Al Planning for Robotics and
Human-Robot Interaction

Michael Luca Daniele
Cashmore locchi
Magazzeni
King’s College Sapienza King’s College
London University of Rome London
ICAPS 2017

19 June 2017
Pittsburgh —USA

Why Human-Robot Interaction
IS important...

Coming here
this morning....

2 people for driving a car

Alis CREATING jobs!

Disclaimer 1

Planning and Robotics is a growing area!

ICAPS workshops PlanRob

ICAPS Special Track on Planning and Robotics
PlanRob workshop + tutorial at ICRA 2017
Dagstuhl workshop on Planning and Robotics

This tutorial covers only
some aspects

PlanRob workshop tomorrow (full day)

Disclaimer 2

One can use several formalisms to model
robotics domains.
And one can use several techniques for
planning in these domains.

Having said that, this tutorial will focus on
Domain-Independent Planning through PDDLXx

Disclaimer 3

: : Thanks to
Planning is actually plural pmaiik ghaliab!

planning includes many things
in this tutorial: “planning”=*task planning”

Steven M. LaValle

PLANNING
ALGORITHMS

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

Disclaimer 4

This Is a tutorial
and we agreed to make it an accessible one

Slides + Virtual Machine + Demo
avallable in the ROSPlan website

Outline

« Why PDDL Planning for Robotics and HRI?
« ROSPIlan I: Planning with ROS

Coffee (10.30-11.00)

« ROSPIlan II: Planning with Opportunities

» Petri Net Plan Execution

 Open challenges

Outline

« Why PDDL Planning for Robotics and HRI?

Where PDDL planning is NOT useful
for Robotics?

Single/Repetitive Tasks (no PDDL for manipulation/grasping!)

Safe Navigation (Sampling is much better!)

PDDL planning is really useful when there is room for optimisation

at a task level

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Expressive Planning

DDL family of planning modelling languages

* DI nstantaneous actions, propositional conditions and effects
* \I] LAMA, HSP, FF, MetricFF, SATplan, FastDownward, (+many eries
- others)
« Uséq as the international Standard modelling language Tamily for

planners

« Enablex benchmarking and comparison across diterent

algorlth c_and AdAarmAaince
PDDL2.1 Temporal heuristic estimates, linear

. Introduce constraints
LPG, TFD, SAPA, POPF, COLIN

« Powerful ¢ te-continuous
domains \ /
- PDDL3 Linear temporal logic
- Preferences anq OPTIC (POPF), Hplan-P |- always P, sometimes
P, eventually P, &y
« PDDL+ \ /
 Allows alargerd Non-linear constraints, jtinuous domains,
including exoger exogenous events
MIP, UPMurphi, PMTplan

Planning and Control

Planning is an Al technology that seeks to select and organise
activities in order to achieve specific goals

Plan Dispatch: a controller is responsible for realising each plan action

Execution
Monitoring

Frequency

(Hz) 10> 10* 10® 102 10' 10° 10! 102 103 10* 10° 10°

Noise Inaccuracy Uncertainty lgnorance

Planning with Time: An Additional Dimension

« Processes mean time spent in states matters

. NN |

\A

Planning in Hybrid Domains

* When actions or events are performed they cause instantaneous
changes in the world

— These are discrete changes to the world state

— When an action or an event has happened it is over
|

Holding ball Not holding bai!

Action: drop ball Height over time

* Processes are continuous chane >

— Once they start they generate continuous updates in the world
state

— A process will run over time, changing the world at every instant

PDDL+: Let it go

* Firstdropit...

(:action release

:parameters (?b - ball)

:precondition (and (holding ?b) (= (velocity ?b) 0))
:effect (and ((not (holding ?b))))]

e Then watch it fall...

(:process fall

:parameters (?b - ball) V¥

:precondition (and (not (holding ?b)) |(>= (height ?b) 0)))

:effect (and (increase (velocity ?b) (* #t (gravity)))
(decrease (height ?b) (* #t (velocity ?b)))))

e Andthen?

PDDL+: See i1t bounce

* Bouncing...

(:event bounce
:parameters (?b - ball)
:precondition (and (>= (velocity ?b) 0)
(<= (height ?b) 0))
:effect (and (assign (height ?b) (* -1 (height ?b)))
(assign (velocity ?b) (* -1 (velocity ?b)))))

* Now let’s plan to catch it...

(:action catch

:parameters (?b - ball)

:precondition (and (>= (height ?b) 5) (<= (height ?b) 5.01))
:effect (and (holding ?b) (assign (velocity ?b) 0)))

A Valid Plan

Let it bounce, then catch it...

0.1:

(release bl)

4.757: (catch bl)

The validator ML

can be used to check plan validity.

(https://github.com/KCL-Planning/VAL)

1.51421:

1.51421:

4.34264:

4.34264:

4.34264:

4.75T:

4.757:

4.757:

Event triggered!

Triggered event (bounce bl)

[mactivated process (fall bl)

Updating (height b1) (-2.22045e-13) by 2.22045e-15 assignment.
Updating {velocity b1) (14.1421) by -14.142] assignment.

Event triggered!
Activated process (fall bl)

Checking Happening... ... DR

(height b1)(t) = —5t% + 14.1421¢ + 2.22045 — 15

{(velocity b1)(t) = 10¢ — 14,1421

Updating {height b1) (2.22045e-15) by -2.44943e-15 for contin-
uous update.

Updating (velocity b1) (-14.1421) by 14.1421 for continuous up-

date.

Event triggered!

Triggered event (bounce bl)

Unactivated process (fall bl)

Updating (height bl) (-2.44943e-13) by 2.44943e-15 assignment.
Updating {velocity b1) (14.1421) by -14.1421 assignment.

Event triggered!
Activated process (fall bl)

Checking Happening... ... OR!
(height b1)(t) = —5t% + 14.1421¢ + 2.44943e — 15

Updating (height bl) (2.44943e-15) by 5.00146 for continuous

update.
Updating (velocity b1} (-14.1421) by -9.99854 for continuous

update.

Checking Happening... ... Ok
Adding (holding b1)
Updating {velocity bl) (-9.99854) by 0 assignment.

Event triggered!
Unactivated process (fall b1}

Plan executed successfully - checking goal

10

Value

. Time

20149
0

Figure 2.1:

[elard

4000

Graph of (height bl).

WValue
14141
0L ol 1me
1] ' ! H.THT
141401 /

Figure 2.2: Graph of (velocity bl).

Some PDDL+ Planners

UPMurphi (Della Penna et al.) [ICAPS’09]
Based on Discretise and Validate

(Baseline for adding new heuristics:
multiple battery management [JAIR’12] or urban traffic control [AAAI'16])

DiNo (Piotrowski et al.) [IJCAI'16]
Extend UPMurphi with TRPG heuristic for hybrid domains

SMTPIlan (Cashmore et al.) [ICAPS’16]
Based on SMT encoding of PDDL+ domains

ENHSP (Scala et al.) [1JCAI'16]
Expressive numeric heuristic planning

dReach/dReal (Bryce et al.) [ICAPS-15]
Combine SMT encoding with dReal solver

POPF (Coles et al.) [ICAPS-10]

Combine Forward Search and Linear Programming

One more PDDL+ example

Vertical Take-Off Domain

The aircraft takes off vertically and needs
to reach a location where stable
fixed-wind flight can be achieved.

The aircraft has fans/rotors which generatej 3

lift and which can be tilted by 90 degrees §
to achieve the right velocity both vertically
and horizontally. V-22 Osprey

Vertical Take-Off

(:action start_engines
parameters ()

:precondition (and (not (ascending)) (not (crashed)) (= (altitude) 0))

.effect (ascending))

(:process ascent
:parameters ()

:precondition (and (not (crashed)) (ascending))
.effect (and (increase (altitude) (* # (- (* (v Timed Initial Fluents

(* (angle) 0.0174533)) 2))) (9) (at 5.0 (= (wind_x) 1.3))
(increase (distance) (* #t (* (v_f| (at 5.0 (= (wind_y) 0.2))
(- 40500 (* (angle) (- 180 (anglg (at 9.0 (= (wind_x) -0.5))

(at 9.0 (= (wind_y) 0.3))

(:durative-action increase_angle
‘parameters ()

:duration (<= ?duration (- 90 (angle)))
:condition (and (over all (ascending)) (over all (<= (angle) 90)) (over all (>= (angle) 0)))
-effect (and (increase (angle) (* #t 1))))

(:event crash

:parameters ()

:precondition (and (< (altitude) 0))
.effect ((crashed))

)

(:process wind

:parameters ()

:precondition (and (not (crashed)) (ascending))

.effect (and (increase (altitude) (* #t (wind_y) 1)
(increase (distance) (* #t (wind_x) 1)))

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Opportunistic Planning

Very important in persistent autonomy
Use case: PANDORA (EU funded project)

Persistent Autonomy (AUVS)

Inspection and maintenance of a
seabed facility:

- without human intervention
- iInspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

Persistent Autonomy (AUVS)

Inspection and maintenance of a
seabed facility:

- without human intervention
- iInspecting manifolds

- cleaning manifolds

- manipulation valves

- opportunistic tasks

AUV mission, many tasks at scattered locations.

- long horizon plans
- large amount of uncertainty
- discovery

High utility, low-probability opportunities for new tasks.

Persistent Autonomy (AUVS)

High Impact Low-Probability Events (HILPS)

- the probability distribution is unknown
- cannot be anticipated
- our example is chain following

If you see an unexpected chain, it's a good idea to
investigate...

2011 Banff 5 of 10 lines parted.

2011 Volve 2 of 9 lines parted

2011 Gryphon Alpha 4 of 10 lines parted, vessel drifted
a distance, riser broken

2010 Jubarte 3 lines parted between 2008 and
2010.

2009 Nan Hai Fa Xian 4 of 8 lines parted; vessel drifted a
distance, riser broken

2009 Hai Yang Shi You Entire yoke mooring column
collapsed; vessel adrift, riser broken.

2006 Liuhua (N.H.S.L.) 7 of 10 lines parted; vessel drifted a
distance, riser broken.

2002 Girassol buoy 3 (+2) of 9 lines parted, no damage

to offloading lines (2 later)

Opportunistic Planning

In PANDORA we plan and execute
missions over long-term horizons (days or
weeks)

Our planning strategy is based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use
estimated durations for the actions that are
longer than the mean.

(95" percentile of the normal distribution)

Opportunistic Planning

In PANDORA we plan and execute
missions over long-term horizons (days or
weeks)

Our planning strategy is based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use
estimated durations for the actions that are
longer than the mean.

(95" percentile of the normal distribution)

Opportunistic Planning

In PANDORA we plan and execute
missions over long-term horizons (days or
weeks)

Our planning strategy is based on the
assumption that actions have durations
normally distributed around the mean.

To build a robust plan we therefore use
estimated durations for the actions that are
longer than the mean.

(95" percentile of the normal distribution)

Opportunistic Planning

Main Plan
We use an execution stack (of goals & plans)

The current plan tail can be pushed onto the stacké Opportunity
New plans are generated for the opportunistic

goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

Opportunistic Planning

Main Plan
We use an execution stack (of goals & plans)

Opportunity

The current plan tail can be pushed onto the stack :
: Plan

New plans are generated for the opportunistic Aﬂg[ﬁtitggal
goals and the goal of returning to the tail of the

opportunity
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

Why not just replan?

