plan
their paths. On the high level, CBM uses conflict-based
search to resolve collisions among agents in di↵erent teams.
Theoretically, we prove that CBM is correct, complete and
optimal. Experimentally, we show the scalability of CBM
to TAPF instances with dozens of teams and hundreds of
agents and adapt it to a simulated warehouse system.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—graph and tree search strategies,
heuristic methods; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—intelligent agents, multi-
agent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
heuristic search; Kiva (Amazon Robotics) systems; multi-
agent path finding; multi-robot path finding; network flow;
path planning; robotics; target assignment; team work;
warehouse automation
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J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c� 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

1755

Figure 1: A typical Kiva warehouse system [22].

1. INTRODUCTION
Teams of agents often have to assign targets among

themselves and then plan collision-free paths to their targets.
Examples include autonomous aircraft towing vehicles [12],
automated warehouse systems [22], o�ce robots [19] and
game characters in video games [15]. For example, in the
near future, autonomous aircraft towing vehicles might tow
aircraft all the way from the runways to their gates (and vice
versa), reducing pollution, energy consumption, congestion
and human workload. Today, autonomous warehouse robots
already move inventory pods all the way from their storage
locations to the inventory stations that need the products
they store (and vice versa), see Figure 1.

We therefore study the TAPF (combined target-
assignment and path-finding) problem for teams of
agents in known terrain. The agents are partitioned into
teams. Each team is given the same number of unique
targets (goal locations) as there are agents in the team.
The TAPF problem is to assign agents to targets and
plan collision-free paths for the agents from their current
locations to their targets in a way such that each agent moves
to exactly one target given to its team, all targets are visited
and the makespan (the earliest time step when all agents
have reached their targets and stop moving) is minimized.
Any agent in a team can be assigned to a target of the team,
and the agents in the same team are thus exchangeable.
However, agents in di↵erent teams are not exchangeable.

1.1 Related Work
The TAPF problem generalizes the anonymous and non-

anonymous MAPF (multi-agent path-finding) problems:

• The anonymous MAPF problem (sometimes called
goal-invariant MAPF problem) results from the TAPF
problem if only one team exists (that consists of all

(7 by 4 with block of 10)

Movement constraints

R1 R2 R2 R1

T T+1
R1 R2  R1

T T+1
R2

Overall Goal

Paths for agents

Optimal: minimal span, minimal total cost
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Generalized Target Assignment and Path Finding GTAPF and ASP

Encoding GTAPF in ASP

Basic encoding: ASP encoding for planning problem, extended to
multi agent domains:

holds(at(L),T ) becomes holds(at(R, L),T ):
“Agent R is at L at time step T .”

occ(A,T ) becomes occ(R,A,T ):
“Agent R executes A at time step T .”

Adding rules to deal with constraints:

Enforcing movement constraints
:- occ(R1,move(L),T ), occ(R2,move(L1),T ), edge(L, L1),
holds(at(R1, L1),T ), holds(at(R2, L),T ).
Enforcing visiting sequence: all checkpoints must be visited in the
order.
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Generalized Target Assignment and Path Finding GTAPF and ASP

Scalability and Efficiency

Computing solutions

Optimal solution: compute solution when horizon is 0, 1, . . ., until
solution is found.

Scalability and efficiency:

not so good for TAPF problems Ma and Koenig (2016).
improvement if non-optimal solution is considered

Kiva setting: abstraction can be employed (exploiting domain
knowledge)
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Generalized Target Assignment and Path Finding GTAPF and ASP

Idea of Abstraction
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Idea of Abstraction
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Generalized Target Assignment and Path Finding GTAPF and ASP

Idea of Abstraction

Simplified Map
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Generalized Target Assignment and Path Finding GTAPF and ASP

Abstraction in Kiva

Non-optimal solution only

Planing in simplified map

Reassemble paths

Gain: from a map of 2 by 2 with block of 7 by 4 with block of 10.
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Distributed Constraint Optimization Problems

Outline
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2 Constraint Logic Programming

