
Jun. 20, 2017Jun. 20, 2017 ICAPS 2017 TutorialICAPS 2017 Tutorial © 2017 IBM Corporation© 2017 IBM Corporation

Introduction to CP Optimizer for Scheduling
 

Philippe Laborie
IBM, IBM Analytics

laborie@fr.ibm.com



2 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: CP  Optimizer?

Historically developed since 2007 by ILOG, now IBM

Descendant of ILOG Solver/Scheduler (1992-2007) 

Our team has 20+ years of experience in designing 
combinatorial optimization tools for real-life industrial 
problems, and particularly scheduling problems

Industrial scheduling problems:
Large (e.g. 1.000.000 tasks)
Complex constraints (activities, resources)
Complex cost functions (not just makespan!)
Industrial context : tight deadlines, ill-defined problems, 
moving targets, bad data, need for performance, ...

#1 objective of CP Optimizer: lower the barrier to entry 
for efficiently solving industrial scheduling problems 



3 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

A simplified semiconductor manufacturing scheduling 
problem

S. Knopp et al. Modeling Maximum Time Lags in Complex Job-Shops
with Batching in Semiconductor Manufacturing. PMS 2016.



4 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching



5 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Wafer lots
(size, priority,
release date,
due date)

Lot 1

Lot 2

...



6 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Wafer lots
(size, priority,
release date,
due date)

Step 1 Step 2 ...Lot 1

Lot 2

...

For each lot we are given a sequence of processing
steps



7 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Wafer lots
(size, priority,
release date,
due date)

Step 1 Step 2 ...Lot 1

Lot 2

...

Each step has to be scheduled on a machine
Possible machines for a given step depend on its
family (here, its color) 



8 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Wafer lots
(size, priority,
release date,
due date)

Step 1 Step 2 ...Lot 1

Lot 2

...

A machine specifies the step families it can process
and a family-dependent processing time
Example: M1 can process       and 

M2 can process           and     



9 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Wafer lots
(size, priority,
release date,
due date)

M2

M2

M2 M2

Lot 1

Lot 2

...

Steps of the same family can be processed together
on the same machine (batch)
Batched steps start and end at the same time
Batching capacity: max. number of wafers



10 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Wafer lots
(size, priority,
release date,
due date)

M2

M2

M2 M2

Lot 1

Lot 2

...

Sequence-dependent setup times on machines 
Waiting time, e.g. required by temperature changes
Duration depends on family of adjacent steps



11 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Flexible job-shop scheduling with parallel batching

Physical and chemical properties imposes some
maximum time lags between some pairs of lot steps
This is a soft constraint with a violation cost

x

x

Violation cost

a b
V = min( c, c.max(0,x-a)2/(b-a)2 )

c



12 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Lexicographical objective function: 
Criterion 1: minimize total violation of maximum time lags
Criterion 2: minimize weighted tardiness cost of lots

Problem size:
Up to 1000 lots
Up to 5000 lot-steps
Up to 150 machines
Up to 10 candidate machines per lot-step
Time unit is 1mn, schedule horizon is 48h (2880 units)



13 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Lexicographical objective function: 
Criterion 1: minimize total violation of maximum time lags
Criterion 2: minimize weighted tardiness cost of lots

Problem size:
Up to 1000 lots
Up to 5000 lot-steps
Up to 150 machines
Up to 10 candidate machines per lot-step
Time unit is 1mn, schedule horizon is 48h (2880 units)

Try to think how you would solve this problem using your 
favorite tools/techniques (MILP, meta-heuristics, CP, ...)



14 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Preamble: Introductory problem

Lexicographical objective function: 
Criterion 1: minimize total violation of maximum time lags
Criterion 2: minimize weighted tardiness cost of lots

Problem size:
Up to 1000 lots
Up to 5000 lot-steps
Up to 150 machines
Up to 10 candidate machines per lot-step
Time unit is 1mn, schedule horizon is 48h (2880 units)

Try to think how you would solve this problem using your 
favorite tools/techniques (MILP, meta-heuristics, CP, ...)

After this tutorial, you will be able to solve it with a 50 
lines long model achieving excellent performance



15 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Overview

Introduction

Modeling

Examples

Performance

Solving

Tools 

Under the hood

Conclusion



16 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

Why this tutorial ?
CP Optimizer is not known enough in the scheduling 
community:

By people using Mathematical Programming (MILP)
By people using Meta-heuristics
By people using CP
By people working in AI Planning

Sometimes there is a misconception of what it is



17 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

Why this tutorial ?
CP Optimizer is not known enough in the scheduling 
community:

By people using Mathematical Programming (MILP)
By people using Meta-heuristics
By people using CP
By people working in AI Planning

Sometimes there is a misconception of what it is

The messages I will try to convey:
CP Optimizer is easy to try
CP Optimizer is easy to learn
CP Optimizer is easy to use
CP Optimizer is powerful for solving scheduling problems
CP Optimizer is free for students, teachers and researchers
CP Optimizer is fun !



18 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

CP Optimizer comes together with CPLEX and OPL in  
IBM ILOG CPLEX Optimization Studio 

It is free for students, teachers and researchers

Students

Researchers,
teachers,
university staff

StudentsStudents http://ibm.biz/COS_Student

http://ibm.biz/COS_Faculty

http://ibm.biz/COS_Student
http://ibm.biz/COS_Faculty


19 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

Why this tutorial ?
CP Optimizer is not known enough in the scheduling 
community (even if it is getting more and more attention)

Number of citations on Google Scholar for “CP Optimizer” per year



20 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

Different approaches for solving scheduling problems

Mathematical Programming (MILP)
Advantages

Model & run: no need to worry (too much) about how the 
model is solved
Exact algorithm (optimality proof, gap)

Pain-points
Modeling scheduling problems is difficult
Maintaining/extending these complex models is difficult
All classical formulations lead to very large models (time-
indexed, disjunctive, event-based) that often have loose LP 
relaxation and do not scale well

Typical real-world scheduling problems have 1000s 
of activities, not 10s or 100s !



21 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

Different approaches for solving scheduling problems

User-defined Meta-heuristics (LS, GA, GRASP, SWO, ...)
Advantages

May produce excellent quality solutions (depending on 
how smart you are!) 

Pain-points
No clear separation between model and resolution
Implementing/maintaining/extending the code is long, 
difficult and risky
Difficulty to handle complex scheduling constraints 
No quality guarantee (optimality proof, gap)

     In an industrial context, you need a fast assessment of 
      the different approaches. You cannot always afford the 

       time and risks of a PhD working on your specific problem!



22 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

Different approaches for solving scheduling problems

Classical Constraint Programming (integer variables, 
global constraints like ‘disjunctive’ or ‘cumulative’)

Advantages
Modeling is easier than MILP for academic problems
Separation of model and resolution
Exact algorithms (optimality proof) 

Pain-points
Some features may be hard to model (optional activities, 
multi-mode, calendars, batches, setup times, …)
No efficient out of the box generic resolution algorithms 
for scheduling problems (especially for objective functions 
other than ‘makespan’, for large problems, ...)

      Real-world scheduling problems are complex, large and
       involve objective functions with weak propagation (sum)



23 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

The CP Optimizer approach

Model & run
Declarative mathematical model 
No need to worry about the resolution

Introduction of adequate mathematical concepts for 
scheduling problems (intervals, functions)

Modeling is easy
Modeling is fast
Models are compact and maintainable

Good out of the box performance for real world problems

Exact algorithm using hybrid methods



24 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Introduction

The CP Optimizer approach

CP Optimizer 
model

C++

OPL

Python

Java

C# On cloud

Local

Solve

...



25 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

Combinatorial optimization framework (MP, CP, ...)

Constants: parameters defining an instance of problem
Examples: A=0.02

Variables: x with domain D (x ∈ D) 
Examples: x ∈ [0,10], y ∈ {0,1}

Expressions: arithmetical combination of variables
Examples: x-y,  Σ Ai xi ,  x(-A*y),  max(x,y),  x mod y, log(1+|x|)

Constraints: specify illegal combinations of variables 
value

Examples: x≤y,  x+3.7*y ≥ 2.1,  AllDifferent(x,y,z)

Objective function: minimize or maximize a given 
numerical expression

V

K

E

C



26 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

Claim: 

Both MP and classical CP combinatorial optimization 
frameworks are not using the right abstractions to model 
scheduling problems

Numerical decision variables alone (integer, floating 
point) make it hard to capture the essence and the 
structure of scheduling problems … (even with a 
catalogue of more than 400 global constraints in CP)



27 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

Scheduling is about time !



28 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

Scheduling is about time !

Intervals of time



29 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

Scheduling is about time !

Intervals of time

Sequences of intervals



30 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

Scheduling is about time !

Intervals of time

Sequences of intervals

Functions of time



31 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

More details about the motivations and formal description 
of the modeling concepts that follow are available in:

P. Laborie, J. Rogerie. Reasoning with Conditional Time-
Intervals. Proc. FLAIRS-2008, p555-560.

P. Laborie, J. Rogerie, P. Shaw, P. Vilím. Reasoning with 
Conditional Time-Intervals. Part II: An Algebraical Model 
for Resources. Proc. FLAIRS-2009, p201-206. 



32 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

CP Optimizer introduces a few new types of:

… resulting in a new combinatorial optimization 
framework for modeling scheduling problems

VVariable

KConstant

EExpression

CConstraint



33 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

In this section presenting the modeling concepts, I will use 
the following categorization that will be put here  

VVariable

KConstant

EExpression

CConstraint



34 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Constant structures

Piecewise-Linear functions

What for?
Modeling earliness/tardiness costs, temporal preference, ...

Example:
pwlFunction F = 

                piecewise {-0.015->100; 0->200; 1.5->200; 0.01} (100,0); 

Time

100 200

1.0

2.0
Value

K



35 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Constant structures

Stepwise functions

What for?
Modeling resource calendars (breaks, intensity)

Example:
stepFunction F = stepwise {100->100; 50->150; 0->200; 100}; 

Time

100 200

50

100

Value

150

K



36 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Constant structures

Transition distance matrices

What for?
Modeling transition times, travel times, etc. 

