
Michael Luca Daniele
Cashmore Iocchi

Magazzeni

King’s College Sapienza King’s College
London University of Rome London

ICAPS 2017
19 June 2017

Pittsburgh –USA

AI Planning for Robotics and

Human-Robot Interaction

Why Human-Robot Interaction

is important…

Coming here

this morning….

2 people for driving a car

AI is CREATING jobs!

Disclaimer 1

Planning and Robotics is a growing area!
ICAPS workshops PlanRob

ICAPS Special Track on Planning and Robotics

PlanRob workshop + tutorial at ICRA 2017

Dagstuhl workshop on Planning and Robotics

This tutorial covers only

some aspects

PlanRob workshop tomorrow (full day)

Disclaimer 2

One can use several formalisms to model

robotics domains.

And one can use several techniques for

planning in these domains.

Having said that, this tutorial will focus on

Domain-Independent Planning through PDDLx

Disclaimer 3

Planning is actually plural

planning includes many things

in this tutorial: “planning”=“task planning”

Thanks to
Malik Ghallab!

Disclaimer 4

This is a tutorial

and we agreed to make it an accessible one

Slides + Virtual Machine + Demo

available in the ROSPlan website

Outline

• Why PDDL Planning for Robotics and HRI?

• ROSPlan I: Planning with ROS

Coffee (10.30-11.00)

• ROSPlan II: Planning with Opportunities

• Petri Net Plan Execution

• Open challenges

Outline

• Why PDDL Planning for Robotics and HRI?

Where PDDL planning is NOT useful

for Robotics?

• Single/Repetitive Tasks (no PDDL for manipulation/grasping!)

• Safe Navigation (Sampling is much better!)

• PDDL planning is really useful when there is room for optimisation

at a task level

Outline

• Why PDDL Planning for Robotics and HRI?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty

Expressive Planning
• PDDL family of planning modelling languages

• PDDL1

• Introduced for the International Planning Competition series
(1998).

• Used as the international standard modelling language family for
planners

• Enables benchmarking and comparison across different
algorithms and domains

• PDDL2.1

• Introduced time and numeric effects

• Powerful enough to model a class of Mixed discrete-continuous
domains

• PDDL3

• Preferences and trajectory constraints (eg: always P, sometimes
P, eventually P, etc)

• PDDL+

• Allows a larger class of mixed discrete continuous domains,
including exogenous events

Instantaneous actions, propositional conditions and effects
LAMA, HSP, FF, MetricFF, SATplan, FastDownward, (+many

others)

Temporal heuristic estimates, linear
constraints

LPG, TFD, SAPA, POPF, COLIN

Linear temporal logic
OPTIC (POPF), Hplan-P

Non-linear constraints,
exogenous events

MIP, UPMurphi, PMTplan

Planning and Control

Frequency
(Hz)

105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6

Sensing

Control
Planning

Execution
Monitoring

Noise Inaccuracy Uncertainty Ignorance

Planning is an AI technology that seeks to select and organise

activities in order to achieve specific goals

Plan Dispatch: a controller is responsible for realising each plan action

Planning with Time: An Additional Dimension

• Processes mean time spent in states matters

Planning in Hybrid Domains

• When actions or events are performed they cause instantaneous

changes in the world

– These are discrete changes to the world state

– When an action or an event has happened it is over

• Processes are continuous changes

– Once they start they generate continuous updates in the world

state

– A process will run over time, changing the world at every instant

Holding ball

Action: drop ball

Not holding ball

Ball falling

Height over time

PDDL+: Let it go

• First drop it...

• Then watch it fall...

• And then?

(:action release

:parameters (?b – ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))

:effect (and (not (holding ?b))))

(:process fall

:parameters (?b – ball)

:precondition (and (not (holding ?b)) (>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))

(decrease (height ?b) (* #t (velocity ?b)))))

PDDL+: See it bounce

• Bouncing...

• Now let’s plan to catch it...

(:event bounce

:parameters (?b - ball)

:precondition (and (>= (velocity ?b) 0)

(<= (height ?b) 0))

:effect (and (assign (height ?b) (* -1 (height ?b)))

(assign (velocity ?b) (* -1 (velocity ?b)))))

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))

:effect (and (holding ?b) (assign (velocity ?b) 0)))

A Valid Plan

• Let it bounce, then catch it...