3 Constraint Answer Set Programming

4 Action Description Languages

5 Answer Set Planning and CLP Planning
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7 Goal Recognition Design
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9 Distributed Constraint Optimization Problems

10 Conclusions
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Distributed Constraint Optimization Problems

Overview

Motivations

CLP and Constraint Optimization used for modeling and solving
planning problems

Challenges in modeling multi-agent planning problems (e.g., use of
extra-logical features like Linda)

Distributed Constraint Optimization Problems (DCOP) as a potential
novel paradigm for distributed planning

Goal

Modeling and Solving DCOPs in Logic Programming
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Distributed Constraint Optimization Problems Background: DCOP

DCOP

DCOP 〈X ,D,F ,A, α〉
X = {x1, . . . , xn} is a finite set of (decision) variables;

D = {D1, . . . ,Dn} is a set of finite domains, where Di is the domain
of the variable xi ∈ X , for 1 ≤ i ≤ n;

F = {f1, . . . , fm} is a finite set of constraints, where fj is a kj -ary
function fj : Dj1 × Dj2 × . . .× Djkj

7→ R ∪ {−∞} that specifies the

utility of each combination of values of variables in its scope; the
scope is denoted by scp(fj) = {xj1 , . . . , xjkj };

a

A = {a1, . . . , ap} is a finite set of agents; and

α : X 7→ A maps each variable to an agent.

aFor the sake of simplicity, we assume a given ordering of variables.
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Distributed Constraint Optimization Problems Background: DCOP

DCOP

M = 〈X ,D,F ,A, α〉
Assignment: f : X 7→

⋃
D∈D D such that f (x) ∈ Dx

C (M) set of all assignments

Optimal Solution:

x = argmax
x∈C(M)

m∑
j=1

fj(xfj )

Graph Representation: GM = (V ,E ) where V = A and

E = {{a, a′} | {a, a′} ⊆ A, ∃f ∈ F such that
{xi , xj} ⊆ scp(f ), and α(xi ) = a, α(xj) = a′}

Pseudo-tree: subgraph of GM with all nodes of GM and (i) the
included edges form a tree, and (ii) two nodes connected in GM are
in the same branch of the tree.
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Distributed Constraint Optimization Problems Background: DCOP

DCOP

a1

a2

a3

for i < j
xi xj Utilities
0 0 5
0 1 8
1 0 20
1 1 3

a1

a2

a3
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Distributed Constraint Optimization Problems DPOP

Distributed Pseudo-Tree Optimization Procedure (DPOP)

Separator sepi of ai

Variables owned by ancestors of ai

Related via constraints to variables owned within the subtree rooted
at ai

DPOP:

1 Phase 1: Construction of Pseudo-Tree

2 Phase 2: Upward propagation of UTIL messages

3 Phase 3: Downward propagation of VALUE messages
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Distributed Constraint Optimization Problems DPOP

Distributed Pseudo-Tree Optimization Procedure (DPOP)

UTIL

UTIL
aj
ai message from ai to aj ; optimal utility for each combination of

values to variables in sepi

U = UTILai
ak
⊕ UTILai

al
is the join of two UTIL matrices.

scp(U) = scp(UTILai
ak

) ∪ scp(UTILai
al

). For each possible combination
x of values of variables in scp(U),
U(x) = UTILai

ak
(xUTILaiak

) + UTILai
al

(xUTILaial
),

Let αi ⊆ scp(JOINPi
ai

). Let Xi be the set of all possible value
combinations of variables in αi .
U = JOINPi

ai
⊥αi is defined as:

1 scp(U) = scp(JOINPi
ai ) \ αi

2 for each possible value combination x of variables in scp(U),
U(x) = maxx′∈Xi JOINPi

ai (x , x ′).
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Distributed Constraint Optimization Problems DPOP

Distributed Pseudo-Tree Optimization Procedure (DPOP)

Each agent ai does:

begin
JOINPi

ai = null
foreach ac ∈ Ci do

wait for UTILai
ac ; /* message to arrive from ac */

JOINPi
ai = JOINPi

ai ⊕ UTILai
ac ; /* join UTIL from children */

/* join constraints with parent/pseudo-parents */

JOINPi
ai = JOINPi

ai ⊕
(
⊕f∈Rai

f
)

