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Abstract

We are interested in the problem of creating narrative plan-
ning models for use in Interactive Multimedia Storytelling
Systems. Modelling of planning domains has been identified
as a major bottleneck in the wider field of planning technolo-
gies and this is particularly so for narrative applications where
authors are likely to be non-technical. On the other hand there
are many large corpora of stories and plot synopses, in natural
language, which could be mined to extract content that could
be used to build narrative domain models.

In this paper we describe an approach to learning narrative
planning domain models from input natural language plot
synopses. Our approach, called StoryFramer, takes natural
language input and uses NLP techniques to construct struc-
tured representations from which we build up domain model
content. The system also prompts the user for input to disam-
biguate content and select from candidate actions and pred-
icates. We fully describe the approach and illustrate it with
an end-to-end worked example. We evaluate the performance
of StoryFramer with NL input for narrative domains which
demonstrate the potential of the approach for learning com-
plete domain models.

Introduction

Interactive Multimedia Storytelling (IS) systems allow users
to interact and influence, in real-time, the evolution of a
narrative as it is presented to them. This presentation can
be via a range of different output media such as 2D or 3D
animation (Mateas and Stern 2005; Porteous, Charles, and
Cavazza 2013), filmic content (Piacenza et al. 2011) and text
(Cardona-Rivera and Li 2016). In addition, a range of dif-
ferent interaction mechanisms have been used such as emo-
tional speech input (Cavazza et al. 2009), gaze (Bee et al.
2010), and physiologicali measures (Gilroy et al. 2012).

AI planning has been widely used for narrative generation
in IS as it provides: a natural “fit” with story plot lines rep-
resented as narrative plans; ensures causality which is im-
portant for the generation of meaningful and comprehen-
sible narratives; and provides considerable flexibility and
potential generative power. Consequently plan-based ap-
proaches have featured in many systems (e.g. as reported
by (Aylett, Dias, and Paiva 2006; Riedl and Young 2010;
Porteous, Charles, and Cavazza 2013)).

In this work we are interested in the problem of author-
ing the narrative planning domain models that are used in

such IS systems. To date the authoring of narrative plan-
ning models has been handled manually, a common strategy
being to build up the model via systematic consideration of
alternatives around a baseline plot (Porteous, Cavazza, and
Charles 2010b) and many prototype IS systems have sought
inspiration from existing literary or filmic work. Exam-
ples include the Façade interactive drama which was based
on “Who’s Afraid of Virginia Woolf?” (Mateas and Stern
2005), The Merchant of Venice (Porteous, Cavazza, and
Charles 2010a), Madame Bovary (Cavazza et al. 2009) and
the tale of Aladdin (Riedl and Young 2010).

However this manual creation is extremely challenging.
In this paper the problem we tackle is automation of narra-
tive domain model creation. Our starting point is to look at
natural language plot outlines as content from which to au-
tomatically induce planning models. We are developing a
solution which takes natural language input (i.e. stories) and
uses NLP techniques to construct structured representations
of the text and keeps the user in the loop to guide refinement
of the planning model. This approach represents an exten-
sion to the Framer system of (Lindsay et al. 2017) to appli-
cation with narrative domain models. We have implemented
the approach in a prototype system called StoryFramer.

In the paper we give an overview of the technical aspects
of the approach and illustrate it with an end-to-end worked
example using the tale of Aladdin taken from (Riedl and
Young 2010). We present the results of an evaluation with a
two domain models generated by StoryFramer and consider
the potential of the approach.

Related Work

Some recent work in the area of automated domain model
creation for planning has attempted to learn planner action
models from natural language (NL) input.

Much of this work has attempted to map from NL input
onto existing formal representations. For example, in re-
lation to RoboCup@Home, Kollar et al. (2013) present a
probabilistic approach to learning the referring expressions
for robot primitives and physical locations in a region. Also
Mokhtari, Lopes, and Pinho (2016) present an approach to
learning action schemata for high-level robot control.

In (Goldwasser and Roth 2011) the authors present an
alternative approach to learning the dynamics of the world
where the NL input provides a direct lesson about part of the
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                             S1

Generate 

PDDL 

output

NL Input

Template Representations

Domain Model

a

S1: “ Aladdin takes the magic lamp from the dead body of the dragon ” 

S2: “ Aladdin travels from the castle to the mountains  ”

S3: “ Jasmine is very beautiful ”

S4: “ The genie is in the magic lamp ”

                             S4

 
                             S3

action: takes {

   subject: aladdin

   object: magic lamp

   from: dead body {

     of: dragon }

}

(define  (domain aladdin)

   (:requirements :typing :equality

    :negative-preconditions)

   (:types  character object location)

   (:constants jasmine – character

                      jafar – character

                      magic-lamp – object

                      …)

   (:predicates  (at ?x ?y) (has ?x ?y) (woman ?x)

                        (king ?x) (can-travels ?x) … )

   (:action travels

      :parameters  (?c1 – character ?l1 – location

                             ?l2 – location)

      :preconditions  (and  (can-travels ?c1)

                                        (not (= ?l1 ?l2))

                                        (at ?c1 ?l1)

      :effect  (and  (has-travels ?c1)

                           (at ?c1 ?l2)

                           (not (at ?c1 ?l1))

   )   

   …

)

 

(define  (problem aladdinProb)

   (:domain aladdin)

   (:objects

       Jasmine – character

       Jafar – character

       Magic-Lamp – object

       Dragon – character

       Genie – character

       Aladdin – character

       Castle – location

       Mountains – location )

   (:init  (woman Jasmine)

            (king Jafar)

            (has Dragon Magic-Lamp)

            (at Aladdin Castle)

            (at Dragon Mountain)

            (can-travels Aladdin)

            …

   )

   (:goal   (and   (dead Genie) (has-wed Jasmine)

                         (has-wed Jafar) )

)

User Input

b

c

d

Domain

in: magic lamp {

   subject: genie

}

                             

                             

Removing Duplicates

Action Pre and Post-conditions                              Problem Setup

Problem

Jasmine

Jafar

Magic-Genie

Magic-Lamp

Dragon

Genie

Aladdin

Castle

Mountains

King-Jafar

Jasmine – character 

Jafar – character

Magic-Lamp – object 

Dragon – character 

Genie – character 

Aladdin – character 

Castle – location 

Mountains – location 

Action  slays

Parameters (?c1 – character  ?c2 – character ?l1 – location) 

Preconditions (can-slays ?c1)  (can-slays ?c2)  (not (= ?c1 ?c2))

                     (at ?c1 l1)  (at ?c2 ?l1)  (not (dead ?c2)

Effects  (has-slays ?c1) (has-slays ?c2)

             (dead ?c2)

Initial State  (woman Jasmine)

                     (king Jafar)

                     (has Dragon Magic-Lamp)

                      (dead Dragon)

                     (in Genie Magic-Lamp)

                     (at Aladdin Castle)

                     (at Dragon Mountains)

                      …

Goal State  (dead Genie)

                    (has-wed Jasmine)

                    (has-wed Jafar)

Object Typing

property: beautiful {

   subject: jasmine

}

Properties

                             S2
Actions

action: travels {

   subject: aladdin

   from: castle

   to: mountains

}

Figure 1: StoryFramer Overview: the NL input sentences and CoreNLP annotations are mapped to Template Representations

a ; the user disambiguates content, types objects and selects predicates for pre and post-conditions b ; the different elements

of the domain content are assembled c ; and the domain content is output as PDDL domain model and problem file d .

dynamics of the environment. Each lesson is supported by a
small training data set to support learning from the lessons.
In contrast to our approach, their system relies on a repre-
sentation of the states and actions, which means their NLP
approach can target an existing language.

More closely related to our work are attempts to learn
planning models in the absence of a target representation.
These include (Sil and Yates 2011) who used text mining
via a search engine to identify documents that contain words
that represent target verbs or events and then uses inductive
learning techniques to identify appropriate action pre- and
post-conditions. Their system was able to learn action rep-
resentations, although with certain restrictions such as the
number of predicate arguments. Branavan et al. (2012) in-
troduce a reinforcement learning approach which uses sur-
face linguistic cues to learn pre-condition relation pairs from
text for use during planning. The success of the learnt model
relies on use of feedback automatically obtained from plan
execution attempts. Yordanova (2016) presents an approach
which works with input text solution plans, as a proxy for in-
structions, and aims to learn pre- and post-condition action
representations.

A similar increase in work aimed at automated creation
has been seen in research in Narrative generation for Inter-
active Storytelling. However, an important difference with
respect to narrative domains is that they do not share the
same consistency and alignment with real-world domains as
do more traditional benchmark planning domains. Hence
approaches have tended to focus on (semi-)automated meth-
ods to gather story content, such as crowdsourcing, weblogs
and story corpora. For example, crowdsourcing was used
in: the SCHERAZADE system (Li et al. 2013) to acquire typ-
ical story elements that can be assembled as plot graphs and
used in a process of story generation; SCENARIOGEN (Sina,
Rosenfeld, and Kraus 2014) to gather a database of scenarios
of everyday activities and likely replacements for use within
a serious game context; and by (Nazar and Janssen 2010)

for the hand annotation of logs from user sessions with the
Restaurant Game for subsequent use in automating charac-
ter interactions with human participants in a speech-based
narrative setting. An alternative approach aims to obtain
narrative content through mining of weblogs and story cor-
pora. For example, SAYANYTHING (Swanson and Gordon
2012) selects narrative content on-the-fly from a corpora of
weblogs in response to user text-based interaction, whilst
(McIntyre and Lapata 2009) attempts to generate narratives
using knowledge mined from story corpora for a particular
genre.

Our work complements this, with input narrative content
being mined from input natural language plot synopses.

StoryFramer Overview

Our approach to domain model generation is implemented
in a system called StoryFramer, the main elements of which
are shown in Figure 1. The system takes as input NL nar-
rative synopses such as the outline story of Aladdin shown
in Figure 2 and outputs a PDDL domain model and problem
file such that the original story can be reproduced using a
planner. The target output language is PDDL1.2 (Ghallab et
al. 1998).

Currently the translation from NL to a domain model is a
semi-automated process with the user in the loop for disam-
biguation of content at a number of stages. In this section we
overview the main stages in this process and then illustrate
it with an end-to-end example.

Extracting template representations from NL input

The first step in the approach is the generation of frame tem-
plates which are reduced representations of the input sen-
tences. These templates capture the main action or property
that a sentence is describing, as well as the objects men-
tioned and an indication of their roles within the sentence.

For this extraction we use Stanford CoreNLP (Manning



3

There is a woman named Jasmine. There is a king
named Jafar. This is a story about how King Jafar be-
comes married to Jasmine. There is a magic genie.
This is also a story about how the genie dies. There
is a magic lamp. There is a dragon. The dragon has the
magic lamp. The genie is confined within the magic
lamp. There is a brave knight named Aladdin. Al-
addin travels from the castle to the mountains. Aladdin
slays the dragon. The dragon is dead. Aladdin takes
the magic lamp from the dead body of the dragon. Al-
addin travels from the mountains to the castle. Aladdin
hands the magic lamp to King Jafar. The genie is in
the magic lamp. King Jafar rubs the magic lamp and
summons the genie out of it. The genie is not confined
within the magic lamp. The genie casts a spell on Jas-
mine making her fall in love with King Jafar. Jasmine
is madly in love with King Jafar. Aladdin slays the
genie. King Jafar is not married. Jasmine is very beau-
tiful. King Jafar sees Jasmine and instantly falls in love
with her. King Jafar and Jasmine wed in an extravagant
ceremony. The genie is dead. King Jafar and Jasmine
are married. The end.

Figure 2: Aladdin outline plot from (Riedl and Young 2010)

et al. 2014), a publicly-available and widely-used annotation
pipeline for natural language analysis. Of most relevance in
this work are the syntactic parsing annotations that CoreNLP
produces. Syntactic analysis in CoreNLP is a two-stage
process. Firstly, phrase structure trees are generated us-
ing statistical analysis of datasets containing many examples
of manually annotated sentence parses (Klein and Manning
2003). Secondly, these phrase structure trees are converted
to dependency parse graphs using a series of manually-
curated rules based on patterns observed in the phrase struc-
ture trees (de Marneffe, MacCartney, and Manning 2006).
An example of the sort of dependency graphs that are output
by CoreNLP is shown in Figure 3.

For our purposes the structure of these graphs must be
further simplified to move closer to a predicate logic rep-
resentation. This is achieved through a recursive set of
rules that crawl the dependency graph, transforming the re-
lations based on their types. CoreNLP use the Penn Tree-
bank Project part-of-speech tags (Marcus, Marcinkiewicz,
and Santorini 1993) to annotate the text. Most importantly,
the root verb, subjects and objects form actions, predicates
and domain objects as follows:

• The VBZ tag denotes verb (3rd person singular present)
and this forms the basis of candidate action names. For
example, the action takes in Figure 3

• The JJ tag denotes adjectives. These form the candidate
properties e.g. the property beautiful in Figure 4.

• The NN tag (and variants NNS, NNP, NNPS) denote
nouns; singular, plural, proper noun singular and proper
noun plural respectively. These form the basis candi-
date objects (constants) for the domain. For example,
Aladdin in Figure 3 and Jasmine in Figure 4.

Conjunctions in input sentences introduce new clauses,
which themselves form further predicates. Other relation
types such as modifiers and compounds are used to trans-
form the names of the predicates and arguments.

Building Action Representations

Based on the CoreNLP annotations, StoryFramer creates a
temporary action template which uses the verb as the action
name and includes all the associated objects. An example
template action for takes is shown in Figure 3. It can be
observed that this template contains key elements of the ac-
tion that will be output, namely, the name, arguments (the
characters aladdin and dragon, and the magic-lamp
object). We discuss this in more detail later (Worked Exam-
ple section) following the rest of the StoryFramer overview.