Example:
 tuple Dist { int source; int target; int distance; }
 {Dist} DistMatrix = { <0,0,0>,  <0,1,30>, <0,2,45>, ...   }  

K

0 1 2

0 0 30 45

1 25 5 60

2 40 55 0



37 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Interval variables

What for?
Modeling an interval of time during which a particular 
property holds (an activity executes, a resource is idle, a tank 
must remain empty, …)

Example:
dvar interval x in 0..1000000 size 100..200; 

0 1000000

Time

[100,200]

x

V



38 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

dvar interval x in 0..1000000 size 100..200;

Properties: 
The value of an interval variable is an integer interval 
[start,end) 
Domain  of possible values: [0,100), [1,101), [2,102),...
[999900,1000000), [0,101),[1,102),...
Domain of interval variables is represented compactly inside 
CP Optimizer (a few bounds: smin, smax, emin, emax, szmin, 
szmax)

0 1000000

Time

[100,200]

x

V



39 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Optional interval variable

Interval variables can be defined as being optional that is, 
it is part of the decisions of the problem to decide 
whether the interval will be present or absent in the 
solution

What for?
Modeling optional activities, alternative execution modes for 
activities, and … most of the discrete decisions in a schedule

Example:
dvar interval x optional in 0..1000000 size in 100..200

An optional interval variable has an additional possible 
value in its domain (absence value)

V



40 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Optional interval variable

An optional interval variable has an additional possible 
value in its domain (absence value)

Domain of values for an optional interval variable x:

 Dom(x) ⊆  {⊥}  ∪  { [s,e) | s,e ∈ Z, s≤e }

Constraints and expressions on interval variables specify 
how they handle the case of absent intervals (in general it 
is very intuitive) 

Absent interval Interval of integers
(when interval is present)

V



41 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Optional interval variable

An optional interval variable has an additional possible 
value in its domain (absence value)

Domain of values for an optional interval variable x:

 Dom(x) ⊆  {⊥}  ∪  { [s,e) | s,e ∈ Z, s≤e }

Optionality is a fundamental and powerful notion that you 
must learn to leverage in your models (more on this later ...) 
 

Absent interval Interval of integers
(when interval is present)

V



42 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Interval variable size, length and intensity function

What for ?
Modeling cases where the “intensity” of work is not the same 
during the whole interval and the interval requires some 
quantity of work to be done before completion
Activities that are suspended during some time periods (e.g. 
week-end, vacations)

V



43 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Interval variable size, length and intensity function

The length of a (present) interval variable x is e(x)-s(x)

The size of an interval variable is the “ideal” length of the 
interval variable

By default, size=length but an integer stepwise function F 
can be specified when creating an interval variable to 
change this relation (notion of intensity function)

The intensity function F specifies the instantaneous ratio 
(in %) between size and length    

V

e(x)-1 (x ≠⊥)    100*size(x) ≤ ⇒ ∑t=s(x) F(t) < 100*(size(x)+1)



44 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Interval variable size, length and intensity function

Example:  dvar interval x size 125 intensity F

V

e(x)-1 (x ≠⊥)    100*size(x) ≤ ⇒ ∑t=s(x) F(t) < 100*(size(x)+1)

Time

100 200

50

100

Intensity

150

x: size=125
50 250

Area=125*100



45 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables

Interval variable size, length and intensity function

When no intensity function is specified, it is assumed to 
be the constant full intensity function (F=100%), so in this 
case size(x)=length(x)=e(x)-s(x)

V



46 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Forbidden time windows

Some unary constraints on interval variables are available to 
forbid an interval (if present) to start, end or overlap a set of 
fixed time windows

 forbidStart(x, F)
 forbidEnd(x, F)
 forbidExtent(x, F)

If interval x is present, it cannot start (resp. end, overlap) at 
a time t such that F(t)=0

C



47 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Forbidden time windows

F can be the intensity function of the interval variable

Suppose F(t)=0 on week-ends, 100 otherwise

 // Activity x needs 10 work-days and 
 // is suspended during week ends
 dvar interval x size 10 intensity F 

 // Activity x cannot start during week-ends
   forbidStart(x,F)

 // Activity x cannot end during week-ends
 forbidEnd(x,F)

C



48 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Precedence constraints

Same expressivity as Simple Temporal Networks (Dechter, 
Meiri, and Pearl, 1991) (STN)

But temporal constraint definition  ti + zij ≤ tj is reified by 
optional statuses 

Example:

    endBeforeStart(xi, xj, zij) means:

    (xi≠⊥) ∧ (xj≠⊥)     ⇒ e(xi) + zij ≤ s(xj)

xi xj

z
ij

e(x
i
) s(x

j
)

C



49 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Precedence constraints 

Semantics
(xi≠⊥)∧(xj≠⊥) ⇒

Constraint name

endBeforeStart e(xi) + zij ≤ s(xj)
startBeforeStart s(xi) + zij ≤ s(xj)

endBeforeEnd e(xi) + zij ≤ e(xj)
startBeforeEnd s(xi) + zij ≤ e(xj)

endAtStart e(xi) + zij = s(xj)
startAtStart s(xi) + zij = s(xj)

endAtEnd e(xi) + zij = e(xj)
startAtEnd s(xi) + zij = e(xj)

xi xj

zij

xi xj
zij

xi xjzij

xi xj
zij

xi xj

zij

xi xj
zij

xi xjzij

xi xj
zij

Pictogram

C



50 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Precedence constraints 

Precedence constraints are aggregated in a Precedence 
Network (more on this in section “Under the hood”)

Dedicated constraint propagation algorithms
Exploitation of the structure by the automatic search

C



51 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Logical constraints 

Unary presence constraint
        presenceOf(x) means: (x≠⊥)

Logical binary constraints between presence status:
    Examples:
        presenceOf(x) == presenceOf(y)
        presenceOf(x) => presenceOf(y)
        presenceOf(x) => !presenceOf(y)

    Same expressivity as 2-SAT

Of course, other combinations are also possible
        presenceOf(x) && presenceOf(y) => 
                presenceOf(u) || presenceOf(v)

    

x y

x y

x y

C



52 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Logical constraints 

Logical binary constraints are aggregated in a Logical 
Network (more on this in section “Under the hood”)

Dedicated constraint propagation algorithms
Exploitation of the structure by the automatic search

C



53 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: A parenthesis on Complexity

Precedence constraints  (STN) => Polynomial

Logical binary constraints (2-SAT) =>   Polynomial

Precedence + Logical binary      => NP-Hard

Proof is a consequence of the fact temporal disjunction 
between 2 interval variables x,y can be expressed with 
precedence and logical binary constraints only:

x1 y1

x y

x2 y2



54 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: A parenthesis on Complexity

Where the first CP Optimizer model we see is one you 
should never write for solving a real problem ...

x1 y1

x y

x2 y2



55 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: A useful pattern

This CP Optimizer pattern is much more useful  ...

x1 x2 x3 xn...



56 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: A useful pattern

This CP Optimizer pattern is much more useful  …

Chain of optional interval variables:
Only the first ones will be present
Useful for modeling a chain of k intervals, k being unknown

x1 x2 x3 xn...



57 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Expressions over interval variables

What for ?
Build objective functions based on interval variables
Post constraints on interval variables (when there is not a 
more direct way)

Integer expressions:
     startOf(x, V) has value: V if x=⊥, s(x) otherwise
     endOf(x, V) has value: V if x=⊥, e(x) otherwise
     sizeOf(x, V) has value: V if x=⊥, size(x) otherwise
     lengthOf(x, V)  has value: V if x=⊥, e(x)-s(x) otherwise

Parameter V is optional (default value is 0)

Typical example of a makespan objective function:
     minimize max(i in 1..n) endOf(x[i])

E



58 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Expressions over interval variables

What for ?
Build objective functions based on interval variables
Post constraints on interval variables (when there is not a 
more direct way)

Numerical expressions given a piecewise linear function F:
   startEval(x, F, V) has value: V if x=⊥, F(s(x)) otherwise
   endEval(x, F, V) has value: V if x=⊥, F(e(x)) otherwise
   sizeEval(x, F, V) has value: V if x=⊥, F(size(x)) otherwise
   lengthEval(x, F, V)  has value: V if x=⊥, F(e(x)-s(x)) otherwise

Parameter V is optional (default value is 0.0)

E



59 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Expressions over interval variables

Typical example of a temporal preference/cost objective 
function:

     minimize sum(i in 1..n) endEval(x[i], F[i], V[i]) 

V[i] is the non-execution cost of activity x[i]
F[i] is the piecewise linear function of time t representing the 
cost when activity x[i] finishes at t (if executed)

Time

100 200

1.0

2.0
Value

E



60 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Expressions over interval variables

Integer expressions:
     overlapLength(x, y, V) has value: 
 V if (x=⊥)∨(x=⊥)
 | x ∩ y | otherwise
     overlapLength(x, S, E, V) has value: 
 V if (x=⊥) 
 | x ∩ [S,E) | otherwise

Parameter V is optional (default value is 0)

x

y

x

x

E



61 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Expressions over interval variables

These expressions can be mixed with other numerical 
expressions in arbitrarily complex expression trees:

General expressions:
 x*y, k*x, x+y, x+k, x-y, abs(x), min(x,y), max(x,y), … 

Integer expressions:
 x div y, x mod y, 

Floating point expressions:
 ceil(x), floor(x), frac(x), 
 x/y, sqrt(x), exp(x), log(x), pow(x,y), …

Array expressions:
 A[x] where x is an integer expression indexing an array
 A of integer/floating point values/expressions

E



62 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

What for?
Modeling hierarchical problems that can naturally be 
described in terms of And-Or graphs

Manufacturing use-case:
A production order has earliness-tardiness cost and can be 
executed following several alternative recipes. A recipe 
consists of a set of operations with temporal constraints. 
Some operations require setups, transportation using 
secondary resources, etc. Some operations (e.g. testing) or 
the whole production order can be left unperformed but this 
will incur additional cost.