• The validator can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

0.1: (release b1)

4.757: (catch b1)

Some PDDL+ Planners
• UPMurphi (Della Penna et al.) [ICAPS’09]

Based on Discretise and Validate

(Baseline for adding new heuristics:
multiple battery management [JAIR’12] or urban traffic control [AAAI’16])

• DiNo (Piotrowski et al.) [IJCAI’16]

Extend UPMurphi with TRPG heuristic for hybrid domains

• SMTPlan (Cashmore et al.) [ICAPS’16]

Based on SMT encoding of PDDL+ domains

• ENHSP (Scala et al.) [IJCAI’16]

Expressive numeric heuristic planning

• dReach/dReal (Bryce et al.) [ICAPS-15]

Combine SMT encoding with dReal solver

• POPF (Coles et al.) [ICAPS-10]

Combine Forward Search and Linear Programming

One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs

to reach a location where stable

fixed-wind flight can be achieved.

The aircraft has fans/rotors which generate

lift and which can be tilted by 90 degrees

to achieve the right velocity both vertically

and horizontally. V-22 Osprey

Vertical Take-Off

(:action start_engines

:parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0))

:effect (ascending))

(:process ascent

:parameters ()

:precondition (and (not (crashed)) (ascending))

:effect (and (increase (altitude) (* #t (- (* (v_fan) (- 1 (/ (* (* (angle) 0.0174533)

(* (angle) 0.0174533)) 2))) (g))))

(increase (distance) (* #t (* (v_fan) (/ (* (* 4 (angle)) (- 180 (angle)))

(- 40500 (* (angle) (- 180 (angle))))))))))

(:durative-action increase_angle

:parameters ()

:duration (<= ?duration (- 90 (angle)))

:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)))

:effect (and (increase (angle) (* #t 1))))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))

:effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending))

:effect (and (increase (altitude) (* #t (wind_y) 1)

(increase (distance) (* #t (wind_x) 1)))

Timed Initial Fluents

(at 5.0 (= (wind_x) 1.3))

(at 5.0 (= (wind_y) 0.2))

(at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

.. …

Outline

• Why PDDL Planning for Robotics and HRI?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty

Opportunistic Planning

• Very important in persistent autonomy

• Use case: PANDORA (EU funded project)

Persistent Autonomy (AUVs)

Inspection and maintenance of a

seabed facility:

- without human intervention

- inspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

Persistent Autonomy (AUVs)

Inspection and maintenance of a

seabed facility:

- without human intervention

- inspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

AUV mission, many tasks at scattered locations.

- long horizon plans

- large amount of uncertainty

- discovery

High utility, low-probability opportunities for new tasks.

Persistent Autonomy (AUVs)
High Impact Low-Probability Events (HILPs)

- the probability distribution is unknown

- cannot be anticipated

- our example is chain following

If you see an unexpected chain, it's a good idea to

investigate...

2011 Banff 5 of 10 lines parted.
2011 Volve 2 of 9 lines parted
2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted

a distance, riser broken
2010 Jubarte 3 lines parted between 2008 and

2010.
2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a

distance, riser broken
2009 Hai Yang Shi You Entire yoke mooring column

collapsed; vessel adrift, riser broken.
2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a

distance, riser broken.
2002 Girassol buoy 3 (+2) of 9 lines parted, no damage

to offloading lines (2 later)

Opportunistic Planning

In PANDORA we plan and execute

missions over long-term horizons (days or
weeks)

Our planning strategy is based on the

assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use

estimated durations for the actions that are
longer than the mean.

(95th percentile of the normal distribution)

Opportunistic Planning

In PANDORA we plan and execute

missions over long-term horizons (days or
weeks)

Our planning strategy is based on the

assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use

estimated durations for the actions that are
longer than the mean.

(95th percentile of the normal distribution)

Opportunistic Planning

In PANDORA we plan and execute

missions over long-term horizons (days or
weeks)

Our planning strategy is based on the

assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use

estimated durations for the actions that are
longer than the mean.

(95th percentile of the normal distribution)

Opportunistic Planning

We use an execution stack (of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

Opportunistic Planning

We use an execution stack (of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

Why not just replan?
We compare the opportunistic approach against replanning the mission

when an opportunity is discovered. When an opportunity is discovered

a new initial state is generated.

Replanning:

- the problem is more difficult to solve

- the planning time can be increased

+ the opportunity can be ordered later in the plan

+ the existing plan can be reordered to make more time for exploiting

the opportunity

+ the resulting plan can be more efficient

We examine situations where we have just discovered an opportunity:

10 second bound on planning for the opportunity alone

30 minute bound for replanning

Why not just replan?

Why not just replan?

Better plan quality by replanning

Why not just replan?

