
Knowledge Engineering in Planning
Representation Matters

Lukáš Chrpa Mauro Vallati

Czech Technical University in Prague & Charles University in Prague

University of Huddersfield

Table of contents

1. Introduction

2. Language(s) and Planners

3. Knowledge Engineering in Planning

4. Domain Knowledge for Planners

5. On the Boundaries

6. Conclusions

1

Introduction

Introduction: What’s Planning?

Planning is a pivotal element of what we call intelligence

The scope of AI Planning is the synthesis (generation) and execution
of PLANS.

AI Planners reason with actions, and information about the world
and the goals, and generate plans.

2

Introduction: Importance of Planning

I don’t think we really need any further discussion on the
importance of planning.

3

Introduction: Main Assumption

The MAIN ASSUMPTION of what is termed domain-independent AI
Planning is that there should be a logical separation between

• The Planning Engine
• The Domain Model

4

Introduction: Main Assumption

(Positive) Implications of assumption:

• It tends to make AI Planning a different subject to eg “planning
and scheduling” in manufacturing

• planning engines AND domain models can be developed, tested,
debugged, validated independently – the model of the
particular application of planning is developed in relative
isolation to the planning engine

• domain models may be useful for more purposes than simply
automated planning functions (e.g., validation, mining, etc.)

5

Introduction: Main Assumption

(Negative)Consequences of assumption:

• Domain model representation is influenced by ‘what planners
can handle’

• Inefficiency in domain-independent planning systems on a
specific domain of interest

Much research work has been carried out in developing planning
engines, pushed along by the International Planning Competitions,
BUT methods and tools to help develop the domain models have
had relatively little attention

6

Introduction: Involved Perspectives

(taken from [27])

Extraction of Domain Knowledge, under the form of reformulation,
can help supporting both sides.

7

Language(s) and Planners

The Planning Domain Description Language (PDDL)

PDDL has been introduced for the IPC 1998 and is now widely used in
the planning community

• PDDL 1.2 [30] derives from STRIPS, i.e., it offers “predicate
centric” representation (or classical representation), and
supports ADL (e.g. conditional effects, quantifiers), domain
axioms and hierarchical actions

• PDDL 2.1 [15] introduced numeric fluents and durative actions
• PDDL 3.1 [18] introduced trajectory constraints, preferences and
object fluents (aka state variable representation)

• PDDL+ [16] introduced continuous processes and events
• PPDDL [45] introduced probabilistic action effects
• MA-PDDL [26] introduced planning by and for multiple agents

8

Other languages

NDDL [17]

• variable representation
• timelines/activities
• rich temporal constraints

ANML [38]

• notions of states and actions (as in PDDL)
• variable representation (as in NDDL)
• rich temporal constraints (an in NDDL)

9

Other languages (cont.)

RDDL [34]

• became the official language of the probabilistic track of the IPC
since 2011

• models partial observability
• efficient description of (PO)MDPs

PICAT [46]

• a “Prolog-like” rule-based language
• structured state representation
• supports control knowledge

10

PDDL Features Support

Is there any planner supporting all PDDL features ?

NO

Is there any planner supporting all PDDL 1.2 features ? (incl. axioms
and hierarchical actions)

NO

11

PDDL Features Support

Is there any planner supporting all PDDL features ?
NO

Is there any planner supporting all PDDL 1.2 features ? (incl. axioms
and hierarchical actions)

NO

11

PDDL Features Support

Is there any planner supporting all PDDL features ?
NO

Is there any planner supporting all PDDL 1.2 features ? (incl. axioms
and hierarchical actions)

NO

11

PDDL Features Support

Is there any planner supporting all PDDL features ?
NO

Is there any planner supporting all PDDL 1.2 features ? (incl. axioms
and hierarchical actions)

NO

11

Domain-independent Planners

• Dozens of classical planners
• support typed STRIPS
• newer planners support action costs, and some ADL features
• many of them are optimal

• Several temporal planners
• support durative actions
• few support numeric fluents
• few fully support concurrency
• very few are optimal

• Several probabilistic planners
• A few continuous planners
•

12

Consequences for Applications of Domain-independent Planning

• “It is almost a law in PDDL planning that for every language
feature one adds to a domain definition, the number of
planners that can solve (or even parse) it, and the efficiency of
those planners, falls exponentially” (anonymous reviewer)

• Hence, it is advisable to minimize the number of required
features for the model (ideally having just typed STRIPS)

• and development of more expressive planning engines should
be encouraged

13

Knowledge Engineering in
Planning

KE in Planning: an Overview

Knowledge Engineering for automated planning is the process that
deals with:

• acquisition
• formulation
• validation
• maintenance

of planning domain models.

KE deals also with the selection and optimization of appropriate
planning machinery to work on it.

14

KE in Planning: an Overview

DOMAIN
Conceptualisation of an

Application area

Symbolic World

DOMAIN MODEL

Domain Model Language

Formulation

Validation and
Maintenance

“Real” World

15

KE in Planning: the Domain Model

A planning domain model is a formal specification of the
application domain part of the requirements specification
which represents entities invariant over every planning
problem, such as object classes, functions, properties,
relations, and actions in the domain.

(Taken from [29]; in line with terminology from general KE, works on
domain “theories” [7] and the “domain file” in PDDL [30]).

16

Properties of Domain Models

Figure taken from [29].

17

Properties of Domain Models (2)

• Accuracy: there exists a mapping between requirements and
model’s components.

• Consistency: a domain model is consistent if some
interpretation exists that makes all its assertions true. (Subcase
of the accuracy)

• Completeness: (very informally) any solution in the domain
model is also a solution for the real-world domain, and
vice-versa.