We compare the opportunistic approach against replanning the mission
when an opportunity is discovered. When an opportunity is discovered
a new Initial state is generated.

Replanning:

- the problem is more difficult to solve
- the planning time can be increased

+ the opportunity can be ordered later in the plan

+ the existing plan can be reordered to make more time for exploiting
the opportunity

+ the resulting plan can be more efficient

We examine situations where we have just discovered an opportunity:
10 second bound on planning for the opportunity alone
30 minute bound for replanning

Why not just replan?

Mission Opp plan | Full replan Plan duration
Main Opp time time | Opp Mission | Complete Opp Plan | Replanned plan
V2_400 I_16 0.36 38.18 851.384 1265.032 2437.496
V2500 I-16 5.54 7.46 1541.168 2076.155 2596.156
V2.600 I_16 5.34 7.28 1541.168 2117.136 2269.701
V2700 I_16 5.32 9.56 1541.168 2117.136 2283.134
V2_800 I_16 5.38 6.24 1541.168 2117.136 2048.833
V2.900 I_16 54 9.16 1541.168 2117.136 1900.069
V2_1000 | 1I-16 0.38 21.42 851.384 1265.032 2615.245
V2_1100 | 1-16 0.34 7.28 888.554 1302.202 2048.833
V2_1200 | 116 24 11.9 1440.568 1854.216 2511.960
V2_1300 | I_16 0.36 6.34 851.384 1265.032 2772.985
V2_1400 | 1.16 0.42 6.28 851.384 1265.032 2772.985
V2_1500 | 1-16 0.34 7.82 851.384 1265.032 2946.391
V21600 | I-16 0.38 14.54 851.384 1265.032 2175.901
V2_1700 | 1-16 0.4 15.6 851.384 1265.032 2897.665
V2_1800 | I_16 0.42 6.24 851.384 1265.032 2772.985
V2_1900 | I.16 0.38 6.44 851.384 1265.032 2772.985
V22000 | 1_16 0.36 2.62 851.384 1265.032 2490.490
V2.400 .32 5.08 148.17 2233.961 2564.254 3531.784
V2500 1.32 2.2 165.62 1768.98 2129.213 5332.514
V2_600 1.32 3.7 78.19 1777.177 2137.41 3623.974
V2_700 .32 4.08 272.84 1815.849 2176.082 4877.45
V2_1000 | 1.32 4.66 104.04 2686.638 3093.992 4263.605
V222000 | 132 4.32 100.16 2457.922 2865.276 3778.601

Why not just replan?

Mission Opp plan | Full replan Plan duration

Main Opp time time | Opp Mission | Complete Opp Plan | Replanned plan
V2_400 I_16 0.36 38.18 851.384 1265.032 2437.496
V2500 I-16 5.54 7.46 1541.168 2076.155 2596.156
V2.600 I_16 5.34 7.28 1541.168 2117.136 2269.701
() f () -. /] 4 - 2 /]

6.24 1541.168 2117.136 2048.833

9.16 1541.168 2117.136 1900.069

V2_1100
V2_1200
V2_1300
V2_1400
V2_1500
V2_1600
V2_1700
V2_1800
V2_1900
V2_2000
V2400

V2.500

V2_600

V2_700

V2_1000
V22000

Lo
NN Oy

I
(4) = e et e e e et e
[\ e e Be T e T e))

e

[
b d
(RS

.32
1.32
[.32

2.4
0.36
0.42
0.34
0.38

0.4
0.42
0.38
0.36
5.08

2.2

3.7
4.08
4.66
4.32

11.9
6.34
6.28
7.82
14.54
15.6
6.24
6.44
2.62
148.17
165.62
78.19
272.84
104.04
100.16

1440.568
851.384
851.384
851.384
851.384
851.384
851.384
851.384
851.384

2233.961
1768.98

1777.177

1815.849

2686.638

2457.922

1854.216
1265.032
1265.032
1265.032
1265.032
1265.032
1265.032
1265.032
1265.032
2564.254
2129.213

2137.41
2176.082
3093.992
2865.276

2048.833
2511.960
2772.985
2772.985
2946.391
2175.901
2897.665
2772.985
2772.985
2490.490
3531.784
5332514
3623.974

4877.45
4263.605
3778.601

Why not just replan?

Mission Opp plan | Full replan Plan duration

Main Opp time time | Opp Mission | Complete Opp Plan | Replanned plan
V2_400 116 0.36 38.18 851.384 1265.032 2437.496
V2500 116 5.54 7.46 1541.168 2076.155 2596.156
V2600 I_16 5.34 7.28 1541.168 2117.136 2269.701
() f () - /] 4 - 2 /]

6.24 1541.168 2117.136 2048.833

9.16 1541.168 2117.136 1900.069

—1U 8 O 15.27

V2_1100 | I-1 0.34 2048.833
V2_1200 | 116 2.4 11.9 1440.568 1854.216 2511.960
V2_1300 | I-16 0.36 6.34 851.384 1265.032 2772985
V2_1400 | 116 0.42 6.28 851.384 1265.032 2772.985
V2_1500 | I-16 0.34 7.82 851.384 1265.032 2946.391
V2.1600 | I-16 0.38 14.54 851.384 1265.032 2175901

In 228 total missions:
5 replanning plans were more efficient than the opportunistic
approach.

L - p— L W LW | L I e | f LW N I P W LS S | | AAAAAAAA | et nl i LT

We examine situations where we have just discovered an opportunity:
10 second bound on planning for the opportunity alone
30 minute bound for replanning

Opportunistic Planning

Main Plan
We use an execution stack (of goals & plans) R

The current plan tail can be pushed onto the stacki Opportunity

Plan

Additional
nested
opportunity

New plans are generated for the opportunistic
goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

NOTE: Opportunities can also arise for
supervisor requests!

More details on Friday morning

(Paper on Opportunistic Planning at the Journal Track)

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Strategic Planning for Persistent Autonomy

Planning over long horizons (days, weeks)

Missions with strict deadlines and time windows in which goals need to be
accomplished.

Example in underwater robotics:
Seabed facilities need to be inspected at certain intervals.

— o~ B e
S - R -N (;-?:&:. AR ~

= - - = = -
B = S

»-s‘-‘ = ss-— =

Current planning systems struggle in generating
complex plans over long horizons.

One possible solution:
Decompose into Strategic/Tactical Layers

Strategic/Tactical Planning

Cluster the goals into tasks

Strategic Layer: contains a high lever plan that achieves all tasks and
manages the resource and time constraints.

Tactical Layer: contains a plan that solves a single task.
Example from underwater robotics.
Long term maintenance of seabed facility includes

-Inspecting the structures are regular intervals.

-Changing the configuration of the site by interacting with interfaces within
specific time windows.

-Recharging the AUVSs.

Additional challenges:
-Ever changing environment (currents, visibility)
-Wildlife

Strategic/Tactical Planning

AUV Manifold Elapsed time

Planner
time line

Valve
panels

Strategic/Tactical Planning
Clustering

AL ; PR

| o o oo e | |

Strategic/Tactical Planning
Clustering

| 5y 5 e s e]

Strategic/Tactical Planning

Tactical Layer

For each Task the planner generates a plan
and stores:

-duration

-resource constraints

8.000: (correct_position auvl® wp_auve) [3.000]

3.001: (do_hover_fast auv® wp_auv® strategic_location_7)
[11.483]

14.405: (correct_position auv@_strategic_location_78)
[3.000]

17.406: (observe_inspection_point auv@ strategic_location_7
inspection_polint_2) [10.080]

27.407: (correct_position auvd® strategic_location_7)
[3.0800]

45.083: (do_hover_controlled auv® strategic_location_5
strategic_location_5) [4.800]

49.084: (observe_inspecetion_polnt auv@
strategic_location_5 inspection_point_4) [10.860]

Energy consumption = 10W
Duration = 86.43s

Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the
time and resource constraints.

Inspectionl interval n -

30 45 75 80

Strategic/Tactical Planning
Strategic Layer

On the strategic layer the planner constructs a plan that conforms to the
time and resource constraints.

All the tactical plans are collected.

complete_mission complete_mission
Inspection 1 Inspection 2

And the strategic plan is generated, not violating resource/time constraints

Inspectionl interval n -
75 80

30 45

complete_mission complete_mission
Inspection 2 Inspection 1

Strategic/Tactical Planning

N Y U

Outline

« Why PDDL Planning for Robotics and HRI?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

exXplainable Planning (XAIP)

Planners can be trusted
Planners can allow an easy interaction with humans

Planners are transparent
(at least, the process by which the decisions are made are

understood by their programmers)

To note: entirely trustworthy and theoretically well-understood
algorithms can still yield decisions that are hard to explain.
Ex: Linear Programming

To note: XAl and the need to explain machine/deep learning
remain of critical importance!
XAIP is important in domains where learning is not an option.

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process
by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because it got me closer to the goal !

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process
by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: BecauseT o the goal !

What eXplainable Planning is NOT !

XAIP is not explaining what is obvious !

Many planners select actions in their plan-construction process
by minimising a heuristic distance to goal (relaxed plan)

Q: Why did the planner do that ?

A: Because o the goal !

A request for an explanation is an attempt to uncover a piece of

knowledge that the questioner believes must be available to the
system and that the questioner does not have.

Towards XAIP

Plan explanation

— Translate PDDL in forms that humans can understand [Sohrabi et al. 2012]
— Design interfaces that help this understanding [Bidot et al. 2012]

— Describe causal/temporal relations for plan steps [Seegebarth et al. 2012]
— Explaining observed behaviours [Sohrabi, Baier, Mcllraith, 2011]

— Understanding the past [Molineaux et al., 2012]

Plan Explicability
— Focus on human’s interpretation of plans [Seegebarth et al. 2012]

Verbalization and transparency in autonomy
— Generate narrations for autonomous robot navigations [Veloso et al. 2016]

Explainable Agency [Langley et al. 2017]

Model Reconciliation (Sreedharan et al.)
— ldentify/reconcile different human/robot models [Chakraborti et al 2017]

Transparency in Autonomy
(Manuela Veloso et al.)

Verbalization: the process by which an autonomous robots converts its
own experience into language

Verbalization space: to capture different nature of explanations.

And to learn to correctly infer an explanation level in the verbalization
space.

Specificity — Locality - Abstraction

Specificity 4 -

-“Please tell me exactly how you got here”

»

: ~ "OK, now only tell me what happened near
aalhe room 7004

“Can you only give me a brief summary?”

~
i

AEstraction

Locality

Verbalization: Narration of Autonomous Mobile Robot Experience.
Rosenthal, Selvaraj, Veloso. IJCAI 2016.

Things to Be Explained
(some)

Q1: Why did you do that?
Q2: Why didn’t you do something else? (that | would have done)

Q3: Why is what you propose to do more efficient/safe/cheap than
something else? (that | would have done)

Q4: Why can’t you do that ?
Q5: Why do | need to replan at this point?

Q6: Why do | not need to replan at this point?

Rover

oo O

5

10.
13.
17.
18.
22.
27.
28.
43.