Parameters For each action template the system labels
each of the associated objects as candidate parameters for
the output action. During the phase of user interaction these
will be typed using the generic categories of: character,
object and location.

Pre- and Post-conditions Following an approach simi-
lar to (Yordanova 2016), default predicates are added to
the pre- and post-conditions of template actions, named
(can-action ?x) and (has-action ?x) to introduce a
baseline level of causality, sufficient to ensure generation
of a baseline plan that corresponds to the original input NL
story synopsis. For example, it may be necessary to use one
of these predicates as part of the goal condition (this is the
case with our Aladdin worked example).

Other predicates are added by the system as the PDDL
domain files are output, following user interaction.

User Interaction

At this stage StoryFramer requires user interation and hence
prompts for input to be used for the following:

• Removing Duplicates:

Anytime the same object has been referred to in differ-
ent ways in the NL input, the result is that the system
finds multiple different objects. In this situation the user
is asked to disambiguate. At the end of this stage every
object should be represented by one unique identifier.

• Typing of Objects:

The user is asked to sort the objects into types. So far
in our experiments with narrative domains we have re-
stricted this to the following small set of narrative cate-
gories: character, object and location.

• Action Pre and Post-conditions:

The user is asked to select between possible pre- and post-
conditions for inclusion in the domain model (i.e. “Do
you want to include ...?”). These are of the following
types:

1) Predicates: the user is asked to select from identi-
fied predicates, such as beautiful in Figure 4, and use
them to populate action preconditions where appropriate.

2) Locatedness: some conditions are commonly missing
from the NL input relating to the location of characters
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NL Aladdin takes the magic lamp from the dead body of the
dragon.

C
o

re
N

L
P

A
n

n
o

ta
ti

o
n

[takes/VBZ

nsubj>Aladdin/NNP

dobj>[lamp/NN det>the/DT amod>magic/JJ]

nmod:from>[body/NN

case>from/IN

det>the/DT

amod>dead/JJ

nmod:of>[dragon/NN case>of/IN det>the/DT]]

punct./.]

A
ct

io
n

T
em

p
la

te action : takes {
subject : aladdin

object : magic lamp

from : dead body

of : dragon }

NL Aladdin travels from the castle to the mountains.

C
o

re
N

L
P

A
n

n
o

ta
ti

o
n [travels/VBZ

nsubj>Aladdin/NNP

nmod:from>[castle/NN case>from/IN det>the/DT

nmod:to>[mountains/NNS case>to/TO det>the/DT

punct./.]

A
ct

io
n

T
em

p
la

te action : travels {
subject : aladdin

from : castle

to : mountains

Figure 3: Action Template Examples. The figure shows
sample NL sentence input, with CoreNLP annotation and
resulting action template after rewrite rules: from CoreNLP
annotation, verb, subject and object of the sentence form
the action name and arguments (see text for further details).

and objects. For the work we present here we assume
that all characters must always be “at” some location and
that objects can be either “at” or in the possession of a
character i.e. “has”. Should such predicates be missing
from the NL input, then users are asked to decide whether
to include them.

3) Inequality: whenever an action template has multiple
parameters of the same type the system assumes that these
cannot be equal and prompts the user about inclusion of a
(not (= ?x1 ?x2)) precondition.

• Problem File setup:

The final stage of user interaction is setting up a problem
file. Every predicate detected by StoryFramer that was
true at some time during the story represents a potential
initial state fact or plan goal. The user is shown a list of
facts and asked to delete those not appropriate, as well
as adding any that were missed or not mentioned. For
example, this frequently requires the selection of predi-
cates relating to the location of characters in the initial
state: something frequently missing from the input NL
synopses.

The user is also prompted to select suitable goal facts for
the problem file. In our experiments we have used goal

NL Jasmine is very beautiful.

C
o

re
N

L
P

A
n

n
o

ta
ti

o
n

[beautiful/JJ

nsubj>Jasmine/NN

cop>is/VBZ advmod>very/RB

punct./.]

P
ro

p
er

ty
T

em
p

la
te

property : beautiful {
subject : jasmine }

NL The genie is in the magic lamp.

C
o

re
N

L
P

A
n

n
o

ta
ti

o
n

[lamp/NN

nsubj>[genie/NN det>The/DT]

cop>is/VBZ

case>in/IN

det>the/DT

amod>magic/JJ

punct./.]

P
ro

p
er

ty
T

em
p

la
te

in : magic lamp {
subject : genie }

NL The dragon is dead.

C
o

re
N

L
P

A
n

n
o

ta
ti

o
n

[dead/JJ

nsubj>[dragon/NN det>The/DT]

cop>is/VBZ

punct./.]

P
ro

p
er

ty
T

em
p

la
te

property : dead {
subject : dragon }

Figure 4: Property Template Examples. The figure shows
sample NL input sentences, the CoreNLP annotations for
this sentence with the property and subject taken from the
sentence adjective and noun (for further details see text).

conditions which enable the generation of a plan which
reproduces the story outline from the input NL story.

PDDL output

The final stage in the process is the generation of the domain
and problem file content which is output as PDDL.

Following the user interaction to provide type information
for action parameters and domain objects the system may
add additional parameters to actions at this stage. This is
based on an assumption that all actions must have an associ-
ated location as this is needed in the longer term building up
of a narrative domain: for example, for staging of generated
story plans in a virtual environment. In practice we have ob-
served that location details are frequently missing from syn-
opses. Hence additional location parameters are automati-
cally added to actions where there is no location parameter
associated with the action template from the input text.

For the domain file, the detail of the actions comes from
the action templates with the types of action parameters
added on the basis of the user input. Pre- and post-conditions
are made up of predicates extracted from the input NL, and
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selected for inclusion by the user, along with system sug-
gested predicates such as inequality testing.

Worked Example: Aladdin

In this section we present a worked example of the end-to-
end process of planning domain model and problem file gen-
eration with StoryFramer. This example uses the NL plot
synopsis from (Riedl and Young 2010) shown in Figure 2.

1) StoryFramer Processing

CoreNLP handles the input NL text, one sentence at a time
and for each sentence returns the text with annotations. For
example, for the following input sentences:

S1 “Aladdin takes the magic lamp from the dead body of the
dragon”

S2 “Aladdin travels from the castle to the mountains”
S3 “Jasmine is very beautiful”
S4 “The genie is in the magic lamp”

the resulting CoreNLP annotations are as shown in Fig-
ures 3 and 4. For the action templates StoryFramer identifies
the key action components and also adds the can-X and
has-X predicates to action pre- and post-conditions to en-
sure a baseline for action causal chaining. Thus the outline
actions from S1 and S2 at this stage are:

Name Precondition Postcondition

S1: takes

aladdin,

magic-lamp,

dragon

can-takes has-takes

S2: travels

castle,

mountain

can-travel has-travel

For the property templates, resulting from input sentence S3
and S4, the key components form the basis of predicates
with name and arguments as follows:

Name Arguments

S3 beautiful jasmine

S4 in magic-lamp, genie

At the end of this first phase of automated processing with
StoryFramer the sets of initial action templates, predicates
and domain objects are as summarised in Figure 5.

2) User Input

Firstly, the user is asked to remove duplicate references to
the same objects. For example, in Figure 5 the set of ob-
jects contains a number of duplicates, such as Jafar and
King-Jafar and the user has selected unique object iden-
tifiers and the duplicates have been removed.

Once duplicates have been resolved the user sorts the set
of objects into types. In our experiments to date we have
restricted this to character, object and location.
For the Aladdin story, the results of this phase of user inter-
action result in object typing as shown in Figure 5.

Next the user is prompted to select and reject predicates to
populate the pre- and post-conditions of the output actions.
These predicates are obtained as follows :

Actions Predicates Objects

confined

travels

slays

takes gives

rubs casts

married sees

wed

at has woman

king dead

knight in

beautiful

in-love

can-travels

has-travels

can-slays

has-slays

...

Jasmine

Jafar

Magic-Genie

Magic-Lamp

Dragon Genie

Aladdin

Castle

Mountains

King-Jafar

Resolved Objects
(Jafar, King-Jafar) → Jafar

(Genie, Magic-Genie) → Genie

Typing
Jafar, Jasmine, Aladdin, ... → character

Castle, Mountain → location

Magic-Lamp → object

Figure 5: Results of initial phase of automated StoryFramer
processing: the figure shows the sets of names of actions,
predicates and objects identified prior to user interaction.
Duplicate Object References are highlighted (red) along
with the results of user input to remove duplicates. Also
shown are the results of user sorting of objects into types.

1. Predicates from properties in the input NL sentences. For
Aladdin a selection of these are shown in Figure 5)

2. Locatedness predicates, at and has, introduced by
StoryFramer if they are absent in the input NL and rep-
resenting the location of objects of type character and
object.

3. Predicates ensuring unique object grounding of multiple
parameters of the same type, i.e. inequality.

The action takes in Figure 6 shows examples of the results
of user selection of these predicates and the building of the
output action.

The final phase of user interaction is selection of predi-
cates for the setting up of a problem file: the initial state and
the goal conditions. In our experiments the user selected
those predicates from the initial state and goal conditions
which allowed us to regenerate the plan corresponding to
the input NL plot synopsis.

3) PDDL Output

The final step of the process is the outputting of the Domain
Model and Planning Problem as PDDL files. For this exam-
ple these can be found online:
https://drive.google.com/drive/

folders/0B6Rv1Q3KYqtMcXhUMFFSZzh1a1U?

usp=sharing

Evaluation

In this section we present an evaluation to assess how ac-
curate StoryFramer is. We evaluate StoryFramer with two
domains: the tale of Aladdin taken from (Riedl and Young
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(:action takes
:parameters

(?c1 ?c2 - character ?o - object ?l - location)
:precondition (and

•1 (dead ?c2)

•2 (at ?c1 ?l1) (at ?c2 ?l1) (has ?c2 ?o1)
(can-takes ?c1) (can-takes ?c2) (can-takes ?o1)

•3 (not (= ?c1 ?c2)))
:effect (and

•1 (has ?c1 ?o1) (not (has ?c2 ?o1))
(has-takes ?c1) (has-takes ?c2) (has-takes ?o1) )))

Figure 6: Example of StoryFramer Building for action
takes. Following user input the parameter object names
from the input NL have been replaced by variables of the ap-
propriate types. Precondition predicates have been: selected
by the user•1 ; system suggested locatedness and chaining
predicates have been retained by the user•2 ; the system has
introduced inequality tests for objects of the same type•3 .
For the postconditions the user has retained locatedness and
chaining predicates as shown•2 .

2010) and an old American West story taken from (Ware
2014). We selected these two sources because they provide
natural language descriptions that we can use as input and
they include planning domains that we can use to compare
with the domains generated by StoryFramer. In particular,
we evaluate StoryFramer by comparing the set of recognised
actions and predicates with the actions and predicates used
in the selected domains.

The domains used in the evaluation can be found online
using the link provided at the end of the worked example.

Domain 1: The tale of Aladdin

We used StoryFramer with two texts describing the tale of
Aladdin. Both texts were taken from (Riedl and Young
2010): one is shown here, in Figure 2; the other is a vari-
ation (see Figure 13 of Riedl’s paper). Table 1 shows that
all actions but one were recognised by StoryFramer. When
compared to Riedl and Young’s planning domain, only one
action is not recognised. All the other 11 actions are recog-
nised with four of them being named based on the same
verb. The action marry is recognised twice: as wed and
as married.

In terms of predicates, out of Riedl and Young’s 24 pred-
icates, only two predicates that are mentioned in the text
are not recognised by StoryFramer: the binary predicates
married-to and loyal-to (however, a unary predi-
cate loyal is recognised). Nine (9) are recognised in ex-
actly the same way: one (1) as a type, one (1) as an object,
one (1) as a constant, and six (6) as predicates. Eight (8)
are recognised, but with a different name from the one that
Riedl and Young used: four (4) of them are minor variations
(e.g. married/has-married and loves/in-love);
two (2) of them are recognised as words that appear in the
text: instead of alive and female, the system recognised

Output Plan Corresponding NL sentences

(sees jafar jasmine castle) King Jafar sees Jasmine and in-
stantly falls in love with her.

(travels aladdin castle moun-
tains)

Aladdin travels from the castle
to the mountains.

(slays aladdin dragon moun-
tains)

Aladdin slays the dragon.

(takes aladdin dragon magic-
lamp mountains)

Aladdin takes the magic lamp
from the dead body of the
dragon

(travels aladdin mountains cas-
tle)

Aladdin travels from the moun-
tains to the castle.

(gives aladdin jafar magic-lamp
castle)

Aladdin hands the magic lamp
to King Jafar.

(rubs jafar genie magic-lamp
castle)

King Jafar rubs the magic lamp
and summons the genie out of
it.

(casts genie jasmine jafar cas-
tle)

The genie casts a spell on Jas-
mine making her fall in love
with King Jafar.

(slays aladdin genie castle) Aladdin slays the genie.

(wed jafar jasmine castle) King Jafar and Jasmine wed in
an extravagant ceremony.

Figure 7: Output Plan and Corresponding Input NL sen-
tences for the tale of Aladdin: on the left hand side are the
10 actions in the output plan generated using the learned do-
main model; alongside each action (right hand side) are the
corresponding input sentences from the original story.

dead and woman (resp.); and two (2) of them are recog-
nised as types (Riedl and Young used thing and place

instead of object and location; in both cases, none
of the words appear in the text). Finally, there are seven
(7) predicates that were not recognised: five (5) of them do
not appear in the text (scary, monster, male, single,
and intends); and finally, as mentioned above, two (2) are
mentioned in the text, but are not recognised.

Output Plans We used the StoryFramer generated domain
and problem file from the original Aladdin NL input to gen-
erate an output narrative plan (using METRIC-FF (Hoffmann
and Nebel 2001)). The plan consists of the 10 actions which
are shown in Figure 7, along with corresponding input.