• Adequacy: the exploited language has the expressive power to
represent the requirements (a model can be accurate, but not
adequate).

• Operationality: there is a planning engine that can produce
solutions within acceptable resource bounds.

18

Properties of Domain Models (2)

• Accuracy: there exists a mapping between requirements and
model’s components.

• Consistency: a domain model is consistent if some
interpretation exists that makes all its assertions true. (Subcase
of the accuracy)

• Completeness: (very informally) any solution in the domain
model is also a solution for the real-world domain, and
vice-versa.

• Adequacy: the exploited language has the expressive power to
represent the requirements (a model can be accurate, but not
adequate).

• Operationality: there is a planning engine that can produce
solutions within acceptable resource bounds.

18

Properties of Domain Models (2)

• Accuracy: there exists a mapping between requirements and
model’s components.

• Consistency: a domain model is consistent if some
interpretation exists that makes all its assertions true. (Subcase
of the accuracy)

• Completeness: (very informally) any solution in the domain
model is also a solution for the real-world domain, and
vice-versa.

• Adequacy: the exploited language has the expressive power to
represent the requirements (a model can be accurate, but not
adequate).

• Operationality: there is a planning engine that can produce
solutions within acceptable resource bounds.

18

Properties of Domain Models (2)

• Accuracy: there exists a mapping between requirements and
model’s components.

• Consistency: a domain model is consistent if some
interpretation exists that makes all its assertions true. (Subcase
of the accuracy)

• Completeness: (very informally) any solution in the domain
model is also a solution for the real-world domain, and
vice-versa.

• Adequacy: the exploited language has the expressive power to
represent the requirements (a model can be accurate, but not
adequate).

• Operationality: there is a planning engine that can produce
solutions within acceptable resource bounds.

18

Properties of Domain Models (2)

• Accuracy: there exists a mapping between requirements and
model’s components.

• Consistency: a domain model is consistent if some
interpretation exists that makes all its assertions true. (Subcase
of the accuracy)

• Completeness: (very informally) any solution in the domain
model is also a solution for the real-world domain, and
vice-versa.

• Adequacy: the exploited language has the expressive power to
represent the requirements (a model can be accurate, but not
adequate).

• Operationality: there is a planning engine that can produce
solutions within acceptable resource bounds.

18

KE in Planning: Domain Model Development

Figure taken from [27]. 19

Tools for KE in Planning

A short and by no mean comprehensive list of existing tools for KE.

• Frameworks
• EUROPA [5]: Integrated platform, able to handle ANML and NDDL.
• GIPO [37]: based on Object-centred language, allowing consistency
check.

• itSIMPLE [41]: Exploits UML for object-oriented modeling.
• JABBAH [19]: based on HTN.
• MARIO [14]: tag-based representation language for composition of
problems and goals.

• VIZ [42]: exploits diagrams to support PDDL model encoding.
• KEWI [43]: Ontology-based, for non-planning experts.

• PDDL editors
• PDDL Studio [33]
• planning.domains

20

Usefulness of Tools

Recently [35], a few KE approaches for planning were compared.

• Method A: a PDDL expert that uses a text editor
• Method B: a user that exploits itSIMPLE
• Method C: a PDDL experts using GIPO

Three real-world domains considered:

• Road accident management
• Machine tool calibration
• Urban traffic control

21

Usefulness of Tools: Criteria

Operationality. How efficient are the models produced?
Collaboration. Does the tool help in team efforts?
Maintenance. How easy is it to come back and change a model?
Experience. Is the tool indicated for inexperienced planning users?
Efficiency. How quickly are acceptable models produced?

Debugging. Does the tool support debugging?
Support. Are there manuals available for using the tool?

22

Usefulness of Tools: Identified Issues

• Expertise: current KE approaches require a specific expertise (in
planning, UML, OCL, ...)

• Team work: no support for team working.
• Maintenance: tools do not support the writing of
documentation. Some tools are not able to handle models that
have been modified.

• Debugging: lack of effective techniques for static/dynamic
debugging.

• Language support: most tools have limited support of PDDL
features (and versions).

23

Promoting KE in P&S: ICKEPS

International Competition on Knowledge Engineering for Planning
and Scheduling

promote the knowledge-based and domain modelling
aspects of AI P&S, to accelerate knowledge engineering
research, to encourage the development and sharing of
prototype tools or software platforms that promise more
rapid, accessible, and effective ways to construct reliable
and efficient P&S systems

24

ICKEPS: History

• ICKEPS 2005 (San Francisco) - Tools and Tools Environments for
KE

• ICKEPS 2007 (Providence) - teams working on KE tasks and
application scenarios given out before ICAPS

• ICKEPS 2009 (Thessaloniki) - Tools for translating into
planner-ready language from application-oriented language

• ICKEPS 2012 (Sao Paulo) - teams working on KE tasks and
application scenarios given out before ICAPS

• ICKEPS 2016 (London) teams working on KE tasks and
application scenarios given onsite with a fixed period of time

25

ICKEPS 2016: Structure

A team competition (max size 4) composed by the following stages:

• Pre-competition
• On-site modelling
• Demonstration
• Judges evaluation and assessment

26

ICKEPS 2016 Evaluation: Metrics

• KE process
• Tools

• Innovation and Originality of Tools
• Usefulness and Support

• Team Working
• Strategy
• Collaboration

• Models (each scenario assessed singularly)
• Correctness
• Readability
• Generality
• Originality

Models have been evaluated “dynamically”: by extracting basic
information (number of operators, ...) and by running a number of
planners on the generated problems.