C



63 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

What for?
Modeling hierarchical problems that can naturally be 
described in terms of And-Or graphs

Project scheduling use-case:
A project is decomposed into several tasks with temporal 
constraints. A task is either a leaf task or a sub-project that 
can be decomposed further on. There may be alternative 
ways to decompose a task. A task uses some skilled actors. 
Some tasks have due-date and tardiness cost. Tasks can be 
left unperformed or externalized but this will incur additional 
cost. Some tasks of different sub-project have meeting points 
that can be skipped under cost compensation.

C



64 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

Hierarchical decomposition

Note some similarities with HTN planning

C

order

recipe
op

OR

AND

project

task

sub-proj

OR

AND



65 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

Span constraint (AND node)

 span(x, [y1,…,yn])

If x is present it spans all present intervals from {y1,…,yn} 
that is, at least one of yi supports the start (resp. end) of x

If x is absent, then all yi are absent too

C

x

y2
y1

y4

y3
y5



66 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

Alternative constraint (OR node)

 alternative(x, [y1,…,yn])

If x is present, then exactly one of the {y1,…,yn} is present 
and synchronized with x (same start and end value)

If x is absent, then all yi are absent too

C

x

y2

y1

y4

y3



67 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

Generalized alternative constraint

 alternative(x, [y1,…,yn], k)          k: integer expression

If x is present, then exactly k of the {y1,…,yn} are present 
and synchronized with x (same start and end value)

If x is absent, then all yi are absent too

C

x

y2

y4

y3

y1

k=3



68 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Structural constraints 

Work-breakdown structure with alternative tasks

task

dec



69 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

What for?
Modeling constraints that enforce (among other things) a 
total temporal ordering of a set of interval variables

Examples:
A machine that can only perform one task at a time (job-
shop)
A vehicle that can only visit one location at a time (TSP)



70 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequence Variable

A sequence variable p is defined on a set of interval 
variables {x1,…,xn}

 dvar interval x[i in 1..n] …;
 dvar sequence p in x;

A value of p is a permutation of the present intervals in x

V

x1 x2 x3 x4 x5 x6

x5 x1 x2
x4

x3 x6 Absent
intervals



71 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequence Variable

A sequence variable p is defined on a set of interval 
variables {x1,…,xn}

 dvar interval x[i in 1..n] …;
 dvar sequence p in x;

A value of p is a permutation of the present intervals in x

V

x1 x2 x3 x4 x5 x6

x5 x1 x2
x4

x3 x6 Absent
intervals

      So far, the order in the permutation p does not imply any 
temporal ordering



72 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequencing constraints

Sequencing constraints are unary constraints on a 
sequence variable p

first(p,x) : if x is present it is the first one in the 
permutation
last(p,x) : if x is present it is the last one in the 
permutation
prev(p,x,y) : if both x and y are present, x appears right 
before y in the permutation
before(p,x,y) : if both x and y are present, x appears 
somewhere before y in the permutation

C



73 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequencing constraints

dvar interval x[i in 1..3] optional;
dvar sequence p in x;

constraints {
   presenceOf(x[2])
}

C

Domain of variable p
{ 
  (x2), 
  (x1→x2),
  (x2→x1),
  (x2→x3),
  (x3→x2),
  (x1→x2→x3),
  (x1→x3→x2),
  (x2→x1→x3),
  (x2→x3→x1),
  (x3→x1→x2),
  (x3→x2→x1)
}



74 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequencing constraints

dvar interval x[i in 1..3] optional;
dvar sequence p in x;

constraints {
   presenceOf(x[2])
   first(p, x[1]);
}

C

Domain of variable p
{ 
  (x2), 
  (x1→x2),
  (x2→x1),
  (x2→x3),
  (x3→x2),
  (x1→x2→x3),
  (x1→x3→x2),
  (x2→x1→x3),
  (x2→x3→x1),
  (x3→x1→x2),
  (x3→x2→x1)
}



75 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequencing constraints

dvar interval x[i in 1..3] optional;
dvar sequence p in x;

constraints {
   presenceOf(x[2])
   first(p, x[1]);
   before(p, x[2], x[3]);
}

C

Domain of variable p
{ 
  (x2), 
  (x1→x2),
  (x2→x1),
  (x2→x3),
  (x3→x2),
  (x1→x2→x3),
  (x1→x3→x2),
  (x2→x1→x3),
  (x2→x3→x1),
  (x3→x1→x2),
  (x3→x2→x1)
}



76 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequencing constraints

dvar interval x[i in 1..3] optional;
dvar sequence p in x;

constraints {
   presenceOf(x[2])
   first(p, x[1]);
   before(p, x[2], x[3]);
   prev(p, x[1], x[3]);
}

C

Domain of variable p
{ 
  (x2), 
  (x1→x2),
  (x2→x1),
  (x2→x3),
  (x3→x2),
  (x1→x2→x3),
  (x1→x3→x2),
  (x2→x1→x3),
  (x2→x3→x1),
  (x3→x1→x2),
  (x3→x2→x1)
}



77 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

No-Overlap constraint 

Let p be a sequence variable. No-overlap constraint 
noOverlap(p) means that p represents a chain of non 
overlapping interval variables

If both x and y are present and x is before y in sequence p, 
then x is constrained to end before the start of y

x5 x1 x2
x4

x3 x6 Absent
intervals

x5 x1 x3 x6

C



78 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Example: Job-shop scheduling problem 

op11 op12 op13
M1

M2

M3

op21 op22 op23

op31 op32 op33

op41 op42 op43



79 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: A parenthesis on performance of this model

Job-shop scheduling is a heavily studied problem: more 
than 60.000 references on Google Scholar (using MIP, CP 
and many meta-heuristics)

Still, CP Optimizer was able to improve some lower and 
upper bounds on famous open instances (CPAIOR-2015) 



80 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: A parenthesis on performance of this model

A detailed comparison with different MIP models was 
performed in [1]:

[1] W-Y. Ku, J. C. Beck. Mixed Integer Programming models for job shop 
scheduling: A computational analysis. Computers & Operations Research, Vol. 
73, pp165-173, 2016. 



81 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

No-Overlap constraint with transition distance matrix 

At creation time of a sequence variable, each interval 
variable can be associated an integer type

 int T[i in 1..n] = …;
 dvar interval x[i in 1..n] …;
 dvar sequence p 
 in        all(i in 1..n) x[i] 
 types all(i in 1..n) T[i];

Types will be used to index transition matrices

C

x1 x2 x3 x4 x5 x6

T1 T2 T3 T4 T5 T6



82 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

No-Overlap constraint with transition distance matrix 

Let p be a sequence variable and M a transition matrix. 
No-overlap constraint noOverlap(p,M,direct) means that p 
represents a chain of non overlapping interval variables 
with transition distance M in between consecutive intervals

Boolean parameter direct tells if the transition distance is 
only applied to direct successors (direct=true) or also to 
indirect ones (direct=false, default)

C



83 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

No-Overlap constraint with transition distance matrix 

noOverlap(p,M,true) 

x5 x1 x3 x6

C

0 1 2

0 0 30 35

1 15 5 60

2 40 55 0

x5 x1 x3 x6
1 0 2 0

15 35 40



84 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

No-Overlap constraint with transition distance matrix 

noOverlap(p,M,false) 

x5 x1 x3 x6

C

0 1 2

0 0 30 35

1 15 5 60

2 40 55 0

x5 x1 x3 x6
1 0 2 0

15 35 40

60



85 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

No-Overlap constraint with transition distance matrix 

Note that if M satisfies the triangle inequality, 
noOverlap(p,M,false) and noOverlap(p,M,true)  are 
equivalent 

C



86 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Example: Vehicle Routing Problem with Time Windows



87 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Sequence expressions

Integer expressions to get the type/start/end/length/size 
of the interval variable that is next/previous to an interval 
variable x in a sequence p

 typeOfNext(p, x, l, v)

Integer l is the value of the expression if x is present and is 
the last interval in sequence p
Integer v is the value of the expression if interval x is 
absent (default: 0)

Similar integer expressions:
 startOfNext, endOfNext, sizeOfNext, lengthOfNext,
  startOfPrev, endOfPrev, sizeOfPrev, lengthOfPrev, 
 typeOfPrev

E



88 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

What for ?

A typical use-case is for expressing transition costs



89 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Same-sequence and Same-common-subsequence constraints

What for ?
Modeling First-in/First-out and No-bypass constraints in some 
physical systems (trains on single-line railways, items on a 
conveyor belt)
Stochastic scheduling: scenario-based approaches for 
scheduling with uncertainties with the objective to build robust 
sequences

C



90 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Same-sequence and Same-common-subsequence constraints

 sameSequence(px,py)

C

x5 x1 x3 x6x4

y5 y1 y3 y6y4



91 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Same-sequence and Same-common-subsequence constraints

 sameCommonSubsequence(px,py)

C

x5 x1 x3x4

y5 y3 y6y4



92 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Same-sequence and Same-common-subsequence constraints

 No-bypass constraint (e.g. conveyor belts, train scheduling)

C

M1

M1’

M4

M4’

M2 M3

sameCommonSubsequence(p1,p2)
sameCommonSubsequence(p1’,p2)

sameCommonSubsequence(p3,p4)
sameCommonSubsequence(p3,p4’)

sameSequence(p2,p3)



93 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Same-sequence and Same-common-subsequence constraints

Stochastic scheduling: sequences as 1st stage variables in 2-
stage stochastic programming

C

∀i∈[1,n]: sameSequence(p,pi)

master

scenario 1

scenario 2

scenario 3

scenario n

p

p1

p2

p3

pn

cost1

cost2

cost3

costn

cost = 1/n * ∑i∈[1,n] costi 



94 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

To summarize:

Variable: sequence variable p

Constraints:
first(p,x)
last(p,x)
prev(p,x,y)
before(p,x,y)

noOverlap(p)
noOverlap(p,M)

sameSequence(p1,p2)
sameCommonSubsequence(p1,p2)

Expressions:
typeOfNext(p,x,l,v)
startOfNext(p,x,l,v)
endOfNext(p,x,l,v)
sizeOfNext(p,x,l,v)
lengthOfNext(p,x,l,v)

Similar ones with Prev



95 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Why introducing new types of variables and expressions 
when a new constraint (disjunctive) could be enough ?