Domain 2: An old American West story

We also used StoryFramer with natural language sentences
taken from (Ware 2014). These are are part of an old Amer-
ican West story about how a young boy named Timmy is
saved (or not saved) from a deadly snakebite. His father,
Hank, can save him by stealing antivenom from Carl, the
town shopkeeper, but this theft causes sheriff William to
hunt down Hank and dispense frontier justice.

In the thesis Ware gives seven example solution plans and
translations of them into NL. It is these NL sentences which
we used as input to StoryFramer. We list them here and show
in brackets the action names used by Ware:

• Timmy died. (die)

• Carl the shopkeeper healed Timmy using his medicine.
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Riedl and Young (2010) Recognised by StoryFramer

travel ✓(travels)

slay ✓(slays)

pillage ✓(takes)

give ✓(gives)

summon ✓(rubs)

love-spell ✓(casts)

marry ✓(wed,married)

fall-in-love ✓(sees)

order ✗

command ✓(uses)

appear-threatening ✓(appears)

Table 1: When compared to Riedl and Young’s planning
domain, only one action is not recognised by StoryFramer.
All the other 11 actions are recognised with four of them
being named based on the same verb. The action ‘marry’ is
recognised twice: as ‘wed’ and as ‘married’.

(heal)

• Hank shot his son Timmy. (shot)

• Hank stole antivenom from the shop, which angered
Sheriff William. (steal)

• Hank healed his son Timmy using the stolen an-
tivenom. (heal)

• Sheriff William shot Hank for his crime. (shoot)

• Hank intended to heal his son Timmy using the stolen
antivenom. (heal)

• Sheriff William intended to shoot Hank for his crime.
(shoot)

• Hank got bitten by a snake. (snakebite)

• Hank intended to heal himself using the stolen an-
tivenom. (heal)

In Table 2, we show that all the actions used by Ware were
recognised by StoryFramer. Note that whilst Ware used
the action heal to model the actions mentioned in the
sentences “Hank healed...” and “Hank intended to heal”,
StoryFramer recognised two different actions: heal for the
first sentence and intended for the second.

In terms of predicates, results were not so good as
with the tale of Aladdin. The predicates generated by
StoryFramer are based on the text provided as input, so,
besides predicates common in general narratives (e.g. at

?c ?l or has ?c ?o), StoryFramer generated predicates
associated with the recognised actions (e.g. has-died,
can-shot, and has-bitten). It also introduced as con-
stants all the characters mentioned (Hank, Timmy, Carl,
and Sheriff) and some objects and locations used in the
narrative (Medicine, Antivenom, and Shop). On the
other hand, Ware introduced a predicate status ?p ?s

that is to be used with one of three constants: Healthy,
Sick, or Dead. He also introduced predicates owns ?c

?o, armed ?c, and parent ?c1 ?c2.
This mismatch is justified because Ware is using predi-

cates that are not mentioned explicitly in the sentences that

Ware (2014) Recognised by StoryFramer

die ✓(died)

heal ✓(healed)

shoot ✓(shot)

steal ✓(stole)

snakebite ✓(bitten)

✗ intended

Table 2: All the actions used by Ware (2014) were recog-
nised. StoryFramer also recognised an additional action (‘in-
tended’).

we used as input. For example, the sentences do not make
any reference to the words or states Healthy and Sick. We
discuss how this limitation can be addressed in the section
on future work.

Output Plans Even though there is a clear mismatch be-
tween the predicates recognised by StoryFramer and the
ones used by Ware, the generated domains can be used to
produce all the seven plans listed for the Western Domain
(see (Ware 2014, Fig. 3.3) and Figure 8). However, we note
that for two of these plans, F and G, it was necessary to re-
move reasoning about intent: despite StoryFramer correctly
generating an intends action from the NL input. This
is because intention reasoning (a feature of Ware’s COPCL
planner and other narrative planners in the tradition of the
IPOCL planner of (Riedl and Young 2010)) requires the use
of a planner capable of intentional reasoning which is be-
yond the scope of our current work.

With intention removed we were able to generate the
same plans as reported by Ware. The results are shown
in Figure 8. Although we note that in order to reproduce
the same ordering of actions it was necessary to use in-
termediate goals as described in (Porteous, Cavazza, and
Charles 2010b). For example, to enforce the ordering that
a goal (has-shot sheriff hank) occurs before an-
other goal (has-died timmy) the problem is written in
PDDL3.0 using the modal operator sometime-before1

and the plan is generated using a decomposition approach
that solves each subgoal in turn.

Conclusions and Future Work

In the paper we have presented an overview of our approach
to automated domain model generation and its implementa-
tion in the prototype system StoryFramer. We assessed the
performance of the approach on a couple of publicly avail-
able narrative planning domains, for which narrative syn-
opses are also available.

An important aspect of the approach is that it is possible to
go from NL input to an output domain model and problem
instance, with which it is possible to generate a plan that
corresponds to the original NL input. Much of this process
is automated but user input may be required for some aspects
such as disambiguation of content. However there is scope
to further automate the process as part of the future work.

1The semantics of (sometime-before A B) requires that
application of actions in solution plans make B true before A.
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Plan Ware Plans StoryFramer Plans

A (die Timmy) (died timmy shop)

B (heal Carl Timmy) (healed carl-shopkeeper timmy medicine shop)

C (shoot Hank Timmy) (shot timmy hank shop)

D (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)
(heal Hank Antinvenom Timmy) (healed hank timmy antivenom shop)

E (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)
(heal Hank Antinvenom Timmy) (healed hank timmy antivenom shop)
(shoot William Hank) (shot sheriff-william hank shop)

F (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)
(shoot William Hank) (shot sheriff-william hank shop)
<heal Hank Antivenom Timmy> -
(die Timmy) (died timmy shop)

G (steal Hank Antivenom Carl William) (stole hank sheriff-william antivenom shop)
<shoot William Hank> -
(snakebite Hank) (bitten hank shop)
<heal Hank Antivenom Hank> -
(heal Hank Antivenom Timmy) (healed hank timmy antivenom shop)

Figure 8: Comparison of output plans for the Western Domain from (Ware 2014): those listed by Ware and corresponding to
the NL input to StoryFramer; and those generated by StoryFramer ignoring intent. See text for detail.

Amongst our plans for future work we are keen to ex-
ploit further the part-of-speech information provided by
CoreNLP in combination with other linguistic resources in
order to disambiguate content. We also intend to explore the
use of a commonsense reasoning engine which would enable
inference of aspects such as family and social relationships
(e.g. from references such as “parent” in the input).

There are also possibilities to combine this with reason-
ing that is able to automatically extend an existing domain
model, for example via the use of antonyms to find opposite
actions, as in (Porteous et al. 2015).

We may also look to use multiple story synopses as in-
put to incrementally build up a large domain ontology. This
could for example be used to learn actions from multiple
episodes of a series so that generated output plans can show
more variation.
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Bee, N.; Wagner, J.; André, E.; Charles, F.; Pizzi, D.; and
Cavazza, M. 2010. Multimodal interaction with a virtual
character in interactive storytelling. In the 9th International
Conference on Autonomous Agents and Multi-Agent Sys-
tems, AAMAS 2010, 1535–1536.

Branavan, S. R. K.; Kushman, N.; Lei, T.; and Barzilay, R.
2012. Learning High-level Planning from Text. In Proceed-
ings of the 50th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’12, 126–135. Stroudsburg, PA,
USA: Association for Computational Linguistics.

Cardona-Rivera, R. E., and Li, B. 2016. PLOTSHOT: Gen-
erating Discourse-constrained Stories Around Photos. In
Proceedings of the 12th AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment (AIIDE).

Cavazza, M.; Pizzi, D.; Charles, F.; Vogt, T.; and André,
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Abstract

Classical planning representations such as PDDL are pri-
marily designed for goal-oriented problem solving, but some
tasks such as creative composition lack a well defined goal.
Structured performing arts, despite lacking a specific goal
for their composition tasks, can be sufficiently expressed as
goal-oriented problems for their performance tasks. Using
contradance as an example performing art, we show how
to represent individual contradances as plans such that the
composition task can be compiled into a performance prob-
lem that can be expressed in PDDL. That is, by accounting
for additional properties that are useful in their composition,
the solutions to the performance task also serve as solutions
to the composition task. We conclude with some example
contradances derived using a classical planner under various
composition conditions.

1 Introduction

As one of the earliest challenges in artificial intelligence,
classical planning has often focused on automated problem
solving where tasks have well defined goals. However, cre-
ative tasks such as artistic composition, ranging from writ-
ing music to dance and martial arts choreography, lack well
defined goals outside of completing the work (to avoid an
infinite loop of creation). Early research in creative artificial
intelligence (Schmidhuber 2010) identified features such as
constructing new things from simple patterns that cannot
be easily expressed by past observations, but these features
serve more as heuristics than actual approaches. Increased
interest in creative machines has led to the formulation of
the Lovelace Tests (Bringsjord, Bello, and Ferrucci 2001;
Riedl 2015) and work in dynamic storytelling agents (Riedl
and Young 2010; Amos-Binks 2017). We differentiate these
tasks from the traditional ones as follows:

Definition 1 A goal-oriented task in domain D is one for
which a solution is any plan or policy π that yields a state
satisfying the set of goal conditions. This includes finding
optimal solutions as part of the task because any optimal
solution is acceptable if more than one exists.

Definition 2 A composition task in domain D is one for
which a solution is a plan or policy π that not only yields
a state satisfying the set of goal conditions, but also satis-
fies specific intrinsic properties. These properties may in-

clude (but are not limited to) having particular action sub-
sequences, following various rules describing π’s structure,
and expressing a desired message.

In this work, we will investigate the creative task of con-
tradance composition. Originating from Irish folk dancing,
contradancing is a popular casual group dance in present
times. The dancers form two long lines that usually break
down into groups of four dancers. A caller announces a se-
quence of moves (called figures) that the dancers perform to
reposition themselves within their group of four, sometimes
mixing groups in more complicated sequences. The final fig-
ure in the sequence switches the positions of the two pairs of
dancers to form new groups of four; this progression through
the line continues as the sequence of figures loops until the
song ends.

The steady progression and repositioning of dancers
within their groups is well-structured with various mathe-
matical properties (Peterson 2003; Copes 2003). Although
these can be used to find the set of all possible contradances,
composers select subsets of these contradances due to their
artistic preferences and what they believe the dancers will
enjoy. Thus simply knowing how figures will alter the posi-
tions of dancers is not sufficient. A random contradance gen-
erator created by a computer science professor (Frederking
Publication Date Unavailable), which uses depth-first search
to choose the next node to expand by a user-provided seed,
even warns users that the dance is not guaranteed to feel
right.

These systematic approaches all simply consider the re-
arrangement of dancers and select moves to accomplish
these transitions. However, contradance composers have re-
vealed that more than position is used when they create
their sequences of figures (Dart 1995). Enumerating the state
space with additional features typically leads to exponen-
tial scaling, but using a first-order logic representation of
the state can help reduce these impacts for knowledge en-
gineering. Furthermore, we can take advantage of other fea-
tures of PDDL (McDermott et al. 1998; Fox and Long 2003;
Gerevini et al. 2009) to properly formulate the progression
as a classical planning problem such that off-the-shelf plan-
ners can find dances as sequences of figures. We begin with a
background of the contradancing domain in Section 2. Sec-
tion 3 uses these details to illustrate how to represent the
states and actions. With the PDDL representation derived,
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Figure 1: An illustration of progression for duple improper
(left) and Becket formation (right). The couple that reaches
the end changes between ones and twos to begin moving in
the opposite direction with each progression.

we empirically present some of the contradances composed
by off-the-shelf planners in Section 4 and discuss how this
can be utilized and extended in Section 5.

2 Description of the Contradance Domain

A contradance is a well-structured community dance that
has a formulaic procedure for set up and performance.
Dancers are initially paired into couples, one partner in a
couple is assigned the gent role and the other partner is as-
signed the lady role. The present-day interpretation of the
roles is not indicative of who is dancing, but the lady is of-
ten located to the right of the gent and a few figures have
different steps for each role working together as a couple.
Depending on the choreography of the dance, couples are
grouped together; the majority of dances have duples with
two couples, and we will assume duples for our state space
definitions in Section 3. In a duple, each couple faces each
other where the couple facing the front of the dance hall
(where the caller is located) is called the ones and the cou-
ple facing the back of the dance hall is called the twos. The
ones gent and twos lady are called neighbors as are the ones
lady and twos gent. All the duples are then joined to form
two lines of dancers; it is called a duple improper when the
neighbors are in the same line and a Becket formation when
the partners are in the same line.

After setting up the dancers, the caller will announce a se-
quence of figures for everyone to perform. The steps in most
figures only involve dancers within a duple so that each du-
ple is dancing independently in parallel — some more com-
plicated dances will have a shadow role for dancers between
different duples who will interact with each other. However,
the community still dances together even without a shadow
due to the progression. The progression, resulting from the
sequence of performed figures, moves the ones couple into
the next duple closer to the front of the dance hall and the
twos couple into the next duple closer to the back of the
dance hall. See Figure 1 for an illustration of the progression
and lines setup. After the progression, the sequence of fig-
ures is repeated using the newly formed duples; thus partners
remain constant throughout the entire dance while neighbors
change with each progression.

The length of time between progressions is sixty-four
beats of music divided into four sets of sixteen beats. The
music is divided into two sixteen-beat phrases that are each

played twice during a single performance of the sequence
of figures. Although this musical feature does not affect
the dancers, the choreography uses this such that no fig-
ure is performed between two sets. That is, a figure must
end when a musical phrase ends; this produces four parti-
tioned subsequences of figures that each last sixteen beats.
Figures vary in duration of beats from one beat to eight
beats, which yields some of the variety between dances. To
avoid monotony, most figures can only be repeated a spe-
cific number of times in a row. However, one figure is typ-
ically expected in every contradance: the swing. A swing is
most often performed between partners or neighbors where
the gent and lady hold waists/shoulders and spin clockwise
about their center axis for eight beats, ending with the lady
positioned to the right of the gent. Many contradances have
one swing with the partner and another with the neighbor,
but each swing is never done more than once per sequence
of figures. After many progressions, the music eventually
stops looping and ends the dance’s performance.