27

ICKEPS 2016: The Take-home Message

• Large variation in the PDDL models produced, resulting in
significant variations of planners’ performance, even on
toy-sized instances. (+)

• Low number of entries compared to IPCs. (-)
• Most teams did not use any KE tools. (-)
• Existing tools do not effectively support cooperation. (-)

We are still missing an agreed and usable notion of “Quality” of
models!

28

Domain Knowledge for Planners

Domain Knowledge - Definition

“Domain Knowledge (DK) is valid knowledge used to refer to an area
of human endeavour, an autonomous computer activity, or other
specialized discipline.”

In planning, domain knowledge captures domain-specific
information providing a “guidance” for planning engines.

29

Categories of Domain Knowledge

By use

• Planner-specific – a specialized planner has to be used to
exploit DK (e.g., TALPlanner, Roller)

• Planner-independent – any generic planner can exploit DK

By specification

• Manually specified
• Automatically acquired
• Combination of both

30

Planner-specific vs. Planner-independent DK

31

Why should we distinguish between Domain Model and Domain
Knowledge (in a planner-independent scenario) ?

32

The RPG Domain

• One of the ICKEPS 2016 scenarios
• A hero has to navigate through a dungeon, where:

• Rooms are connected by corridors
• Each room can be empty, with a monster, with a trap, or with a
sword

• The hero can visit a room at most once (after hero’s visit the room
is destroyed)

• The hero can perform the following actions:
• Move to an adjacent room (not yet visited)
• Pick-up a sword (if it is in the current room)
• Destroy the sword (if the hero carries it)
• Disarm trap (if the trap is in the current room and the hero is
empty handed)

• The hero dies if:
• the hero is empty handed in a room with a monster
• the hero performs any other action than “disarm” in a room with a
trap

33

RPG domain - the Move action

The hero dies as a result of the Move action if:

• s/he is empty handed and arrives in a room with a monster
• s/he tries to move away from a room with an active trap

The competitors modelled the Move action as:

• MoveWithSword – the hero carries a sword and can enter rooms
without traps

• MoveWithoutSword – the hero is empty handed and can enter
rooms without monsters

34

RPG Domain – Observations

The competitors’ models “avoid” hero’s death

• The models encode DK (i.e., avoiding hero’s death is good)
• Planners thus avoid dead-end states
• The models, however, do not fully correspond with the
specification

How easy/difficult is to modify such models if something changes in
the specification ?

35

RPG Domain – Lessons Learnt

Planning experts tend to encode domain models in a “planner
friendly” way

Such models, however, do not (fully) correspond with the
requirements and might be hard to understand for planning
non-experts

Separating “raw” domain models and DK would be beneficial for
both humans and planning engines

36

RPG Domain – Lessons Learnt

Planning experts tend to encode domain models in a “planner
friendly” way

Such models, however, do not (fully) correspond with the
requirements and might be hard to understand for planning
non-experts

Separating “raw” domain models and DK would be beneficial for
both humans and planning engines

36

Types of Planner-independent Domain
Knowledge

37

Macro-operators

• Ordinary operators can be assembled into macro-operators
(macros)

• Application of an instance of a macro has the same result as the
consecutive application of corresponding instances of ordinary
operators

• Macros represent frequent sequences of ordinary operators in
plans

• Macros have the same structure as ordinary operators, hence
they can be easily added into domain models

• Widely studied (e.g., Macro Problem Solver [25], Macro-FF [6],
Wizard [32], MUM [12])

38

Macros - example

39

Macros - example (PDDL)

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y)(clear ?x)(handempty))
:effect (and (holding ?x)(clear ?y)(not (clear ?x))

(not (handempty))(not (on ?x ?y)))
)

(:action put-down
:parameters (?x - block)
:precondition (and (holding ?x))
:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x))

)

(:action unstack_put-down
:parameters (?x - block ?y - block)
:precondition (and (clear ?y)(on ?y ?x)(handempty))
:effect (and (clear ?x)(clear ?y)(ontable ?y)(handempty)

(not (on ?y ?x))(not (holding ?y)))
)

40

Macros: Planner-independent Approaches

MacroFF [6]

• Defines five rules for generating macros (incl. Abstract Components)
• Select the top k frequent macros in training plans

Wizard [32]

• Exploits genetic programming to generate macros
• Macros are learnt specifically for a given planner

Investigating action dependencies and independencies [8]

• Considers also action subsequences interleaved by independent
actions

• Removes original operators that are replaced by macros in training
plans

Problem decomposition [3]

• Achieves each goal atom separately and considers “single goal” plans
as macros 41

Macros: Benefits and Drawbacks

+ “Short-cuts” in a search space – searching for a plan might not
go that deep

+ Can easily generalize (if parametrized) for larger problem
instances

+ Macros do not affect soundness and completeness of the model

- Branching factor can considerably increase
- High memory requirements for planning engines

42

“Anti” Macro Approaches

Removing “redundant” actions [21]

• Removing actions whose effects can be achieved by applying
sequences of other actions

• Aims at simplifying state space (by removing transitions)
• Reduces branching factor

Splitting Action Schema [2]

• Decomposing more complex actions into simpler ones
• Aims at reducing the grounded model size
• Reduces branching factor

43

Entaglements

• Relations between planning operators and predicates [9, 11]
• Aim at reducing Branching Factor
• Often domain-specific (rather than problem-specific)
• Can be encoded into the domain models and problem
specifications

• Can be learnt from training plans, solutions of simple planning
tasks

44

Outer Entanglements

• Relations between planning operators and initial or goal
predicates [9]

• Aim at reducing the number of instances of planning operators
• An Entanglement by init allows only instances of a given
operator that require instances of a given predicate present in
an initial state

• An Entanglement by goal allows only instances of a given
operator that achieve instances of a given predicate present in a
goal