.000:
.000:
.001:

001:

002:
001:
002:
001:
003:
003:
002:
003:

lllustrative Example

Time domain from IPC-4 (problem 3)

(navigate rl wp3 wpl) [5.0]
(navigate r0 wpl wpQ) [5.0]
(calibrate rl cameral obj0 wpO) [5.0]
(sample_rock r0 rOstore wpQO) (85.0]
(take_image rl wp(O obj0 cameral col) [T.0]
(navigate r0 wpl wpl) [5.0]
(navigate rl wpl wp3) [5.0]
(comm_rock data r0 general wpl0 wpl wpl) [10.0]
(navigate rl wp3 wpZ) [5.0]
(sample_scoil rl rlstore wp2) [10.0]
(comm_image_data rl general cbij0 ccl wp2 wplO) [15.0]
(comm_soil_data rl general wpZ wpZz wpl) [10.0]

[Duration = 53.003]

Q1: why did you use Rover0 to take the rock sample at waypointO ?

NA: so that | can communicate data from RoverO later (at 18.001)

lllustrative Example

Rover Time domain from IPC-4 (problem 3)

0.000: (navigate rl wp3 wp0) [5.0]
0.000: (navigate r0 wpl wpQ) [5.0]

= akal=-hals = T = []) []]
5.001: (sample_rock r0 rOstore wpQO) (85.0]
0.002: (take_image rl wp(l obj0 cameral col) [T.0]

13.001: (navigate r0 wpl wpl) [5.0]

27.003: (sample_so0il rl rlstore wp) [10.0]
28.002: (comm_image_data rl general cbij0 ccl wpZ wplO) [15.0]
43.003: (comm_scil_data rl general wp2 wpZ wpl) [10.0]

[Duration = 53.003]
Q1: why did you use Rover0 to take the rock sample at waypointO ?

NA: so that | can communicate data from RoverO later (at 18.001)

lllustrative Example

Rover Time domain from IPC-4 (problem 3)

0.000: (navigate rl wp3 wp0) [5.0]

0.000: (navigate r0 wpl wpQ) [5.0]
= i - 1 {7 . []]

5.001: (sample_rock r0 rOstore wpQO) (85.0]

0.002: (take_image rl wp(l obj0 cameral col) [T.0]
13.001: (navigate r0 wpl wpl) [5.0]

27.003: (sample_so0il rl rlstore wp) [10.0]

28.002: (comm_image_data rl general cbij0 ccl wpZ wplO) [15.0]
43.003: (comm_scil_data rl general wp2 wpZ wpl) [10.0]

[Duration = 53.003]

Q1: why did you use Rover0 to take the rock sample at waypointO ?
why didn’t Rover1 take the rock sample at waypoint0 ?

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

0.000: (navigate rl wp3 wpO0) [5.0]
5.001: (calibrate rl cameral obj0 wpO) [5.0]
10.002: (take_image rl wp(O obj0 cameral col)

[0 B

5

10.
13.
17.
18.
22.
27.
28.
43.

.000:
.000:
.001:

001:

go2:
001:
Qo2:
001:
003:
003:
002:
003:

(navigd 10.003: (sample_rock rl rlstore wp0) [8.0]
(navigq 18.003: (navigate rl wp0 wp3) [5.0]
(calib 18.004: (drop rl rlstore) [1.0]

(sample 23.004: (navigate rl wp3 wp2) [5.0]

[7.0]

(take | 28.004: (comm_image_data rl general obj0 col wpZ wp0) [15.0]

28.005: (sample_scil rl rlstore wp2) [10.0]

navidg

Enavié 43.005: (comm_scil_data rl general wpZ wpZ wp0) [10.0]
(CDmﬂi 53.006: (comm_rock_data rl general wp0 wpZ wp0O) [10.0]
(naviq 'pration = 63.006]

(samp]

(comm_image_data rl general obij0 cecl wp2 wplO) [15.0]
(comm_scil_data rl general wpZ wpZ wpl) [10.0]

[Duration = 53.003]

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?
why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

Q2: But why does Roverl do everything in this plan?

0.000: (navigate rl wp3 wpO) [5.0]

5.001: (calibrate rl cameral obj0 wp0) [5.0]

.002: (take_image rl wpO obj0 cameral col) [7.0]
.003: (sample_rock rl rlstore wpO) [8.0]

18.
18.
23.
28.

10
10

28
43

[Duration = 63.006]

.005: (sample_scil rl rlstore wpZ) [10.0]
.005: (comm_socil_data rl general wp2 wpZ wp0) [10.0]
53.

003: (navigate rl wpO wp3) [5.0]

004: (drop rl rlstore) [1.0]

004: (navigate rl wp3 wpZ2) [5.0]

004: (comm_image_data rl general objl0 col wp2 wplO) [15.0]

006: (comm_rock_data rl general wpO wpZ wp0) [10.0]

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

Q2: But why does Roverl do everything in this plan?

We require the plan to contain at least one action that has RoverO as
argument (add dummy effect to all actions using Rover0O and put into the goal)

0.000:
5.001:

10
10
18
18
23
28
28
43
53

[Duration

.002:
.003:
.003:
.004:
.004:
.004:
.005:
.005:
.006:

(n3
(o3
(1
(g
(r
(cC
(r
(c
(s
(c
(¢

0.000:
0.000:
5.001:

10.002:
10.003:
18.003:
18.004:
23.004:
28.004:
28.005:
43.005:

53.006:

(navigate r0 wpl wpO) [5.0]

(navigate rl wp3 wp0) [5.0]

(calibrate rl cameral obj0 wpO) [5.0]
(take_image rl wpO obj0 cameral col) [7.0]
(sample_rock rl rlstore wp0) [8.0]
(navigate rl wpO wp3) [5.0]

(drop rl rlstore) [1.0]
(navigate rl wp3 wp2) [5.0]

(comm_1image_data rl general obj0 col wpZ wp0) [15.0]
(sample_scil rl rlstore wpZ2) [10.0]

(comm_soil_data rl general wpZ wpZ wpl) [10.0]
(comm_rock_data rl general wp(O wp2 wpl) [10.0]

L=

lllustrative Example

Q1: why did you use Rover0 to take the rock sample at waypointO ?

why didn’t Rover1 take the rock sample at waypoint0 ?

We remove the ground action instance for RoverO and re-plan

A: Because not using RoverO for this action leads to a longer plan

Q2: But why does Roverl do everything in this plan?

We require the plan to contain at least one action that has RoverO as
argument (add dummy effect to all actions using Rover0O and put into the goal)

A: There is no useful way to use RoverO for improve this plan

10.
10.
18.
18.
23.
28.
28.
43.
53.

0.000:
0.000:
5.001:
002:
003:
003:
004:
004:
004:
005:
005:
006:

(navigate r0 wpl wpO) [5.0]

(navigate rl wp3 wp0) [5.0]

(calibrate rl cameral obj0 wpO) [5.0]
(take_image rl wpO obj0 cameral col) [7.0]
(sample_rock rl rlstore wp0) [8.0]

(navigate rl wp0O wp3) [5.0]

(drop rl rlstore) [1.0]

(navigate rl wp3 wpZl) [5.0]

(comm_image_data rl general obj0 col wp2 wpO) [15.0]
(sample_soil rl rlstore wpZ) [10.0]

(comm_soil_data rl general wp2Z wpZ2 wpl) [10.0]
(comm_rock_data rl general wpO wp2 wp0) [10.0]

exXplainable Planning
at execution time

 Q5:Why do I need to replan at this point?

In many real-world scenarios, it is not obvious that the plan being executed
will fail. Often plain failures is discovered too late.

One possible approach is to use the “Filter Violation” (ROSPIlan)

Once the plan is generated, ROSPlan creates a filter, by considering all the
preconditions of the actions in the plan.

EX: navigate (?from ?to - waypoint) has precondition (connected ?from ?to)
If the plan contains navigate (wp3 wp5),
then (connected wp3 wp5) is added to the filter.

lllustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

0.000: (cbserve auv wpl ip3) [10.000]
10.001: (correct_position auv wpl) [10.000]
20.002: (do_hover auv wpl wpZ) [T1.696]

91.699: (cbserve auv wp2 ipd) [10.000]
101.700: (correct_pesition auv wp2) [10.000]

111.701: do_hover auv wpZ wpZ3) [16.710]
128.412: (cbserve auv wp23 iph) [10.000]
138.413: (correct_pecsiticon auv wp23) [10.000]
148.414: coserve auv wWwpZ3 ipl) [10.000]
158.415: (correct_position auv wpzZ3) [10.000]
168.416: (do_hover auv wp23 wp22) [16.710]
185.127: (do_hover auv wp2Z wp26) [30.201]
215.329: observe auv wpzZt ip7) [10.000]
225.330: (correct_position auv wp2b) [10.000]
235.331: (do_hover auv wp2t wp2l) [22.177]
258.509: coserve auv wpZl ip2) [10.000]
268.510: (correct_position auv wp2l) [10.000]

299.767: (observe auv wpz27 ip8) [10.000]
309.768: correct_position auv wpzZ7) [10.000]
319.769: (cbserve auv wp27 iph) [10.000]
329.770: (correct_pecsiticon auv wp27) [10.000]
339.771: do_hover auv wp27 wpl7) [23.597]

363.369: (do_hover auv wpl7 wp25) [21.413)
384.783: (do_hover auv wp2b wp32) [16.710]
401.494: (do_hover auv wp3Z2 wp36) [21.451]
422.946: (cbserve auv wp3é ip9) [10.000]
432.947: correct_position auv wp36) [10.000]
447 .,948: observe auv wp3bt iplh) [10.000]

(
(
(
(
(
(
(
(
(
(
(
(
278.511: (do_hover auv wpZl wp27T) [21.255]
(
(
(
(
(
(
(
(
(
(
(

lllustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

0.000: (cbserve auv wpl ip3) [10.000]
10.001: (correct_position auv wpl) [10.000]
20.002: (do_hover auv wpl wpZ) [T1.696]
91.699: (cbserve auv wp2 ipd) [10.000]
101.700: (correct_pesition auv wp2) [10.000]

111.701: do_hover auv wpZ wpZ3) [16.710]
128.412: (cbserve auv wp23 iph) [10.000]
138.413: (correct_pecsiticon auv wp23) [10.000]

158.415: (correct_position auv wpzZ3) [10.000]

{
(
(
148.414: (cbhserve auv wp23 ipl) [10.000]
(
168.416: | [16.710]

do_hover auv wp23 wp22)

215.3259: (observe auv wpzZbt ip7) [10.000]

do_hover auv wp2t wp2l) [22.177]
coserve auv wpZl ip2) [10.000]
correct_position auv wpzZl) [10.000]
do_hover auv wp2l wp2T) [21.255]
coserve auv wp27 ip8) [10.000]
309.768: correct_position auv wpzZ7) [10.000]
319.769: (cbserve auv wp27 iph) [10.000]

235.331: |
(
(
(
(
(
(

329.770: (correct_pecsiticon auv wp27) [10.000]
(
(
(
(
(
(
(

258.5009:
268.510:
278.511:
299.767:

339.771: do_hover auv wp27 wpl7) [23.597]

363.369: (do_hover auv wpl7 wp25) [21.413)
384.783: (do_hover auv wp2b wp32) [16.710]
401.494: (do_hover auv wp3Z2 wp36) [21.451]
422.946: (cbserve auv wp3é ip9) [10.000]
432.947: correct_position auv wp36) [10.000]
447 .,948: observe auv wp3bt iplh) [10.000]

lllustrative Example
AUV domain from (Cashmore et al, ICRA 2015)