3 Contradancing Representation in PDDL

The PDDL representation of any domain is D = 〈F,A〉
where F is the set of fluents such that 2F is the state space
and A is the set of actions that can alter the states via add and
delete effects add (a ∈ A) , del (a ∈ A) ∈ F if their precon-
ditions pre (a ∈ A) ∈ F are satisfied. A problem in a given
domain is represented as P = 〈D, I, G〉 where I ∈ 2F is the
initial state and G ⊆ F represents the goal conditions that
must be satisfied for the task to be completed. When using
first-order logic, we introduce the set of object types T into
D and actual objects of type t ∈ T , Ot, into P such that
the fluents and actions are lifted over a tuple of parameters
params (x ∈ P ∪O) ∈ T ∗:

F =
⋃

p∈P

⊗

t∈params(p)

Ot , A =
⋃

o∈O

⊗

t∈params(o)

Ot

where P is the set of propositions, O is the set of operators,
and ∗ is the Kleene closure for any sequence of zero or more
elements from a set.

For the contradance domain, we will follow the works in
mathematics that view the layout of dancers in the dance hall
as the state space and the figures as operators that alter this
layout. Because a single caller dictates the figures and all the
dancers follow these instructions, we view contradancing as
a centralized multi-agent problem, which can be represented
as a single agent problem where each action dictates what all
the agents (dancers) do at once. Hence our type set T con-
tains dancer, location, and direction for each agent and
the layout. We will also need T to contain beat and set for
temporal purposes when defining the operators.

Contradancing States

The dance hall will be laid out and connected in a
manner similar to the traditional GRIDWORLD domain
because contradancers are always lined up with each
other before/after the performance of each figure. This
gives us the propositions adjacent and same line where
params (adjacent) = (location, location, direction) and
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Ones

Lady

Twos

Gent

Twos

Lady

Ones

Gent

(at_loc ones_lady 11) (adjacent 11 12 left) (same_line 11 21)

(at_loc ones_gent 12) (adjacent 12 11 right) (same_line 21 11)

(at_loc twos_gent 21) (adjacent 21 22 left) (same_line 12 22)

(at_loc twos_lady 22) (adjacent 22 21 right) (same_line 22 12)

(facing ones_lady 21) (adjacent 11 21 back)

(facing ones_gent 22) (adjacent 21 11 front)

(facing twos_gent 11) (adjacent 12 22 back)

(facing twos_lady 12) (adjacent 22 12 front)

Figure 2: A duple of dancers presented visually with its translation into PDDL.

params (same line) = (location, location). For GRID-
WORLD, directions are simply front, back, right, and left.
Due to the lack of transitivity and symmetry between re-
lations in PDDL, a problem’s initial state must include all
2n (n− 1) same line fluents that are true to form the two
lines of length n locations. Similarly, the problem must iden-
tify all pairs of locations for adjacent with the directions
being opposite. We present a visualization of a grid with a
duple and these relations in Figure 2.

The dancers presented in the duple are positioned at lo-
cations using proposition at loc where params (at loc) =
(dancer, location). Although this is sufficient for the
mathematical representations, there are additional dancer
features that a contradance composer keeps in mind
to avoid awkward figures that the mathematical and
automated approaches currently encounter. The sim-
pler set of features identify roles because some fig-
ures require specific positioning of the gents and ladies;
thus params (role gent) = params (role lady) =
params (role 1s) = params (role 2s) = (dancer)
and params (partner) = params (neighbor) =
params (shadow) = (dancer, dancer) where the symme-
try between these relations must again be defined.

The more complex feature to consider is based on the
dancers’ flow from the previous figure. If a dancer is mov-
ing forward and then told to interact with the dancer to the
left by passing right shoulders, there will be some difficulty
because the dancer needs to turn to the left and slow down
enough to coordinate the shoulder passing — it would be
more natural to pass by the left shoulder in this case due
to the turn. Although computing a specific velocity in each
direction can be challenging, we have found it sufficient to
represent the flow by the direction that a dancer is facing;
params (facing) = (dancer, location) denotes the loca-
tion in front of the specified dancer. This means a dancer
may be facing at an angle if the location is not adjacent in
the grid, which happens in several common figures.

Contradancing Initial and Goal States

In addition to the initial state providing the layout of loca-
tions in the dance hall, it must also set up the time (first beat
in the first set), dancers, and their roles. In particular, be-
cause the lines may be formed by an arbitrary number of
duples of dancers, it is only necessary to plan for the fewest
number of duples who will perform the figures together, ig-
noring those dancing in parallel independently:

Proposition 1 It is sufficient to define a contradance plan-
ning problem P containing 4 (1 + 2k) agents/dancers where
k is the number of duples between a given dancer and its
respective shadow in the line, but it is only necessary to de-
fine P containing 4 (1 + s) agents/dancers where s is the
specific number of shadows assigned to a dancer – usually
s ∈ {0, 1}.

Proposition 1 needs to consider k duples on either side
of the couple because shadows become adjacent to their
dancers through temporary progressions that take place
within the four sets of sixteen beats. Thus the ones couple’s
shadows are located k duples in one direction while the twos
couple’s shadows are located k duples in the opposite direc-
tion because the ones and twos couples move in opposite
directions during progression. Since all duples perform the
same figures in parallel, it is also possible to control all the
dancers at once regardless of how many duples are present
in the problem. However, to reduce the overhead of keep-
ing track of so many dancers, it is only necessary to repre-
sent one duple (for the actual choreography) and the specific
dancers who serve as the shadows for each dancer in this du-
ple (to check preconditions for figures involving shadows).
Each shadow has a role in its own duple, and figures may
manipulate the shadows as they affect the respective dancers
of each role in the represented duple.

Proposition 2 It is necessary and sufficient to define a con-
tradance planning problem P containing 8 (1 + d) locations
where d = (1 + 2k) is the number of duples in Proposi-
tion 1.

In Proposition 2, 4d of the locations are used for the
two lines of d consecutive duples of dancers; this much
of the dance hall must be present for the shadows to meet
from their initial locations. The remaining 4 (2 + d) loca-
tions form a border around the two lines in order to accom-
modate facing outwards. The borders that are parallel to the
lines do not have the same line proposition hold true, but
satisfy the respective adjacent propositions. See Figure 3
for this initial state layout.

Although most the bordering locations are not guaranteed
to be used in a given sequence of figures, at least a few of
them are required for the goal condition of completing a
progression. Figure 4 has PDDL translations of two initial
and goal states for single duples without shadows (based on
Figures 2 and 3). When starting from a duple improper, the
couples who reach the ends of the lines should be facing
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0   1   2      ... 2k+1 2k+2  ...          4k+3

Figure 3: The grid layout of the dance hall described as the initial state. It is rotated 90 degrees counterclockwise so that the left
direction is on the bottom. Thus rows 1 and 2 serve as the two lines while rows 0 and 1 and columns 0 and 4k+3 are the border.

these border locations. When starting from a Becket forma-
tion and progressing clockwise, the couples who reach the
ends of the lines should have the gent (who is to the left
of the lady) at a location along this border. In addition to the
changes in dancer location (although facing changes for the
dancers, their directions are preserved), the goal conditions
should update the temporal information to the last beat of
the last set (or the first beat of the set after the last, depend-
ing on implementation). This creates the task of producing
a progression in exactly the specified amount of time, which
is the goal of contradance performance.

Contradancing Actions

Given the layout of dancers throughout the dance floor, the
figures will alter their locations and facing directions. Most
operators represent a single figure whose parameters are the
temporal beat assignment, dancers who will perform the fig-
ure, and their locations; this is usually the entire tuple, but
there are figures where only two of the dancers move and
the others remain still. However, dancers cannot perform a
figure if they are not in the correct layout nor does a figure
flow comfortably if they are facing the wrong directions with
each other. This is where the preconditions are necessary to
identify when a figure may be performed. The common fea-
tures of operator preconditions for the contradance domain
are:

• Enough beats remain in the set to perform the figure

• All the dancers in the parameters are different

• Each dancer is at the location specified in the parameters

• The locations are laid out correctly for the performance

• The dancers are facing the correct locations for flow

Likewise, the common components of operator effects (both
for add and delete) for the contradance domain are:

• Increment the current beat by the duration of the figure

• Permute the dancers’ locations if they change

• Change the dancers’ directions if they change

• Increase the path cost if operator costs are used to guide
the planner (see Section 4)

We call the set of operators representing figures Ofigures,
and the remaining operators are used to realign the temporal
and spatial inforation Orealign = O−Ofigures. The realign-
ment operators do not have any cost and allow semantically
equivalent representations to be used in the state space such
as incrementing the set, which resets the beats from sixteen
to zero to allow the next set of figures to begin, and reposi-
tioning the dancers as continuation of their flows (see Fig-
ure 5 for some examples). Although these operators could
be embedded within the effects of figure operators, it is eas-
ier from a compositional perspective to observe the distinct
transition in sets and movement of dancers. This also facil-
itates the caller’s job as there is an explanation of what the
dancers should do to position themselves for each figure’s
performance.

Counting Consecutive Figures If the number of repeti-
tions is also considered as a constraint to reduce monotony
in possible plans, then we must make several simple mod-
ifications. First the type ‘repetitions’ must be included in
T . This allows us to include propositions of the form
consecutive ⊙ for each operator ⊙ ∈ Ofigures where
params (consecutive ⊙) = (repetitions). Then each op-
erator contains preconditions that ensure the maximum num-
ber of repetitions is not yet achieved for that figure, and
the effects reset the repetition counts for all other operators
while incrementing the repetition count for the performed
figure.

Representation of Counting Although the use of numer-
ical fluents (not to be confused with the domain fluents) has
been considered a feature of PDDL since version 2.1 (Fox
and Long 2003), many off-the-shelf classical planners limit
their use to computing plan cost for optimization. So despite
the ease of representation as integers with functions incre-
ment, assign, and compare to handle the beat, set, and rep-
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(:init

... ;Set up the dance floor grid

(at_loc ones_lady 11)

(at_loc ones_gent 12)

(at_loc twos_gent 21)

(at_loc twos_lady 22)

(facing ones_lady 21)

(facing ones_gent 22)

(facing twos_gent 11)

(facing twos_lady 12)

(current_set s0)

(current_beat b0)

)

(:goal

(at_loc ones_lady 21)

(at_loc ones_gent 22)

(at_loc twos_gent 11)

(at_loc twos_lady 12)

(facing ones_lady 31)

(facing ones_gent 32)

(facing twos_gent 01)

(facing twos_lady 02)

(current_set s4)

(current_beat b0)

)

(:init

... ;Set up the dance floor grid

(at_loc ones_lady 21)

(at_loc ones_gent 11)

(at_loc twos_gent 22)

(at_loc twos_lady 12)

(facing ones_lady 22)

(facing ones_gent 12)

(facing twos_gent 21)

(facing twos_lady 11)

(current_set s0)

(current_beat b0)

)

(:goal

(at_loc ones_lady 11)

(at_loc ones_gent 01)

(at_loc twos_gent 32)

(at_loc twos_lady 22)

(facing ones_lady 12)

(facing ones_gent 02)

(facing twos_gent 31)

(facing twos_lady 21)

(current_set s4)

(current_beat b0)

)

Figure 4: PDDL representations of initial state and goal conditions for dancers starting from duple improper (left) and Becket
formation (right). The goal conditions create a progression after the four sets of sixteen beats elapse.

Ones

Lady
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Figure 5: Realignment actions allow dancers to continue
their flow for repositioning and match the preconditions of
the next figure. The left image shows the flow of two dancers
facing outwards to rotate towards the dancers on their left
(who also rotate to face them). The right image shows the
flow of dancers facing each other along the diagonals to con-
tinue moving until they face each other in the same line.

etition counts, it is not a feasible representation if we want
to employ current planners to solve the contradance com-
position task. Therefore, we instead use conditional effects
(part of the adl requirement) with the integers as domain
constants of each type, and then enumerate all the precon-
dition comparisons as a conjunction of negated equivalence
checks as well as all the effect increments as a conjunction
of conditional statements (hard-coding the increment). Fig-
ure 6 compares the numerical fluent and conditional effect
PDDL representations.

4 Empirical Exploration of Composition

For initial evaluation of our formulation and representation,
we encoded the contradancing PDDL domain with the six
elementary figures detailed in Table 1. The swing is omitted

because despite being a staple figure in any composition, its
result is nondeterministic when considering flow — the lady
ends to the right of the gent, but the direction is ambigu-
ous depending on whether it is intended for a progression
or part of the current set. We also included the realignment
operator for incrementing the set after sixteen beats. When
this domain was run in the state-of-the-art FastDownward
Planner (Helmert 2006) with a problem that contained no
shadows and started at the first beat of the first set in a duple
improper formation, we received the following plan as the
system’s contradance composition:

Beat0, Set0: Do Si Do (Neighbors)

Beat4, Set0: Right and Left Through

Beat8, Set0: Right and Left Through

Beat12, Set0: Do Si Do (Neighbors)

Beat16, Set0: Update to Set1

---

Beat0, Set1: Right and Left Through

Beat4, Set1: Right and Left Through

Beat8, Set1: Do Si Do (Neighbors)

Beat12, Set1: Right and Left Through

Beat16, Set1: Update to Set2

---

Beat0, Set2: Right and Left Through

Beat4, Set2: Do Si Do (Neighbors)

Beat8, Set2: Right and Left Through

Beat12, Set2: Right and Left Through

Beat16, Set2: Update to Set3

---
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(:action numeric_fluent_version

:parameters (...)