45

Outer Entanglements - example

46

Outer Entanglements - encoding

Supplementary static predicates are used to filter out undesirable
operators’ instances

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (clear ?x)(handempty)

(on ?x ?y)(stai_on ?x ?y))
:effect (and (holding ?x)(clear ?y)

(not (clear ?x))(not (handempty))
(not (on ?x ?y)))

)

47

Inner Entanglements

• Inner entanglements are relations of exclusivity of predicate
“requirement” or “achievement” between pairs of planning
operators [11]

• An Entanglement by preceding – A given predicate for a given
operator is exclusively achieved by another operator

• An Entanglement by succeeding – An operator achieves a given
predicate exclusively for a given operator

48

Entanglements by preceding - example

putdown(?x) is entangled by preceding unstack(?x ?y) with
(holding ?x)

49

Entanglements by succeeding - example

pickup(?x) is entangled by succeeding stack(?x ?y) with
(holding ?x)

50

Inner Entanglements - encoding

Supplementary predicates are used to “lock out” undesirable
operators’ sequences

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)(ontable ?x)(handempty))
:effect (and (not (ontable ?x))(not (clear ?x))(not (handempty))

(holding ?x)(not (pick-up_stack_succ_holding ?x)))
)

(:action put-down
:parameters (?x - block)
:precondition (and (holding ?x)(pick-up_stack_succ_holding ?x))
:effect (and (not (holding ?x))(clear ?x)(handempty)(ontable ?x))

)

(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y))
:effect (and (on ?x ?y)(not (clear ?y))(clear ?x)(handempty)

(not (holding ?x))(pick-up_stack_succ_holding ?x)))

)

51

Entanglements - benefits and drawbacks

+ Pruning unpromising alternatives in the search space
+ Memory requirements (outer entanglements even reduce
memory requirements)

+ Easy to learn

- The learning approach might learn incorrect entanglements
- Utility problem (especially for inner entanglements)

52

The ASAP planner

• The ASAP planner learns the most promising couple
(encoding,planner) per domain [39]

• Considered encodings: Original, Macros, Outer Entanglements,
Inner Entanglements, Both entanglements

• Considered planners: FF, SatPlan, Mp, Lama, LPG, SGPlan, Probe

53

ASAP - selected couples per domain

Domain ASAPs ASAPq
Barman ⟨Outer, SGPlan⟩ ⟨Original, SGPlan⟩
BlocksWorld ⟨Both, FF⟩ ⟨Both, FF⟩
Depots ⟨Outer, FF⟩ ⟨Both, LPG⟩
Gripper ⟨Outer, SGPlan⟩ ⟨Outer,Mp⟩
Gold Miner ⟨Macro, FF⟩ ⟨Both, SatPlan⟩
Matching-BW ⟨Macro, LPG⟩ ⟨Outer, LPG⟩
Parking ⟨Original, FF⟩ ⟨Inner, Lama⟩
Rovers ⟨Macro, LPG⟩ ⟨Macro, Lama⟩
Satellite ⟨Outer, LPG⟩ ⟨Outer, LPG⟩
Spanner ⟨Outer,Mp⟩ ⟨Original, LPG⟩
TPP ⟨Both, LPG⟩ ⟨Outer, Lama⟩

Table 1: For every domain, the couple selected by ASAPs and ASAPq.

54

ASAP vs. best “basic” planner

Domain BestS Time IPC BestQ Quality IPC
ASAPs BestS ASAPq BestQ

Barman SGPlan 23.1 28.1 SGPlan 30.0 30.0
BW Probe 30.0 5.8 Probe 29.5 18.1
Depots Probe 30.0 8.7 Probe 30.0 26.2
Gripper LPG 30.0 5.0 LPG 30.0 8.3
Gold-m Mp 30.0 16.5 LPG 30.0 29.9
M-BW Lama 30.0 8.7 SatPlan 26.4 20.4
Parking FF 5.0 5.0 FF 3.8 4.6
Rovers LPG 28.0 22.0 LPG 29.3 26.1
Satellite LPG 29.0 27.8 LPG 28.8 29.7
Spanner LPG 10.6 25.6 LPG 30.0 30.0
TPP Lama 20.0 3.4 Lama 30.0 9.1

All above 265.7 156.6 297.8 232.4

Table 2: Time/quality IPC score (max score 30 per domain) by ASAP and the
best planner in the original encodings for the selected domains.

55

MUM

MUM [12] combines macros with outer entanglements

• Outer entanglements reduce the branching factor macros might
introduce

• Outer entanglements serve as heuristics for macro generation
• Incompleteness issues of the outer entanglements learning
process is alleviated by applying them only on macros

56

MUM - results

Coverage Fastest IPC Score
O W M O W M O W M

FF 1 2 36 0 0 36 0.5 1.1 36.0
LAMA 39 13 116 5 0 113 30.4 10.8 115.7
LPG 99 30 86 89 30 24 97.9 30.0 67.1
Mp 8 33 41 2 9 41 6.9 30.6 41.0
Probe 80 54 86 20 0 75 64.4 38.1 84.3
Total 227 132 365 116 39 289 199.1 110.6 344.1

Table 3: Cumulative results across the IPC-7 learning track domains. O –
original, W – Wizard [32], M - MUM

57

Learning Planner-independent DK - summary

DK such as macros or entanglements is easy to learn

• Usually, several simple training instances are sufficient
• No explicit knowledge from an engineer is needed

DK such as macros or entanglements generalizes well

DK often provides performance improvement across domains and
planners

Various impact per domain and planner

58

Manually Specified DK

Can be (much more) efficient than learnt DK

Needs an expert to encode it

Planner-independent types of DK include:

• Procedural DCK (Domain Control Knowledge) [4] (can be also
learnt to some extent [1])

• Transition-based DCK (Domain Control Knowledge) [10]

59

Procedural DCK

• Follows the Procedural Programming paradigm
• Action-centric (in contrast to LTL-based DCK)
• Describe how plans should be generated
• Can be encoded in planning domain models

60

Procedural DCK - Examples [4]

• while ¬clear(B) do π(b-block)putOnTable(b) : while B is
not clear choose any b of type block and put it on the table.