Think how you would model:

Transition distance
Add new constraint variants with a transition matrix ?

Transition costs
Add a cost matrix (same as transition distance?) and a total 
cost expression (sum)

What if the costs are not aggregated with a sum ?

What if you additionally need next/prev variables to 
express more complex constraints ?

How to model the equivalent of a sameSequence ? 



96 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Interval variables sequencing 

Why introducing new types of variables and expressions 
when a new constraint (disjunctive) could be enough ?

The notion of a sequence variable provides a common 
structure on which independent aspects of complex 
sequencing can be posted

This structure can be exploited by the automatic search 



97 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

What for?
The value of a cumul function expression represents the 
time evolution of a quantity (e.g. level of an inventory) that 
can be incrementally changed (increased or decreased) by 
interval variables

Examples:
The number of workers of a given type 
The level of an inventory



98 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

The individual contribution of an interval variable x to a 
cumul function expression is called an elementary cumul 
function

An elementary cumul function is a cumul function 
expression

Example:

 cumulFunction y = sum(i in 1..n) pulse(x[i], 1)

E

Time

1

x

0

pulse(x, 1)



99 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Elementary cumul functions

E

h

x
0

pulse(x, h)

h

x
0

stepAtStart(x, h)

h

x
0

stepAtEnd(x, h)

h1

x

pulse(x, h1, h2)

x

stepAtStart(x, h1, h2)

x

stepAtEnd(x, h1, h2)

h2

h1

h2

h1

h2



100 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Elementary cumul functions
All these elementary cumul functions on an interval variable x 
are the null function (null contribution) when x is absent 
There are also some constant elementary cumul functions:

A cumul function expression f is the algebraic sum of 
elementary cumul functions fi or their negation:

 f = Si ei⋅fi   with ei ∈ {-1,+1}

h

0

pulse(u, v, h)
h

0

step(u, h)

u v u

E



101 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Note the similarity:
On scalar expressions:

 y = sum(i in 1..n) C[i] * presenceOf(x[i])
 y is a numerical expression

We add the temporal dimension of scheduling and we 
naturally have similar expressions on functions:

 y = sum(i in 1..n) pulse(x[i], C[i])
 y is a (cumul) function expression

E



102 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Example of cumul function:

   cumulFunction f = pulse(x,4) – pulse(y,2) + stepAtEnd(z,3)

Value of the cumul function expression at a solution:

E

z

x

y

1
0

2
3
4



103 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Constraints on cumul function expressions

   int h = …
 cumulFunction f = …
  f <= h

1
0

2
3
4

C



104 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Constraints on cumul function expressions

   dvar int h = …
 cumulFunction f = …
  f <= h

1
0

2
3
4

C



105 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Constraints on cumul function expressions

   int s, e, hmin, hmax = …
 cumulFunction f = …
  alwaysIn(f, s, e, hmin, hmax)

1
0

2
3
4

s e

C



106 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Constraints on cumul function expressions

   int hmin, hmax = …
 cumulFunction f = …
  alwaysIn(f, x, hmin, hmax)

x

1
0

2
3
4

C



107 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Example: Resource-constrained project scheduling (RCPSP)

a1

a3

a2

a6

a5

a4

a7

a8

R1

R2



108 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions

Like Job-shop scheduling, RCPSP is a heavily studied 
problem

Still, CP Optimizer was able to improve some lower and 
upper bounds on famous (though not very realistic) 
instances (CPAIOR-2015) 



109 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Example: Intervals when a cumulative resource is in use 



110 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Example: Intervals when a cumulative resource is in use 

a1

a3

a5

a6

a2

a7

a4

fa

w1 w2 w3

fw



111 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Cumul height expressions

Integer expressions are available to get the contribution 
of a given interval variable x to a cumul function f at its 
start or end point (with default value v if x is absent) 

 heightAtStart(f, x, v)
 heightAtEnd(f, x, v)

This is useful to constrain the height of an elementary 
cumul function

h1

x

pulse(x, h1, h2)
h2

E



112 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions

To summarize:

Expression: cumul function f = Si ei⋅fi   with ei ∈ {-1,+1}
 fi are elementary cumul functions: 
 pulse(x,h), pulse(x,h1,h2),
 stepAtStart(x,h), stepAtStart(x,h1,h2),
 stepAtEnd(x,h), stepAtEnd(x,h1,h2),
 pulse(u,v,h), step(u,h)

Constraints:
f <= h
alwaysIn(f, s, e, hmin, hmax)
alwaysIn(f, x, hmin, hmax)

Expressions:
heightAtStart(f,x,v)
heightAtEnd(f,x,v)



113 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Why introducing new types of expressions when a new 
constraint (cumulative) could be enough ?

Think how you would model:

The mix of pulse and startAtStart/End with +/- sign
Add new constraint variants with types/sign of the 
elementary functions ?

The different types of alwaysIn constraints 

The algebra on cumul functions
We currently have +, - but we could make it richer in the 
future



114 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Cumul functions 

Why introducing new types of expressions when a new 
constraint (cumulative) could be enough ?

The notion of a cumul function provides a common 
structure on which independent aspects of complex 
cumulative scheduling can be posted

This structure can be exploited by the automatic search 



115 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

What for?
The value of a state function variable represents the time 
evolution of a value (e.g. state/configuration of a resource) 
that can be changed/required by interval variables
Two interval variables requiring incompatible states cannot 
overlap
Two interval variables requiring compatible states can 
(optionally) be batched together

Examples:
Tool installed on a machine
Temperature of an oven
Type of raw material present in a tank



116 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

The value of a state function variable is a set of non-
overlapping segments over which the function maintains 
a constant non-negative integer state. In between those 
segments, the state of the function is not defined. 

For instance for an oven with 3 possible temperature 
levels (0,1,2) we could have the following time evolution:

 [start = 0, end = 100): state=0
 [start = 140, end = 300): state=1
 [start = 320, end = 500): state=2
 [start = 540, end = 600): state=2 

V

100 200 300 400 5000

0
1
2

f



117 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

State function variable declaration

 stateFunction f

State function with transition distance matrix M specifying 
distance between consecutive segments of value i and j

 stateFunction f with M

Note that, unlike cumul functions, state functions are 
variables, not expressions: they are not defined from a 
set of interval variables

The value of the state function will be decided by the 
engine so as to satisfy all the constraints on the state 
function 

V



118 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Over an interval variable x (if present), state function f is 
always defined and its state is v:

 alwaysEqual(f, x, v)

C

100 200 300 400 5000

0
1
2

f

x alwaysEqual(f, x, 1)



119 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Notion of a start and end alignment with respect to the 
segment of the state function: 

 alwaysEqual(f, x, v, true, false)

C

100 200 300 400 5000

0
1
2

f

x alwaysEqual(f,x,1, true, false)

start-aligned interval variable



120 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Notion of a start and end alignment with respect to the 
segment of the state function: 

 alwaysEqual(f, x, v, false, true)

C

100 200 300 400 5000

0
1
2

f

x alwaysEqual(f,x,1, false, true)

end-aligned interval variable



121 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Notion of a start and end alignment with respect to the 
segment of the state function: 

 alwaysEqual(f, x, v, true, true)

C

100 200 300 400 5000

0
1
2

f

x alwaysEqual(f,x,1, true, true)

start and end-aligned interval variable



122 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Over an interval variable x (if present), state function f is 
always defined and has a constant (not specified) state:

 alwaysConstant(f, x)

C

100 200 300 400 5000

0
1
2

f

x alwaysConstant(f, x)



123 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Over an interval variable x (if present), state function f is 
always defined and has a constant (not specified) state:

 alwaysConstant(f, x)

C

100 200 300 400 5000

0
1
2

f

xalwaysConstant(f, x)



124 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Notion of a start and end alignment with respect to the 
segment of the state function: 

 alwaysConstant(f, x, true, true)

C

100 200 300 400 5000

0
1
2

f

x alwaysConstant(f,x, true, true)

start and end-aligned interval variable



125 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Notion of a start and end alignment with respect to the 
segment of the state function: 

 alwaysConstant(f, x, true, true)

C

100 200 300 400 5000

0
1
2

f

xalwaysConstant(f,x, true, true)

start and end-aligned interval variable



126 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Over an interval variable x (if present), state function f is 
always not defined:

 alwaysNoState(f, x)

C

100 200 300 400 5000

0
1
2

f

x alwaysNoState(f, x)



127 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions
Over an interval variable x (if present), state function f, if 
defined is always in range [vmin,vmax]:

 alwaysIn(f, x, vmin, vmax)

C

100 200 300 400 5000

0
1
2

f

xalwaysIn(f, x, 1, 2)



128 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Constraints on state functions

100 200 300 400 5000

0
1
2

x1

x3

y0 y1 y23y21

alwaysEqual(f, x1, 1, true, false) alwaysEqual(f, x2, 2)

x2

Transition distance

y22

z

f

alwaysConstant(f, y1, true, true)

alwaysNoState(f, z)

C



129 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables 

Example: simplified semiconductor manufacturing machine



130 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: State function variables

To summarize:

Variable: state function f [with M]

Constraints:

alwaysEqual(f, x, v, sal, eal) alwaysEqual(f, s, e, v, sal, eal)
alwaysConstant(f, x, sal, eal) alwaysConstant(f, s, e, sal, eal)
alwaysNoState(f, x) alwaysNoState(f, s, e)
alwaysIn(f, x, vmin, vmax) alwaysIn(f, s, e, vmin, vmax)



131 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling: Wrap-up

CP Optimizer has mathematical concepts that naturally 
map to features invariably found in industrial scheduling 
problems 

Interval variables
Optional activities 

Over-constrained problems
Resource alloc. / alternatives
Work-breakdown structures 

Earliness/tardiness costs

Unary resources 
Setup times/costs 
Travel times/costs

Cumulative resources
Inventories
Reservoirs

Aggregation of individual 
costs (max, weighted sum, 

Net Present Value)

Parallel batches,
Activity incompatibilities

General arithmetical 
expressions

Cumul functions

State functions

Sequence variables

Constant functions
Resource calendars 
Resource efficiency



132 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Modeling

We have seen most of the scheduling concepts provided 
by CP Optimizer for modeling scheduling problems

As in CP Optimizer “modeling is the only thing that 
matters” we could as well stop here …

But we will do a few additional laps ...