Better plan quality by replanning

We examine situations where we have just discovered an opportunity:

10 second bound on planning for the opportunity alone

30 minute bound for replanning

In 228 total missions:

5 replanning plans were more efficient than the opportunistic

approach.

Opportunistic Planning

We use an execution stack (of goals & plans)

The current plan tail can be pushed onto the stack

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

NOTE: Opportunities can also arise for

supervisor requests!

More details on Friday morning

(Paper on Opportunistic Planning at the Journal Track)

Outline

• Why PDDL Planning for Robotics and HRI?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty

Strategic Planning for Persistent Autonomy

Planning over long horizons (days, weeks)

Missions with strict deadlines and time windows in which goals need to be

accomplished.

Example in underwater robotics:

Seabed facilities need to be inspected at certain intervals.

Current planning systems struggle in generating

complex plans over long horizons.

One possible solution:

Decompose into Strategic/Tactical Layers

Strategic/Tactical Planning

Cluster the goals into tasks

Strategic Layer: contains a high lever plan that achieves all tasks and

manages the resource and time constraints.

Tactical Layer: contains a plan that solves a single task.

Example from underwater robotics.

Long term maintenance of seabed facility includes

-Inspecting the structures are regular intervals.

-Changing the configuration of the site by interacting with interfaces within

specific time windows.

-Recharging the AUVs.

Additional challenges:

-Ever changing environment (currents, visibility)

-Wildlife

Strategic/Tactical Planning

Strategic/Tactical Planning
Clustering

Strategic/Tactical Planning
Clustering

Strategic/Tactical Planning
Tactical Layer

For each Task the planner generates a plan

and stores:

-duration

-resource constraints

Energy consumption = 10W

Duration = 86.43s

Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the

time and resource constraints.

Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the

time and resource constraints.

All the tactical plans are collected.

And the strategic plan is generated, not violating resource/time constraints

Strategic/Tactical Planning

Outline

• Why PDDL Planning for Robotics and HRI?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty

Planners can be trusted

Planners can allow an easy interaction with humans

Planners are transparent

(at least, the process by which the decisions are made are

understood by their programmers)

To note: entirely trustworthy and theoretically well-understood

algorithms can still yield decisions that are hard to explain.

Ex: Linear Programming ….

To note: XAI and the need to explain machine/deep learning

remain of critical importance!

XAIP is important in domains where learning is not an option.

eXplainable Planning (XAIP)

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process

by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

A request for an explanation is an attempt to uncover a piece of

knowledge that the questioner believes must be available to the

system and that the questioner does not have.

Towards XAIP

• Plan explanation

– Translate PDDL in forms that humans can understand [Sohrabi et al. 2012]

– Design interfaces that help this understanding [Bidot et al. 2012]

– Describe causal/temporal relations for plan steps [Seegebarth et al. 2012]

– Explaining observed behaviours [Sohrabi, Baier, McIlraith, 2011]

– Understanding the past [Molineaux et al., 2012]

– … ... …

• Plan Explicability

– Focus on human’s interpretation of plans [Seegebarth et al. 2012]

• Verbalization and transparency in autonomy

– Generate narrations for autonomous robot navigations [Veloso et al. 2016]

• Explainable Agency [Langley et al. 2017]

• Model Reconciliation (Sreedharan et al.)

– Identify/reconcile different human/robot models [Chakraborti et al 2017]

Transparency in Autonomy
(Manuela Veloso et al.)

Verbalization: the process by which an autonomous robots converts its

own experience into language

Verbalization space: to capture different nature of explanations.

And to learn to correctly infer an explanation level in the verbalization

space.

Specificity – Locality - Abstraction

Verbalization: Narration of Autonomous Mobile Robot Experience.
Rosenthal, Selvaraj, Veloso. IJCAI 2016.

Things to Be Explained

(some)

• Q1: Why did you do that?

• Q2: Why didn’t you do something else? (that I would have done)

• Q3: Why is what you propose to do more efficient/safe/cheap than

something else? (that I would have done)

• Q4: Why can’t you do that ?

• Q5: Why do I need to replan at this point?

• Q6: Why do I not need to replan at this point?

Illustrative Example

Rover Time domain from IPC-4 (problem 3)

Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

NA: so that I can communicate_data from Rover0 later (at 18.001)

Illustrative Example

Rover Time domain from IPC-4 (problem 3)

Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

NA: so that I can communicate_data from Rover0 later (at 18.001)

Illustrative Example

Rover Time domain from IPC-4 (problem 3)

Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

We require the plan to contain at least one action that has Rover0 as

argument (add dummy effect to all actions using Rover0 and put into the goal)

Illustrative Example
Q1: why did you use Rover0 to take the rock sample at waypoint0 ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for Rover0 and re-plan

A: Because not using Rover0 for this action leads to a longer plan

Q2: But why does Rover1 do everything in this plan?