• any*;loaded(A,Truck)? : Perform any sequence of actions
until A is loaded in Truck.

• (load(C,P);fly(P,LA) | load(C,T);drive(T,LA)) :
Either load C on the plane P or on the truck T, and perform the
right action to move the vehicle to LA.

61

Transition-based DCK

• Inspired by Finite State Automata
• Action-centric
• Define “grammar” of solution plans
• “Schematical” representation is easier to understand by
non-experts in planning

• Can be encoded in planning domain models

62

Transition-based DCK - Example

1. An empty truck (can carry at most one package) should move
only to locations where some package is waiting to be delivered

2. After a package that has to be delivered is loaded into the truck,
the truck moves to package’s goal location where the package is
then unloaded

s0

Drive; at(?p ?to), g: at(?p ?dest), ?to != ?dest
s1Load; g: at(?p ?dest), ?dest != ?l

s2

Drive; in(?p ?t), g: at(?p ?to)

Unload; g: at(?p ?l)

63

Transition-based DCK - Results

Planner Barman CaveDiving ChildSnack CityCar Hiking Nomystery
O E O E O E O E O E O E

Lama 16 20 6 7 0 19 5 20 5 19 14 14
Mercury 7 20 2 3 5 20 2 20 8 17 13 15
MpC 0 20 4 4 7 20 9 20 7 3 6 5
Probe 18 20 1 7 0 15 8 20 13 19 5 11
Yahsp 0 20 N/A N/A 0 N/A N/A N/A 13 10 8 12
Bfs-f 20 20 7 7 8 8 5 20 2 14 14 15

Table 4: Coverage for original (O) and enhanced (E) domain models.

Noticeably, in some domains (e.g. Barman and CityCar)
Transition-based DCK “determinizes” the planning process

64

Acquiring and Using DK

Simpler kinds of DK (e.g. macros or entanglements)

+ Easy to learn
+ No planning expertise needed
- Not always efficient

“Sophisticated” kinds of DK (e.g. procedural or transition-based DCK)

+ In some cases can “determinize” the planning process
+ The performance of domain-independent planner can be close
to domain-dependent ones

- Difficult to learn
- Engineers should have required domain-specific knowledge

65

Domain Model Configuration

The idea [40]: given a PDDL model, configure the order in which:

• domain predicates are declared
• operators are listed
• within every operator, the order of pre and post conditions

To each configurable element is associated a continuous value in the
interval [0, 1]. Elements are ordered by their precedence. The
well-known SMAC [22] tool has been used for the configuration.

66

Domain Model Configuration: Example

Operator: (pre1, pre2, pre3) (post1, post2, post3, post4)

7 parameters: p1, p2, p3 (pre-conditions) and p4, p5, p6, p7
(post-conditions).

SMAC searches in the parameter space [0, 1]7.

If SMAC evaluates, e.g., [p1=0.32, p2=0.001, p3=0.7, p4=0.98, p5=0.11,
p6=0.34, p7=0.35]

Operator: (pre2, pre1, pre3), and (post2, post3, post4, post1).

67

Domain Model Configuration: Example

Operator: (pre1, pre2, pre3) (post1, post2, post3, post4)

7 parameters: p1, p2, p3 (pre-conditions) and p4, p5, p6, p7
(post-conditions).

SMAC searches in the parameter space [0, 1]7.

If SMAC evaluates, e.g., [p1=0.32, p2=0.001, p3=0.7, p4=0.98, p5=0.11,
p6=0.34, p7=0.35]

Operator: (pre2, pre1, pre3), and (post2, post3, post4, post1).

67

Domain Model Configuration: Surprise Me

Interesting results:

• Can we improve the performance of a given planner? YES
• Does configuration affect relative performance of planners? YES
• Is there a configuration that generally improves performance?

IPC score PAR10 Solved
Planner B O B O B O
Jasper 252.2 195.9 975.3 1375.9 69.4 56.3
LPG 261.2 192.1 826.0 926.2 72.9 69.7
Mp 232.5 167.9 1109.4 1637.5 63.8 46.1
Mercury 236.8 183.9 1126.6 1381.5 63.5 55.8
Probe 294.2 205.5 602.3 1265.3 81.0 58.7
Yahsp3 310.9 260.0 310.7 390.6 90.1 87.4

68

Domain Model Configuration: Surprise Me

Interesting results:

• Can we improve the performance of a given planner? YES

• Does configuration affect relative performance of planners? YES
• Is there a configuration that generally improves performance?

IPC score PAR10 Solved
Planner B O B O B O
Jasper 252.2 195.9 975.3 1375.9 69.4 56.3
LPG 261.2 192.1 826.0 926.2 72.9 69.7
Mp 232.5 167.9 1109.4 1637.5 63.8 46.1
Mercury 236.8 183.9 1126.6 1381.5 63.5 55.8
Probe 294.2 205.5 602.3 1265.3 81.0 58.7
Yahsp3 310.9 260.0 310.7 390.6 90.1 87.4

68

Domain Model Configuration: Surprise Me

Interesting results:

• Can we improve the performance of a given planner? YES
• Does configuration affect relative performance of planners? YES

• Is there a configuration that generally improves performance?