133 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Overview

Introduction

Modeling

Examples

Performance

Solving

Tools 

Under the hood

Conclusion



134 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Examples

Flow-shop with earliness and tardiness costs

Multi-Mode RCPSP

Satellite communication scheduling

Semiconductor manufacturing scheduling

GEO-CAPE Observation scheduling
Presentation at this ICAPS conference :

 P. Laborie, B. Messaoudi. New Results for the GEO-CAPE
 Observation Scheduling Problem

Tomorrow, Session Applications II, 3:45-4:45 p.m.



135 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Flow-shop with earliness and tardiness costs

Classical Flow-Shop Scheduling problem:
n jobs, m machines

Job release dates ( ), due dates ( ) and weight

op[1,1] op[1,2] op[1,3]

op[2,1] op[2,2] op[2,3]

op[3,1] op[3,2] op[3,3]

op[1,1] op[1,2] op[1,3]

op[2,3]

op[3,1] op[3,2] op[3,3]

op[2,1] op[2,2]



136 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Flow-shop with earliness and tardiness costs



137 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Flow-shop with earliness and tardiness costs

Decision variables: 
  operations op[i][j] modeled as 
  interval variables of size pt[i][j]

Objective:
  minimize weighted sum of deviation
  from due date of each job



138 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Flow-shop with earliness and tardiness costs

Decision variables: 
  operations op[i][j] modeled as 
  interval variables of size pt[i][j]

Constraints:
  for each job i: 

● release dates rd[i]
● precedence constraints

  for each machine j:
● operations do not overlap 

on the machine



139 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Flow-shop with earliness and tardiness costs

Benchmark used in E. Danna and L. Perron.  Structured v.s. 
Unstructured Large Neighborhood Search: a Case Study 
on Job-shop Scheduling Problems with Earliness and 
Tardiness Costs. In Proc. CP-2003. 

Comparison against state-of-the-art (CPAIOR-2009)

Average improvement 
Against GA: 25%
Against specific LNS: 1.7%



140 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Flow-shop with earliness and tardiness costs

Benchmark used in E. Danna and L. Perron.  Structured v.s. 
Unstructured Large Neighborhood Search: a Case Study 
on Job-shop Scheduling Problems with Earliness and 
Tardiness Costs. In Proc. CP-2003. 

Comparison against state-of-the-art (CPAIOR-2009)

Average improvement 
Against GA: 25%
Against specific LNS: 1.7%

Updated results (V12.7.1)
      : optimality proof

0.508
0.102
0.695
0.437
0.387

31%
8.6%



141 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Extension of RCPSP:
A task uses both renewable and non-renewable resources
Each task can be performed according to several alternative 
modes
A mode specifies the task duration and some particular 
resource usage

a1
a3

a2

a6

a5

a4

a7

a8



142 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Extension of RCPSP:
A task uses both renewable and non-renewable resources
Each task can be performed according to several alternative 
modes
A mode specifies the task duration and some particular 
resource usage

a

R1

R2

mode1
NR1

NR2

mode2 mode3



143 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP



144 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Data reading: 
  tasks data: 
     task id
     successors 
  modes data: 
     task id
     processing time
     renewable resources usage
     non-renewable resources usage



145 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Decision variables: 
    task[t]: task intervals 
     mode[m]: mode intervals 
                        (optional)

Objective:
  minimize makespan



146 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Decision variables: 
    task[t]: task intervals 
     mode[m]: mode intervals 
                        (optional)

Constraints:
• alternative modes for a task
• precedence constraints



147 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Constraints:
● renewable res. capacity
● non-renewable res. capacity

Renewable resource usage 
expressions

Non-renewable resource usage 
expressions



148 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

Constraints:
● renewable res. capacity
● non-renewable res. capacity

Renewable resource usage 
expressions

Non-renewable resource usage 
expressions

Note the similar formulation of 
(atemporal) non-renewable 

resources and (temporal) 
renewable resources 



149 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Multi-Mode RCPSP

CP Optimizer won the CP-2015 Industrial Modelling 
Competition with a very similar model



150 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

USAF Satellite Control Network scheduling problem 
described in L. Kramer, L. Barbulescu and S. Smith.  
Understanding Performance Trade-offs in Algorithms for 
Solving Oversubscribed Scheduling. In Proc. AAAI-2007. 

A set of n communication requests for Earth orbiting 
satellites must be scheduled on a total of 32 antennas 
spread across 13 ground-based tracking stations.

Different priority level for requests

Objective is to maximize the number of satisfied requests, 
starting with highest priority requests (lexicographical) 

In the instances, n ranges from to 400 to 1300



151 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Station 1
Station 2

Station 3

Taski

Alti,1

Alti,2 Alti,3

Alternative assignments
to stations  time windows

Alti,4

OR



152 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Station 1
Station 2

Station 3

Alti,1

Alti,2 Alti,3

Selected alternative will use
1 antenna for communication 
with the satellite

Alti,4

Taski



153 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling



154 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Data reading: 
  resources (stations)
  tasks
  alternatives



155 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Decision variables: 
    task[t]: task intervals
                       (optional) 
     alt[a]:  alternative
                       intervals (optional)

Objective:
  maximize number of executed
  tasks by lexicographical order
  of priority



156 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Decision variables: 
    task[t]: task intervals
                       (optional) 
     alt[a]:  alternative
                       intervals (optional)

Constraints: 
   each task (if executed)
   must be allocated one of
   its alternatives



157 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Decision variables: 
    task[t]: task intervals
                       (optional) 
     alt[a]:  alternative
                       intervals (optional)

Constraints: 
   capacity of resources
   (number of antennas)
   must never be exceeded



158 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Experimental results (CPAIOR-2009)

In average, compared with SWO, the number of 
unscheduled tasks is decreased by 5.3%



159 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Taste of the different APIs

C++

OPL

Python

Java

C#



160 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Taste of the different APIs

C++

OPL

Python

Java

C#



161 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Satellite communication scheduling

Taste of the different APIs

C++

OPL

Python

Java

C#



162 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

This is the introductory problem

Wafer lots
(size, priority,
release date,
due date)

Step 1 Step 2 ...Lot 1

Lot 2

...

Each step has to be scheduled on a machine,
Possible machines for a given step depend on its
family (here, its color) 



163 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

This is the introductory problem

Wafer lots
(size, priority,
release date,
due date)

Step 1 Step 2 ...Lot 1

Lot 2

...

A machine specifies the step families it can process
and a family-dependent processing time
Example: M1 can process       and 

M2 can process           and     



164 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

This is the introductory problem

Wafer lots
(size, priority,
release date,
due date)

M2

M2

M2 M2

Lot 1

Lot 2

...

Steps of the same family can be processed together
on the same machine (batch)
Batched steps start and end at the same time
Batching capacity: max. number of waffers



165 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

This is the introductory problem

Wafer lots
(size, priority,
release date,
due date)

M2

M2

M2 M2

Lot 1

Lot 2

...

Sequence-dependent setup times on machines 
Waiting time, e.g. required by temperature changes
Duration depends on family of adjacent steps



166 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

This is the introductory problem

Physical and chemical properties imposes some
maximum time lags between some pairs of lot steps
This is a soft constraint with a violation cost

x

x

Violation cost

a b
V = min( c, c.max(0,x-a)2/(b-a)2 )

c



167 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

This is the introductory problem

Lexicographical objective function: 
Criterion 1: minimize total violation of maximum time lags
Criterion 2: minimize weighted tardiness cost of lots

The Promise:

After this tutorial, you will be able to solve it with a 50 lines 
long model achieving excellent performance



168 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling



169 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling
Data reading: 
  lots
  steps
  time lags
  machines 
  setup times



170 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

Decision variables: 
  lot[l]         : lot interval variable
  step[s]   : step interval variable 
  mchStp[ms]: step on a given 
                            machine (optional)

  lag[d]    : time lag 
                           (integer variable)



171 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

Decision variables: 
  lot[l]         : lot interval variable
  step[s]   : step interval variable 
  mchStp[ms]: step on a given 
                            machine (optional)

  lag[d]    : time lag 
                           (integer variable)

Lexicographical objective:
  1. time lag violation
  2. weighted tardiness



172 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

Decision variables: 
  lot[l]         : lot interval variable
  step[s]   : step interval variable 
  mchStp[ms]: step on a given 
                            machine (optional)

  lag[d]    : time lag 
                           (integer variable)

Constraints:
  - each lot spans its steps
  - precedence constraints
  - time lags



173 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

Decision variables: 
  lot[l]         : lot interval variable
  step[s]   : step interval variable 
  mchStp[ms]: step on a given 
                            machine (optional)

  lag[d]    : time lag 
                           (integer variable)

Constraints:
  - alternative machine for a step



174 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

Decision variables: 
  mchStp[ms]: step on a given 
                            machine (optional)

  batch[m]  : state function
                            describing the family
                            processed by machine 
                            m

Constraints:
  - machine batches with steps 
     of a given family



175 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

Decision variables: 
  mchStp[ms]: step on a given 
                            machine (optional)

Constraints:
  - machine capacity

Cumul function expression:
  - machine load



176 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Semiconductor manufacturing scheduling

A very similar CP Optimizer model was recently studied in 
A. Ham and E. Cakici. Flexible job shop scheduling 
problem with parallel batch processing machines: MIP 
and CP approaches. Computers & Industrial Engineering, 
vol 102, p160-165. 2016. 