0.000: (cbserve auv wpl ip3) [10.000]

10.001: (correct_position auv wpl) [10.000]
20.002: (do_hover auv wpl wpZ) [T1.696]
91.699: (cbserve auv wp2 ipd) [10.000]
101.700: (correct_pesition auv wp2) [10.000]
111.701: do_hover auv wpZ wpZ3) [16.710]
128.412: (cbserve auv wp23 iph) [10.000]
138.413: (correct_pecsiticon auv wp23) [10.000]

158.415: (correct_position auv wpzZ3) [10.000]

(
(
(
148.414: (cbhserve auv wp23 ipl) [10.000]
(
(

168 416: (do_hover auv wp23 wp22) [16.710]
215.329: (observe auv Wp26 1p?} [10. DGD]

235 331: [do_hover auv wp26 wp21) [23 17?]
258.509: (cbhserve auv wpZl ipZ2) [10.000]
268.510: (correct_position auv wp2l) [10.000]
278.511: (do_hover auv wpZl wp27T) [21.255]
299.767: (observe auv wpz27 ip8) [10.000]
309.768: (correct_position auv wp27) [10.000]
319.769: (cbserve auv wp27 iph) [10.000]
329.770: (correct_pecsiticon auv wp27) [10.000]
339.771: (do_hover auv wpZ27 wplT) [23.597]
363 369: {do hover auv wpl7 wp25) [21 413]

401.494: (dc_hover auv wp32 wp36 [21 451]

o
432 947 {correct_p051tlon auv wp36) [lD.GDD]
442.948: (ocbserve auv wp3bt iplh) [10.000]

Outline

« Why PDDL Planning for Robotics?

Expressive Planning
Opportunistic Planning
Strategic Planning
eXplainable Planning (XAIP)

Planning with Uncertainty

Planning with Uncertainty

Uncertainty and lack of knowledge is a huge part of Al Planning for Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.
- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in Al Planning

Some uncertainty can be
handled at planning
time:

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

finalise_classification_success ‘ | finalise_classification_success | | finalise_classification_fail ‘

- Fully-Observable Non-
deterministic planning.

- Partially-observable
Markov decision
P rOCeSS . observe-classifiable_on_attempt |

!

| observe-classifiable_on_attempt |

- Conditional Planning | [opserve assiatie_on attemp |
with Contingent - i

ﬁnaIise_classiﬁcation_success| | ﬁnaIise_classiﬁcation_success| | ﬁnalise_classiﬁcation_success| | finalise_classification_fail

Planners. (e.g. ROSPlan W/’A

with Contingent-FF)

Uncertainty in Al Planning

Some uncertainty can be
handled at planning
time:

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

| finalise_classification_success | | finalise_classification_fail ‘

- Fully-Observable Non-
deterministic planning.

finalise_classification_success ‘

- Partially-observable
Markov decision
Process.

observe-classifiable_on_attempt |

| ™

| observe-classifiable_on_attempt |

- Conditional Planning — —
Wit h CO nti n ge nt finalise_classification_success | | finalise_classification_success | | finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPlan W/’A

with Contingent-FF)

Uncertainty in Al Planning

Some uncertainty can be
handled at planning
time:

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

| finalise_classification_success | | finalise_classification_fail ‘

- Fully-Observable Non-
deterministic planning.

finalise_classification_success ‘

- Partially-observable
Markov decision
Process.

| observe-classifiable_on_attempt |

- Conditional Planning — —
W it h C 0 n ti n ge nt finalise_classification_success | | finalise_classification_success | | finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPlan W/’A

with Contingent-FF)

Uncertainty in Al Planning

Some uncertainty can be
handled at planning

tl m e : observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

- F u I IY‘O bse rva b I e N O n - ﬁnaIise_classiﬁcation_success‘ | finalise_classification_success | | finalise_classification_fail ‘
deterministic planning.

- Partially-observable
Markov decision

Process.
- Conditional Planning J//ML%M
Wit h Co nti nge nt finalise_classification_success | finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPIlan

with Contingent-FF) [t

Uncertainty in Al Planning

Some uncertainty can be
handled at planning

tl m e : observe-classifiable_on_attempt |

| observe-classifiable_on_attempt |

—

- F u I IY‘O bse rva b I e N O n - ﬁnaIise_classiﬁcation_success‘ | finalise_classification_success | | finalise_classification_fail ‘
deterministic planning.

- Partially-observable
Markov decision

Process.
- Conditional Planning J//ML%M
Wit h Co nti n ge nt finalise_classification_success finalise_classification_success | | finalise_classification_fail

Planners. (e.g. ROSPIlan
with Contingent-FF)

ROSPIlan: Planning in the Robot Operating
System

Outline

« ROS Basics
« Plan Execution

« Very Simple Dispatch

 Very Simple Temporal Dispatch

« Conditional Dispatch

« Temporal and Conditional Dispatch together
« Dispatching More than a Single Plan

« Hierarchical and Recursive Planning

« Opportunistic Planning

ROS Basics

ROS offers a message passing interface that provides inter-
process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

:::ROS

ROS Basics

ROS offers a message passing interface that provides inter-
process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

turtle1 turtlesim

teleop_turtle
/turtle1/command_velocity rosout
[teleop_turtle —

. L
rqt_gui_py_node_7277
/rqt_gui_py_node_7277

ROS Basics

ROS offers a message passing interface that provides inter-
process communication.

A ROS system is composed of nodes, which pass messages, in two forms:

1. ROS messages are published on topics and are many-to-many.
2. ROS services are used for synchronous request/response.

<launch>
<include file="$(find turtlebot_navigation)/launch/includes/velocity _smoother.launch.xml"/>
<include file="$(find turtlebot_navigation)/launch/includes/safety _controller.launch.xml"/>

<arg name="odom_topic" default="odom" />
<arg name="laser_topic" default="scan" />

<node pkg="move_ base" type="move_base" respawn="false" nhame="move_base" output="screen">
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find turtlebot_navigation)/param/costmap_common_params.yam|" command="load" ns="local_costmap" />
<remap from="odom" to="$(arg odom_topic)"/>
<remap from="scan" to="$(arg laser_topic)"/>
</node>
</launch>

ROS Basics

ROS offers a message passing interface that provides inter-
process communication.

The actionlib package standardizes the interface for preemptable tasks.
For example:

- navigation,

- performing a laser scan

- detecting the handle of a door...

Aside from numerous tools, Actionlib provides standard messages for
sending task:

- goals

- feedback
- result

ROS Basics

Aside from numerous tools, Actionlib provides standard messages for
sending task:

- goals
- feedback move_base/MoveBaseGoal
- result geometry msgs/PoseStamped target_pose
std_msgs/Header header
uint32 seq
time stamp

string frame_id
geometry _msgs/Pose pose
geometry _msgs/Point position
float64 x
float64 y
float64 z
geometry _msgs/Quaternion orientation
float64 x
float64 y
float64 z
float64 w

Plan Execution 1: Very simple

The most basic structure.
- The plan is generated.
- The plan is executed.

Dispatch

PDDL Problem File

PDDL Domain File

PLAN

Plan Execution

Plan Execution 1: Very simple
Dispatch

(Some) Related Work

McGann et el.C., Py, F., A deliberative architecture for AUV control. In Proc. Int. Conf. on Robotics and
Automation (ICRA), 2008

Beetz & McDermott Improving Robot Plans During Their Execution. In Proc. International Conference
on Al Planning Systems (AIPS), 1994

Ingrand et el. PRS: a high level supervision and control language for autonomous mobile robots. In
IEEE Int.I Conf. on Robotics and Automation, 1996

Kortenkamp & Simmons Robotic Systems Architectures and Programming. In Springer Handbook of
Robotics, pp. 187-206, 2008

Lemai-Chenevier & Ingrand Interleaving Temporal Planning and Execution in Robotics Domains. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2004

Baskaran, et el. Plan execution interchance language (PLEXIL) Version 1.0. NASA Technical
Memorandum, 2007

Robertson et al. Autonomous Robust Execution of Complex Robotic Missions. Proceedings of the 9th
International Conference on Intelligent Autonomous Systems (IAS-9), 2006

Plan Execution 1: Very simple

The most basic structure.
- The plan is generated.
- The plan is executed.

Dispatch

PDDL Problem File

PDDL Domain File

PLAN

Plan Execution

Plan Execution 1: Very simple
Dispatch

The most basic structure.
- The plan is generated.
- The plan is executed.

Red boxes are components of
ROSPIlan. They correspond to
ROS nodes.

The domain and problem file can
be supplied

- In launch parameters
- as ROS service parameters

PDDL Problem File

PDDL Domain File

PLAN

Plan Execution

Plan Execution 1: Very simple
Dispatch

PDDL Problem File

PDDL Domain File

rosplan_dispatch_msgs/CompletePlan
ActionDispatch[] plan
Int32 action_id
string name
diagnostic_msgs/KeyValue[] parameters
string key
string value
float32 duration
float32 dispatch_time

N

PLAN

Plan Execution

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

- timed execution

- Petri-Net plans

- Esterel Plans

- etc.

Plan Parser

FLAM REPRESENTATICM

Plan Dispatch

Platform

T

ACTION DISPATCH

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

Plan Parser

FLAM REPRESENTATICM

Plan Dispatch

Platform

T ACTION DISPATCH

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

An action in the plan is stored as a ROS message

: : :) Plan Parser
ActionDispatch, which corresponds to a PDDL action. —

FLAM REPRESENTATICM

Plan Dispatch

Platform

T ACTION DISPATCH

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.

3. Wait for the action to complete.

4. GOTO 1.

The ActionDispatch message is received by a listening Slan P
dan rFarser
interface node, and becomes a goal for control.

FLAM REPRESENTATICM

Plan Dispatch

Platform

T ACTION DISPATCH

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:

- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.

move base/MoveBaseGoal
geometry _msgs/PoseStamped target pose
std_msgs/Header header

0.000: (goto_waypoint wp0) [10.000]
10.01: (observe ip3) [5.000]

geometry_msgs/Pose pose
geometry _msgs/Point position
float64 x
float64 y

ActionDispatch

15.02: (grasp_object box4) [60.000]
action_id=0

name = goto_waypoint
diagnostic_msgs/KeyValue[] parameters
key = “wp”
value = “wp0”
duration = 10.000
dispatch_time = 0.000

float64 z _ _ _ Plan Dispatch
geometry_msgs/Quaternion orientation | platform

T

ACTION DISPATCH

A dispatch loop without feedback

How does the “Plan Execution” ROS node work? There are multiple variants:
- simple sequential execution

1. Take the next action from the plan.
2. Send the action to control.
3. Wait for the action to complete.

4. GOTO 1.
Feedback is returned to the simple dispatcher
. . Plan Parser
(action success or failure) through a ROS message:
ActionFeedback. PLAN REPRESENTATION

Plan Dispatch

Platform

T ACTION DISPATCH

Plan Execution Faillure

This form of simple dispatch has some problems. The robot often exhibits
zombie-like behaviour in one of two ways:

1. An action fails, and the recovery is handled by control.

2. The plan falls, but the robot doesn't notice.

Platform

T

ACTION DISPATCH

Bad behaviour 1: Action Failure

An action might never terminate. For example:
- a navigation action that cannot find a path to its goal.
- a grasp action that allows retries.

