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Why Human-Robot Interaction 

is important…

Coming here 

this morning….

2 people for driving a car

AI is CREATING jobs!



Disclaimer 1

Planning and Robotics is a growing area!
ICAPS workshops PlanRob

ICAPS Special Track on Planning and Robotics

PlanRob workshop + tutorial at ICRA 2017

Dagstuhl workshop on Planning and Robotics

This tutorial covers only 

some aspects

PlanRob workshop tomorrow (full day)



Disclaimer 2

One can use several formalisms to model 

robotics domains.

And one can use several techniques for 

planning in these domains.

Having said that, this tutorial will focus on

Domain-Independent Planning through PDDLx



Disclaimer 3

Planning is actually plural

planning includes many things

in this tutorial: “planning”=“task planning”

Thanks to 
Malik Ghallab!



Disclaimer 4

This is a tutorial

and we agreed to make it an accessible one

Slides  + Virtual Machine + Demo

available in the ROSPlan website



Outline

• Why PDDL Planning for Robotics and HRI?

• ROSPlan I: Planning with ROS

Coffee  (10.30-11.00)

• ROSPlan II: Planning with Opportunities

• Petri Net Plan Execution

• Open challenges



Outline

• Why PDDL Planning for Robotics and HRI?



Where PDDL planning is NOT useful 

for Robotics?

• Single/Repetitive Tasks (no PDDL for manipulation/grasping!)

• Safe Navigation  (Sampling is much better!)

• PDDL planning is really useful when there is room for optimisation 

at a task level



Outline

• Why PDDL Planning for Robotics and HRI?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty



Expressive Planning
• PDDL family of planning modelling languages

• PDDL1

• Introduced for the International Planning Competition series 
(1998).

• Used as the international standard modelling language family for 
planners

• Enables benchmarking and comparison across different 
algorithms and domains

• PDDL2.1

• Introduced time and numeric effects

• Powerful enough to model a class of Mixed discrete-continuous 
domains

• PDDL3

• Preferences and trajectory constraints (eg: always P, sometimes 
P, eventually P, etc)

• PDDL+

• Allows a larger class of mixed discrete continuous domains, 
including exogenous events

Instantaneous actions, propositional conditions and effects
LAMA, HSP, FF,  MetricFF,  SATplan, FastDownward, (+many 

others)

Temporal heuristic estimates, linear 
constraints 

LPG, TFD, SAPA, POPF, COLIN

Linear temporal logic 
OPTIC (POPF),  Hplan-P

Non-linear constraints, 
exogenous events

MIP,  UPMurphi,  PMTplan



Planning and Control

Frequency
(Hz)

105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6

Sensing

Control
Planning

Execution 
Monitoring

Noise Inaccuracy Uncertainty Ignorance

Planning is an AI technology that seeks to select and organise 

activities in order to achieve specific goals

Plan Dispatch: a controller  is responsible for realising each plan action



Planning with Time: An Additional Dimension

• Processes mean time spent in states matters



Planning in Hybrid Domains

• When actions or events are performed they cause instantaneous 

changes in the world

– These are discrete changes to the world state

– When an action or an event has happened it is over

• Processes are continuous changes

– Once they start they generate continuous updates in the world 

state

– A process will run over time, changing the world at every instant

Holding ball

Action: drop ball

Not holding ball

Ball falling

Height over time



PDDL+: Let it go

• First drop it...

• Then watch it fall...

• And then?

(:action release

:parameters (?b – ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))

:effect (and (not (holding ?b))))

(:process fall

:parameters (?b – ball)

:precondition (and (not (holding ?b)) (>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))

(decrease (height ?b) (* #t (velocity ?b)))))



PDDL+: See it bounce

• Bouncing...

• Now let’s plan to catch it...

(:event bounce

:parameters (?b - ball)

:precondition (and  (>= (velocity ?b) 0) 

(<= (height ?b) 0))

:effect (and (assign (height ?b) (* -1 (height ?b)))

(assign (velocity ?b) (* -1 (velocity ?b)))))

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))

:effect (and (holding ?b) (assign (velocity ?b) 0)))



A Valid Plan

• Let it bounce, then catch it...