“[We] also provide the reasons why CP would be soon welcomed by the 
practitioners. Firstly, CP’s natural formulation is closer to the problem 
description than the restricted linear programming formulation. 
Secondly, a concise CP code provides a flexibility and scalability to 
practitioners. Thirdly, unlike meta-heuristics which are tailor-made 
requiring a fine tuning of parameters to reach at the best performance, 
CP is off-the-rack. Namely, practitioners provide a high level description 
of the problem only. All settings of search algorithms and detailed 
tunings are automatically done by CP engine. Finally, CP outperforms 
MIP in the scheduling problems as we demonstrate in this study.”



177 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Best Practices for modeling

As for Mathematical Programming, there are many 
different ways to model the same problem using the CP 
Optimizer modeling concepts … and all the formulations 
are not equivalent in terms of performance …

For complex problems, coming up with the most efficient 
formulation is still an art but there are a few guidelines 
that can help

The best practices that follow are not guaranteed to 
always work, nothing replaces experience and creativity!

They mostly tend to implement 2 meta-advices:
Factorize everything that can get factorized in the model
Exploit the power of the scheduling concepts (optionality, 
functions of time)



178 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Best Practices for modeling

A measure of complexity of a model:
Number of variables
Number of groups of variables with different semantics
Number of variable types (integer / interval variables)

Take advantage of the expressiveness of the CP Optimizer 
modeling language to compact the model by decreasing 
the above indicators

In particular if in a scheduling model, you are creating 1 
decision variable for each time point t you are usually in 
bad shape

Exploit the scheduling concepts to reason on time-lines 
(sequence variables, cumul functions, state functions) and 
avoid an explicit representation of time



179 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Best Practices for modeling

A measure of complexity of a model is the number of 
constraints

If the number of constraints grows more than linearly with 
the number of variables or the size of variables domains, 
the model will probably not scale well

Furthermore, if a set of many small constraints can be 
reformulated more compactly, this often leads to stronger 
inference in the engine

Example: when you need to model activities (and more 
generally intervals of time) that -under some conditions- 
cannot overlap, think of using sequence variables, 
noOverlap constraints and/or state functions



180 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Best Practices for modeling

Be careful when using composite constraints: in scheduling 
models, exploit optionality of interval variables

Examples :
 presenceOf(a)*endOf(a)+(1-presenceOf(a))*K     USE:  endOf(a,K)
 presenceOf(a) => (10<=startOf(a))          USE: 10<=startOf(a,10)

Remarks:
Exception: binary logical constraints on presence status (like 
presenceOf(a) => presenceOf(b)) are handled in a special 
(and efficient) way in the engine
Except for constraint “presenceOf”, all constraints on 
scheduling constructs (interval and sequence variables, cumul 
and state functions) cannot be used in composite constraints



181 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Best Practices for modeling

Be careful when using composite constraints: in scheduling 
models, exploit optionality of interval variables

In case of composite constraints switching between 
different cases, use optional interval variables and 
alternative:

 (x==1) =>  ( lengthOf(a)==10 && heightAtStart(a,f)==5 )
 (x==2) =>  ( lengthOf(a)==30 && heightAtStart(a,f)==2 )
 (x==3) =>  ( lengthOf(a)==70 && heightAtStart(a,f)==1 )

    USE:  3 optional intervals a1, a2 a3 and alternative(a,[a1,a2,a3]) 

More generally, try to capture most of the non-temporal 
decisions by Boolean presence statuses only



182 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving

In OPL IDE: Press the solve button !

In the other APIs: Call a function solve() !



183 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: properties

Search is complete

Search is anytime

Search is parallel (unless stated otherwise)

Search is randomized
Internally, some ties are broken using random numbers
The seed of the random number generator is a parameter of 
the search

Search is deterministic
Solving twice the same problem on the same machine (even 
when using multiple parallel workers) with the same seed for 
the internal random number generator will produce the 
same result
Determinism of the search is essential in an industrial context 
and for debugging



184 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance on classical scheduling benchmarks

Results published in CPAIOR-2015 (using V12.6)
Job-shop 

15 instances closed out of 48 open ones
Job-shop with operators 

208 instances closed out of 222 open ones
Flexible job-shop

74 instances closed out of 107 open ones
RCPSP

52 new lower bounds
RCPSP with maximum delays

51 new lower bounds out of 58 instances
Multi-mode RCPSP

535 instances closed out of 552
Multi-mode RCPSP with maximum delays

All 85 open instances of the benchmark closed



185 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance evaluation

We have seen quite a few scheduling models so far:

Job-shop
VRPTW
RCPSP
Flow-shop w/ E/T
Multi-Mode RCPSP
Satellite communication
Semi-conductor manufacturing



186 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance evaluation

We have seen quite a few scheduling models so far:

As of June 2017, our performance evaluation benchmark 
contains 137 different scheduling models tested on a total 
of 3264 instances

Job-shop
VRPTW
RCPSP
Flow-shop w/ E/T
Multi-Mode RCPSP
Satellite communication
Semi-conductor manufacturing



187 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance evaluation

The benchmark collects problems from different sources:
Classical problems (job-shop, RCPSP, …)
New problems proposed in academic papers
Industrial scheduling problems from:

Customers
Business partners
End users

Problems discussed on our Optimization forum
…

Problems are quite diverse
Size range: 30 to 1.000.000 interval variables
Resource types: disjunctive, cumulative
Objective functions: makespan, weighted earliness/tardiness, 
resource allocation costs, activity non-execution penalties, 
resource transition costs, ...



188 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance evaluation

The benchmark is mostly used to monitor the 
performance of the automatic search

Though the search is complete, it is (still) not able to solve 
all problems to optimality 

Each problem instance is run with a given time-limit on a 
given number of random seeds (search is randomized)

Two versions of the search algorithm A and B are 
compared by computing a speed-up ratio that estimates 
how much faster the best algorithm (say A) finds a 
solution equivalent to the best solution found by the 
worst algorithm (here, B)

Speed-up ratios are aggregated on the different problem 
instances to compute an average speed-up ratio 



189 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance evaluation

Example

V12.7.1
V12.7

Problem: job-shop with earliness/tardiness
Instance: BFS_LT_2_20x10.cpo 



190 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance evolution



191 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Performance

Flow-shop with earliness and tardiness costs
Speed-up ratio between 12.2 and 12.7.1: x 329.8 

Multi-Mode RCPSP
Speed-up ratio between 12.2 and 12.7.1: x 8.6

Satellite communication scheduling
Speed-up ratio between 12.2 and 12.7.1: x 4.9

Semiconductor manufacturing scheduling
Speed-up ratio between 12.7 and 12.7.1: x 2.1

GEO-CAPE Observation scheduling 
Speed-up ratio between 12.7 and 12.7.1: x 3.5

+132 other scheduling models
Average speed-up ratio between 12.2 and 12.7.1: x 6.3



192 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: influencing the search

Three concepts can be used to influence the search

Search parameters

Search phases

Starting points



193 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: influencing the search

Search parameters (the most useful ones)

TimeLimit = t  [+∞] (in seconds)

TemporalRelaxation = On | Off

XXXInferenceLevels = Low | Basic | Medium | Extended

SearchType = Restart | DepthFirst | MultiPoint

Workers = n  [#cores]

LogPeriod = n  [1000]

RandomSeed = n  [1]



194 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: influencing the search

Search phases

A search phase P is a subset of decision variables of the 
same type (integer, interval, sequence)

The search can be passed a list of search phases P1,P2,…,Pn 
it will give it a hint to try to fix all variables in Pi before fixing 
the ones in Pi+1. Variables that do not appear in any search 
phase are fixed in the end.



195 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: influencing the search

Search phases

A search phase P is a subset of decision variables of the 
same type (integer, interval, sequence)

The search can be passed a list of search phases P1,P2,…,Pn 
it will give it a hint to try to fix all variables in Pi before fixing 
the ones in Pi+1. Variables that do not appear in any search 
phase are fixed in the end.

a1

a3

a5

a6

a2

a7

a4

fa

w1 w2 w3

fw

cp.setSearchPhases(a)



196 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: influencing the search

Starting point

The search can be specified a starting point solution as 
input

Use cases:
Search process has been interrupted; restart from last solution
A problem specific heuristic is available to provide a solution 
to start from
Multi-objective lexicographical objective: minimize f1, then 
minimize f2 with some constraint on f1, …
When hard to find a feasible solution: start from a relaxed 
problem that minimizes constraint violation
Solving very similar successive models, for instance in dynamic 
scheduling, in re-scheduling 



197 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Solving: influencing the search

Starting point

The search can be specified a starting point solution as 
input

If the starting point is feasible and complete, the search is 
guaranteed to first visit this solution

Otherwise, the information in the starting point is used as a 
heuristic guideline for the search 



198 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools

Process for building an optimization engine for an 
application

Design 
optimization

model
Model

Data

Formal 
problem
definition

Solution



199 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools

Process for building an optimization engine for an 
application

Reality of industrial projects is more complex

Design 
optimization

model
Model

Crunched
data

Formal 
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal 
problem
definition



200 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools

Process for building an optimization engine for an 
application

Reality of industrial projects is more complex

Design 
optimization

model
Model

Crunched
data

Formal 
problem
definition

Solution

Define the
problem

Data sources

Data
crunching

Informal 
problem
definition

Strongly i(n)tera(c)tive process



201 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools

Typical questions/issues arising during model design
How does my current model look like when instantiated on 
some data ?
Does it contains some weird things I’m not aware of ?
Why is it infeasible ? 