:precondition

(and

;Must be within the time

(< (current_beat) 13)

... ;Check locations, flow, and roles

)

:effect

(and

;Add 4 beats to the set

(increase (current_beat) 4)

... ;Update locations and flow

)

)

(:action conditional_effect_version

:parameters (... ?b - beat)

:precondition

(and

;Must be within the time

(current_beat ?b)

(not (= ?b b13))

(not (= ?b b14))

(not (= ?b b15))

(not (= ?b b16))

... ;Check locations, flow, and roles

)

:effect

(and

;Add 4 beats to the set

(not (current_beat ?b))

(when (= ?b b0) (current_beat b4))

(when (= ?b b1) (current_beat b5))

(when (= ?b b2) (current_beat b6))

(when (= ?b b3) (current_beat b7))

(when (= ?b b4) (current_beat b8))

(when (= ?b b5) (current_beat b9))

(when (= ?b b6) (current_beat b10))

(when (= ?b b7) (current_beat b11))

(when (= ?b b8) (current_beat b12))

(when (= ?b b9) (current_beat b13))

(when (= ?b b10) (current_beat b14))

(when (= ?b b11) (current_beat b15))

(when (= ?b b12) (current_beat b16))

... ;Update locations and flow

)

)

Figure 6: The PDDL code for counting using numerical flu-
ents (top) and conditional effects (bottom) when a figure has
a duration of four beats.

Table 1: Contradance Figures Implemented
Name Duration Maximum

(Beats) Repetitions

Circle to the Left 1 4

Circle to the Right 1 4

Do Si Do 4 1

Long Lines Forward and Back 8 1

Pass Through 2 3

Right and Left Through 4 2

Beat0, Set3: Do Si Do (Neighbors)

Beat4, Set3: Circle to the Left

Beat5, Set3: Long Lines Forward and Back

Beat13, Set3: Circle to the Left

Beat14, Set3: Pass Through (Progression)

Beat16, Set3: Update to Set4

The first three sets display very little variety and avoid cir-
cling to the left or right, which have the shortest duration of
all the implemented figures. This decision can be explained
by the fact that FastDownward is a goal-oriented optimal
planner. That is, it will find the plan with least total action
cost as the solution. For a formulation without defined/with
uniform operator costs, this means that figures with longer
duration will be preferred over figures with shorter duration
because fewer figures are performed to reach the final beat
of the final set. Thus the composition cost of a contradance
operator o ∈ Ofigure is cost (o) /duration (o).

Definition 3 The composition cost of an action is the cost of
selecting it for a plan rather than executing it. The compo-
sition cost should be lesser if it yields a greater reduction to
the composition effort, has more desirable qualities for the
plan requirements, etc..

If it was possible to set up the dancers for the ‘Long Lines
Forward and Back’ figure without performing ‘Circle to the
Left’, then we would have seen it performed in the first three
sets above because it has the cheapest composition cost 1/8.
However, the required ‘Circle to the Left’ would cost an ad-
ditional action and offset the beat to odd parity where cir-
cling is the only figure that could return the beat to an even
parity for completing the set. Thus it would cost three ac-
tions for ten beats, requiring at least two more actions to
complete the set for a total of five actions. This costs more
than four actions with four beats of duration each.

Because FastDownward can optimize over a total cost nu-
meric fluent, we then re-evaluated our domain with assigned
costs for each operator representing a figure. In particular,
we identified composition costs for each figure using the for-
mula above and then converted them to actual operator costs.
The first case assigned all figures a uniform composition
cost: cost (o) = duration (o). Thus all solutions now have
the same total path cost and the returned plan will depend on
which solution is found first. The resulting plan found was:

Beat0, Set0: Right and Left Through

Beat4, Set0: Do Si Do (Neighbors)

Beat8, Set0: Right and Left Through

Beat 12, Set0: Do Si Do (Neighbors)
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Beat 16, Set0: Update to Set1

---

Beat0, Set1: Right and Left Through

Beat4, Set1: Do Si Do (Neighbors)

Beat8, Set1: Right and Left Through

Beat 12, Set1: Do Si Do (Neighbors)

Beat 16, Set1: Update to Set2

---

Beat0, Set2: Right and Left Through

Beat4, Set2: Do Si Do (Neighbors)

Beat8, Set2: Right and Left Through

Beat 12, Set2: Do Si Do (Neighbors)

Beat 16, Set2: Update to Set3

---

Beat0, Set3: Right and Left Through

Beat4, Set3: Do Si Do (Neighbors)

Beat8, Set3: Right and Left Through

Beat12, Set3: Circle to the Left

Beat13, Set3: Circle to the Right

Beat14, Set3: Pass Through (Progression)

Beat16, Set3: Update to Set4

Lastly, to introduce a composer’s preference for some fig-
ures over others, we assigned composition cost to be the du-

ration cost (o) = duration (o)
2

so that figures with shorter
duration have lesser cost (the opposite of the uniform oper-
ator cost case) and received the following composition (we
only present the first and last set due to space — the first
three sets are identical):

Beat0, Set0: Circle to the Left

Beat1, Set0: Circle to the Right

Beat2, Set0: Circle to the Left

Beat3, Set0: Circle to the Right

Beat4, Set0: Circle to the Left

Beat5, Set0: Circle to the Right

Beat6, Set0: Circle to the Left

Beat7, Set0: Circle to the Right

Beat8, Set0: Circle to the Left

Beat9, Set0: Circle to the Right

Beat10, Set0: Circle to the Left

Beat11, Set0: Circle to the Right

Beat12, Set0: Circle to the Left

Beat13, Set0: Circle to the Right

Beat14, Set0: Circle to the Left

Beat15, Set0: Circle to the Right

Beat16, Set0: Update to Set1

---

...

---

Beat0, Set3: Circle to the Left

Beat1, Set3: Circle to the Right

Beat2, Set3: Circle to the Left

Beat3, Set3: Circle to the Right

Beat4, Set3: Circle to the Left

Beat5, Set3: Circle to the Right

Beat6, Set3: Circle to the Left

Beat7, Set3: Circle to the Right

Beat8, Set3: Circle to the Left

Beat9, Set3: Circle to the Right

Beat10, Set3: Circle to the Left

Beat11, Set3: Circle to the Right

Beat12, Set3: Circle to the Left

Beat13, Set3: Circle to the Right

Beat14, Set3: Pass Through (Progression)

Beat16, Set3: Update to Set4

Using a diverse planner (Nguyen et al. 2012; Roberts, Howe,
and Ray 2014) to solve these problems would be more ideal
for composition tasks because there are a variety of plans
with the same total cost that should be considered rather than
just the first one found. Most planners have a deterministic
procedure for tie-breaking during the generation of succes-
sor states; hence the plans found above are repetitive even
with the consecutive figure constraints.

5 Discussion

Unlike goal-oriented tasks where the problem simply needs
to be solved, composition tasks need to solve the problem
with stylistic preferences. Using the performing art of con-
tradance, we defined a state space and actions that force
off-the-shelf classical planners to find sequences that are
not only solutions to completing a performance, but ex-
hibit desired intrinsic qualities such as respecting the flow
of dancers, avoiding too many consecutive repetitions of fig-
ures, and including more preferred figures via composition
cost. We believe that this compilation process may be used to
solve other composition tasks via their goal-oriented coun-
terparts. There are many potential applications for this work
including the derivation of PDDL for similar composition
tasks like square dancing, developing tools that allow hu-
man composers to receive recommendations for partially-
composed dances with respect to their creative interests, and
creating novel contradance figures to make unique dance
patterns work (similar to Zook and Riedl’s (2014) approach
for developing game mechanics). These aspects will moti-
vate and guide future research. We will also explore more
complex composition cost formulas and experiment with
other planners, such as diverse planners (Nguyen et al. 2012;
Roberts, Howe, and Ray 2014), to investigate how they ap-
proach solving the compiled composition task.
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Abstract

Robotics requires the integration of three heterogeneous plan-
ning processes: logical task planning, temporal resource allo-
cation planning and path planning. On one hand the integra-
tion of these different classes of knowledge in a unified model
introduces rich modeling features and facilitates optimiza-
tion. On the other hand the different planning processes usu-
ally require, to practically solve not trivial instances of the re-
spective problems, dedicated planners and models. This paper
proposes an integration of a PDDL model in a constraint-based
time-flexible temporal planning framework to smoothly co-
ordinate task, temporal, resource and path planning. The pro-
posal is evaluated in a domain inspired by a scenario where a
UAV has to be operated to move objects in a warehouse.

Introduction

Solving robotics problems often requires reasoning on data
and information that cannot be represented using symbolic
planning, if not at the cost of very complex model and, there-
fore, inefficient solving processes. Examples include object
manipulation in industrial robotics, path and motion plan-
ning in mobile robotics, or trajectory and attitude guidance
and control in satellite systems.

To effectively handle planning problems in these scenar-
ios typically involves: (1) high-level task planning to achieve
mission goals, (2) middle level temporal and resource plan-
ning to properly schedule tasks and handle resource compe-
tition and (3) low level path and motion planning to plan the
actual motion that the robot must follow to fulfill the higher-
level plan.

Knowledge and its representation are significantly dif-
ferent in the three classes, and even if various attempts of
bridging the gap have been done (Smith, Frank, and Cush-
ing 2008; Bernardini and Smith 2008; Gerevini et al. 2009),
existing planning systems can be framed in one of the three
classes mentioned above, possibly with some capabilities of
modeling and handling simple problems from other classes.

On one side the integration of the different classes of
knowledge in a unified model would allow optimization

∗This work has been co-funded by the European Space Agency
Networking/Partnering Initiative (NPI) between ESA-ESOC and the
Center for Telematics (Zentrum für Telematik e.V.), and by the Eu-
ropean Research Council (ERC) Advanced Grant “NETSAT” under
the Grant Agreement No. 320377.

and deep integration, on the other side the different plan-
ning processes usually require, to solve not trivial instances
of the respective problems, dedicated planners and mod-
els. The importance of integrating in a tight loop plan-
ning and resource management is widely recognized and
has been studied for quite a while (Zweben and Fox 1994;
Smith, Frank, and Jonsson 2000). But also the integration of
path planning with resource management and task planning
is of primary importance: in fact on one side motion and
path planning have a strong impact on resource balance, and
on the other side the plan’s feasibility often depends on plat-
form physical configurations very difficult to be translated
into the model of the task planner.

In this paper we propose an integration using modeling
and solving features of a constraint-based time-flexible tem-
poral planning framework to smoothly coordinate different
planning domains and processes. Starting from a framework
developed at the European Space Agency for rapid prototyp-
ing of planning and scheduling applications, we introduce
modeling primitives to integrate a PDDL and a path planner.
The methodology is illustrated taking as example a scenario
where a UAV (Unmanned Automated Vehicle) has to be op-
erated to move objects in a warehouse.

This scenario is inspired by the classical Blocks World
domain. We took this problem as the basis to devise a more
realistic warehouse domain that, while maintaining most of
its original features, extends the original problem with:

• Time. We need to take into account the time necessary to
process the boxes and to specify temporal windows within
which we want a box to be processed;

• Resources. We have a battery on the UAV, that discharges
as the UAV moves and that has to be recharged from time
to time;

• Navigation. The UAV must take into account the 3D po-
sitions of the boxes and any obstacles in the warehouse
when flying around;

• Uncertainty at runtime. The plan needs temporal flexibil-
ity to handle uncertainty at execution time.

Managing the box configuration is a classical planning prob-
lem, conveniently modeled by symbolic objects and actions
to manipulate them. At the same time the need to account
for the battery consumption and recharging requires quanti-
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tative time and non trivial planning capabilities for manipu-
lating resources. Finally to move between the locations the
UAV needs to navigate the warehouse, and thus the need for
a path planner and the corresponding domain-specific data
structure to encode the position of the boxes and obstacles.

In this proposal we acknowledge the strength of existing
formalisms and solvers to address different classes of prob-
lems in real world applications, and the need of smoothly
integrate them, starting from different models and then co-
ordinating different planning processes. After a short review
of classical, timeline-based and path planning, we presents
our approach.

Background

Modeling is about finding the most appropriate abstraction
for a problem. Choosing the right abstraction makes the
problem easier to model and solve. Though the same prob-
lem can be formulated using different formalisms, some just
come more natural and make the domain description more
concise and understandable. PDDL for example, is quite con-
venient to express agent-centric precondition-effect type of
reasoning. This makes PDDL very effective in avoiding the
combinatorial explosion of statements that would be nec-
essary to enumerate all the possible valid combinations of
the world states. When the problem instead focuses more on
time and resources, even though PDDL supports some level
of temporal and numeric reasoning, other approaches turn
out to be more convenient: in this case what has to be repre-
sented is a world made of numeric features evolving in time,
and constraint-based approaches proved to be more natural
for modeling and efficient for solving. The same can be said
for path planning or any other domain-specific solving pro-
cess: to cast them into an inappropriate formalism usually
leads to poor models and inefficient problem solving.

Classical Planning

PDDL (Mc Dermott et al. 1998) is the most known language
for classical planning based on propositional representa-
tions. A planning problem1 is a tuple P = 〈F , T ,A, I,G〉,
where F is a finite set of predicate symbols, T is a set of ob-
ject types, A is a set of actions with preconditions, pre(a),
add effects, add(a), delete effects, del(a), I ⊆ F defines
the initial state, and G ⊆ F defines the goal state.

A state s is a conjunction of predicates, an action a is
executable in a state s if pre(a) ⊆ s. The successor state is
defined as δ(a, s) = s \ del(a) ∪ add(a) for the executable
actions. The sequence of actions Π = [a1, . . . , an] is a plan
that achieves G from I if G ⊆ δ(an, δ(an−1, . . . , δ(a1, I))).