• The validator                      can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

0.1: (release b1)

4.757: (catch b1)







Some PDDL+ Planners
• UPMurphi (Della Penna et al.)    [ICAPS’09]

Based on Discretise and Validate 

(Baseline for adding new heuristics: 
multiple battery management [JAIR’12] or urban traffic control [AAAI’16])

• DiNo (Piotrowski et al.)  [IJCAI’16]

Extend UPMurphi with TRPG heuristic for hybrid domains

• SMTPlan (Cashmore et al.) [ICAPS’16]

Based on SMT encoding of PDDL+ domains

• ENHSP (Scala et al.) [IJCAI’16]

Expressive numeric heuristic planning

• dReach/dReal (Bryce et al.) [ICAPS-15]

Combine SMT encoding with dReal solver

• POPF (Coles et al.) [ICAPS-10]

Combine Forward Search and Linear Programming



One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs

to reach a location where stable 

fixed-wind flight can be achieved.

The aircraft has fans/rotors which generate

lift and which can be tilted by 90 degrees

to achieve the right velocity both vertically

and horizontally. V-22 Osprey



Vertical Take-Off

(:action start_engines

:parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0) )

:effect (ascending))

(:process ascent

:parameters ()

:precondition (and (not (crashed)) (ascending) )

:effect (and (increase (altitude) (* #t (- (* (v_fan) (- 1 (/ (* (* (angle) 0.0174533)  

(* (angle) 0.0174533) ) 2) ) ) (g)) ) )

(increase (distance) (* #t (* (v_fan) (/ (* (* 4 (angle)) (- 180 (angle))) 

(- 40500 (* (angle) (- 180 (angle)))) ) ) ))))

(:durative-action increase_angle

:parameters ()

:duration (<= ?duration (- 90 (angle)) )

:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)) )

:effect (and (increase (angle) (* #t 1)) ))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))

:effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending) )

:effect (and (increase (altitude) (* #t (wind_y) 1)  

(increase (distance) (* #t (wind_x) 1)))

Timed Initial Fluents

(at 5.0 (= (wind_x) 1.3))

(at 5.0 (= (wind_y) 0.2))

(at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

.. …
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• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty



Opportunistic Planning

• Very important in persistent autonomy

• Use case: PANDORA (EU funded project)



Persistent Autonomy (AUVs)

Inspection and maintenance of a 

seabed facility:

- without human intervention

- inspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks



Persistent Autonomy (AUVs)

Inspection and maintenance of a 

seabed facility:

- without human intervention

- inspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

AUV mission, many tasks at scattered locations.

- long horizon plans

- large amount of uncertainty

- discovery

High utility, low-probability opportunities for new tasks.



Persistent Autonomy (AUVs)
High Impact Low-Probability Events (HILPs)

- the probability distribution is unknown

- cannot be anticipated

- our example is chain following

If you see an unexpected chain, it's a good idea to 

investigate...

2011 Banff 5 of 10 lines parted.
2011 Volve 2 of 9 lines parted
2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted

a distance, riser broken
2010 Jubarte 3 lines parted between 2008 and

2010.
2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a

distance, riser broken
2009 Hai Yang Shi You Entire yoke mooring column

collapsed; vessel adrift, riser broken.
2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a

distance, riser broken.
2002 Girassol buoy 3 (+2) of 9 lines parted, no damage

to offloading lines (2 later)



Opportunistic Planning

In PANDORA we plan and execute 

missions over long-term horizons (days or 
weeks)

Our planning strategy is based on the 

assumption that actions have durations 
normally distributed around the mean.

To build a robust plan we therefore use 

estimated durations for the actions that are 
longer than the mean. 

(95th percentile of the normal distribution)
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Opportunistic Planning

We use an execution stack ( of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.



Opportunistic Planning

We use an execution stack ( of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.



Why not just replan?
We compare the opportunistic approach against replanning the mission 

when an opportunity is discovered. When an opportunity is discovered 

a new initial state is generated.

Replanning:

- the problem is more difficult to solve

- the planning time can be increased

+ the opportunity can be ordered later in the plan

+ the existing plan can be reordered to make more time for exploiting 

the opportunity

+ the resulting plan can be more efficient

We examine situations where we have just discovered an opportunity:

10 second bound on planning for the opportunity alone

30 minute bound for replanning



Why not just replan?