Bug in the model ?
Bug in the data ?

Why is it difficult to find a feasible solution?
Is my model performing better than another variant I tried?
I’d like some advice/help from some CP Optimizer expert



202 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools

CP Optimizer provides the same type of tools as 
Mathematical Programming (e.g. CPLEX) for helping 
designing / debugging models:

Input/output file format
Model warnings
Search log
Conflict refiner
Interactive executable 



203 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Input/output file format (.cpo)

Objective: 
Make it easier to understand the content of a model
Communicate a model to engine experts (IBM, partners, ...) 
regardless of the API used to build it (OPL, C++, Python, 
Java, .NET)

Structure of a .cpo file
Human readable
Flat (no cycle, no forall statements)
Internal information such as CPO version or platform used
Information such as source code line numbers
Includes search parameter values, phases, starting point

Facilities
Export model before/instead of solve
Export model during solve (with current domains)
Import model instead of normal modeling



204 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Input/output file format (.cpo)



205 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Model warnings

Like a compiler, CP Optimizer can analyze the model and 
print some warnings

When there is something suspicious in the model
Regardless how the model was created (C++, OPL, Python …)
Including guilty part of the model in the cpo file format
Including source code line numbers (if known)
3 levels of warnings, more than 70 types of warnings



206 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Model warnings



207 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Model warnings



208 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Search log

Objective: understand the behavior of the search
 
! -----------------------------------------------------------------------
! Maximization problem - 2980 variables, 853 constraints
! Workers              = 2
! TimeLimit            = 30
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
!  . Log search space  : 4627.3 (before), 4627.3 (after)
!  . Memory usage      : 16.9 MB (before), 19.7 MB (after)
! Using parallel search with 2 workers.
! -----------------------------------------------------------------------
!          Best Branches  Non-fixed    W       Branch decision
*           746     3945 0.79s         1            -
            746     4000       2924    1       on task("8")
            746     4000       2908    2       on alt({"186",2,66})
 …
! Time = 1.37s, Explored branches = 35832, Memory usage = 55.5 MB
!          Best Branches  Non-fixed    W       Branch decision
            818    12000       2920    1       on task("184")
 …
! -----------------------------------------------------------------------
! Search terminated by limit, 6 solutions found.
! Best objective         : 826
! Number of branches     : 709092
! Number of fails        : 179648
! Total memory usage     : 54.5 MB (52.9 MB CP Optimizer + 1.6 MB Concert)
! Time spent in solve    : 30.03s (30.01s engine + 0.01s extraction)
! Search speed (br. / s) : 23625.4
! -----------------------------------------------------------------------

Problem
characteristics



209 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Search log

Objective: understand the behavior of the search
 
! -----------------------------------------------------------------------
! Maximization problem - 2980 variables, 853 constraints
! Workers              = 2
! TimeLimit            = 30
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
!  . Log search space  : 4627.3 (before), 4627.3 (after)
!  . Memory usage      : 16.9 MB (before), 19.7 MB (after)
! Using parallel search with 2 workers.
! -----------------------------------------------------------------------
!          Best Branches  Non-fixed    W       Branch decision
*           746     3945 0.79s         1            -
            746     4000       2924    1       on task("8")
            746     4000       2908    2       on alt({"186",2,66})
 …
! Time = 1.37s, Explored branches = 35832, Memory usage = 55.5 MB
!          Best Branches  Non-fixed    W       Branch decision
            818    12000       2920    1       on task("184")
 …
! -----------------------------------------------------------------------
! Search terminated by limit, 6 solutions found.
! Best objective         : 826
! Number of branches     : 709092
! Number of fails        : 179648
! Total memory usage     : 54.5 MB (52.9 MB CP Optimizer + 1.6 MB Concert)
! Time spent in solve    : 30.03s (30.01s engine + 0.01s extraction)
! Search speed (br. / s) : 23625.4
! -----------------------------------------------------------------------

Modified
parameter values



210 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Search log

Root node
information

Objective: understand the behavior of the search
 
! -----------------------------------------------------------------------
! Maximization problem - 2980 variables, 853 constraints
! Workers              = 2
! TimeLimit            = 30
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
!  . Log search space  : 4627.3 (before), 4627.3 (after)
!  . Memory usage      : 16.9 MB (before), 19.7 MB (after)
! Using parallel search with 2 workers.
! -----------------------------------------------------------------------
!          Best Branches  Non-fixed    W       Branch decision
*           746     3945 0.79s         1            -
            746     4000       2924    1       on task("8")
            746     4000       2908    2       on alt({"186",2,66})
 …
! Time = 1.37s, Explored branches = 35832, Memory usage = 55.5 MB
!          Best Branches  Non-fixed    W       Branch decision
            818    12000       2920    1       on task("184")
 …
! -----------------------------------------------------------------------
! Search terminated by limit, 6 solutions found.
! Best objective         : 826
! Number of branches     : 709092
! Number of fails        : 179648
! Total memory usage     : 54.5 MB (52.9 MB CP Optimizer + 1.6 MB Concert)
! Time spent in solve    : 30.03s (30.01s engine + 0.01s extraction)
! Search speed (br. / s) : 23625.4
! -----------------------------------------------------------------------



211 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Search log

New incumbent
solutions

(time, worker)

Objective: understand the behavior of the search
 
! -----------------------------------------------------------------------
! Maximization problem - 2980 variables, 853 constraints
! Workers              = 2
! TimeLimit            = 30
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
!  . Log search space  : 4627.3 (before), 4627.3 (after)
!  . Memory usage      : 16.9 MB (before), 19.7 MB (after)
! Using parallel search with 2 workers.
! -----------------------------------------------------------------------
!          Best Branches  Non-fixed    W       Branch decision
*           746     3945 0.79s         1            -
            746     4000       2924    1       on task("8")
            746     4000       2908    2       on alt({"186",2,66})
 …
! Time = 1.37s, Explored branches = 35832, Memory usage = 55.5 MB
!          Best Branches  Non-fixed    W       Branch decision
            818    12000       2920    1       on task("184")
 …
! -----------------------------------------------------------------------
! Search terminated by limit, 6 solutions found.
! Best objective         : 826
! Number of branches     : 709092
! Number of fails        : 179648
! Total memory usage     : 54.5 MB (52.9 MB CP Optimizer + 1.6 MB Concert)
! Time spent in solve    : 30.03s (30.01s engine + 0.01s extraction)
! Search speed (br. / s) : 23625.4
! -----------------------------------------------------------------------



212 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Search log

Periodical log
with fail information,
number of unfixed

vars, current decision

Objective: understand the behavior of the search
 
! -----------------------------------------------------------------------
! Maximization problem - 2980 variables, 853 constraints
! Workers              = 2
! TimeLimit            = 30
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
!  . Log search space  : 4627.3 (before), 4627.3 (after)
!  . Memory usage      : 16.9 MB (before), 19.7 MB (after)
! Using parallel search with 2 workers.
! -----------------------------------------------------------------------
!          Best Branches  Non-fixed    W       Branch decision
*           746     3945 0.79s         1            -
            746     4000       2924    1       on task("8")
            746     4000       2908    2       on alt({"186",2,66})
 …
! Time = 1.37s, Explored branches = 35832, Memory usage = 55.5 MB
!          Best Branches  Non-fixed    W       Branch decision
            818    12000       2920    1       on task("184")
 …
! -----------------------------------------------------------------------
! Search terminated by limit, 6 solutions found.
! Best objective         : 826
! Number of branches     : 709092
! Number of fails        : 179648
! Total memory usage     : 54.5 MB (52.9 MB CP Optimizer + 1.6 MB Concert)
! Time spent in solve    : 30.03s (30.01s engine + 0.01s extraction)
! Search speed (br. / s) : 23625.4
! -----------------------------------------------------------------------



213 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Search log

Final information
with solution status
and search statistics

Objective: understand the behavior of the search
 
! -----------------------------------------------------------------------
! Maximization problem - 2980 variables, 853 constraints
! Workers              = 2
! TimeLimit            = 30
! Initial process time : 0.01s (0.00s extraction + 0.01s propagation)
!  . Log search space  : 4627.3 (before), 4627.3 (after)
!  . Memory usage      : 16.9 MB (before), 19.7 MB (after)
! Using parallel search with 2 workers.
! -----------------------------------------------------------------------
!          Best Branches  Non-fixed    W       Branch decision
*           746     3945 0.79s         1            -
            746     4000       2924    1       on task("8")
            746     4000       2908    2       on alt({"186",2,66})
 …
! Time = 1.37s, Explored branches = 35832, Memory usage = 55.5 MB
!          Best Branches  Non-fixed    W       Branch decision
            818    12000       2920    1       on task("184")
 …
! -----------------------------------------------------------------------
! Search terminated by limit, 6 solutions found.
! Best objective         : 826
! Number of branches     : 709092
! Number of fails        : 179648
! Total memory usage     : 54.5 MB (52.9 MB CP Optimizer + 1.6 MB Concert)
! Time spent in solve    : 30.03s (30.01s engine + 0.01s extraction)
! Search speed (br. / s) : 23625.4
! -----------------------------------------------------------------------



214 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Conflict refiner

Objective: eXplainable scheduling

Provide an explanation for an infeasible model by 
providing a minimal infeasible subset of constraints 

Algorithm described in: P. Laborie. An Optimal Iterative 
Algorithm for Extracting MUCs in a Black-box Constraint 
Network. In: Proc. ECAI-2014

Use cases:
Model debugging (errors in model)
Data debugging (inconsistent data)
Providing explanations to the user (why P in the solution?)  
=> add ¬P (∧ obj<=obj*) and compute a minimal infeasible 
subset
The model and data are correct, but the associated data 
represents a real-world conflict in the system being 
modeled



215 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Conflict refiner

Example: satellite communication problem

On a given instance explain why we cannot schedule all 
the tasks



216 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Conflict refiner

Example: satellite communication problem

On a given instance explain why we cannot schedule all 
the tasks



217 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Conflict refiner

Example: satellite communication problem

On a given instance explain why we cannot schedule all 
the tasks

A conflict:
Line   Iteration
20      t = <"134A",176,1>
20      t = <"144",191,1>
20      t = <"146",193,1>
20      t = <"146A",194,1>
22      r = <"LION",6,3>

1232 1266
134A

12721238
144

1228 1260
146

1230 1262
146A



218 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Interactive CP Optimizer

An executable delivered with CP Optimizer that let you:
Load/save models in .cpo format
Set or change parameter values
Invoke a solve or a conflict refinement
Interrupt it
Evaluate variability in performance by solving the model 
multiple times with different random seeds and provide 
statistics

Example: is job-shop instance ft10 better solved in 
sequential mode with default or extended noOverlap 
inference level?