Being the most widely used planning formalism, several
planning systems have been proposed and developed over
the years. Among the most popular we count the Fast Down-
ward (Helmert 2006) and the Fast Forward (FF) (Hoffman
and Nebel 2001) systems. Both can ingest domains defined
in PDDL. In this work we use JAVAFF (Pattison 2017), a Java
implementation of the FF system, with minor modifications
and PDDL. as modeling language.

1In this work we constraint the use of PDDL to the STRIPS for-
malisms and typed objects.

Constraint-based Temporal Planning

In constraint-based temporal planning (Muscettola 1994;
Frank and Jonsson 2003), often referred as “timeline-based
planning”, a planning domain is modeled as a set of time-
lines, i.e. sequences of time intervals tagged with symbolic
or numeric values. Timelines in this context are the primary
modeling primitive to describe the decomposition of the
world into sub-systems that evolve concurrently over time.
Planning decisions and exogenous statements affect the be-
haviors of these sub-systems. The goal of the planning prob-
lem is to find a set of such statements to lead the system into
a set of behaviors which satisfy some requested properties,
such as feasible sequences of states or feasible resource pro-
files. Moreover, since these sub-systems are part of a whole
model, they can be subject to synchronization constraints,
i.e., causal and temporal relations between the values their
behaviors can take and the statements that can affect these
behaviors.

A formal definition of timeline-based modeling primitives
and planning problems is more difficult than in classical
planning (see (Frank and Jonsson 2003; Fratini and Cesta
2012; Frank 2013) for instance), but at a very high level we
can define a timeline-based domain D as a tuple 〈I, T L,S〉
where I is a time interval [t0, tH), t0, tH ∈ N, T L is a set
of timelines and S is a set of synchronizations. A timeline
tl ∈ T L is defined by a set of assignments π = 〈v, [ts, te)〉
of values v in a set Vtl to ordered, non overlapping time in-
tervals [ts, te) in I.

A synchronization σ ∈ S is a defined by a set of tuples
Tσ = {〈νi, τi, tli〉} (where νi ⊆ Vtli is a value variable,
τi ⊆ I is a temporal variable and tli is a timeline), plus a set
of relations Rσ on them. Given two assignments 〈ν, τ, tl〉
and 〈ν′, τ ′, tl′〉, relations can be temporal (stating that τ ′ =
f(τ), where f for instance can state that τ ′ occurs before τ ),
on the values (ν′ = f(ν)) or mixed (ν′ = f(τ, ν)).

A synchronization defines a pattern of valid assignments
of values to timelines in a domain. A synchronization σ is
applicable to a set of timelines T L if it exists in σ a tuple
〈ν, τ, tl〉 and in tl ∈ T L a pair 〈v, [ts, te)〉 such that ν can be
unified with v and τ can be unified with [ts, te)2. A synchro-
nization σ applicable to a set of timelines T L is satisfied by
T L if for each tuple 〈ν′, τ ′, tl′〉 in σ exists a pair 〈v, [ts, te)〉
in tl′ ∈ T L such that ν′ can be unified with v and τ ′ can be
unified with [ts, te).

A planning problem P is defined by the tuple
〈D, T LO, T LG〉, where D is the domain, T LO an initial set
of assignments of values to the timelines and T LG a final set
of values for the timelines. Task of a timeline based planner
is to find a set of assignments Π = {π1, . . . , πn} such that,
given T LF = T LO ∪Π, the followings properties are veri-
fied: (1) T LG ⊆ T LF ; (2) T LF satisfies all the applicable
synchronizations in S and (3) T LF is complete (i.e., there
is a value assigned to the timelines for each instant in I).

An interesting feature of timeline-based planning stems in
the fact that it does not make any conceptual difference be-
tween numeric or non-numeric variables, continuous or dis-

2A variable can be unified with a value in a synchronization σ
if it is part of an assignment of values that verifies Rσ .
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crete time, controllable or non-controllable features. In this
formalism everything is modeled as a timeline. Further, this
approach proved to be able to support, in a flexible way, the
natural integration of planning and scheduling problems. For
these reasons timeline-based planning has been often used
in those contexts where the need for modeling and reason-
ing over quantitative time, state variables and resources is
of a primary importance. This is the case, for instance, of
many space planning problems from observation scheduling
to on-board power, storage and data downlink management
(see among others (Jonsson et al. 2000; Cesta et al. 2011;
Chien et al. 2012)).

Unlike classical planning, where the PDDL is nowadays
a commonly accepted language, in timeline-based planning
various languages are currently in use, since historically they
have been deployed together with (or on purpose for) differ-
ent software platforms. Despite the syntactical differences
they are all based on the notions of time intervals, values,
temporal constraints and primitives of association between
values and time intervals. In this work we use the ESA

APSI (Advanced Planning and Scheduling Initiative) plat-
form (Fratini and Cesta 2012) for timeline-based planning
and its Domain Definition Language DDL. For an overview
of other timeline-based planning platforms and languages
refer, for example, to (Chien et al. 2012).

Path Planning

Path planning is concerned with the task of finding a feasible
geometric path between two points in a 2D or 3D environ-
ment. A path is feasible if it respects the robot’s kinematic
constraints and avoids collisions with the obstacles (Ghallab,
Nau, and Traverso 2004). The environment’s obstacles and
free spaces can be encoded directly as raw data (e.g. point
clouds) or, more commonly, resorting to spatial partitioning
techniques like quadtrees and octrees. A path planning prob-
lem P is defined by the tuple 〈q, CS,CSfree, q0, qg〉. The
configuration q is an n-tuple that defines the n parameters
required to specify the robot’s position or orientation. CS
is the set of all values that q may take, and is know as the
configuration space. The free configuration space CSfree is
the subset of CS configurations that are not in collision with
any obstacles. q0 and qg are the initial and goal configura-
tions. Planning is then about finding a path between q0 and
qg that lies entirely in CSfree.

As our work focus on the interface and not on the path
planner itself, we make some simplifying assumptions. The
warehouse is a static environment known at the start of the
planning problem with no moving object apart from the ones
that are moved by the UAV itself. Further, the UAV has no
kinematic constraints and can move freely in 3D space in all
directions. In our warehouse domain the UAV configuration
q is thus described by its position (x, y, z). We use an oc-
tree to track the position of the boxes and obstacles, and a
solver based on the Rapidly-exploring Random Tree (RRT)
(LaValle 1998) algorithm to plan the path.

Related Work

Our approach is at the intersection of three planning
paradigms: (a) symbolic classical planning based on action-

centered propositional representations; (b) constraint-based
time-flexible temporal planning and (c) path planning based
on domain-specific representations.

The issue of combining task with motion and object
manipulation planning in robotics is well understood and
many solutions have been proposed and used - e.g., (Srivas-
tava et al. 2014; Lagriffoul et al. 2012; Erdem et al. 2011;
Kaelbling and Lozano-Pérez 2011). Most of the approaches
rely on symbolic action-centered STRIPS-like languages for
task planning or on HTN planning approaches with no time
or resource models.

When coming to more structured, domain independent so-
lutions to integrate different classes of planning problems,
we can consider two approaches: extension of a formalism
or integration of two formalisms.

When addressing temporal and resource planning for in-
stance, an approach has been to extend the classical propo-
sitional STRIPS representation to allow for durative actions,
continuous effects, numeric fluents and extended goals in
order to solve more realistic planning problems with tempo-
ral and resource constraints. The evolution of the PDDL lan-
guage is of this an example (Gerevini et al. 2009). Notwith-
standing there are very effective planners for these ex-
tensions, like (Coles et al. 2009) for instance, the origi-
nal action-centered nature of this type of planning poses
a strong bias on the modeling primitives, making diffi-
cult to model and reason about various features common
in robotics problems: exogenous conditions and uncontrol-
lable events for instance, complex resource models and
over-subscribed scheduling, spatial models and component
behaviors modeled as timed automata (to mention some).
Conversely, timeline-based planning is much more effec-
tive in representing models based on timed automata, in re-
source driven planning and in exogenous or uncontrollable
events manipulation (Muscettola 1994; Chien et al. 2012;
Fratini et al. 2015), but it suffers significantly when dealing
with agent/action centered models (and in spatial modeling).

Regarding the integration, traditionally reactive and lay-
ered robotics architectures have dealt with the problem of
refining long term, strategic task planning with middle and
low level planning and resource management. In this case
different planners are integrate at a software level and the
architecture provides the way for exchanging information
between the different components. Examples are the archi-
tecture developed at LAAS (Alami et al. 1998) where a dedi-
cated component in the decision layer is in charge of decom-
posing plans into an executable sequence based on the PRS

language (Ingrand et al. 1996), T-REX (Py, Rajan, and Mc-
Gann 2010) where different planning and scheduling pro-
cesses are encapsulated into modules called reactors and co-
ordinated by exchanging goals and facts; or ROAR (Degroote
and Lacroix 2011) where the decisional layer is partitioned
in separate resources, each one managed by a specific agent.
In these architectures the different aspects of the problem
are dealt in a loosely coupled way, an approach that presents
various advantages but that does not go in the direction of
integrating the different models.

Rather than attempting an extension of a particular for-
malism, this paper focus on the integration of the three ap-
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(a) Planning domain. (b) Overlaid octree mesh. (c) UAV path.

Figure 1: Warehouse planning domain and execution environment: (1a) Planning domain showing the storage area with the
stacked boxes, the loading dock on the top left, and the UAV on the charging station on the right; (1b) Octree used for path
planning overlaid on the domain; (1c) UAV path on the way to pick up a box.

proaches at the modeling level. The most similar work at
conceptual level is the Action Notation Modeling Language,
ANML (Smith, Frank, and Cushing 2008) that brings ac-
tions, hierarchical and temporal planning together. This lan-
guage is aimed at mixing the most useful features (for ap-
plicative domains) of different planning approaches, with
the ambitious goal of defining a language able to represent
all the different aspects of domains and problems. In fact,
ANML derives features from PDDL and NDDL (a language for
constraint-based temporal planning based on multi-valued
variable representation) to represent actions, conditions and
effects, rich temporal constraints, activities, resource usages
and HTN decompositions. Our aim is similar, but instead of
designing a new language, we combine different existing
formalisms while retaining the original modeling primitives
and, for what classical and constraint-based planning is con-
cerned, their languages.

Last but not least, (Bernardini and Smith 2008) proposes
a methodology to translate PDDL. into NDDL. This is also
conceptually similar to what is being proposed here to inte-
grate PDDL into DDL, but instead of automatically extracting
the timelines from the PDDL model, a methodology that pre-
serves the theoretical soundness of the translation but does
not bridge the semantic gap between the timeline and the ac-
tion based formalism, we translate directly only the actions,
while the PDDL state is semantically translated into timelines
by means of synchronizations to map it into timeline values.

The Warehouse Domain

The domain, depicted in Figure 1, is composed of one ware-
house of finite dimensions containing: (a) one storage area
with a number n of boxes (of the same shape and size);
(b) one loading dock; (c) one unmanned automated vehicle
with a rechargeable battery and an arm that can carry one
box at a time; (d) one charging station.

The warehouse storage area has pre-defined finite dimen-
sions, constraining the maximum number of boxes that can
be placed on the floor and the maximum number of boxes

that can be stacked. A UAV is used to move the boxes from
the storage area to the loading dock, for posterior loading
for distribution. The UAV has a battery of limited capacity
and an arm with a grip to pick up the boxes. The battery
discharges as the UAV moves and picks up boxes. The ware-
house has a charging station used by the UAV to recharge
its battery as required. Finally, the warehouse has in store a
number n of boxes up to a maximum number limited by the
warehouse dimensions disposed in an initial configuration 3.

The task at hand involves moving a given set of boxes
from the storage area to the loading dock for transport within
a given time window. As they arrive in the warehouse the
boxes are first placed in the storage area. The boxes must
then be moved to the loading dock and arranged in a specific
configuration such as to facilitate their posterior loading and
delivery. The initial number of boxes, their starting and final
positions as well as the time window allotted to move the
boxes are given by the initial problem. The UAV initial po-
sition and battery state-of-charge are also set at the start. In
this domain we can clearly identify:

• The higher level task planning to manipulate the boxes.
For this problem we use a classical PDDL formulation of
a blocks world domain and JAVAFF;

• The temporal and resource management problem to plan
the battery recharging activities. This problem is modeled
in DDL, the modeling language of the APSI platform, and
we use PLASMA, a timeline based planner described in
(De Maio et al. 2015);

• The path planning. For this we use an octree spacial repre-
sentation and a path planner described in (LaValle 1998).

3The Warehouse domain and its Unity-based execution envi-
ronment were first introduced in (Nogueira, Fratini, and Schilling
2017), where we describe an application for integrated evaluation
of planning and execution.
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Figure 2: An example of a timeline-based plan for the warehouse domain showing some of the temporal and causal relations
between timelines. From top to bottom: (a) position of the boxes and obstacles in the warehouse; (b) the UAV actions to move
the boxes; (c) the UAV arm status; (d) the UAV rechargeable battery; (e) the UAV path. Note that for the sake of making the figure
more understandable not all synchronizations are shown.

Modeling

At modeling level the problem is then how to smoothly inte-
grate the three models above. We have chosen to start from a
timeline-based model expressed in the APSI platform model-
ing language DDL as this formalism is substantially agnostic
with respect to what is represented in the timelines and does
not pose a strict distinction between states and actions4.

final

DDL

PDDL

domain

DDL

model
augmented

DDL

preprocessor modeler planner

stubs

Figure 3: Modeling process overview.

We extended the syntax of DDL to allow the specifica-
tion of snippets of PDDL code5 directly into the DDL model.
From these code snippets an updated set of DDL directives
are automatically derived (by a preprocessor) in the form of

4We take here the APSI platform modeling language as a refer-
ence but, since we are modeling with standard primitives available
in any language for timeline based planning, other systems could
be used as well.