IPC score PAR10 Solved
Planner B O B O B O
Jasper 252.2 195.9 975.3 1375.9 69.4 56.3
LPG 261.2 192.1 826.0 926.2 72.9 69.7
Mp 232.5 167.9 1109.4 1637.5 63.8 46.1
Mercury 236.8 183.9 1126.6 1381.5 63.5 55.8
Probe 294.2 205.5 602.3 1265.3 81.0 58.7
Yahsp3 310.9 260.0 310.7 390.6 90.1 87.4

68

Domain Model Configuration: Surprise Me

Interesting results:

• Can we improve the performance of a given planner? YES
• Does configuration affect relative performance of planners? YES
• Is there a configuration that generally improves performance?

IPC score PAR10 Solved
Planner B O B O B O
Jasper 252.2 195.9 975.3 1375.9 69.4 56.3
LPG 261.2 192.1 826.0 926.2 72.9 69.7
Mp 232.5 167.9 1109.4 1637.5 63.8 46.1
Mercury 236.8 183.9 1126.6 1381.5 63.5 55.8
Probe 294.2 205.5 602.3 1265.3 81.0 58.7
Yahsp3 310.9 260.0 310.7 390.6 90.1 87.4

68

Domain Model Configuration: Example

load

0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

drop 0.10.20.30.40.50.60.70.80.91.0

Perform
ance

0

500

1000

1500

2000

2500

400

600

800

1000

1200

1400

1600

1800

2000

The average PAR10 performance of Yahsp in the Depots domain, as a
function of the values of the parameters corresponding to the load
and drop operators. The lower the PAR10 value, the better the
performance.

69

Domain Model Configuration: Take-Home Message

• Domain model configuration strongly affect planners’
performance

• It is also possible to (significantly) decrease performance

• General observations:
• operators should be listed according to directionality or frequency
• preconditions most likely to be unsatisfied should be listed earlier
• main effects should be listed earlier
• predicate should be declared following their frequency as
operators’ preconditions

70

Domain Model Configuration: Take-Home Message

• Domain model configuration strongly affect planners’
performance

• It is also possible to (significantly) decrease performance

• General observations:
• operators should be listed according to directionality or frequency
• preconditions most likely to be unsatisfied should be listed earlier
• main effects should be listed earlier
• predicate should be declared following their frequency as
operators’ preconditions

70

On the Boundaries

Automatic Domain Model Acquisition

Idea: since domain model encoding is hard for humans, can we do it
in an automated way?

In short: Yes.

Approaches vary with regards to a number of dimensions, such as:

• Input requirements
• Model provided as output
• Supported languages
• Ability to deal with noise

71

Automatic Domain Model Acquisition

Idea: since domain model encoding is hard for humans, can we do it
in an automated way?

In short: Yes.

Approaches vary with regards to a number of dimensions, such as:

• Input requirements
• Model provided as output
• Supported languages
• Ability to deal with noise

71

Automatic Domain Model Acquisition

Idea: since domain model encoding is hard for humans, can we do it
in an automated way?

In short: Yes.

Approaches vary with regards to a number of dimensions, such as:

• Input requirements
• Model provided as output
• Supported languages
• Ability to deal with noise 71

Automatic Domain Model Acquisition: Approaches

Another by no mean complete list of tools, following [24].

Criteria AMAN ARMS LOCM LSO-NIO Opmaker RIM SLAF
[48] [44] [13] [31] [28] [49] [36]

Input NP BK,P P PDM,NP PDM,P PDM,P Pr,IS
Output DM DM DM DM DM,H RDM DM
Language STRIPS PDDL PDDL STRIPS OCL STRIPS SL
Noise Y N N Y N N N

P: Plan traces; BK: Background Knowledge; PDM: Partial Domain Model; Pr: Predicates;
IS: Intermediate States; NP: Noisy Plans; DM: Domain Model; RDM: Refined Domain

Model; H: Heuristics.

There is also a range of tools building on top of LOCM, such as LOP
[20] or ASCOL [23].

72

Crowdsourced Domain Model Acquisition

Assumption: not many plan traces (or similar source of information)
but many annotators.

CAMA (Crowdsourced Action-Model Acquisition) [47] exploits this
approach. Given a set of operators (names and parameters, only):

• A set of annotators is used for accepting / rejecting potential
pre and post conditions

• Plan traces, whether available, are used as further data
• a MAXSAT solver, given a formalisation of the previous data
under the form of soft constraints, is used for generating the
final model.

Results are encouraging!

73

Crowdsourced Domain Model Acquisition

Assumption: not many plan traces (or similar source of information)
but many annotators.

CAMA (Crowdsourced Action-Model Acquisition) [47] exploits this
approach. Given a set of operators (names and parameters, only):

• A set of annotators is used for accepting / rejecting potential
pre and post conditions

• Plan traces, whether available, are used as further data
• a MAXSAT solver, given a formalisation of the previous data
under the form of soft constraints, is used for generating the
final model.

Results are encouraging!

73

Conclusions

Summary and Conclusions

• The Domain model is the corner stone of any planning
application (or, in general, use of planning).

• stretched between two almost antithetic perspectives: planning
engines and humans.

• Decoupling domain models and (manually specified) Domain
Knowledge provides a good trade-off between both
perspectives.

• Automatic extraction of Domain Knowledge, under the form of
reformulation, also supports both perspectives.

• Little attention has been given to KE of models.

74

Challenges

(Take this slide as food for thought)

• How can we better handle models evolution and validation?

• Can we provide a notion of quality of models? Is it possible to
assess quality statically, or is it pivotal to dynamically check it?

• Planning is being exploited in complex applications: we must
support cooperation in KE tools for planning

• From OOP to Planning: Design patterns. (and definition of
alternatives that can be explored using DK..)