Why not just replan?

Better plan quality by replanning



Why not just replan?

Better plan quality by replanning

We examine situations where we have just discovered an opportunity:

10 second bound on planning for the opportunity alone

30 minute bound for replanning

In 228 total missions:

5 replanning plans were more efficient than the opportunistic 

approach.



Opportunistic Planning

We use an execution stack ( of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.

NOTE: Opportunities can also arise for 

supervisor requests!

More details on Friday morning 

(Paper on Opportunistic Planning at the Journal Track)
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Strategic Planning for Persistent Autonomy

Planning over long horizons (days, weeks)

Missions with strict deadlines and time windows in which goals need to be 

accomplished.

Example  in underwater robotics:

Seabed facilities need to be inspected at certain intervals.

Current planning systems struggle in generating

complex plans over long horizons.

One possible solution:

Decompose into Strategic/Tactical Layers



Strategic/Tactical Planning

Cluster the goals into tasks

Strategic Layer: contains a high lever plan that achieves all tasks and

manages the resource and time constraints.

Tactical Layer: contains a plan that solves a single task.

Example from underwater robotics.

Long term maintenance of seabed facility includes

-Inspecting the structures are regular intervals.

-Changing the configuration of the site by interacting with interfaces within 

specific time windows.

-Recharging the AUVs.

Additional challenges: 

-Ever changing environment (currents, visibility)

-Wildlife



Strategic/Tactical Planning



Strategic/Tactical Planning
Clustering



Strategic/Tactical Planning
Clustering



Strategic/Tactical Planning
Tactical Layer

For each Task the planner generates a plan 

and stores:

-duration

-resource constraints

Energy consumption = 10W

Duration = 86.43s



Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the 

time and resource constraints.



Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the 

time and resource constraints.

All the tactical plans are collected.

And the strategic plan is generated, not violating resource/time constraints



Strategic/Tactical Planning
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Planners can be trusted

Planners can allow an easy interaction with humans

Planners are transparent

(at least, the process by which the decisions are made are 

understood by their programmers)

To note: entirely trustworthy and theoretically well-understood 

algorithms can still yield decisions that are hard to explain.

Ex: Linear Programming ….

To note: XAI and the need to explain machine/deep learning 

remain of critical importance!

XAIP is important in domains where learning is not an option.

eXplainable Planning (XAIP)



XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process 

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !
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XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process 

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

A request for an explanation is an attempt  to uncover a piece of 

knowledge that the questioner believes must be available to the 

system and that the questioner does not have.



Towards XAIP

• Plan explanation 

– Translate PDDL in forms that humans can understand [Sohrabi et al. 2012]

– Design interfaces that help this understanding [Bidot et al. 2012]

– Describe causal/temporal relations for plan steps [Seegebarth et al. 2012]

– Explaining observed behaviours [Sohrabi, Baier, McIlraith, 2011]

– Understanding the past [Molineaux et al., 2012 ]

– … ... …  

• Plan Explicability

– Focus on human’s interpretation of plans [Seegebarth et al. 2012]

• Verbalization and transparency in autonomy

– Generate narrations for autonomous robot navigations [Veloso et al. 2016]

• Explainable Agency [Langley et al. 2017]

• Model Reconciliation (Sreedharan et al.)

– Identify/reconcile different human/robot models [Chakraborti et al 2017]



Transparency in Autonomy
(Manuela Veloso et al.)

Verbalization: the process by which an autonomous robots converts its 

own experience into language

Verbalization space: to capture  different nature of explanations.

And to learn to correctly infer an explanation level in the verbalization 

space.

Specificity – Locality - Abstraction

Verbalization: Narration of Autonomous Mobile Robot Experience.
Rosenthal, Selvaraj, Veloso. IJCAI 2016.



Things to Be Explained

(some)

• Q1: Why did you do that?

• Q2: Why didn’t you do something else? (that I would have done)

• Q3: Why is what you propose to do more efficient/safe/cheap than 

something else? (that I would have done)

• Q4: Why can’t you do that ? 

• Q5: Why do I need to replan at this point?

• Q6: Why do I not need to replan at this point?



Illustrative Example

Rover Time domain from IPC-4 (problem 3)

Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

NA: so that I can communicate_data from Rover0 later (at 18.001) 
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Rover Time domain from IPC-4 (problem 3)

Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?



Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan
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Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

We require the plan to contain at least one action that has Rover0 as 

argument (add dummy effect to all actions using Rover0 and put into the goal)



Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

We require the plan to contain at least one action that has Rover0 as 

argument (add dummy effect to all actions using Rover0 and put into the goal)

A: There is no useful way to use Rover0 for improve this plan



eXplainable Planning

• Q5: Why do I need to replan at this point?

In many real-world scenarios, it is not obvious that the plan being executed 

will fail. Often plain failures is discovered too late.

One possible approach is to use the “Filter Violation” (ROSPlan)

Once the plan is generated, ROSPlan creates a filter, by considering all the 

preconditions of the actions in the plan.

Ex: navigate (?from ?to - waypoint) has precondition (connected ?from ?to)

If the plan contains navigate (wp3 wp5), 

then (connected wp3 wp5 ) is added to the filter.

at execution time



Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)



Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)



Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)
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Planning with Uncertainty

Uncertainty and lack of knowledge is a huge part of AI Planning for Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.





Uncertainty in AI Planning

Some uncertainty can be 
handled at planning 
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable 
Markov decision 
Process.

- Conditional Planning 
with Contingent 
Planners. (e.g. ROSPlan
with Contingent-FF)
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Some uncertainty can be 
handled at planning 
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable 
Markov decision 
Process.

- Conditional Planning 
with Contingent 
Planners. (e.g. ROSPlan
with Contingent-FF)

Uncertainty in AI Planning



ROSPlan: Planning in the Robot Operating 
System
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• Very Simple Dispatch

• Very Simple Temporal Dispatch

• Conditional Dispatch

• Temporal and Conditional Dispatch together

• Dispatching More than a Single Plan

• Hierarchical and Recursive Planning

• Opportunistic Planning



ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.
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ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

<launch>
<include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
<include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>

<arg name="odom_topic" default="odom" />
<arg name="laser_topic" default="scan" />

<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />   
<remap from="odom" to="$(arg odom_topic)"/>
<remap from="scan" to="$(arg laser_topic)"/>

</node>
</launch>



ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

The actionlib package standardizes the interface for preemptable tasks.

For example:

- navigation,

- performing a laser scan

- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for 

sending task:

- goals

- feedback

- result



ROS Basics

Aside from numerous tools, Actionlib provides standard messages for 
sending task:

- goals

- feedback

- result
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose
std_msgs/Header header

uint32 seq
time stamp
string frame_id

geometry_msgs/Pose pose
geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w



Plan Execution 1: Very simple 

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.
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Plan Execution 1: Very simple 

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

Red boxes are components of 

ROSPlan. They correspond to 

ROS nodes.

The domain and problem file can 

be supplied

- in launch parameters

- as ROS service parameters



Plan Execution 1: Very simple 

Dispatch

rosplan_dispatch_msgs/CompletePlan

ActionDispatch[] plan

int32 action_id

string name

diagnostic_msgs/KeyValue[] parameters

string key

string value

float32 duration

float32 dispatch_time



A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

- timed execution

- Petri-Net plans

- Esterel Plans

- etc.



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

A dispatch loop without feedback



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

An action in the plan is stored as a ROS message

ActionDispatch, which corresponds to a PDDL action.

A dispatch loop without feedback



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

The ActionDispatch message is received by a listening

interface node, and becomes a goal for control.

A dispatch loop without feedback



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000

0.000:  (goto_waypoint wp0) [10.000]

10.01: (observe ip3) [5.000]

15.02: (grasp_object box4) [60.000]

A dispatch loop without feedback



How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

Feedback is returned to the simple dispatcher

(action success or failure) through a ROS message:

ActionFeedback.

A dispatch loop without feedback



Plan Execution Failure

This form of simple dispatch has some problems. The robot often exhibits 

zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan fails, but the robot doesn't notice.
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An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.



Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan 

again, from the new current state, without human intervention.

The problem file must be regenerated.
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must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 

called the Knowledge Base.
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must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 

called the Knowledge Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative



PDDL Model

To generate the problem file automatically, the agent 

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node 

called the Knowledge Base.

From this, the initial state of a new planning problem can 

be created.