219 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Tools: Interactive CP Optimizer

Q: Is job-shop instance ft10 
better solved in sequential 
mode with default or 
extended noOverlap 
inference level?

A: Default level seems better …

Note: ft10 is a small but very 
challenging and famous 
job-shop instance that 
remained open for more than 
25 years (1963-1989)
Automatic search of 
CP Optimizer solves it in just a
few seconds.



220 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood

Presolve

Propagation
Temporal
Linear
Relaxation

Large Neighborhood
Search

Failure-directed
Search



221 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Presolve

Before actually starting the search, the model is 
automatically presolved/reformulated in order to increase 
performance by applying a set of presolve rules

Example of presolve rules:
endOf(x,-∞) <= startOf(y,+∞)   

 ≡   endBeforeStart(x,y)
overlapLength(x,y)==0, startBeforeEnd(x,y)

 ≡   endBeforeStart(x,y)
presenceOf(x) - presenceOf(y) <= 0   

 ≡   presenceOf(x)=>presenceOf(y)
x!=y, y!=z, x!=z   

 ≡   allDifferent([x,y,z])
xy!=z+t, z+xy == a+b, 100 <= xy-z   

 ≡   u==xy, u!=z+t, z+u==a+b, 100<=u-z



222 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Logical network

Temporal network

Time-lines (noOverlap, cumulFunction, stateFunction)



223 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Logical network

Aggregates all binary constraints on interval presence as 
an implication graph between literals or their opposite

 [!]presenceOf(u) => [!]presenceOf(v)

Equivalent to a 2-SAT model

Computes graph condensation and transitive closure:
Detects infeasibility
Allows querying in O(1) whether [!]presenceOf(x) => 
[!]presenceOf(y) for any (x,y)



224 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Precedence network

Aggregates all precedence constraints (like 
endBeforeStart(u,v,duv)) in a STN extended with Boolean 
presence status of nodes

Nodes: start or end of (optional) interval variables
Arcs: minimal delay between two nodes (when both are 
present)

Temporal domain of a node t is maintained as a range [tmin,tmax] 
representing the possible values if the interval is present

Propagation exploits the Logical network



225 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Precedence network

Propagation exploits the Logical network
Example:

 endBeforeStart(x,y)
 presenceOf(y)=>presenceOf(z)
 presenceOf(z)=>presenceOf(x)

Logical network deduces:
 presenceOf(y)=>presenceOf(x)

The precedence constraint can propagate the bounds of x 
on y :   smin(y) ¬ max( smin(y), emin(x) )

This is very powerful: propagation occurs even when the 
presence status is still unfixed

x y

z



226 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Precedence network

Propagation exploits the Logical network
This is very powerful: propagation occurs even when the 
presence status is still unfixed
Classical STN propagation algorithms are extended to 
perform this type of directional propagation
Algorithms used in CP Optimizer:

At root node: extension of an improved version of Bellman-
Ford algorithm: B. Cherkassky, A. Goldberg, T. Radzic. 
Shortest Paths Algorithms: Theory and Experimental 
Evaluation. Mathematical Programming 73, 129–174 (1996)
During the search: extension of the algorithm described in: 
A. Cesta, A. Oddi. Gaining Efficiency and Flexibility in the 
Simple Temporal Problem. In: Proc. TIME-96 (1996)  



227 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Precedence network

These specialized algorithms for precedence networks 
are much faster than naive CP propagation of individual 
precedence constraints (like x<=y)

Example: root node propagation time for a chain of n 
activities (endBeforeStart(x[i],x[i+1]))



228 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Time-lines (noOverlap, cumulFunction, stateFunction)

Default propagation algorithm is the timetable that 
incrementally maintains the domain of the function as a 
set of segments with bounds on the function values

Comparison with recent algorithms studied in: S. Gay, R. 
Hartert, P. Schaus: Simple and Scalable Time-Table Filtering 
for the Cumulative Constraint. In: Proc. CP 2015



229 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Time-lines (noOverlap, cumulFunction, stateFunction)

Sequence variables are internally represented as a 
precedence graph on interval variables



230 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Propagation

Time-lines (noOverlap, cumulFunction, stateFunction)

Stronger propagation algorithms are available and are 
automatically turned on in the search depending on the 
context:

Multiple O(n log(n)) algorithms for disjunctions (noOverlap): 
P. Vilím: Global constraints in scheduling. Ph.D. thesis. 2007.
O(n2) time-table edge-finding for cumul functions:                    
P. Vilím: Timetable Edge Finding Filtering Algorithm for 
Discrete Cumulative Resources. Proc. CPAIOR-2011.

This additional propagation can also be turned on with 
some parameters, typically:

NoOverlapInferenceLevel = Medium | Extended
CumulFunctionInferenceLevel = Medium | Extended



231 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Search

The automatic search concurrently runs two algorithms:
Large Neighborhood Search: A heuristic search aiming at 
converging quickly to good quality solutions                            
P. Laborie, D. Godard. Self-Adapting Large Neighborhood 
Search: Application to Single-Mode Scheduling Problems. In: 
Proc. MISTA-2007
Failure-Directed Search: A complete search aiming at 
proving no solution exist better than the current one              
P. Vilím, P. Laborie, P. Shaw. Failure-directed Search for 
Constraint-based Scheduling. In: Proc. CPAIOR-2015

An alternative search based on Genetic Algorithms is 
also available (SearchType=MultiPoint):                                
R. Dumeur. Evolutionary Multi Point Search In CPLEX Studio's 
Constraint Programming Engine. INFORMS-2014



232 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Large Neighborhood Search

Iterative improvement method:
1. Start with an existing solution (produced using some 

heuristics + classical CP search tree)



233 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Large Neighborhood Search

Iterative improvement method:
1. Start with an existing solution (produced using some 

heuristics + classical CP search tree)
2. Take part of the solution (fragment) and relax it. Fix the 

structure of the rest (but no start/end values: notion of Partial 
Order Schedule)

relax keep rigid



234 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Large Neighborhood Search

Iterative improvement method:
1. Start with an existing solution (produced using some 

heuristics + classical CP search tree)
2. Take part of the solution (fragment) and relax it. Fix the 

structure of the rest (but no start/end values: notion of Partial 
Order Schedule)

3. Find (improved) solution using a limited search tree

relax keep rigid



235 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Large Neighborhood Search

Iterative improvement method:
1. Start with an existing solution (produced using some 

heuristics + classical CP search tree)
2. Take part of the solution (fragment) and relax it. Fix the 

structure of the rest (but no start/end values: notion of Partial 
Order Schedule)

3. Find (improved) solution using a limited search tree

improve kept rigid



236 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Large Neighborhood Search

Uses portfolios and online reinforcement learning



237 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Failure-Directed Search

FDS is automatically activated when:
The search space seems to be small enough, and
LNS has difficulties improving the current solution

Assumption is that in these conditions:
There probably isn’t any (better) solution
If there is one, it is very hard to find
It is necessary to explore the whole search space

FDS uses periodic restarts and focuses on finding dead-
ends (failures) in the search tree as quickly as possible

FDS branches on ranges



238 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Failure-Directed Search

Decisions are rated and the ones that often lead to 
infeasibility or strong domain reduction in the search are 
preferred: they are used earlier in the search during the 
next restarts

FDS also records no-goods for avoiding exploring some 
identical part of the search space

FDS
Search Tree

Resta
rt

No-goods

Decisions rating



239 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Temporal Linear Relaxation

Traditionally, early/tardy problems are challenging for CP-
based tools as they miss a good global view of the cost

Approach:
Automatically use CPLEX's LP solver to provide a solution to 
a relaxed version of the problem
Use the LP solution to guide heuristics. Start an operation as 
close as possible to the time proposed by LP solution

cost

x

cost

x

cost

x

cost

x

cost

x



240 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: Temporal Linear Relaxation

What is linearized?
Precedences
Optionality, logical constraints on optional intervals
Alternative and Span constraints
Cost function terms which are functions of start/end times

Detailed description in P. Laborie, J. Rogerie. Temporal 
Linear Relaxation in IBM ILOG CP Optimizer. Journal of 
Scheduling 19(4), 391–400 (2016)



241 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Under the hood: CP Optimizer is open (C++)

User-defined
Constraints and
Propagation

User-defined
Search



242 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Conclusion

The messages I tried to convey:
CP Optimizer is easy to try
CP Optimizer is easy to learn
CP Optimizer is easy to use
CP Optimizer is powerful for solving scheduling problems
CP Optimizer is free for students, teachers and researchers
CP Optimizer is fun !



243 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Useful links

In order to download CP Optimizer (together with OPL 
and CPLEX), please follow instructions on these pages:

Students

Researchers,
teachers,
university staff

StudentsStudents http://ibm.biz/COS_Student

http://ibm.biz/COS_Faculty

http://ibm.biz/COS_Student
http://ibm.biz/COS_Faculty


244 / 244 ICAPS 2017 Tutorial © 2017 IBM Corporation

Useful links

CP Optimizer forums:

CP Optimization
forums http://ibm.biz/COS_Forums

http://ibm.biz/COS_Forums

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244