75

Challenges

(Take this slide as food for thought)

• How can we better handle models evolution and validation?
• Can we provide a notion of quality of models? Is it possible to
assess quality statically, or is it pivotal to dynamically check it?

• Planning is being exploited in complex applications: we must
support cooperation in KE tools for planning

• From OOP to Planning: Design patterns. (and definition of
alternatives that can be explored using DK..)

75

Challenges

(Take this slide as food for thought)

• How can we better handle models evolution and validation?
• Can we provide a notion of quality of models? Is it possible to
assess quality statically, or is it pivotal to dynamically check it?

• Planning is being exploited in complex applications: we must
support cooperation in KE tools for planning

• From OOP to Planning: Design patterns. (and definition of
alternatives that can be explored using DK..)

75

Challenges

(Take this slide as food for thought)

• How can we better handle models evolution and validation?
• Can we provide a notion of quality of models? Is it possible to
assess quality statically, or is it pivotal to dynamically check it?

• Planning is being exploited in complex applications: we must
support cooperation in KE tools for planning

• From OOP to Planning: Design patterns. (and definition of
alternatives that can be explored using DK..)

75

Thank you!

(That’s all Folks!)

75

References I

[1] J. S. Aguas, S. J. Celorrio, and A. Jonsson.
Generalized planning with procedural domain control
knowledge.
In Proceedings of the Twenty-Sixth International Conference on
Automated Planning and Scheduling, ICAPS 2016, London, UK,
June 12-17, 2016., pages 285–293, 2016.

[2] C. Areces, F. Bustos, M. A. Dominguez, and J. Hoffmann.
Optimizing planning domains by automatic action schema
splitting.
In Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014, 2014.

76

References II

[3] M. Asai and A. Fukunaga.
Solving large-scale planning problems by decomposition and
macro generation.
In Proceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling, ICAPS 2015, Jerusalem,
Israel, June 7-11, 2015., pages 16–24, 2015.

[4] J. A. Baier, C. Fritz, and S. A. McIlraith.
Exploiting procedural domain control knowledge in
state-of-the-art planners.
In Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, ICAPS 2007, Providence,
Rhode Island, USA, September 22-26, 2007, pages 26–33, 2007.

77

References III

[5] J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T. Kichkaylo,
P. Morris, J. Ong, E. Remolina, T. Smith, et al.
Europa: A platform for ai planning, scheduling, constraint
programming, and optimization.
In Proc. of the International Competition on Knowledge
Engineering for Planning and Scheduling, 2012.

[6] A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer.
Macro-ff: Improving AI planning with automatically learned
macro-operators.
J. Artif. Intell. Res. (JAIR), 24:581–621, 2005.

78

References IV

[7] B. Bredeweg, P. Salles, A. Bouwer, J. Liem, T. Nuttle, E. Cioaca,
E. Nakova, R. Noble, A. L. R. Caldas, Y. Uzunov, et al.
Towards a structured approach to building qualitative
reasoning models and simulations.
Ecological Informatics, 3(1):1–12, 2008.

[8] L. Chrpa.
Generation of macro-operators via investigation of action
dependencies in plans.
Knowledge Eng. Review, 25(3):281–297, 2010.

79

References V

[9] L. Chrpa and R. Barták.
Reformulating planning problems by eliminating unpromising
actions.
In Eighth Symposium on Abstraction, Reformulation, and
Approximation, SARA 2009, Lake Arrowhead, California, USA, 8-10
August 2009, 2009.

[10] L. Chrpa and R. Barták.
Guiding planning engines by transition-based domain control
knowledge.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, KR 2016,
Cape Town, South Africa, April 25-29, 2016., pages 545–548, 2016.

80

References VI

[11] L. Chrpa and T. L. McCluskey.
On exploiting structures of classical planning problems:
Generalizing entanglements.
In ECAI 2012 - 20th European Conference on Artificial
Intelligence. Including Prestigious Applications of Artificial
Intelligence (PAIS-2012) System Demonstrations Track,
Montpellier, France, August 27-31 , 2012, pages 240–245, 2012.

[12] L. Chrpa, M. Vallati, and T. L. McCluskey.
MUM: A technique for maximising the utility of
macro-operators by constrained generation and use.
In Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014,
Portsmouth, New Hampshire, USA, June 21-26, 2014, 2014.

81

References VII

[13] S. N. Cresswell, T. L. McCluskey, and M. M. West.
Acquiring planning domain models using locm.
The Knowledge Engineering Review, 28(02):195–213, 2013.

[14] M. D. Feblowitz, A. V. Riabov, and O. Udrea.
Planning-based composition of stream processing
applications.
In In ICAPS-12 System Demonstrations and Exhibits Track, 2012.

[15] M. Fox and D. Long.
PDDL2.1: an extension to PDDL for expressing temporal
planning domains.
J. Artif. Intell. Res. (JAIR), 20:61–124, 2003.

82

References VIII

[16] M. Fox and D. Long.
Modelling mixed discrete-continuous domains for planning.
J. Artif. Intell. Res. (JAIR), 27:235–297, 2006.

[17] J. Frank and A. Jónsson.
Constraint-based attribute and interval planning.
Constraints, 8(4):339–364, 2003.

[18] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos.
Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the
planners.
Artif. Intell., 173(5-6):619–668, 2009.

83

References IX

[19] A. González-Ferrer, J. Fernández-Olivares, and L. Castillo.
JABBAH: A java application framework for the translation
between business process models and htn.
In Proc. of the International Competition on Knowledge
Engineering for Planning and Scheduling, 2009.

[20] P. Gregory and S. Cresswell.
Domain model acquisition in the presence of static relations in
the LOP system.
In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI, pages 4160–4164, 2016.