ROSPlan contains a node which

will generate a problem file for the

ROSPlan planning node.



PDDL Model

The model must be continuously updated from sensor 

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the 

Knowledge Base.



PDDL Model

The model must be continuously updated from sensor 

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the 

Knowledge Base.
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance
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What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.



Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE
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Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute 

the plan for a long time without purpose.

The success or failure of an action can sometimes not be understood 

outside of the context of the whole plan.



Bad Behaviour 2: Plan Failure

There should be 

diagnosis at the 

level of the plan.

If the plan will fail in 

the future, the robot 

should not continue 

to execute the plan 

for a long time 

without purpose.



Bad Behaviour 2: Plan Failure

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain,

and the roadmap might not be correct.



Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around 

to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.



Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

ROSPlan validates using VAL. [Fox et al. 2005]
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ROSPlan: Default Configuration

Now the system is more 

complex:

- PDDL model is 

continuously updated from 

sensor data.

- problem file is 

automatically generated.

- the planner generates a 

plan.

- the plan is dispatched 

action-by-action.

- feedback on action 

success and failure.

- the plan is validated 

against the current model.



Plan Execution 2: Very Simple 
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The real world requires a temporal and 

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal 

constraints, and try to dispatch the plan 

as a sequence of actions?
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- time and deadlines,
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constraints, and try to dispatch the plan 
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Temporal Constraints

The plan execution loop could instead 

dispatch actions at their estimated

timestamps.

However, in the real world there are 

many uncontrollable durations and 

events. The estimated duration of 

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]
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The plan execution loop could instead 

dispatch actions at their estimated

timestamps.
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actions, while respecting the causal 

ordering between actions.
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STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are 

not violated.

Setting t(b1) == t(b2) will always obey 
the temporal constraints.



STPUs: Strong controllability

The STPU is not strongly controllable, but it is obviously executable.

It is dynamically controllable.

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are 

not violated.
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- at any point in time, the execution so far is ensured to extend to a complete 
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated 
time points in advance.



STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete 
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated 
time points in advance.



STPUs: Dynamic controllability

Not all problems will have solutions have any kind of controllability.

This does not mean they are impossible to plan or execute.

To reason about these kinds of issues we need to use a plan 

representation sufficient to capture

- the difference between controllable and uncontrollable durations,

- causal orderings, and

- temporal constraints.



Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation 
sufficient to capture the controllable and uncontrollable durations, causal 
orderings, and temporal constraints.

The representation of a plan is coupled with the

choice of dispatcher.

The problem generation and planner are not

necessarily bound by the choice of

representation.



Plan Execution 3: Conditional 

Dispatch

Uncertainty and lack of knowledge is a huge part of AI Planning for 

Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.



Uncertainty in AI Planning

Some uncertainty can 
be handled at planning 
time:

- Fully-Observable 
Non-deterministic 
planning.

- Partially-observable 
Markov decision 
Process.

- Conditional Planning 
with Contingent 
Planners. (e.g. 
ROSPlan with 
Contingent-FF)



Plan Execution 4: Temporal and 

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional 

reasoning. Combining these two kinds of uncertainty can result in very 

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]
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Plan Execution 4: Temporal and 

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional 

reasoning. Combining these two kinds of uncertainty can result in very 

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

ROSPlan is integrated with the PNPRos library for the representation and 

execution of Petri Net plans. [Sanelli, Cashmore, Magazzeni, and Iocchi; 2017]
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Required input
Available feedback
Preemptable execution
Local recovery behaviour
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Available sensors
Semantic evaluation
Passive vs. active
User input
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Plan validation
Condition checking
Temporal or numeric models
Knowledge reasoning
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components in the 

system. Changing any 

one of which will 

change the robot 
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change the criteria 

under which the plan 

will succeed or fail.

Summary of Very Simple Plan Execution

Re-planning
Plan repair
Problem and domain regeneration
Opportunity planning
Plan merging
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Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour 

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning process, 

and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.



Dispatching more than a Single Plan

How do you plan from future situations that you can't predict?

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search 

scenario. For tracking targets, tidying household objects, or interacting 

with people.



Dispatching more than a Single Plan
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For each task we generate a tactical plan. The time and resource constraints 

are used in the generation of the strategic problem.