At some point the robot must give up.

Bad behaviour 1: Action Failure

An action might never terminate. For example:
- a navigation action that cannot find a path to its goal.
- a grasp action that allows retries.

At some point the robot must give up.

If we desire persistent autonomy, then the robot must be able to plan
again, from the new current state, without human intervention.

The problem file must be regenerated.

PDDL Model

To generate the problem file automatically, the agent
must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node
called the Knowledge Base.

PDDL Domain File

Il

Knowledge Base

ROS5 FDDL

MONGODB MODEL

PDDL Model

To generate the problem file automatically, the agent
must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node
called the Knowledge Base.

rosplan_knowledge _msgs/Knowledgeltem

uint8 INSTANCE=0 o
uint8 FACT=1 PDDL Domain File
uint8 FUNCTION=2

uint8 knowledge_type i

string instance_type

string instance_name Knowledge Base

string attribute_name

diagnostic_msgs/KeyValue[] values
String key ROS PDDL
string value

float64 function_value

bool is_negative

MONGODB MODEL

PDDL Model

To generate the problem file automatically, the agent
must store a model of the world.

In ROSPlan, a PDDL model is stored in a ROS node
called the Knowledge Base.

From this, the initial state of a new planning problem can

be created. PDDL Domain File

ROSPIlan contains a node which i

Knowledge Base

will generate a problem file for the SRS
ROSPIlan planning node.

FPDDL PROBLEM INSTANCE

E MONGODB MODEL

ROS5 FDDL

PDDL Model

The model must be continuously updated from sensor
data.

For example a new ROS node:

1. subscribes to odometry data. PDDL Domain File
2. compares odometry to waypoints from the PDDL model. i

3. adjusts the predicate (robot_at ?r ?wp) in the

Knowledge Base. Knowledge Base

ROS PDDL

MONGODE MODEL

f

STATE ESTIMATION

Platform

PDDL Model

The model must be continuously updated from sensor

data.

For example a new ROS node:
1. subscribes to odometry data.

2. compares odometry to waypoints from the PDDL model.

nav_msgs/Odometry
std_msgs/Header header
string child_frame_id
geometry _msgs/PoseWithCovariance pose
geometry _msgs/Pose pose
geometry_msgs/Point position
geometry _msgs/Quaternion orientation
float64[36] covariance
geometry_msgs/TwistWithCovariance twist
geometry _msgs/Twist twist
geometry _msgs/Vector3 linear
geometry _msgs/Vector3 angular
float64[36] covariance

fwp)

PDDL Domain File

rosplan_knowledge msgs/Knowledgeltem

uint8 INSTANCE=0

uint8 FACT=1

uint8 FUNCTION=2

uint8 knowledge type

string instance_type

string instance_name

string attribute_name

diagnostic_msgs/KeyValue[] values
string key
string value

float64 function_value

bool is_negative

ROSPlan components

PDDL Problem File

PDDL Domain File

PLAN

Plan Execution

Platform

ACTION DISPATCH |

T

ROSPlan components

PDDL Domain File

+

Knowledge Base

RO35 PDDL
MONGODBE MODEL

STATE ESTIMATION

Platform

Planning System

Problem Generation

FDDL PROBLEM INSTANCE

PLAM

Plan Parser

PLAM REPRESENTATIONM

Plan Dispatch

ACTION DISPATCH

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

Bad Behaviour 2: Plan Failure

What happens when the actions succeed, but the plan fails?

This can't always be detected by lower level control.

PLAN COMPLETE

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute
the plan for a long time without purpose.

Bad Behaviour 2: Plan Failure

There should be diagnosis at the level of the plan.

If the plan will fail in the future, the robot should not continue to execute
the plan for a long time without purpose.

The success or failure of an action can sometimes not be understood
outside of the context of the whole plan.

Bad Behaviour 2: Plan Failure

PDDL Domain File

+

There should be Knowledge Base Planning System

Problem Generation

diagnosis at the

level of the plan. ROS
MONGODEB

FDDL PROBLEM INSTANCE

If the plan will fail in
the future, the robot
should not continue

to execute the plan —
for a Iong tlme STATE ESTIMATION
without purpose.

PLAM

Plan Parser

PLAM REPRESENTATIONM

Plan Dispatch

Platform

T ACTION DISPATCH

Bad Behaviour 2: Plan Failure

-~ o "

Nessie at Fort Willam
Initial state

The AUV plans for inspection missions, recording images of pipes and welds.

It navigates through a probabilistic roadmap. The environment is uncertain,
and the roadmap might not be correct.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

The planned inspection path is shown on the right. The AUV will move around
to the other side of the pillars before inspecting the pipes on their facing sides.

After spotting an obstruction between the pillars, the AUV should re-plan early.

Bad Behaviour 2: Plan Failure

The plan is continuously validated against the model.

ROSPIan validates using VAL. [Fox et al. 2005]

ROSPlan: Default Configuration

Now the system is more
complex:
- PDDL model is

continuously updated from
sensor data.

- problem file is
automatically generated.

PDDL Domain File

4

Knowledge Base

ROS PDDL
MONGODB MODEL
A

STATE ESTIMATION

Platform

ATL

Planning System

Problem Generation

PDDL PROELEM INSTANCE

Plan Parser

PLAN REPRESEMTATION

Plan Dispatch

ACTION DISPATCH

ROSPlan: Default Configuration

Now the system is more
complex:

- PDDL model is
continuously updated from
sensor data.

- problem file is
automatically generated.

- the planner generates a
plan.

- the plan is dispatched
action-by-action.

PDDL Domain File

4

Knowledge Base

ROS
MONGODB

STATE ESTIMATION

Platform

T

Planning System

Problem Generation

PDDL PROELEM INSTANCE

Plan Parser

PLAN REPRESEMTATION

Plan Dispatch

ACTION DISPATCH

ROSPlan: Default Configuration

Now the system is more
complex:

- PDDL model is
continuously updated from
sensor data.

- problem file is
automatically generated.

- the planner generates a
plan.

- the plan is dispatched
action-by-action.

- feedback on action
success and failure.

- the plan is validated
against the current model.

PDDL Domain File

4

Knowledge Base

ROS
MONGODB

STATE ESTIMATION

Platform

T

Planning System

Problem Generation

PDDL PROELEM INSTANCE

Plan Parser

PLAN REPRESEMTATION

Plan Dispatch

ACTION DISPATCH

Plan Execution 2: Very Simple
Temporal Dispatch

numeric model:

- time and deadlines,

- battery power and consumption,

- direction of sea current, or traffic flow.

The real world requires a temporal and o %

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

Plan Execution 2: Very Simple
Temporal Dispatch

The real world requires a temporal and
numeric model:

- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

4

Plan Execution 2: Very Simple
Temporal Dispatch

The real world requires a temporal and % ®
numeric model: 3

- time and deadlines,

- battery power and consumption, %
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

Plan Execution 2: Very Simple
Temporal Dispatch

The real world requires a temporal and
numeric model:

- time and deadlines,
- battery power and consumption,
- direction of sea current, or traffic flow.

What happens when we add temporal
constraints, and try to dispatch the plan
as a sequence of actions?

?

)
)

D

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

0.000: (goto_waypoint wp1l) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

@
A

0.000: (goto_waypoint wp1l) [10.0]

10.01: (goto_waypoint wp2) [14.3]

24.32: (clean_chain wp2) [60.0]

Temporal Constraints

The plan execution loop could instead 0.000: (goto_waypoint wp1) [10.0]
dispatch actions at their estimated 10.01: (goto_waypoint wp2) [14.3]
timestamps. ® 24.32: (clean_chain wp2) [60.0]

However, in the real world there are

many uncontrollable durations and

events. The estimated duration of UD
actions is rarely accurate.

Temporal Constraints

The plan execution loop could instead 0.000: (goto_waypoint wp1) [10.0]
dispatch actions at their estimated 10.01: (goto_waypoint wp2) [14.3]
timestamps. ® 24.32: (clean_chain wp2) [60.0]

However, in the real world there are .
many uncontrollable durations and
events. The estimated duration of GD
actions is rarely accurate.

Temporal Constraints

The plan execution loop could instead 0.000: (goto_waypoint wp1) [10.0]

dispatch actions at their estimated

10.01: (goto_waypoint wp2) [14.3]
timestamps. @

24.32: (clean_chain wp2) [60.0]

However, in the real world there are .
many uncontrollable durations and “
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could dispatch
actions, while respecting the causal
ordering between actions.

P QR ———

Temporal Constraints

The plan execution loop could instead ® %
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and ®
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could dispatch
actions, while respecting the causal
ordering between actions. OD

However, some plans require temporal
coordination between actions, and the

controllable durations might be very far
apart.

Temporal Constraints

The plan execution loop could instead ® .
dispatch actions at their estimated 5
timestamps. =
® .
However, in the real world there are -
many uncontrollable durations and W
events. The estimated duration of
[]

actions is rarely accurate.

The plan execution loop could dispatch
actions, while respecting the causal
ordering between actions.

oay

However, some plans require temporal
coordination between actions, and the
controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead
dispatch actions at their estimated

®
n
H
timestamps. =
.
However, in the real world there are W‘

many uncontrollable durations and

events. The estimated duration of
actions is rarely accurate.
_

Ny

N

The plan execution loop could dispatch
actions, while respecting the causal
ordering between actions.

|

However, some plans require temporal
coordination between actions, and the
controllable durations might be very far

apart.

Temporal Constraints

The plan execution loop could instead ® ®
dispatch actions at their estimated
timestamps.

However, in the real world there are
many uncontrollable durations and
events. The estimated duration of
actions is rarely accurate.

The plan execution loop could dispatch
actions, while respecting the causal
ordering between actions.

However, some plans require temporal
coordination between actions, and the

controllable durations might be very far
apart.

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are
not violated.

g 1= [30, 40] g 1= 130, 40] .
1y C 4 L ? 1
\
\ /4 \Q /
/
/
) g,=[30,35] s L €=120.25] s
b2 »ez 2 »2

(a) (b)

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,
- for any possible time for received time points, the temporal constraints are

not violated.

R >
\\ 4
\ /
g »=[30, 35] /
b2 »C 7

(a)

| »el

\ 4

g,=[20,25] s
2 »C)

Setting t(b1) == t(b2) will always obey
the temporal constraints.

STPUs: Strong controllability

An STPU is strongly controllable iff:

- the agent can commit (in advance) to a time for all activated time-points,

- for any possible time for received time points, the temporal constraints are
not violated.

g ;= [20, 40]
c
l =1~ < [0, 10]

AN g 5= 30, 35]
b2 P_Efz

()

The STPU is not strongly controllable, but it is obviously executable.
It is dynamically controllable.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

An STPU is dynamically controllable iff:

- at any point in time, the execution so far is ensured to extend to a complete
solution such that the temporal constraints are not violated.

In this case, the agent does not have to commit to a time for any activated
time points in advance.

STPUs: Dynamic controllability

Not all problems will have solutions have any kind of controllability.
This does not mean they are impossible to plan or execute.