84

References X

[21] P. Haslum and P. Jonsson.
Planning with reduced operator sets.
In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, Breckenridge, CO, USA, April 14-17,
2000, pages 150–158, 2000.

[22] F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Sequential model-based optimization for general algorithm
configuration.
In Proceedings of the 5th Learning and Intelligent OptimizatioN
Conference (LION), pages 507–523, 2011.

[23] R. Jilani, A. Crampton, D. E. Kitchin, and M. Vallati.
Ascol: A tool for improving automatic planning domain model
acquisition.
In Proc. of AI*IA, pages 438–451, 2015.

85

References XI

[24] R. Jilani, D. Kitchin, and M. Vallati.
Knowledge engineering tools in planning.
In Proc. of KEPS, 2014.

[25] R. E. Korf.
Macro-operators: A weak method for learning.
Artif. Intell., 26(1):35–77, 1985.

[26] D. L. Kovacs.
A multi-agent extension of pddl 3.1.
In Proceedings of the 3rd Workshop on the International
Planning Competition (IPC), 22nd International Conference on
Automated Planning and Scheduling (ICAPS-2012), pages 19–27.
ICAPS, 2012.

86

References XII

[27] T. McCluskey and J. Porteous.
Engineering and compiling planning domain models to
promote validity and efficiency.
Artificial Intelligence, 95(1):1 – 65, 1997.

[28] T. L. McCluskey, S. Cresswell, N. E. Richardson, and M. M. West.
Automated acquisition of action knowledge.
In Proceedings of the International Conference on Agents and
Artificial Intelligence (ICAART), pages 93–100, 2009.

[29] T. L. McCluskey, T. Vaquero, and M. Vallati.
Issues in planning domain model engineering.
In PlanSIG, 2015.

87

References XIII

[30] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins.
PDDL - The Planning Domain Definition Language.
Technical report, CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control, 1998.

[31] K. Mourão, L. S. Zettlemoyer, R. P. A. Petrick, and M. Steedman.
Learning strips operators from noisy and incomplete
observations.
In Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence, pages 614–623, 2012.

88

References XIV

[32] M. A. H. Newton, J. Levine, M. Fox, and D. Long.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, ICAPS 2007, Providence,
Rhode Island, USA, September 22-26, 2007, pages 256–263, 2007.

[33] T. Plch, M. Chomut, C. Brom, and R. Barták.
Inspect, edit and debug pddl documents: Simply and
efficiently with pddl studio.
In System Demonstration – ICAPS, 2012.

[34] S. Sanner.
Relational dynamic influence diagram language (RDDL):
Language description.
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf,
2010.

89

References XV

[35] M. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. McCluskey, S. Parkinson,
and M. Vallati.
Knowledge engineering tools in planning: State-of-the-art and
future challenges.
In Proc. of KEPS, 2013.

[36] D. Shahaf and E. Amir.
Learning partially observable action schemas.
In The Twenty-First National Conference on Artificial Intelligence
and the Eighteenth Innovative Applications of Artificial
Intelligence Conference (AAAI-06), pages 913–919, 2006.

[37] R. Simpson, D. E. Kitchin, and T. McCluskey.
Planning domain definition using gipo.
Knowledge Engineering Review, 22(2):117–134, 2007.

90

References XVI

[38] D. E. Smith, J. Frank, and W. Cushing.
The ANML language.
In Proceedings of Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS), 2008.

[39] M. Vallati, L. Chrpa, and D. E. Kitchin.
ASAP: an automatic algorithm selection approach for planning.
International Journal on Artificial Intelligence Tools, 23(6), 2014.

[40] M. Vallati, F. Hutter, L. Chrpa, and T. L. McCluskey.
On the effective configuration of planning domain models.
In Proc. of IJCAI, pages 1704–1711, 2015.

91

References XVII

[41] T. S. Vaquero, R. Tonaco, G. Costa, F. Tonidandel, J. R. Silva, and
J. C. Beck.
itSIMPLE4.0: Enhancing the modeling experience of planning
problems.
In System Demonstration – ICAPS, 2012.

[42] J. Vodráz̆ka and L. Chrpa.
Visual design of planning domains.
In Proc. of KEPS, 2010.

[43] G. Wickler, L. Chrpa, and T. McCluskey.
Creating planning domain models in kewi.
In Proc. of KEPS, 2014.

92

References XVIII

[44] Q. Yang, K. Wu, and Y. Jiang.
Learning action models from plan examples using weighted
max-sat.
Artificial Intelligence, 171(2-3):107–143, Feb. 2007.

[45] H. L. Younes and M. L. Littman.
Ppddl 1.0: An extension to pddl for expressing planning
domains with probabilistic effects.
Techn. Rep. CMU-CS-04-162, 2004.

[46] N. Zhou, R. Barták, and A. Dovier.
Planning as tabled logic programming.
TPLP, 15(4-5):543–558, 2015.

[47] H. Zhuo.
Crowdsourced action-model acquisition for planning.
In AAAI Conference on Artificial Intelligence, 2015.

93

References XIX

[48] H. H. Zhuo and S. Kambhampati.
Action-model acquisition from noisy plan traces.
In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI-13), pages 2444–2450.
AAAI Press, 2013.

[49] H. H. Zhuo, T. Nguyen, and S. Kambhampati.
Refining incomplete planning domain models through plan
traces.
In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, pages 2451–2457, 2013.

94

	Introduction
	Language(s) and Planners
	Knowledge Engineering in Planning
	Domain Knowledge for Planners
	Types of Planner-independent Domain Knowledge
	Configuration of Domain Models

	On the Boundaries
	Conclusions