/* projection to eliminate owned variables */

UTILPi
ai = JOINPi

ai ⊥αi

Send UTILPi
ai message to its parent agent Pi
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Distributed Constraint Optimization Problems DPOP

Distributed Pseudo-Tree Optimization Procedure (DPOP)
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Distributed Constraint Optimization Problems DPOP

VALUE

VALUE ai
Pi

message from parent Pi to child ai

VALUE ai
Pi

contains optimal value for variables of Pi and
pseudo-parents
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Distributed Constraint Optimization Problems DPOP

Each agent ai does:

begin
wait for VALUE ai

Pi
(sep∗i ) message from parent Pi

/* Determine optimal value for variables of ai */

α∗i ← argmaxαi∈Xi
JOINPi

ai (sep∗i , αi )
foreach ac ∈ Ci do

let sep∗∗i be partial optimal value assignment for variables in sepc

from sep∗i
send VALUE (sep∗∗i , α∗i ) as VALUE ac

ai message to its child agent ac
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Distributed Constraint Optimization Problems DPOP

Distributed Pseudo-Tree Optimization Procedure (DPOP)

Son, Pontelli, Balduccini (NMSU & Drexel) LP: Foundations & Applications ICAPS 2017 221 / 241



Distributed Constraint Optimization Problems ASP-DPOP

ASP-DPOP

Agent Architecture

Specification 
Module (SM)

Controller 
Module (CM)

SM
CM

SM
CM

SM
CM

other agents

LINDA
Blackboard

UTIL

VALUE

Agent
1 Specification Module (ASP)

2 Controller Module (Prolog)
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Distributed Constraint Optimization Problems ASP-DPOP

SM

For xj ∈ X with Dj = {`, . . . , u}:

variable(xj).
value(xj , `..u).

For f ∈ F with scp(f ) = {x1, . . . , xk}:

constraint(f ).
scope(f , x1). . . . scope(f , xk).
f (u, v1, . . . , vk).
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Distributed Constraint Optimization Problems ASP-DPOP

SM

x1 x2 U1,2

0 0 0

0 1 1

1 0 1

1 1 2

x1 cons x2(0, 0, 0).
x1 cons x2(1, 0, 1).
x1 cons x2(1, 1, 0).
x1 cons x2(2, 1, 1).

x1 cons x2(U1 + U2,U1,U2) : − value(x1,U1), value(x2,U2).

x1 x2 U1,2

0 0 0

0 1 −∞
1 0 −∞
1 1 −∞

x1 cons x2(0, 0, 0).
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Distributed Constraint Optimization Problems ASP-DPOP

SM

Agent ai information:

Identification:
agent(ai ).

For each x ∈ X such that α(x) = ai :
owner(ai , x).

For each neighbor agent aj :
neighbor(aj).

For each x ′ owned by a neighbor agent aj :
owner(aj , x

′).
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Distributed Constraint Optimization Problems ASP-DPOP

SM

UTILPi
ai

with sepi = 〈x1, . . . , xk〉:

table info(ai , ai1 , x1, `1, u1).
. . .
table info(ai , aik , xk , `k , uk).
table max ai (u, v1, . . . , vk).

VALUE ai
Pi

:
solution(a, x , v).
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Distributed Constraint Optimization Problems ASP-DPOP

CM

⊕ Πa2
table_max_a3(16,0,0)
table_max_a3(25,0,1)
table_max_a3(25,1,0)
table_max_a3(40,1,1)
table_info(a3,a2,x2,0,1)
table_info(a3,a1,x1,0,1)

solution(a1,x1,1)
table_max_a2(33,0)
table_max_a2(45,1)
table_info(a2,a1,x1,0,1)

From agent a3

table_row_a2(V0+V1,X1) ←  
     x1_cons_x2(V0,X1,X2), 
     table_max_a3(V1,X1,X2).
table_max_a2(U,X1) ← 
     U = #max[ table_row_a2(V,X1)=V ]