To reason about these kinds of issues we need to use a plan
representation sufficient to capture

- the difference between controllable and uncontrollable durations,
- causal orderings, and
- temporal constraints.

g = (20, 40]
C
1 =1~ < [0, 10]

TS Lo g7 (30, 35]
2)

b

()

Plan dispatch in ROSPlan

To reason about these kinds of issues we need to use a plan representation
sufficient to capture the controllable and uncontrollable durations, causal
orderings, and temporal constraints.

The representation of a plan is coupled with the

: . Planning System
choice of dispatcher. -

Problem Generation

The problem generation and planner are not
necessarily bound by the choice of
representation.

PDDL PROBLEM INSTANCE

PLAM

Plan Parser

PLAMN REPRESENTATIOM

Plan Dispatch

Plan Execution 3: Conditional
Dispatch

Uncertainty and lack of knowledge is a huge part of Al Planning for
Robotics.

- Actions might fail or succeed.

- The effects of an action can be non-deterministic.
- The environment is dynamic and changing.

- Humans are unpredictable.

- The environment is often initially full of unknowns.

The domain model is always incomplete as well as inaccurate.

Uncertainty in Al Planning

Some uncertainty can
be handled at planning
time:

observe-classifiable_on_attempt ‘

‘ observe-classifiable_on_attempt ‘

N

| finalise_classification_success ‘ | finalise_classification_fail ‘

- Fully-Observable
Non-deterministic
planning.

finalise_classification_success ‘

- Partially-observable
Markov decision
P roceSS . observe-classifiable_on_attempt |

| observe-classifiable_on_attempt ‘

- Conditional Planning | ‘observ:_Lclassiﬁable_on_attempt‘

with Contingent — —
‘ finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_fail ‘
Planners. (e.g.

ROSPIlan with

Contingent-FF)

Plan Execution 4. Temporal and
Conditional Dispatch together

Robotics domains require a combination of temporal and conditional
reasoning. Combining these two kinds of uncertainty can result in very
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [ClaRen et al., 2012]
- Petri Net Plans. [Ziparo et al. 2011]

Plan Execution 4: Temporal and
Conditional Dispatch together

Robotics domains require a combinat
reasoning. Combining these two kind
complex structures.

There are plan formalisms designed t
- GOLOG plans. [ClaRen et al., 2012]
- Petri Net Plans. [Ziparo et al. 2011]

\\\
\\
end seekBall seenBall start seckball\\
N a AN
{ | \
s ons [O= 0= =0;
Nao/ e 5 _
/7 x seekBall
ex_rush (“
\)
NS ‘/ \
A
- NS
' ‘ . ‘
:/\‘
\ /
"7 startapproachBall Ej start trackBall
ex.approachBal Il /1\\ D
) i
seenBall && farBall) \\v/ \)cu ckBall
~ seenBall)
kBall]
end approach cToBall [j end.trackBall. close ToBa
A /7 N
(/ \"-\ ‘\/ \
() N S
\\\(// 155 1
~— | e
~_)
l ex kick Goal
L}
"/ \‘ B\m' Q
\\/ \\// |:|
end kick

start kick

Plan Execution 4. Temporal and
Conditional Dispatch together

Robotics domains require a combination of temporal and conditional
reasoning. Combining these two kinds of uncertainty can result in very
complex structures.

There are plan formalisms designed to describe these, e.g.:
- GOLOG plans. [ClaRen et al., 2012]
- Petri Net Plans. [Ziparo et al. 2011]

ROSPIan is integrated with the PNPRos library for the representation and
execution of Petri Net plans. [Sanelli, Cashmore, Magazzeni, and locchi; 2017]

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution i

depends upon many Knowledge Base Planning System
components in the .
system. Changing any cos Problem Generation
one of which will MONGODB

FPDDL PROBLEM INSTANCE

change the robot
behaviour, and
change the criteria
under which the plan — PLAN
will succeed or falil.

STATE ESTIMATICON Plan Parser

PLAN REPRESENTATION

Plan Dispatch

Platform

L

T ACTION DISPATCH

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution i

depends upon many Knowledge Base Planning System

components in the pb|G
' roblem Generation

system. C_hang_lng any cos

one of which will MONGODB

FPDDL PROBLEM INSTANCE

change the robot
behaviour, and
change the criteria
under which the plan — PLAN
will succeed or falil.

Required input Plan Parser
Available feedback
Preemptable execution
Local recovery behaviour

PLAN REPRESENTATION

Plan Dispatch

Platform

T

ACTION DISPATCH

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution i
depends upon many Knowledge Base Planning System

components in the pb|G
' roblem Generation

system. C_hang_lng any cos

one of which will MONGODB

FPDDL PROBLEM INSTANCE

change the robot
behaviour, and

change the criteria Available sensors
under which the plan Semantic evaluation

will succeed or fail. Passive vs. active
STATE ESTIMATION

'lan Parser

User input

PLAN REPRESENTATION

Plan Dispatch
Platform

T

ACTION DISPATCH

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution Jr
depends upon many | Plan validation Planning System

components in the Condition checking

system Changing any Temporal or numeric models Problem Generation

one of which will inowledge reasoning

Change the rObOt PDDL PROBLEM INSTAMNCE
behaviour, and
change the criteria
under which the plan

will succeed or fail.

STATE ESTIMATICON Plan Parser

PLAN REPRESENTATION

Plan Dispatch
Platform

T

ACTION DISPATCH

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution i

depends upon many Knowledga-Rasa aniog System
components in the Re-planning |
syster. C_hang_ing any e Elr?)rs)lree;azi\;d domain regeneration A~
one of which will B Opportunity planning

change the robot Plan merging

behaviour, and
change the criteria
under which the plan
will succeed or fall.

L

STATE ESTIMATICON

Plan Dispatch
Platform

T

ACTION DISPATCH

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution i
depends upon many Knowledge Base Planning System
components in the PbIG

' roblem Generation
system. Changing any cos .
one of which will MONGODB MODEL

FDDL PROBLEM INRANCE

change the robot
behaviour, and
change the criteria
under which the plan
will succeed or falil.

Planner

P an Parser

A

Plan Dispatch

STATE ESTIMATICON

The execution of a
plan is an emergent
behaviour of the
whole system. Platform

T ACTION DISPATCH

Summary of Very Simple Plan Execution

PDDL Domain File

Plan Execution i
depends upon many
components in the
system. Changing any ROs
one of which will MONGODSB
change the robot
behaviour, and
change the criteria
under which the plan
will succeed or falil.

Knowledge Base

The execution of a
plan is an emergent
behaviour of the
whole system.

T ACTION DISPATCH

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour
might move toward achievement of multiple goals together.

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour
might move toward achievement of multiple goals together.

The robot can also have:
- long-term goals (plans are abstract, with horizons of weeks)
- but also short-term goals (plans are detailed, with horizons of minutes)

Dispatching more than a Single Plan

The robot can have many different and interfering goals. A robot's behaviour
might move toward achievement of multiple goals together.

The robot can also have:
- long-term goals (plans are abstract, with horizons of weeks)
- but also short-term goals (plans are detailed, with horizons of minutes)

The behaviour of a robot should not be restricted to only one plan.

In a persistently autonomous system, the domain model, the planning process,
and the plan are frequently revisited.

There is no “waterfall” sequence of boxes.

Dispatching more than a Single Plan

Example of multiple plans: What about unknowns in the environment?

One very common and simple scenario with robots is planning a search
scenario. For tracking targets, tidying household objects, or interacting

with people.

How do you plan from future situations that you can't predict?

Dispatching more than a Single Plan

R

Dispatching more than a Single Plan

'

Hierarchical and Recursive Planning

For each task we generate a tactical plan.

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints
are used in the generation of the strategic problem.

Problem Generation

PDDL PROBLEM INSTANCE

Plan Parser

B.008: (correct_position auvd wp auvd) [3.000]
3.001: (do_hover_fast auv® wp_auvd strategic location 7)

[11.483]

14 .46858: [(correct_position auve _strategic_location_7E8)
[3.008]

17 .406: [(observe_inspection_point auwd strategic location 7

inspection_point_2) [18.880] _ _ EEEE—
%g:;g;_j (correct_position auvd strategic_location_7) Energy Cﬂnﬂumptlﬂn = 1DW
45.883: (do_hover _controlled auve strategic locatiom 5 Duratiﬂn - 86 435

strategic_location_ &) [4.8808]
49,084 (obszerve_inspecetion_point auve
strategic_location & inspection_point_4) [10.088]

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints
are used in the generation of the strategic problem.

Problem Generation

PDDL PROBLEM INSTANCE

PLAN \I/
PDDL Domain File
Plan Parser l

Knowledge Base W Planning System
Problem Generation
ROS PDDL
MONGODB MODEL
PDDL PROBLEM INSTANCE
y -
" PLAN
STATE ESTIMATION Plan Parser
PLAN REPRESENTATION
Plan Dispatch
Platform

;ACTION DISPATCH

Hierarchical and Recursive Planning

For each task we generate a tactical plan. The time and resource constraints
are used in the generation of the strategic problem.

30 45 75 80

complete_mission complete_mission
Inspection 2 Inspection 1

A strategic plan is generated that does not violate the time and resource
constraints of the whole mission.

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical
problem is regenerated, replanned, and executed.

Problem Generation

PDDL PROBLEM INSTANCE

PLAN \I/
PDDL Domain File
Plan Parser l

Knowledge Base WV Planning System
Problem Generation
ROS PDDL
MONGODB MODEL
PDDL PROBLEM INSTANCE
y
" PLAN
STATE ESTIMATION Plan Parser
PLAN REPRESENTATIOMN
Plan Dispatch
Platform

;ACTION DISPATCH

Hierarchical and Recursive Planning

When an abstract “complete_mission” action is dispatched, the tactical
problem is regenerated, replanned, and executed.

Problem Generation

PDDL PROBLEM INSTANCE

PLAN \I/
PDDL Domain File
Plan Parser l

Knowledge Base

ROS
MONGODE

STATE ESTIMATION

Platform

WV Planning System

Problem Generation

PDDL PROBLEM INSTANCE

PLAN

Plan Parser

PLAN REPRESENTATION

Plan Dispatch

The tactical mission is
executed by a complete
planning system.

[Cashmore et al. 2015]

Planning System

Problem Generation

PPPPPPPPPPPPPPPPPPP

Plan Parser

=z

PLAN REPRESENTATION

;ACTION DISPATCH

!

Plan Dispatch

Hierarchical and Recursive Planning

Observing an object has
two outcomes:

observe-classifiable_on_attempt ‘

- Success. The object
IS classified or
recognised

‘ observe-classifiable_on_attempt ‘

e

finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_fail ‘

- Failure. The object
type is still unknown,
but new viewpoints
are generated to “‘*”““m““*—""—aﬂ
discriminate between [osarveassinae on attempt |
high-probability |
possibilities.

‘ observe-classifiable_on_attempt ‘

—

finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_fail ‘

shed_knowledge

Hierarchical and Recursive Planning

The action corresponds
to a short tactical plan to
observe viewpoints.

observe-classifiable_on_attempt ‘

‘ observe-classifiable_on_attempt ‘

e

finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_fail ‘

0.000: (goto_waypoint) [10.0]

0.000: (observe) [2.0] €
0.000: (goto_waypoint) [10.0]
0.000: (pickup-object) [16.0] |

observe-classifiable_on_attempt |

| observe-classifiable_on_attempt ‘

‘ observe-classifiable_on_attempt ‘

| r”" !