We require the plan to contain at least one action that has Rover0 as

argument (add dummy effect to all actions using Rover0 and put into the goal)

A: There is no useful way to use Rover0 for improve this plan

eXplainable Planning

• Q5: Why do I need to replan at this point?

In many real-world scenarios, it is not obvious that the plan being executed

will fail. Often plain failures is discovered too late.

One possible approach is to use the “Filter Violation” (ROSPlan)

Once the plan is generated, ROSPlan creates a filter, by considering all the

preconditions of the actions in the plan.

Ex: navigate (?from ?to - waypoint) has precondition (connected ?from ?to)

If the plan contains navigate (wp3 wp5),

then (connected wp3 wp5) is added to the filter.

at execution time

Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

Illustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

Outline

• Why PDDL Planning for Robotics?

• Expressive Planning

• Opportunistic Planning

• Strategic Planning

• eXplainable Planning (XAIP)

• Planning with Uncertainty

Planning with Uncertainty

Uncertainty and lack of knowledge is a huge part of AI Planning for Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in AI Planning

Some uncertainty can be
handled at planning
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g. ROSPlan
with Contingent-FF)

Some uncertainty can be
handled at planning
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g. ROSPlan
with Contingent-FF)

Uncertainty in AI Planning

Some uncertainty can be
handled at planning
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g. ROSPlan
with Contingent-FF)

Uncertainty in AI Planning

Some uncertainty can be
handled at planning
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g. ROSPlan
with Contingent-FF)

Uncertainty in AI Planning

Some uncertainty can be
handled at planning
time:

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g. ROSPlan
with Contingent-FF)

Uncertainty in AI Planning

ROSPlan: Planning in the Robot Operating
System

Outline

• ROS Basics

• Plan Execution

• Very Simple Dispatch

• Very Simple Temporal Dispatch

• Conditional Dispatch

• Temporal and Conditional Dispatch together

• Dispatching More than a Single Plan

• Hierarchical and Recursive Planning

• Opportunistic Planning

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.

2. ROS services are used for synchronous request/response.

<launch>
<include file="$(find turtlebot_navigation)/launch/includes/velocity_smoother.launch.xml"/>
<include file="$(find turtlebot_navigation)/launch/includes/safety_controller.launch.xml"/>

<arg name="odom_topic" default="odom" />
<arg name="laser_topic" default="scan" />

<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="local_costmap" />
<remap from="odom" to="$(arg odom_topic)"/>
<remap from="scan" to="$(arg laser_topic)"/>

</node>
</launch>

ROS Basics

ROS offers a message passing interface that provides inter-

process communication.

The actionlib package standardizes the interface for preemptable tasks.

For example:

- navigation,

- performing a laser scan

- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for

sending task:

- goals

- feedback

- result

ROS Basics

Aside from numerous tools, Actionlib provides standard messages for
sending task:

- goals

- feedback

- result
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose
std_msgs/Header header

uint32 seq
time stamp
string frame_id

geometry_msgs/Pose pose
geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w

Plan Execution 1: Very simple

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

(Some) Related Work

McGann et el.C., Py, F., A deliberative architecture for AUV control. In Proc. Int. Conf. on Robotics and
Automation (ICRA), 2008

Beetz & McDermott Improving Robot Plans During Their Execution. In Proc. International Conference
on AI Planning Systems (AIPS), 1994

Ingrand et el. PRS: a high level supervision and control language for autonomous mobile robots. In
IEEE Int.l Conf. on Robotics and Automation, 1996

Kortenkamp & Simmons Robotic Systems Architectures and Programming. In Springer Handbook of
Robotics, pp. 187–206, 2008

Lemai-Chenevier & Ingrand Interleaving Temporal Planning and Execution in Robotics Domains. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2004

Baskaran, et el. Plan execution interchance language (PLEXIL) Version 1.0. NASA Technical
Memorandum, 2007

Robertson et al. Autonomous Robust Execution of Complex Robotic Missions. Proceedings of the 9th
International Conference on Intelligent Autonomous Systems (IAS-9), 2006

Plan Execution 1: Very simple

Dispatch

Plan Execution 1: Very simple

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

Plan Execution 1: Very simple

Dispatch

The most basic structure.