To agent a1

0 { row(U,X2) }  ← 
      table_max_a2(U,X1),
      solution(a1,x1,X1),
      x1_cons_x2(V0,X1,X2),
      table_max_a3(V1,X1,X2),
      U == V0+V1
← not 1 {row(U,X2) } 1
solution(a2,x2,X2) ← row(U,X2) 

⊕

From agent a1

solution(a2,x2,0)
solution(a1,x1,1)

To agent a3

Ia2

Ma3

I’a2 x1

x3

x2

Agent a2
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Distributed Constraint Optimization Problems ASP-DPOP

CM

perform Phase 2(ReceivedUTILMessages):-

compute separator(ReceivedUTILMessages, Separator),

assert(separatorlist(Separator)),

compute related constraints(ConstraintList),

assert(constraintlist(ConstraintList)),

generate UTIL ASP(Separator, ConstraintList),

solve answer set1(ReceivedUTILMessages, Answer),

store(Answer),

send message(a i, a p, util, Answer).
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Distributed Constraint Optimization Problems ASP-DPOP

CM

perform Phase 3(ReceivedVALUEMessage):-

separatorlist(Separator),

constraintlist(ConstraintList),

generate VALUE ASP(Separator,ConstraintList),

solve answer set2(ReceivedVALUEMessage, Answer),

send message to children(a i, value, Answer).
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Distributed Constraint Optimization Problems Analysis

Some Analysis

ASP-DPOP is sound and complete in solving DCOPs

Experimental comparison against

DPOP
AFP (Asynchronous Forward-Bounding): complete, search-based
Hard-Constraints DPOP (H-DPOP): DPOP with hard constraints and
PH-DPOP
Open-DPOP

Experiments:

Random Graphs; variation on number of nodes, density, and tightness

Power Networks
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Distributed Constraint Optimization Problems Analysis

Random Graphs

|X | DPOP H-DPOP PH-DPOP AFB ASP-DPOP
Solved Time Solved Time Solved Time Solved Time Solved Time

15 86% 39,701 100% 148 98% 67,161 100% 53 100% 1,450
20 0% - 100% 188 0% - 100% 73 100% 1,777
25 0% - 100% 295 0% - 100% 119 100% 1,608

150 0% - 0% - 0% - 100% 31,156 100% 37,862
200 0% - 0% - 0% - 100% 117,913 100% 115,966
250 0% - 0% - 0% - 0% - 100% 298,361

Tight DPOP H-DPOP PH-DPOP AFB ASP-DPOP
Solved Time Solved Time Solved Time Solved Time Solved Time

0.5 94% 38,043 100% 161 96% 71,181 100% 57 92% 4,722
0.6 90% 31,513 100% 144 98% 68,307 100% 52 100% 1,410
0.7 90% 39,352 100% 128 100% 49,377 100% 48 100% 1,059
0.8 92% 40,526 100% 112 100% 62,651 100% 57 100% 1,026
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Distributed Constraint Optimization Problems Analysis

Power Network
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Domain Size

|A| = 37, |X| = 146, |F| = 147

DPOP
ASP-DPOP (facts)
ASP-DPOP (rules)

H-DPOP
ODPOP

37-Bus Configuration

|Di | 13-Bus 37-Bus
5 7 9 11 5 7 9 11

H-DPOP 6,742 30,604 97,284 248,270 6,742 30,604 97,284 248,270
DPOP 3,125 16,807 59,049 161,051 3,125 16,807 59,049 161,051

ASP-DPOP 10 14 18 22 10 14 18 22
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Distributed Constraint Optimization Problems Conclusions

Conclusions

ASP-DPOP is competitive

Potential for many extensions:

Declarative encoding of constraints
Dedicated propagation algorithms within each agent
Intensional representation of UTIL tables
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Conclusions

Summary

Introduction of ASP, CLP, and CASP.

Planning using ASP and CLP.

Applications of ASP, CLP, and CASP.
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