L — e o o o o = = o Em Em = = = ‘ﬁnaIise_classiﬁcation_success‘ |ﬁnalise_cla55iﬁcation_5ucce55‘ |ﬁnalise_classiﬁcation_success‘ |ﬁnaIise_classiﬁcation_fail‘

shed_knowledge

Hierarchical and Recursive Planning

The action corresponds
to a short tactical plan to
observe viewpoints.

observe-classifiable_on_attempt ‘

‘ observe-classifiable_on_attempt ‘

e

finalise_classification_success ‘ | finalise_classification_success ‘ | finalise_classification_fail ‘

0.000: (goto_waypoint) [10.0]
0.000: (observe) [2.0]
0.000: (goto_waypoint) [10.0]
0.000: (pickup-object) [16.0] |

> observe-classifiable_on_attempt |

| observe-classifiable_on_attempt ‘

‘ observe-classifiable_on_attempt ‘

| r”" !

L — e o o o o = = o Em Em = = = ‘ﬁnaIise_classiﬁcation_success‘ |ﬁnalise_cla55iﬁcation_5ucce55‘ |ﬁnalise_classiﬁcation_success‘ |ﬁnaIise_classiﬁcation_fail‘

shed_knowledge

Hierarchical and Recursive Planning

The action corresponds
to a short tactical plan to
observe viewpoints.

observe-classifiable_on_attempt ‘

‘ observe-classifiable_on_attempt ‘

O ™

finalise_classifi cation_success‘ ‘ finalise_classification_success ‘ | finalise_classifi cation_fail‘

The next tactical plan
can only be generated
once the new viewpoints
are known.

. [
Problem Generation 4 I observe-classifiable_on_attempt ‘
PDDL PROBLEM INSTANCE ‘ observe-classifiable_on_attempt ‘
finalise_classification_success ‘ | finalise_classification_success ‘ ‘ finalise_classification_success ‘ | finalise_classification_fail ‘

shed_knowledge

Plan Parser

Hierarchical and Recursive Planning

The components of
the system are the
same as the very
simple dispatch.

The behaviour of
the robot is very
different.

PDDL Domain File

A

y

Knowledge Base

Contingent Planner

PDDL PROBLEM INSTANCE

Plan Parser

ESTEREL PLAN

A

Y

Y

w

Planning System
(Tidy Room)

=4l Problem Generation

Plan Dispatch

Planning System
(Examine Area)

mall Problem Generation

Plan Dispatch

—>

Planning System
(Classify Object)

Problem Generation

Plan Dispatch

A

y

ROSPIa

n-Turtlebot2 interface

ROSPIla

n-movebase interface

ROSPlan-mapping interface

SQUIRREL-perception interface

SQUIRREL-grasping interface

Hierarchical and Recursive Planning

The components of
the system are the
same as the very
simple dispatch.

The behaviour of
the robot is very
different.

The execution of a
planis an
emergent
behaviour of the
whole system.

Both the
components and
how they are used.

PDDL Domain File

A

Knowledge Base

Contingent Planner

PDDL PROBLEM INSTANCE

Plan Parser

ESTEREL PLAN

A

l

l

A J

Y

Planning System
(Tidy Room)

Problem Generation

Plan Dispatch

—>

Planning System
(Examine Area)

Problem Generation

Plan Dispatch

—

Planning System
(Classify Object)

Problem Generation

Plan Dispatch

|

ROSPlan-Turtlebot2 interface

ROSPlan-movebase interface

ROSPlan-mapping interface

SQUIRREL-perception interface

SQUIRREL-grasping interface

Dispatching more Plans: Opportunistic
Planning

New plans are generated for the opportunistic
goals and the goal of returning to the tail of the
current plan.

If the new plan fits inside the free time window,
then it is immediately executed.

The approach is recursive

If an opportunity is spotted during the execution
of a plan fragment, then the currently executing
plan can be pushed onto the stack and a new
plan can be executed.

[Cashmore et al. 2015]

Dispatching more Plans: Opportunistic
Planning

New plans are] PDDL Domain File
goals and the ¢
current plan. Jr
> Knowledge Base = [——Opportuni
If the new plan|
then it is imme l N—l
The approach Planning System Planning System
_ (Opportunities)
If an opportuni ROSPlan-COLA2 interface

[Cashmore et al. 2

of a plan fragm
plan can be p Plan Dispatch
plan can be e) (creating free time) Plan Merging
» o \ 1
L J

Plan Parser

Dispatching Plans at the same time

Sequencing (~ Scheduling) Unifying (~Planning)

move

move

move

move

N GEG

move

move

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Dispatching Plans at the same time

Sequencing (~ Scheduling) Merging Unifying (~Planning)

move

move

move

move

move
unload
unload

move

move
unload

Separating tasks and scheduling is not as efficient.
Planning for everything together is not always practical.

Plans can be merged in a more intelligent way. A single action can support the
advancement towards multiple goals.

[Mudrova et al. 2016]

ROSPlan and PNP

PDDL Domain File

The domain model is i
always incomplete as
well as inaccurate. Knowledge Base Planning System

Problem Generation

The plan is validated ROS PDDL

MOMGODB MODEL

against a model that is
continually changing
and only partially
sensed.

FPDDL PROBLEM INSTANCE

_" PLAN

STATE ESTIMATICON Plan Parser

PLAN REPRESENTATION

Plan Dispatch

Platform

L

T

ACTION DISPATCH

ROSPlan and PNP

nav_msgs/Odometry | rosplan_knowledge _msgs/Knowledgeltem
std_msgs/Header header n Filg uint8 INSTANCE=0
string child_frame _id uint8 FACT=1
geometry _msgs/PoseWithCovariance pose uint8 FUNCTION=2
geometry _msgs/Pose pose uint8 knowledge type
geometry _msgs/Point position Base string instance_type

string instance_name
string attribute_name
diagnostic_msgs/KeyValue[] values
string key
string value

geometry _msgs/Quaternion orientation
float64[36] covariance
geometry _msgs/TwistWithCovariance twist
geometry _msgs/Twist twist
geometry _msgs/Vector3 linear
geometry _msgs/Vector3 angular float64 function_value
float64[36] covariance bool is_negative

oCTIoCu: I
_N PLAN

STATE ESTIMATIOMN

Plan Parser

PLAN REPRESENTATION

Plan Dispatch

Platform

T ACTION DISPATCH

ROSPlan and PNP

The domain model is
always incomplete as
well as inaccurate.

The plan is validated
against a model that is
continually changing
and only partially

PDDL Domain File

+

Knowledge Base

ROS
MOMGODB

move base/MoveBaseGoal

ActionDispatch

geometry _msgs/PoseStamped target_pose action_id=0

std_msgs/Header header

geometry_msgs/Pose pose
geometry _msgs/Point position
float64 x
float64 y
float64 z

geometry _msgs/Quaternion orientation ltform
I ACTION DISPATCH

key] “Wp”
value = “wp0”
duration = 10.000

name = goto_waypoint
FTIMATIE - diagnostic_msgs/KeyValue[] parameters

dispatch_time = 0.000

Planning System

Problem Generation

FPDDL PROBLEM INSTANCE

raln wsispracell

ROSPlan and PNP

PDDL Domain File

The domain model is i
always incomplete as
well as inaccurate. Knowledge Base Planning System

)) Problem Generation
The plan is validated ROS PDDL
. . MONGODE MODEL
agamSt a model that is PDDL PROBLEM INSTANCE
continually changing
.

and only partially
sensed.

_" PLAN

STATE ESTIMATICON Plan Parser

PLAN REPRESENTATION

Platform

i

T

ACTION DISPATCH

ROSPlan and PNP

The domain model is SDDL Domain File b=
always incomplete as
well as inaccurate. Knowledge Base

—
ROS PDDL PLAN
MONGODB MODEL
Plan Parser

Problem Generation

PDDL PROBLEM INSTANCE

The plan is validated
against a model that is
continually changing

and only partially

sensed. i

The RosPNP Library L
encapsulates both OO
action dispatch and OO

state updates. lm U

In a Petri Net plan the e -
only state estimation Ol
performed is explicit in v)

the plan. Platform

ROSPlan

ROSPIan Documentation Demos Github Wiki View on GitHub Download .tar.gz Contact

Documentation Home Ml
Documentation Home
What is ROSPlan? ROSPlan Overview
The ROSPlan framework provides a generic method for task planning in a ROS system. ROSPlan List of Topics
encapsulates both planning and dispatch. It possesses a simple interface, and includes some basic List of Services

interfaces to common ROS libraries.
Planning System

- Launching the Planning System
PDDL Domain File 5 -
Using the Planning System

l Generating a Problem Instance

Knowledge Base Planning System Plan Representations
Plan Dispatch and Execution

Problem Generation
ROS PDDL
MONGODB MODEL

PDDL PROBLEM INSTANCE Knowledge Base

Launching the Knowledge Base

Using the Knowledge Base

Fetching Domain Details

PLAN

Fetching Problem Instance
Adding to the Knowledge Base

STATE ESTIMATION

PLAN REPRESENTATION

Working with ROSPlan

Plan Dispatch Replacing the planner
Replacing the problem generation

I BTG T Replacing the plan dispatch

Adding an action

l

Platform

What is it for? Adding state estimation

ROSPIlan documentation and source:
kcl-planning.github.io/ROSPlan

Petri Net Plans
Execution Framework

SAPIENZA

; j UNIVERSITA DI ROMA

Luca locchi

Dipartimento di Ingegneria Informatica
Automatica e Gestionale

Petri Net Plans

 High-level plan representation formalism
based on Petri nets

e Explicit and formal representation of actions
and conditions

 Execution Algorithm implemented and tested
in many robotic applications

 QOpen-source release with support for
different robots and development
environments (ROS, Naoq;i, ...)

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 2

Petri Net Plans library

PNP library contains pnp.dis.uniromal.it

* PNP execution engine

-
e PNP generation tools I_E E
 Bridges: ROS, Naoqi :'.II-'

(Nao, Pepper) E _
|8

o ulll

[Ziparo et al., JAAMAS 2011]

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan representation in PNP

e Petri nets are exponentially more compact than
other structures (e.g., transition graphs) and can
thus efficiently represent several kinds of plans:

— Linear plans

— Contingent/conditional plans
— Plans with loop

— Policies

e PNP can be used as a general plan execution
framework

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 4

Plan traslation in PNP

* PNPgen is a library that translates a plan (the
output of some planning system) in a PNP.

* PNPgen includes additional facilities to extend
the generated PNP with constructs that are not
available on the planning system (e.g., interrupt
and recovery procedures).

* Plan formats supported:
ROSPlan (linear/conditional), HATP, MDP policies

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 5

PNP ROS

e PNP-ROS is a bridge for executing PNPs in a
ROS-based system.

e PNP-ROS uses the ROS actionlib protocol to
control the execution of the actions and ROS
topics and parameters to access the robot's
knowledge.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 3

PNP execution framework

@
N

®.