5In the current implementation we support PDDL.. However,
and given that time and resources are modeled directly in DDL,
we limit the use of PDDL. at the moment to STRIPS and typing.
We directly insert PDDL code snippets within the DDL model, but
it would be equally valid to keep the PDDL model separate in a
different file and merge both models at compile time.

a set of additional values for the timelines and synchroniza-
tions among them (see Figure 3). This augmented model can
represent in DDL the PDDL states, actions and effects. From
that the model integration is finalized with DDL synchro-
nizations that link temporally and logically the part of the
model derived from PDDL, the trajectory produced by the
path planner and the rest of the native timeline based model.
The result of the compilation is a DDL model to be injected
into a timeline-based planner that makes calls to a PDDL and
an RRT planner to solve the integrated problem.

The preprocessing step is a generic procedure that starts
from a domain partially described in DDL and partially de-
scribed in PDDL and produces an augmented DDL model.
The preprocessing step automatically maps predicate sym-
bols and actions to DDL timelines, and translates the effects
of PDDL actions into DDL synchronizations (see example
below). In addition the preprocessor guarantees that every
PDDL object type has a matching enumerated, object or nu-
meric data type in DDL. Once the full domain has been pro-
cessed: (a) every PDDL predicate is mapped to one, and only
one, APSI timeline; (b) every PDDL action is mapped to at
least one APSI timeline. This augmented model can be fur-
ther tailored by the modeler.

Timelines

In the base DDL model we have 5 timelines (see Figure 2):

• a timeline WAREHOUSE encapsulating an octree represen-
tation of the spatial configuration of the warehouse with
the position of the boxes and any obstacles;

• a timeline ACTIONS to represent the actions being per-
formed by the UAV. This timeline can take the value
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CHARGE(?s), when the UAV is at the charging station ?s,
and a value for each action of the embedded PDDL model.
In our case, we have the actions UNSTACK(?box, ?object)
and STACK(?box, ?object), being ?box and ?object two
generic DDL objects representing boxes IDs (the first) and
either a box ID or a static object the second;

• a timeline ARM to represent the status of the UAV arm.
The timeline can take the values ARM-EMPTY, when the
arm is not holding any box, and HOLDING(?box), ?box is
the ID of the box currently being held by the arm;

• a timeline BATTERY to model the UAV battery level as a
reservoir resource (as in (Fratini et al. 2015));

• a timeline PATH to model the actual position of the UAV

and the path being followed.

The timeline WAREHOUSE models the position of the ob-
jects in a 3D space. Each object can occupy a position
〈x, y, z〉 in the space, can be added in a position 〈x, y, z〉
and can be removed from the space. Since we need to model
also a box being held by the UAV arm, we convention-
ally use a position 〈x, y, z〉 for this purpose. The values
of this timeline (internally encoded as an octree) are stated
but by means of two functions: insert(?o, ?x, ?y, ?z) and
remove(?x, ?y, ?z).

Beside that, 4 more functions are defined to query the spa-
cial position of an object given the octree representation:
getX(?o), getY (?o) and getZ(?o) to retrieve the position
of an object in the space (if ?o is in the warehouse, other-
wise the function returns -1) and get(?x, ?y, ?z), to retrieve
the the object in 〈x, y, z〉 (if any, otherwise the function re-
turns -1).

The timeline PATH models the position of the UAV in the
3D space as it moves through the warehouse. A value in this
timeline is either a fixed position (p0, p2, p4, p6) meaning
that the UAV is at a given position, or a path between two
fixed positions (p1, p3, p5). In the current implementation
the path is encoded as an ordered list of waypoints. Other
timelines synchronize to this timeline by posting desired po-
sitions.

The ARM timeline, although redundant here, has been in-
troduced in the model because it is needed to control the
UAV arm at execution time (and it makes the model more
understandable).

Embedded PDDL Domain

In our domain we use PDDL to model the manipulation of the
objects in the warehouse as STACK and UNSTACK actions.
We model two types of objects: box to model objects that can
be moved by the STACK and UNSTACK actions; and static to
model the floor and any other object in the warehouse that
cannot be moved. The action STACK is used to place a box on
the top of another object, and the action UNSTACK to remove
a box from the top of another object. In both cases the object
can be another box or a static object.

The following code is then embedded in the DDL model
by means of the added primitive EXTERNAL DOMAIN:

EXTERNAL DOMAIN pddl21 {

( d e f i n e ( domain boxes )

( : r e q u i r e m e n t s : s t r i p s : t y p i n g )

( : t y p e s box s t a t i c )

( : p r e d i c a t e s ( c l e a r ? x ) ( h o l d i n g ? x ) ( on ? x ? y ) (

armempty ) ( o n f l o o r ? x ) )

( : a c t i o n s t a c k

: p a r a m e t e r s ( ? ob − box ? uo )

: p r e c o n d i t i o n ( and ( c l e a r ? uo ) ( h o l d i n g ? ob ) )

: e f f e c t ( and ( c l e a r ? ob ) ( on ? ob ? uo )

( n o t ( c l e a r ? uo ) )

( n o t ( h o l d i n g ? ob ) )

( armempty ) ) )

( : a c t i o n u n s t a c k

: p a r a m e t e r s ( ? ob − box ? uo )

: p r e c o n d i t i o n ( and ( on ? ob ? uo ) ( c l e a r ? ob ) ( armempty ) )

: e f f e c t ( and ( h o l d i n g ? ob ) ( c l e a r ? uo )

( n o t ( on ? ob ? uo ) )

( n o t ( c l e a r ? ob ) )

( n o t ( armempty ) ) ) ) )

}

Synchronizations

In order to integrate the results of the PDDL planner into
the timelines, the actions in the PDDL model are repre-
sented directly as states of a timeline. Also the state of
the PDDL planner must be represented somewhere, in or-
der to (1) synchronize it with the rest of the model and
(2) generate problems for the PDDL planner. This is done in
DDL by means of the expand synchronization directive EX-
PAND SYNC. This would be for example the synchronization
for the STACK(?box, ?object) action of the PDDL domain
above:

SYNCHRONIZE a c t i o n s . t l

{
VALUE s t a c k ( ? ob , ? uo )

{
EXPAND SYNC boxes {warehouse . t l } ;

}
}

This directive is embedded into a DDL synchronization and
compiled by the preprocessor in Figure 3 with the following
effects: (1) the set of possible values for timelines chosen
to represent the PDDL actions are extended adding values to
represent them;6 (2) the set of functions to state and query
values of timelines chosen to represent the PDDL state are
extended adding methods to assert the effects of the PDDL

actions and to query the PDDL actions’ preconditions (stubs
in Figure 3);7 (3) the DDL synchronization is extended to
represent the preconditions and effects of the action over the
selected timelines.

In the example above we synchronize the ACTIONS time-
line with the WAREHOUSE timeline, that represents the
PDDL state in a shape suitable for being synchronized with
the rest of the model. The synchronization is derived by

6Types in the PDDL domain are bound to DDL enumerated types
of the same name. Objects are then defined directly in the DDL

model instead of in the PDDL problem.
7A predicate p(?o :type) in the PDDL model is translated

into a function void p(?status :int, ?o :Object,?b

:boolean) and a function boolean is p(?o :Object).
The function call p(?status,?o,true) asserts p(?o)

in ?status, the call to p(?status,?o,false) asserts
¬ p(?o).
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PDDL Predicates DDL Timeline (+ statement) DDL Timeline (query)

CLEAR(?o) remove(getX(?o), getY(?o), getZ(?o)+1) get(getX(?o), getY(?o), getZ(?o)+1) == -1

ON(?o1, ?o2) remove(getX(?o1), getY(?o1), getZ(?o1)) ∧ insert(?o1, getX(?o2), getY(?o2), getZ(?o2)+1) getX(?o1) == getX(?o2) ∧ getY(?o1) == getY(?o2) ∧ getZ(?o1) == (getZ(?o2) + 1)

HOLDING(?o) insert(?o,x, y, z) getX(?o) == x ∧ getY(?o) == y ∧ getZ(?o) == z

ARMEMPTY() – get(x, y, z) == -1

Table 1: Map between PDDL predicates and DDL timeline statements for the boxes domain.

the action schema of the the PDDL model, using the query
functions of the octree timeline for the preconditions and
the statement functions for the effects. In this case the
compilation of this code makes that: (1) the values UN-
STACK(?box, ?object) and STACK(?box, ?object) are added
to the timeline ACTIONS. In general a value for each ac-
tion defined in the PDDL model is added to the DDL model;
(2) eight function stubs are added to the timeline WARE-
HOUSE, one for each predicate defined in the model, to trans-
late the timeline value in a PDDL state and back. These stubs
have to be implemented (in Java) to translate them into the
primitives available for the target timeline. Table 1 for in-
stance shows the implementation of the stubs in terms of the
primitives available on the WAREHOUSE timeline. Not all
of the statements are implemented: in fact the octree repre-
sentation keeps track of the exact position of any box, and
this configuration is updated only by the ON(?o1, ?o2) and
HOLDING(?o) effects. Negative statements are not needed
here for the same reason, but in the general case all the posi-
tive and negative effects, as well as all the queries should be
implemented.

After running the preprocessor, the initial EXPAND SYNC

directive is translated in a set of DDL instructions. The user
can then add other synchronizations as required by the do-
main. This is, for example, the synchronization generated
for the STACK(?box, ?object) after running the preproces-
sor and adding extra DDL statements to complete the model:

SYNCHRONIZE a c t i o n s . t l

{
VALUE s t a c k ( ? ob , ? uo )

{
/ / EXPAND SYNC: a u t o g e n e r a t e d code − START

PRE <?> warehouse . t l . Value ( ? v p r e ) ;

EFF warehouse . t l . Value ( ? v e f f ) ;

STARTS DURING PRE ;

MEETS EFF ;

[ i s c l e a r ( ? v p re , ? uo ) ] ;

[ i s h o l d i n g ( ? v p re , ? ob ) ] ;

? v e f f := c l e a r ( ? v p re , ? ob , t r u e ) ;

? v e f f := on ( ? v e f f , ? ob , ? uo , t r u e ) ;

? v e f f := c l e a r ( ? v e f f , ? uo , f a l s e ) ;

? v e f f := h o l d i n g ( ? v e f f , ? ob , f a l s e ) ;

? v e f f := armempty ( ? v e f f , t r u e ) ;

/ / EXPAND SYNC: a u t o g e n e r a t e d code − END

POS p a t h . t l . At ( ? x , ? y , ? z ) ;

EQUALS POS ;

? x := getX ( ? v p re , ? uo ) ;

? y := getY ( ? v p re , ? uo ) ;

? z := ge tZ ( ? v p re , ? uo ) ;

ARM arm . t l . ArmEmpty ( ) ;

ENDS AT ARM;

}
}

In this synchronization it is stated that a value
STACK(?ob, ?uo) on the timeline ACTIONS.TL must
start during a value VALUE(?v pre) of the timeline WARE-
HOUSE.TL and, when it finishes, a value VALUE(?v eff )

must start on the same timeline (see Figure 2). The temporal
constraints translate the temporal semantics of precondi-
tion and effect in STRIPS, the functions on v pre state
conditions of applicability of the synchronization8 and the
constraints on v eff define the successive configuration of
the warehouse9.

To close the loop, and as shown in Figure 2, we need to
synchronize the path with the battery consumption. This is,
for example, the synchronization when the UAV is holding at
a given position:

SYNCHRONIZE p a t h . t l

{
VALUE At ( ? x , ? y , ? z )

{
CONS b a t t e r y . SET SLOPE (H) ;

EQUALS CONS;

}
}

Problem Solving

The DDL model described above is given as input to
PLASMA, a timeline planner and scheduler. PLASMA (De
Maio et al. 2015) is a planner designed as a collection of
solvers that implements a flaw-based solving process (solver
PLASMA). Solvers are chosen and activated on a flaw detec-
tion base. When a flaw is detected on a timeline the planner
activates the corresponding solver to fix the problem.

Solver PLASMA

1: Input: planning problem P = 〈Problem〉
2: procedure SOLVE(P)
3: T L = Init(Problem)
4: Φ = CollectF laws(T L)
5: while Φ 6= ∅ do
6: φ← ChooseF law(Φ)
7: σ ← ChooseSolver(φ)
8: T L ← σ.ChooseUpdate(φ, T L)
9: Φ = CollectF laws(T L)

10: end while
11: return T L
12: end procedure

8In DDL the <?> states that the value can’t be generated on the
timeline when the synchronization is applied, but must be present.
The statements in between brackets [] states a guard to apply the
synchronization. As a result, the action must start during an exist-
ing configuration identified by v pre such that the two conditions
hold.

9Some of the methods applied in the synchronization to cal-
culate v eff have no effects. As previously mentioned not all of
them are implemented, but being this an automatic translation, all
the action effects are syntactically applied.
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A flaw is any type of violation in a plan. It can be a logi-
cal flaw, when unsupported actions are added to the plan, or
a resource violation flaw (when a resource is over or under
used) or any other impairment of temporal allocation on the
values over a timeline. PLASMA uses various solvers, each
one dedicated to the solution of a particular flaw, and can
be configured by extending the flaws he can manage, the re-
solvers associated with each flaw and the priority with which
each type of flaw must be resolved.

The set of solvers that PLASMA uses is extended for
this domain by adding two new types: one embedding the
JAVAFF (Pattison 2017) PDDL planner and one embedding
an RRT path planner (LaValle 1998). The set of flaws is ex-
tended as well: a gap between two states c and c′ on timeline
entails the instantiation of a PDDL planner (solver PDDL) and
the generation of a sequence of actions to change the dispo-
sition of the boxes from c to c′.