- The plan is generated.

- The plan is executed.

Red boxes are components of

ROSPlan. They correspond to

ROS nodes.

The domain and problem file can

be supplied

- in launch parameters

- as ROS service parameters

Plan Execution 1: Very simple

Dispatch

rosplan_dispatch_msgs/CompletePlan

ActionDispatch[] plan

int32 action_id

string name

diagnostic_msgs/KeyValue[] parameters

string key

string value

float32 duration

float32 dispatch_time

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

- timed execution

- Petri-Net plans

- Esterel Plans

- etc.

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

An action in the plan is stored as a ROS message

ActionDispatch, which corresponds to a PDDL action.

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

The ActionDispatch message is received by a listening

interface node, and becomes a goal for control.

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.
move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000

0.000: (goto_waypoint wp0) [10.000]

10.01: (observe ip3) [5.000]

15.02: (grasp_object box4) [60.000]

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.

2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

Feedback is returned to the simple dispatcher

(action success or failure) through a ROS message:

ActionFeedback.

A dispatch loop without feedback

Plan Execution Failure

This form of simple dispatch has some problems. The robot often exhibits

zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan fails, but the robot doesn't notice.

Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.

Bad behaviour 1: Action Failure

An action might never terminate. For example:

- a navigation action that cannot find a path to its goal.

- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan

again, from the new current state, without human intervention.

The problem file must be regenerated.

PDDL Model

To generate the problem file automatically, the agent

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node

called the Knowledge Base.

PDDL Model

To generate the problem file automatically, the agent

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node

called the Knowledge Base.

rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

PDDL Model

To generate the problem file automatically, the agent

must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node

called the Knowledge Base.

From this, the initial state of a new planning problem can

be created.

ROSPlan contains a node which

will generate a problem file for the

ROSPlan planning node.

PDDL Model

The model must be continuously updated from sensor

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the

Knowledge Base.

PDDL Model

The model must be continuously updated from sensor

data.

For example a new ROS node:

1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

3. adjusts the predicate (robot_at ?r ?wp) in the

Knowledge Base.
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance

ROSPlan components

ROSPlan components

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute

the plan for a long time without purpose.

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute

the plan for a long time without purpose.

The success or failure of an action can sometimes not be understood

outside of the context of the whole plan.

Bad Behaviour 2: Plan Failure

There should be

diagnosis at the

level of the plan.

If the plan will fail in

the future, the robot

should not continue

to execute the plan

for a long time

without purpose.

Bad Behaviour 2: Plan Failure

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain,

and the roadmap might not be correct.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around

to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

ROSPlan validates using VAL. [Fox et al. 2005]

ROSPlan: Default Configuration

Now the system is more

complex:

- PDDL model is

continuously updated from

sensor data.

- problem file is

automatically generated.

ROSPlan: Default Configuration

Now the system is more

complex:

- PDDL model is

continuously updated from

sensor data.

- problem file is

automatically generated.

- the planner generates a

plan.

- the plan is dispatched

action-by-action.

ROSPlan: Default Configuration

Now the system is more

complex:

- PDDL model is

continuously updated from

sensor data.

- problem file is

automatically generated.

- the planner generates a

plan.

- the plan is dispatched

action-by-action.

- feedback on action

success and failure.

- the plan is validated

against the current model.

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Plan Execution 2: Very Simple

Temporal Dispatch

The real world requires a temporal and

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

What happens when we add temporal

constraints, and try to dispatch the plan

as a sequence of actions?

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

0.000: (goto_waypoint wp1) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead

dispatch actions at their estimated

timestamps.

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of

actions is rarely accurate.

The plan execution loop could dispatch

actions, while respecting the causal

ordering between actions.

However, some plans require temporal

coordination between actions, and the

controllable durations might be very far

apart.

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are

not violated.

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are

not violated.

Setting t(b1) == t(b2) will always obey
the temporal constraints.

STPUs: Strong controllability

The STPU is not strongly controllable, but it is obviously executable.

It is dynamically controllable.

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are

not violated.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

Not all problems will have solutions have any kind of controllability.

This does not mean they are impossible to plan or execute.

To reason about these kinds of issues we need to use a plan

representation sufficient to capture

- the difference between controllable and uncontrollable durations,

- causal orderings, and

- temporal constraints.

Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation
sufficient to capture the controllable and uncontrollable durations, causal
orderings, and temporal constraints.

The representation of a plan is coupled with the

choice of dispatcher.

The problem generation and planner are not

necessarily bound by the choice of

representation.