A strategic plan is generated that does not violate the time and resource 

constraints of the whole mission.

Hierarchical and Recursive Planning



When an abstract “complete_mission” action is dispatched, the tactical 

problem is regenerated, replanned, and executed.

Hierarchical and Recursive Planning



When an abstract “complete_mission” action is dispatched, the tactical 

problem is regenerated, replanned, and executed.

The tactical mission is 

executed by a complete 

planning system.

[Cashmore et al. 2015]

Hierarchical and Recursive Planning



Hierarchical and Recursive Planning

Observing an object has 

two outcomes:

- Success. The object 

is classified or 

recognised

- Failure. The object 

type is still unknown, 

but new viewpoints 

are generated to 

discriminate between 

high-probability 

possibilities.



Hierarchical and Recursive Planning

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0]

0.000: (pickup-object) [16.0]

0.000: (goto_waypoint) [10.0]

The action corresponds 

to a short tactical plan to 

observe viewpoints.
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Hierarchical and Recursive Planning

The action corresponds 

to a short tactical plan to 

observe viewpoints.

The next tactical plan 

can only be generated 

once the new viewpoints 

are known.
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same as the very 
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Hierarchical and Recursive Planning

The components of 

the system are the 

same as the very 

simple dispatch.

The behaviour of 

the robot is very 

different.

The execution of a 

plan is an 

emergent 

behaviour of the 

whole system.

Both the 

components and 

how they are used. 



New plans are generated for the opportunistic 

goals and the goal of returning to the tail of the 

current plan.

If the new plan fits inside the free time window, 

then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution 

of a plan fragment, then the currently executing 

plan can be pushed onto the stack and a new 

plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic 

Planning
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Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.

Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the 

advancement towards multiple goals.

[Mudrova et al. 2016]
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against a model that is 
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The domain model is 

always incomplete as 

well as inaccurate.

The plan is validated 

against a model that is 

continually changing 

and only partially 

sensed.

ROSPlan and PNP
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance



The domain model is 

always incomplete as 

well as inaccurate.

The plan is validated 

against a model that is 

continually changing 

and only partially 

sensed.

ROSPlan and PNP

move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000
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The domain model is 

always incomplete as 

well as inaccurate.

The plan is validated 

against a model that is 

continually changing 

and only partially 

sensed.

The RosPNP Library 

encapsulates both 

action dispatch and 

state updates.

In a Petri Net plan the 

only state estimation 

performed is explicit in 

the plan.

ROSPlan and PNP



ROSPlan documentation and source:
kcl-planning.github.io/ROSPlan
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Petri Net Plans

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 2

• High-level plan representation formalism 
based on Petri nets

• Explicit and formal representation of actions 
and conditions 

• Execution Algorithm implemented and tested 
in many robotic applications

• Open-source release with support for 
different robots and development 
environments (ROS, Naoqi, …)



Petri Net Plans library

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 3

PNP library contains

• PNP execution engine 

• PNP generation tools

• Bridges: ROS, Naoqi

(Nao, Pepper)

pnp.dis.uniroma1.it

[Ziparo et al., JAAMAS 2011]



Plan representation in PNP

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 4

• Petri nets are exponentially more compact than 
other structures (e.g., transition graphs) and can 
thus efficiently represent several kinds of plans:
– Linear plans

– Contingent/conditional plans

– Plans with loop

– Policies

– …

• PNP can be used as a general plan execution 
framework



Plan traslation in PNP

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 5

• PNPgen is a library that translates a plan (the 

output of some planning system) in a PNP.

• PNPgen includes additional facilities to extend 

the generated PNP with constructs that are not 

available on the planning system (e.g., interrupt 

and recovery procedures).

• Plan formats supported: 

ROSPlan (linear/conditional), HATP, MDP policies



PNP ROS

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 6

• PNP-ROS is a bridge for executing PNPs in a 

ROS-based system. 

• PNP-ROS uses the ROS actionlib protocol to 

control the execution of the actions and ROS 

topics and parameters to access the robot's 

knowledge.



PNP execution framework

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 7

ROSPlan
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ROSPlan + PNPgen + PNP-ROS

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 8

• A proper integration of

o Plan generation

o Plan execution

o ROS action execution 
and condition 
monitoring

provides an effective 
framework for robot 

planning and execution.