=
c~_"

Domain

ROSPlan i %u
Goal Contingent-FF =3 o
= 2
=, P
—r 1
- x
(@)
S 2
Execution g
Rules

Planning and Execution Component

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

ROSPlan + PNPgen + PNP-ROS

[A p r‘o pe r i nteg ratio n Of PDDL Domain File == Problem Generation

PDDL PROBLEM INSTANCE

O Plan generatlon Knowledge Base

O Plan execution i
0 ROS action execution P,anparse,

and condition

H

monitoring ; — l
. . A B
provides an effective
framework for robot oot M
planning and execution.
¥

Platform

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 8

Outline

e Petri Nets

e Petri Net Plans
e Execution rules
e PNP-ROS

* Demo

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017 9

Petri Net definition

Definition
PN = (P, T,F, W, M)
@ P={p1,po,...,Pm} is a finite set of places.
@ T ={t,b,..., ta}is afinite set of transitions.
@ FC(PxT)U(T x P)is a set of edges.
Q

W: F— {1,2,3,...} is a weight function and w(ns, ny) denotes
the weight of the edge from ns to ng.

My : P— {0,1,2,3,...} is the initial marking.
@ PUT#Pand PNT =1

O O

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Petri Net firing rule

Definition
@ A transition t is enabled, if each input place p; (i.e. (p;,t) € F) is
marked with at least w(p;, t) tokens.

@ An enabled transition may or may not fire, depending on whether
related event occurs or not.

@ If an enabled transition t fires, w(p;, t) tokens are removed for
each input place p; and w(t, p,) are added to each output place
po such that (t, po) € F.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Petri Net Plans

e Petri Net Plans (PNP) are defined in terms of

e QOperators

e Actions iti
. | - sequence, conditional and
- ordinary actions loops
- sensing actions - interrupt
- fork/join

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP Actions

28 t, P
P. ts P e P, Q
: e, B,
Ordinary Action Sensing Action

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP Actions

28 t, P
P. ts P e P, Q
: e, B,
Ordinary Action Sensing Action

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP Operators

gotoBall kick

O—~{—0—HO+—0O-[O

B fimep, n - O
O—-0 O S-S

(a) Interrupt (b) Fork (c) Join

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP interrupt

defend

stoiensa|||:|—£©"|: 'O_’D—’O
O—{] £'<5;+E%~O

gotoBall

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP concurrency

— reachedBall , __
Or-—=O—1HQ)
: »: 1

. W
c— gotoBall —

oRikes Vel

reachedBall

O O

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 1: sequence and loop

o) -

goal

gotopose_z_z_o.sAt_art"‘ gotopose_2_2_0.end home.start ~_ home.end

gotopose_2_2 0.exec

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 2: fork and join

o init
init.start

S
goal
Init. exec "
ﬂa ’ “

fork é gotopose_2 2 O.start gotopose_2 2 0.end

O

4>I » ,I@ home.start home.end

rk1 foini ™ 1 : I
I—O - join home.exec
- join

c join2

|

Q.

gotopose_2_2_0.exec

O

fork2 Wwa
wave,start wave.end

1@,

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 3: sensing and loop

init
- goal
init.start EommmiS
init.exec
sensel.end [{not obstacle)] home.end
init.end gotopose 6 2 O.start gotopose_6_2_0.end home.star‘t"'--—v.,__a
1@4 o410
sensel.start home.exec

I gotopose 6 _2_0.exec P2
sensel.exec I4’041 4"
wave. exec

wave,start wave.end
sensel.end [obstacle]

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plan 4. interrupt

T AN . goal

init.start Co———

init.exec

l N\ home.end
init.end gotopose 6 2 O.start gotopose_6.2 0.end home.start

1 home.exec

gotopose 6 2 0.exec

ol o

Wave, exec
wave,start wave.end

Fa—

gotopose_6 2 O.interrupt [obstacle]

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Start

Plan 5: multi robot

robotO#pathLeft.exec

o4O]

robot0#pathLeft.end

robotO#pathlLeft.start

Fork robotl #pathRight.exec

P3

Join

W,

P2 robotl #pathRight.start robot1 #pathRight.end

robot0#home.end robot0#home.start

.

robot0#home.exec

O

——
r

robotl #home.exec

P6

Fork

Join —~
PIZO I‘ U‘ I‘

robotl #home.end robotl #home.start

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

P10

PNP Execution Algorithm

procedure execute(PNP (P, T,F, W, M,, G))

1: CurrentMarking = My
2: while CurrentMarking ¢ G do

3: foralltc T do

4 if enabled(t) N KB |= t.¢ then

5 handleTransition(t) procedure handleTransition(t)

6: CurrentMarking = fire(t) if t.t = start then

7: end if If-a-?l‘aft() i
elseift.t = end then

8: end for t.a.end()

9: end while else if t.t = interrupt then

t.a.interrupt()

end if

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Correctness of PNP execution

* PNP execution is correct with respect to an

operational semantics based on Petri nets and the
robot's local knowledge.

Theorem

[Z106] If a PNP can be correctly executed, then the Execution
Algorithm computes a sequence of transitions { My, ..., M}, such that

My is the initial marking, M,, is a goal marking, and M; = M;, 4, for
eachi=0,...,n—1.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP sub-plans

* Plans can be organized in a hierarchy, allowing
for modularity and reuse

e Sub-plans are like actions:
— when started, the initial marking is set
— when goal marking is reached, the sub-plan ends

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Plans with variables

[condition_@X] sets the value of variable X
action @X uses the value of variable X

Example: given a condition personAt @X, the occurrence of
personAt _B115 sets the variable @X to “B115”, next action
goto @X will be interpreted as goto B115

move_@X.end [personhere] t h
move_@X.start [personhere] say_welcome.start ~say_welcome.end [not personhere)

A—O—1O4—O1— O—4-O0A4—O—1—0— O

say_goodbye.exec
init move_@X exec say welcome.exec Qe C_goodbye = 4
A C_search_person -

[personit_@X] say_goodbye.start say_goodbye.end

move_home.end move_home.start

move_home.exec P2

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Execution rules

Adding to the conditional plan

* interrupt (special conditions that determine
interruption of an action)

e recovery paths (how to recovery from an interrupt)
e social norms
e parallel execution

Main feature

e Execution variables are generally different from the
ones in the planning domain (thus not affecting
complexity of planning)

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Execution rules

Examples

If personhere and closetotarget during goto do
skip_action

If personhere and not closetotarget during goto do
say hello; waitfor_not_personhere;
restart_action

If lowbattery during * do recharge; fail_plan
after receivedhelp do say thanks

after endinteraction do say goodbye

when say do display

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP-ROS

* Bridge between PNP and ROS

* Allows execution of PNP under ROS using the
actionlib module

e Defines a generic PNPAction and an
ActionClient for PNPActions

e Defines a client service PNPConditionEval to
evaluate conditions

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP-ROS

PNP-ROS

PNP PNP
ActionClient ActionServer

PNP PNP Actions and
ServiceClient Service \ conditions /
\ PNP lib

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNP-ROS

User development:

1. implement actions and conditions
2. write a PNPActionServer

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNPActionServer

class PNPActionServer
{
public:
PNPActionServer();
~PNPActionServer();
void start();
// To be provided by actual implementation

virtual void actionExecutionThread(string action_name,
string action_params, bool *run);

virtual int evalCondition(string condition); // 1: true, O: false; -
1:unknown

}

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

PNPActionServer

class PNPActionServer

{
public:

// For registering action functions (MR=multi-robot version)
void register_action(string actionname, action_fn_t actionfn);
void register _MRaction(string actionname, MRaction_fn_t actionfn);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

MyPNPActionServer

#Include "MyActions.h"

class MyPNPActionServer : public PNPActionServer

{
MyPNPActionServer() : PNPActionServer() {

register_action("init",&init);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

MyPNPActionServer

PNP_cond_pub =// asynchronous conditions
handle.advertise<std_msgs::String>("PNPConditionEvent", 10);

Function SensorProcessing

{

std_msgs::String out;
out.data = condition; // symbol of the condition
PNP_cond_pub.publish(out);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

MyPNPActionServer

Function SensorProcessing

{

string param = “PNPconditionsBuffer/<CONDITION>";
node handle.setParam(param, <VALUE {1|0}>);

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Demo

Virtual machine available in the
Tutorial web site

b Ub14_RosIndigo_RosPlan_PNP [In esecuzione] - Oracle VM VirtualBox - O

@ Applications Places [-] £) P* B ty @ = <) 1232am %

m

d_robocupathome.pddl (~/src/ROSPlan/src/rosplan/rosplan_demos/common) - gedit

File Edit View Search Tools Documents Help

!_ POpen - B8 save ._:. €~ Undo

1C

INFO] [149

ol [README.md x d_robocupathome.pddl| x p_cocktailparty.pddl x b
1 (define (domain robocupathome)
2 (:requirements :strips :typing :disjunctive-preconditions)
3
4 (:types location)
5
6 (:predicates
7
8 (outdoor)
9 (inapt)
10 (pos ?r - location)
11 (wasRoom ?r - location)
rostopic pu 12 X
13 (Kperson ?r - location)
) 14 (enabledpd)
rostopic puigmls (enabledph)
16 (cancallperson)
rostopic pullieii
18 (persondetected)
S 19 (personhgre)
20 (personwillcome)

PlainText » |TabWidth:4 ~
[viki@c... B d robo... : m Simula... roslaunch m AUTOG... roslaun... roslaun... roslaun.
td = & B &) & % crrL (DESTRA)

Ln 193, Col 36

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Demo

Virtual machine available in the
Tutorial web site

Ub14_RosIndigo_RosPlan_PNP [In esecuzione] - Oracle VM VirtualBox

=

-

A

S RPN, o sof 43

r..n.

B

L
LD
Qe
-

im 1Es 000msec [1.0] — - . = n 5 o ®
[viki@c... B d robo... [PNPgen] EZ [JARP... M c m Simula... roslaunch m AUTOG... roslaun... roslaun... roslaun...
QOo@y o =mE @ ® cr oesTrRY

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

Demo

e RoboCup@Home domain

* Planning problems for @Home tasks
— Navigation (rulebook 2016)
— Cocktail Party (rulebook 2017)

NOTE: We are using this framework in our
SPQRel team that will compete in
RoboCup@Home 2017 SSPL

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

References

Petri Net Plans - A framework for collaboration and coordination in multi-robot
systems. V. A. Ziparo, L. locchi, Pedro Lima, D. Nardi, P. Palamara. Autonomous
Agents and Multi-Agent Systems, vol. 23, no. 3, 2011.

Dealing with On-line Human-Robot Negotiations in Hierarchical Agent-based
Task Planner. E. Sebastiani, R. Lallement, R. Alami, L. locchi. In Proc. of
International Conference on Automated Planning and Scheduling (ICAPS), 2017.

Short-Term Human Robot Interaction through Conditional Planning and
Execution. V. Sanelli, M. Cashmore, D. Magazzeni, L. locchi. In Proc. of
International Conference on Automated Planning and Scheduling (ICAPS), 2017.

A practical framework for robust decision-theoretic planning and execution for
service robots. L. locchi, L. Jeanpierre, M. T. Lazaro, A.-I. Mouaddib. In Proc. of
International Conference on Automated Planning and Scheduling (ICAPS), 2016.

Explicit Representation of Social Norms for Social Robots. F. M. Carlucci, L.
Nardi, L. locchi, D. Nardi. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2015.

Al Planning for Robotics and Human-Robot Interaction - ICAPS 2017

	ICAPS17_part1
	ICAPS17_part2
	ICAPS17_part3