Plan Execution 3: Conditional

Dispatch

Uncertainty and lack of knowledge is a huge part of AI Planning for

Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.

- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in AI Planning

Some uncertainty can
be handled at planning
time:

- Fully-Observable
Non-deterministic
planning.

- Partially-observable
Markov decision
Process.

- Conditional Planning
with Contingent
Planners. (e.g.
ROSPlan with
Contingent-FF)

Plan Execution 4: Temporal and

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional

reasoning. Combining these two kinds of uncertainty can result in very

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional

reasoning. Combining these two kinds of uncertainty can result in very

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and

Conditional Dispatch together

Robotics domains require a combination of temporal and conditional

reasoning. Combining these two kinds of uncertainty can result in very

complex structures.

There are plan formalisms designed to describe these, e.g.:

- GOLOG plans. [Claßen et al., 2012]

- Petri Net Plans. [Ziparo et al. 2011]

ROSPlan is integrated with the PNPRos library for the representation and

execution of Petri Net plans. [Sanelli, Cashmore, Magazzeni, and Iocchi; 2017]

Summary of Very Simple Plan Execution

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Required input
Available feedback
Preemptable execution
Local recovery behaviour

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Available sensors
Semantic evaluation
Passive vs. active
User input

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Plan validation
Condition checking
Temporal or numeric models
Knowledge reasoning

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

Summary of Very Simple Plan Execution

Re-planning
Plan repair
Problem and domain regeneration
Opportunity planning
Plan merging

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

The execution of a

plan is an emergent

behaviour of the

whole system.

Summary of Very Simple Plan Execution

Plan Execution

depends upon many

components in the

system. Changing any

one of which will

change the robot

behaviour, and

change the criteria

under which the plan

will succeed or fail.

The execution of a

plan is an emergent

behaviour of the

whole system.

Summary of Very Simple Plan Execution

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour

might move toward achievement of multiple goals together.

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour

might move toward achievement of multiple goals together.

The robot can also have:

- long-term goals (plans are abstract, with horizons of weeks)

- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning process,

and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.

Dispatching more than a Single Plan

How do you plan from future situations that you can't predict?

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search

scenario. For tracking targets, tidying household objects, or interacting

with people.

Dispatching more than a Single Plan

Dispatching more than a Single Plan

Hierarchical and Recursive Planning

For each task we generate a tactical plan.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints

are used in the generation of the strategic problem.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints

are used in the generation of the strategic problem.

For each task we generate a tactical plan. The time and resource constraints

are used in the generation of the strategic problem.

A strategic plan is generated that does not violate the time and resource

constraints of the whole mission.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical

problem is regenerated, replanned, and executed.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical

problem is regenerated, replanned, and executed.

The tactical mission is

executed by a complete

planning system.

[Cashmore et al. 2015]

Hierarchical and Recursive Planning

Hierarchical and Recursive Planning

Observing an object has

two outcomes:

- Success. The object

is classified or

recognised

- Failure. The object

type is still unknown,

but new viewpoints

are generated to

discriminate between

high-probability

possibilities.

Hierarchical and Recursive Planning

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0]

0.000: (pickup-object) [16.0]

0.000: (goto_waypoint) [10.0]

The action corresponds

to a short tactical plan to

observe viewpoints.

Hierarchical and Recursive Planning

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0]

0.000: (pickup-object) [16.0]

0.000: (goto_waypoint) [10.0]

The action corresponds

to a short tactical plan to

observe viewpoints.

Hierarchical and Recursive Planning

The action corresponds

to a short tactical plan to

observe viewpoints.

The next tactical plan

can only be generated

once the new viewpoints

are known.

Hierarchical and Recursive Planning

The components of

the system are the

same as the very

simple dispatch.

The behaviour of

the robot is very

different.

Hierarchical and Recursive Planning

The components of

the system are the

same as the very

simple dispatch.

The behaviour of

the robot is very

different.

The execution of a

plan is an

emergent

behaviour of the

whole system.

Both the

components and

how they are used.

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution

of a plan fragment, then the currently executing

plan can be pushed onto the stack and a new

plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic

Planning

New plans are generated for the opportunistic

goals and the goal of returning to the tail of the

current plan.

If the new plan fits inside the free time window,

then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution

of a plan fragment, then the currently executing

plan can be pushed onto the stack and a new

plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic

Planning

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Dispatching Plans at the same time

Separating tasks and scheduling is not as efficient.

Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the

advancement towards multiple goals.