Outline

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 9

• Petri Nets 

• Petri Net Plans

• Execution rules

• PNP-ROS

• Demo



Petri Net definition

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 10



Petri Net firing rule

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 11



Petri Net Plans

• Petri Net Plans (PNP) are defined in terms of 

• Actions 

- ordinary actions

- sensing actions

• Operators

- sequence, conditional and 

loops

- interrupt

- fork/join
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PNP Actions
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PNP Actions
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PNP Operators
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PNP interrupt
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PNP concurrency
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Plan 1: sequence and loop

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 18



Plan 2: fork and join
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Plan 3: sensing and loop
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Plan 4: interrupt
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Plan 5: multi robot
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PNP Execution Algorithm
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Correctness of PNP execution
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• PNP execution is correct with respect to an 

operational semantics based on Petri nets and the 

robot's local knowledge.



PNP sub-plans
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• Plans can be organized in a hierarchy, allowing 

for modularity and reuse

• Sub-plans are like actions:

– when started, the initial marking is set

– when goal marking is reached, the sub-plan ends



Plans with variables

[condition_@X] sets the value of variable X

action_@X uses the value of variable X

Example: given a condition personAt_@X, the occurrence of 

personAt_B115 sets the variable @X to “B115”, next action 

goto_@X will be interpreted as goto_B115
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Execution rules
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Adding to the conditional plan

• interrupt (special conditions that determine 
interruption of an action)

• recovery paths (how to recovery from an interrupt)

• social norms

• parallel execution

Main feature

• Execution variables are generally different from the 
ones in the planning domain (thus not affecting 
complexity of planning)



Execution rules
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Examples

if personhere and closetotarget during goto do
skip_action
if personhere and not closetotarget during goto do

say_hello; waitfor_not_personhere; 
restart_action
if lowbattery during * do recharge; fail_plan
after receivedhelp do say_thanks
after endinteraction do say_goodbye
when say do display



PNP-ROS

• Bridge between PNP and ROS

• Allows execution of PNP under ROS using the 

actionlib module

• Defines a generic PNPAction and an

ActionClient for PNPActions

• Defines a client service PNPConditionEval to 

evaluate conditions

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 29



User 

Application
PNP-ROS

PNP 

ActionClient

PNP lib
PNP

PNP 

ActionServer

Actions and 

conditions

PNP 

ServiceClient

PNP 

Service

PNP-ROS
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MyPNPAS



PNP-ROS

User development:

1. implement actions and conditions 

2. write a PNPActionServer
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PNPActionServer

class PNPActionServer

{

public:

PNPActionServer();

~PNPActionServer();

void start();

// To be provided by actual implementation

virtual void actionExecutionThread(string action_name, 
string action_params, bool *run);

virtual int evalCondition(string condition); // 1: true, 0: false; -
1:unknown

}
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PNPActionServer

class PNPActionServer

{

public:

…

// For registering action functions (MR=multi-robot version )

void register_action(string actionname, action_fn_t actionfn);

void register_MRaction(string actionname, MRaction_fn_t actionfn); 

…

}
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MyPNPActionServer

#Include "MyActions.h"

class MyPNPActionServer : public PNPActionServer

{

MyPNPActionServer() : PNPActionServer() { 

register_action("init",&init);

….

}

}
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MyPNPActionServer

PNP_cond_pub = // asynchronous conditions

handle.advertise<std_msgs::String>("PNPConditionEvent", 10); 

Function SensorProcessing

{

…

std_msgs::String out; 

out.data = condition;  // symbol of the condition

PNP_cond_pub.publish(out);

}
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MyPNPActionServer

Function SensorProcessing

{

…

string param = “PNPconditionsBuffer/<CONDITION>”;

node_handle.setParam(param, <VALUE {1|0}>);

}
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Demo
Virtual machine available in the 

Tutorial web site
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Demo
Virtual machine available in the 

Tutorial web site
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Demo

Inspired by RoboCup@Home tasks

• RoboCup@Home domain

• Planning problems for @Home tasks

– Navigation (rulebook 2016)

– Cocktail Party (rulebook 2017)

NOTE: We are using this framework in our 

SPQReL team that will compete in 

RoboCup@Home 2017 SSPL
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