[Mudrova et al. 2016]

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP
rosplan_knowledge_msgs/KnowledgeItem
uint8 INSTANCE=0
uint8 FACT=1
uint8 FUNCTION=2
uint8 knowledge_type
string instance_type
string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values

string key
string value

float64 function_value
bool is_negative

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose

geometry_msgs/Pose pose
geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64[36] covariance
geometry_msgs/TwistWithCovariance twist

geometry_msgs/Twist twist
geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64[36] covariance

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP

move_base/MoveBaseGoal
geometry_msgs/PoseStamped target_pose

std_msgs/Header header
...
geometry_msgs/Pose pose

geometry_msgs/Point position
float64 x
float64 y
float64 z

geometry_msgs/Quaternion orientation
...

ActionDispatch
action_id = 0
name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters

key = “wp”
value = “wp0”

duration = 10.000
dispatch_time = 0.000

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

ROSPlan and PNP

The domain model is

always incomplete as

well as inaccurate.

The plan is validated

against a model that is

continually changing

and only partially

sensed.

The RosPNP Library

encapsulates both

action dispatch and

state updates.

In a Petri Net plan the

only state estimation

performed is explicit in

the plan.

ROSPlan and PNP

ROSPlan documentation and source:
kcl-planning.github.io/ROSPlan

Petri Net Plans

Execution Framework

Luca Iocchi
Dipartimento di Ingegneria

Informatica, Automatica e Gestionale

Luca Iocchi
Dipartimento di Ingegneria Informatica

Automatica e Gestionale

Petri Net Plans

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 2

• High-level plan representation formalism
based on Petri nets

• Explicit and formal representation of actions
and conditions

• Execution Algorithm implemented and tested
in many robotic applications

• Open-source release with support for
different robots and development
environments (ROS, Naoqi, …)

Petri Net Plans library

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 3

PNP library contains

• PNP execution engine

• PNP generation tools

• Bridges: ROS, Naoqi

(Nao, Pepper)

pnp.dis.uniroma1.it

[Ziparo et al., JAAMAS 2011]

Plan representation in PNP

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 4

• Petri nets are exponentially more compact than
other structures (e.g., transition graphs) and can
thus efficiently represent several kinds of plans:
– Linear plans

– Contingent/conditional plans

– Plans with loop

– Policies

– …

• PNP can be used as a general plan execution
framework

Plan traslation in PNP

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 5

• PNPgen is a library that translates a plan (the

output of some planning system) in a PNP.

• PNPgen includes additional facilities to extend

the generated PNP with constructs that are not

available on the planning system (e.g., interrupt

and recovery procedures).

• Plan formats supported:

ROSPlan (linear/conditional), HATP, MDP policies

PNP ROS

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 6

• PNP-ROS is a bridge for executing PNPs in a

ROS-based system.

• PNP-ROS uses the ROS actionlib protocol to

control the execution of the actions and ROS

topics and parameters to access the robot's

knowledge.

PNP execution framework

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 7

ROSPlan

Contingent-FF

R
o

b
u

stifica
tio

n

P
N

P
-R

O
S

π

Planning and Execution Component

Execution

Rules

PNP
Domain

Goal

ROSPlan + PNPgen + PNP-ROS

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 8

• A proper integration of

o Plan generation

o Plan execution

o ROS action execution
and condition
monitoring

provides an effective
framework for robot

planning and execution.

Outline

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 9

• Petri Nets

• Petri Net Plans

• Execution rules

• PNP-ROS

• Demo

Petri Net definition

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 10

Petri Net firing rule

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 11

Petri Net Plans

• Petri Net Plans (PNP) are defined in terms of

• Actions

- ordinary actions

- sensing actions

• Operators

- sequence, conditional and

loops

- interrupt

- fork/join

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 12

PNP Actions

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 13

PNP Actions

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 14

PNP Operators

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 15

PNP interrupt

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 16

PNP concurrency

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 17

Plan 1: sequence and loop

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 18

Plan 2: fork and join

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 19

Plan 3: sensing and loop

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 20

Plan 4: interrupt

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 21

Plan 5: multi robot

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 22

PNP Execution Algorithm

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 23

Correctness of PNP execution

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 24

• PNP execution is correct with respect to an

operational semantics based on Petri nets and the

robot's local knowledge.

PNP sub-plans

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 25

• Plans can be organized in a hierarchy, allowing

for modularity and reuse

• Sub-plans are like actions:

– when started, the initial marking is set

– when goal marking is reached, the sub-plan ends

Plans with variables

[condition_@X] sets the value of variable X

action_@X uses the value of variable X

Example: given a condition personAt_@X, the occurrence of

personAt_B115 sets the variable @X to “B115”, next action

goto_@X will be interpreted as goto_B115

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 26

Execution rules

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 27

Adding to the conditional plan

• interrupt (special conditions that determine
interruption of an action)

• recovery paths (how to recovery from an interrupt)

• social norms

• parallel execution

Main feature

• Execution variables are generally different from the
ones in the planning domain (thus not affecting
complexity of planning)

Execution rules

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 28

Examples

if personhere and closetotarget during goto do
skip_action
if personhere and not closetotarget during goto do

say_hello; waitfor_not_personhere;
restart_action
if lowbattery during * do recharge; fail_plan
after receivedhelp do say_thanks
after endinteraction do say_goodbye
when say do display

PNP-ROS

• Bridge between PNP and ROS

• Allows execution of PNP under ROS using the

actionlib module

• Defines a generic PNPAction and an

ActionClient for PNPActions

• Defines a client service PNPConditionEval to

evaluate conditions

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 29

User

Application
PNP-ROS

PNP

ActionClient

PNP lib
PNP

PNP

ActionServer

Actions and

conditions

PNP

ServiceClient

PNP

Service

PNP-ROS

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 30

MyPNPAS

PNP-ROS

User development:

1. implement actions and conditions

2. write a PNPActionServer

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 31

PNPActionServer

class PNPActionServer

{

public:

PNPActionServer();

~PNPActionServer();

void start();

// To be provided by actual implementation

virtual void actionExecutionThread(string action_name,
string action_params, bool *run);

virtual int evalCondition(string condition); // 1: true, 0: false; -
1:unknown

}

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 32

PNPActionServer

class PNPActionServer

{

public:

…

// For registering action functions (MR=multi-robot version)

void register_action(string actionname, action_fn_t actionfn);

void register_MRaction(string actionname, MRaction_fn_t actionfn);

…

}

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 33

MyPNPActionServer

#Include "MyActions.h"

class MyPNPActionServer : public PNPActionServer

{

MyPNPActionServer() : PNPActionServer() {

register_action("init",&init);

….

}

}

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 34

MyPNPActionServer

PNP_cond_pub = // asynchronous conditions

handle.advertise<std_msgs::String>("PNPConditionEvent", 10);

Function SensorProcessing

{

…

std_msgs::String out;

out.data = condition; // symbol of the condition

PNP_cond_pub.publish(out);

}

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 35

MyPNPActionServer

Function SensorProcessing

{

…

string param = “PNPconditionsBuffer/<CONDITION>”;

node_handle.setParam(param, <VALUE {1|0}>);

}

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 36

Demo
Virtual machine available in the

Tutorial web site

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 37

Demo
Virtual machine available in the

Tutorial web site

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 38

Demo

Inspired by RoboCup@Home tasks

• RoboCup@Home domain

• Planning problems for @Home tasks

– Navigation (rulebook 2016)

– Cocktail Party (rulebook 2017)

NOTE: We are using this framework in our

SPQReL team that will compete in

RoboCup@Home 2017 SSPL

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 39

References

• Petri Net Plans - A framework for collaboration and coordination in multi-robot

systems. V. A. Ziparo, L. Iocchi, Pedro Lima, D. Nardi, P. Palamara. Autonomous

Agents and Multi-Agent Systems, vol. 23, no. 3, 2011.

• Dealing with On-line Human-Robot Negotiations in Hierarchical Agent-based

Task Planner. E. Sebastiani, R. Lallement, R. Alami, L. Iocchi. In Proc. of

International Conference on Automated Planning and Scheduling (ICAPS), 2017.

• Short-Term Human Robot Interaction through Conditional Planning and

Execution. V. Sanelli, M. Cashmore, D. Magazzeni, L. Iocchi. In Proc. of

International Conference on Automated Planning and Scheduling (ICAPS), 2017.

• A practical framework for robust decision-theoretic planning and execution for

service robots. L. Iocchi, L. Jeanpierre, M. T. Lazaro, A.-I. Mouaddib. In Proc. of

International Conference on Automated Planning and Scheduling (ICAPS), 2016.

• Explicit Representation of Social Norms for Social Robots. F. M. Carlucci, L.

Nardi, L. Iocchi, D. Nardi. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2015.

AI Planning for Robotics and Human-Robot Interaction - ICAPS 2017 40

	ICAPS17_part1
	ICAPS17_part2
	ICAPS17_part3