To extract the initial and goal states for a PDDL problem
(function ComputeStates(φ, T L)), the PDDL solver uses
the queries in Table 1 to interrogate the WAREHOUSE time-
line over all applicable domain objects. With reference to
Figure 2, the flaw φ provides c0 and c2, the initial status s0
is computed by applying the queries to c0, and the final sta-
tus sF by applying them to c2. This process allows the solver
to derive the conjunction of positive propositions that make
the initial and goal states. To be noted that we do not use the
ARM timeline when building the PDDL states. In this domain
all the knowledge needed to derive the states is encoded in
the WAREHOUSE timeline.

At the beginning of a PDDL solving step, and when build-
ing the initial and goal states, the solver will query the DDL

data types that match PDDL types and update its internal list
of objects accordingly. By doing this at each solving step we
can accommodate dynamically problems where objects can
be created and destroyed during planning.

Solver PDDL choose update

1: Input: the flaw φ and the domain timeline T L
2: procedure PDDL-CHOOSE-UPDATE(φ,T L)
3: {s0, sF } ← ComputeStates(φ, T L)
4: P ← GroundProblem(s0, sF )
5: A ← FF (P)
6: return Update(T L,A)
7: end procedure

The actions generated by the PDDL planner are then
added back to the UAV ACTIONS timeline (function
Update(T L,A)) as a set of values attached to intervals
of duration [1,∞), with a simple precedence temporal con-
straint among them (the PDDL planner produces a pure or-
dered sequence of actions with no temporal duration). Again
with reference to Figure 2 for instance, the values UN-
STACK(b6, b1) BEFORE STACK(b6, b2). These values, added
to the ACTIONS timeline (b), are then synchronized by the
PLASMA planner to generate new values for timeline (a), (c)
and (e).

An unjustified value added on the timeline UAV PATH

entails then the generation of a flaw that instantiates an

RRT-based path planner that computes the path between
the two points such as to resolve the flaw. PLASMA syn-
chronises these values with resource requests, and when re-
source violations arises, generates values on the ACTIONS

timeline to fly the UAV to a recharging station (values
CHARGE(?station)).

Solver RRT choose update

1: Input: the flaw φ and the domain timeline T L
2: procedure RRT-CHOOSE-UPDATE(φ,T L)
3: {p0, pF } ← ComputePositions(φ, T L)
4: CS ← ConfigurationSpace(φ, T L)
5: P = 〈p0, pF , CS〉
6: A ← RRT (P)
7: return Update(T L,A)
8: end procedure

It is worth pointing out that this introduces a loop centred
on the resources. A resource over consumption can be fixed
by adding actions to the plan that, in turn, also consume re-
sources. Moreover, to optimise solutions in this domain we
need again to reason around resource availability, and in fact
the task sequence has to be optimised in order to minimise
the need for recharging the UAV battery. This is the main
reason for the need of a planner like PLASMA with powerful
temporal and resource management capabilities to drive the
instantiation of the task and path planners.

Conclusions and Future Work

We presented an approach to combine task, resource and
path planning for robotics. This approach uses existing
paradigms and formalisms of classical, timeline-based and
path planning, that we integrate to solve in an unified way
different classes of problems. Rather than handling each of
the problems separately and then combining the results, the
proposed implementation allows us to close the loop at mod-
eling and solving level between task, resource and path plan-
ning. In the warehouse domain, for instance, the resource
usage depends on the path traveled and the tasks performed
and, at the same time, the path traveled and the tasks per-
formed depend on the resource usage, as we have to plan
for the recharge of the battery. While task, path and resource
planning could probably be addressed sequentially in differ-
ent scenarios, in this particular domain, and given the circu-
lar dependencies between the three problems, the proposed
integration is needed to efficiently solve the problem and to
optimize resource allocation.

The rationale behind this approach is to integrate as much
as possible existing planners to handle real world problems,
with the main objective of maintaining the knowledge en-
coded in the various domain as clear as possible. For this
reason, we propose a two-step compilation process: first the
modeler encodes the know-how using the most appropri-
ate formalisms, then these inputs are integrated into a uni-
fied model that retains the original modeling primitives of
both languages (actions, timelines and octrees). This gives
the advantages of an integrated model without giving up the
resolution power of the different systems. How far a given
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PDDL model needs to be tailored for integration depends on
how tight is the interaction between the part of the domain
described in PDDL and the rest of the domain described in
DDL. In this particular warehouse scenario that we are using
as a case study, given that an unstack-stack sequence for a
given box cannot be interrupted to, for example, insert a bat-
tery recharge operation, we can use the typical blocks world
PDDL domain without any sort of tailoring. But in general
the problem exists and it is currently subject to study.

The approach is currently being extended to include tem-
poral PDDL and to consider a multi-UAV scenario, that in-
troduces the need for global optimization of time, resources
and path planning.
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Abstract

Current domain-independent, classical planners require sym-
bolic models of the problem domain and instance as input,
resulting in a knowledge acquisition bottleneck. Meanwhile,
although recent work in deep learning has achieved impres-
sive results in many fields, the knowledge is encoded in a
subsymbolic representation which cannot be directly used by
symbolic systems such as planners. We propose LatPlan, an
integrated architecture combining deep learning and a clas-
sical planner. Given a set of unlabeled training image pairs
showing allowed actions in the problem domain, and a pair
of images representing the start and goal states, LatPlan uses
a Variational Autoencoder to generate a discrete latent vec-
tor from the images, based on which a PDDL model can be
constructed and then solved by an off-the-shelf planner. We
evaluate LatPlan using image-based versions of 3 planning
domains: 8-puzzle, LightsOut, and Towers of Hanoi.

1 Introduction

Recent advances in domain-independent planning have
greatly enhanced their capabilities. However, planning prob-
lems need to be provided to the planner in a structured, sym-
bolic representation such as PDDL (McDermott 2000), and
in general, such symbolic models need to be provided by
a human, either directly in a modeling language such as
PDDL, or via a compiler which transforms some other sym-
bolic problem representation into PDDL. This results in the
knowledge-acquisition bottleneck, where the modeling step
is sometimes the bottleneck in the problem solving cycle. In
addition, the requirement for symbolic input poses a signifi-
cant obstacle to applying planning in new, unforeseen situa-
tions where no human is available to create such a model or
a generator, e.g., autonomous spacecraft exploration. In par-
ticular this first requires generating symbols from raw sensor
input, i.e., the symbol grounding problem (Steels 2008).

Recently, significant advances have been made in neural
network (NN) deep learning approaches for perceptually-
based cognitive tasks including image classification (Deng
et al. 2009), object recognition (Ren et al. 2015), speech
recognition (Deng, Hinton, and Kingsbury 2013), machine
translation as well as NN-based problem-solving systems
for problem solving (Mnih et al. 2015; Graves et al. 2016).
However, the current state-of-the-art in pure NN-based sys-
tems do not yet provide guarantees provided by symbolic

OriginalMandrill imageGoal state image(black/white)Initial stateimage
?

Figure 1: An image-based 8-puzzle.

planning systems, such as deterministic completeness and
solution optimality.

Using a NN-based perceptual system to automatically
provide input models for domain-independent planners
could greatly expand the applicability of planning technol-
ogy and offer the benefits of both paradigms. We consider
the problem of robustly, automatically bridging the gap be-
tween such subsymbolic representations and the symbolic
representations required by domain-independent planners.

Fig. 1 (left) shows a scrambled, 3x3 tiled version of the
the photograph on the right, i.e., an image-based instance
of the 8-puzzle. Even for humans, this photograph-based
task is arguably more difficult to solve than the standard 8-
puzzle because of the distracting visual aspects. We seek a
domain-independent system which, given only a set of unla-
beled images showing the valid moves for this image-based
puzzle, finds an optimal solution to the puzzle. Although the
8-puzzle is trivial for symbolic planners, solving this image-
based problem with a domain-independent system which
(1) has no prior assumptions/knowledge (e.g., “sliding ob-
jects”, “tile arrangement”), and (2) must acquire all knowl-
edge from the images, is nontrivial. Such a system should not
make assumptions about the image (e.g., “a grid-like struc-
ture”). The only assumption allowed about the nature of the
task is that it can be modeled and solved as a classical plan-
ning problem.

We propose Latent-space Planner (LatPlan), an integrated
architecture which uses NN-based image processing to com-
pletely automatically generate a propositional, symbolic
problem representation which can be used as the input for
a classical planner. LatPlan consists of 3 components: (1)
a NN-based State Autoencoder (SAE), which provides a
bidirectional mapping between the raw input of the world
states and its symbolic/categorical representation, (2) an ac-
tion model generator which generates a PDDL model of the
problem domain using the symbolic representation acquired
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by the SAE, and (3) a symbolic planner. Given only a set of
unlabeled images from the domain as input, we train (un-
supervised) the SAE and use it to generate D, a PDDL rep-
resentation of the image-based domain. Then, given a plan-
ning problem instance as a pair of initial and goal images
such as Fig. 1, LatPlan uses the SAE to map the problem to
a symbolic planning instance in D, and uses the planner to
solve the problem. We evaluate LatPlan using image-based
versions of the 8-puzzle, LightsOut, and Towers of Hanoi
domains.

2 Background

Feed Forward Neural Networks (FFN) are nonlinear func-
tion approximators consisting of layers of nodes with real-
valued activations, and the nodes are connected to multiple
nodes in the next layer by weighted edges. The output of
each node is the weighted sum of the activations of the in-
put nodes, transformed by a nonlinear activation function.
Recent advances in deep learning have greatly increased
the utility of FFNs as a powerful knowledge representation
mechanism (Goodfellow, Bengio, and Courville 2016).

Although the traditional implementation of neural net-
works have multiple problems that make the deeply lay-
ered networks impractical, they are largely alleviated by the
modern techniques: Convolutional Network is capable of
learning translation-invariant representation in image-based
tasks compared to the fully-connected networks; The learn-
ing speed was greatly improved by Stochastic Gradient De-
scent combined with batch processing and GPU accelera-
tion; The problem of vanishing gradient in deep networks
was alleviated by Rectified Linear Unit (ReLU); Dropout
(Srivastava et al. 2014) and Regularization reduces the over-
fitting caused by the excessive representational power of the
network; Finally, Batch Normalization (Ioffe and Szegedy
2015) and recent optimization algorithms such as Adam
(Kingma and Ba 2014) further improves the learning speed.

An AutoEncoder (AE) is a type of FFN that uses unsuper-
vised learning to produce an image that matches the input
(Hinton and Salakhutdinov 2006). The intermediate layer
has a Latent Representation of the input and is performing
data compression. AEs are commonly used for pretraining
a neural network. The performance of an AE is measured
by the reconstruction loss, the distance between the input
and the output vectors under a distance function such as l1
norm, l2 norm (euclidean distance) or binary crossentropy.

A Variational AutoEncoder (VAE) (Kingma and Welling
2013) is a type of AE that forces the latent layer (the most
compressed layer in the AE) to follow a certain distribu-
tion (e.g., Gaussian) for given input images. Since the target
random distribution prevents backpropagating the gradient,
most VAE implementations use reparametrization tricks,
which decompose the target distribution into a differentiable
distribution and a purely random distribution that does not
require the gradient. For example, the Gaussian distribution
N(σ, µ) can be decomposed into µ+ σN(1, 0). In addition
to the reconstruction loss, VAE is also tasked to minimize
the variational loss, i.e. the difference between the learned
distribution and the target distribution.

The output convergesto the inputThe latent layerconverges to the categorical distrib.

Figure 2: Step 1: Train the State Autoencoder by minimiz-
ing the sum of the reconstruction loss (binary cross-entropy
between the input and the output) and the variational loss of
Gumbel-Softmax (KL divergence between the actual latent
distribution and the random categorical distribution as the
target). As the training continues, the output of the network
converges to the input images. Also, as the Gumbel-Softmax
temperature τ decreases during training, the latent values ap-
proaches the discrete categorical values of 0 and 1.

Gumbel-Softmax (GS) activation is a recently proposed
reparametrization trick (Jang, Gu, and Poole 2017), which
continuously approximates Gumbel-Max (Maddison, Tar-
low, and Minka 2014), a method for drawing samples from
categorical distribution. Assume the output z = 〈zi〉 is a
k-dimensional one-hot vector, e.g. 〈0, 1, 0〉 represents “b”
of a domain D = {a, b, c}. The input is class probabilities
π = 〈πi〉, e.g. 〈0.1, 0.1, 0.8〉. Gumbel-Max draws samples
from D following the probabilities π as follows:

zi = [i == argmax
j

(gj + log πj)?1 : 0]

where g1 . . . gk are i.i.d samples drawn from Gumbel(0, 1)
(Gumbel and Lieblein 1954). Gumbel-Softmax approxi-
mates argmax with softmax to make it differentiable:

zi = Softmax((gi + log πi)/τ)

“temperature” τ controls the magnitude of approximation. τ
is annealed by a schedule τ ← max(0.1, exp(−rt)) where
t is the current training epoch and r is an annealing ratio.
We chose r so that τ = 0.1 when the training finishes. The
above schedule follows the original by Jang, Gu, and Poole
(2017). Using GS in the network in place of standard activa-
tion functions (Sigmoid, Softmax, ReLU) forces the activa-
tion to converge to a discrete one-hot vector when τ ≈ 0.

3 LatPlan: System Architecture

This section describes the LatPlan architecture and the cur-
rent implementation, LatPlanα. LatPlan works in 3 phases.
In Phase 1 (symbol-grounding, Sec. 3.1), a State AutoEn-
coder providing a bidirectional mapping between raw data
(e.g., images)1 and symbols is learned (unsupervised) from
a set of unlabeled images of representative states. In Phase 2
(action model generation, Sec. 3.2), the operators available
in the domain is generated from a set of pairs of unlabeled
images, and a PDDL domain model is generated. In Phase
3 (planning, Sec. 3.3), a planning problem instance is input

1Although the LatPlan architecture can, in principle, be applied
to various unstructured data input including images, texts or low-
level sensors, in the rest of the paper we refer to “images” for sim-
plicity and also because the current implementation is image-based.
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as a pair of images (i, g) where i shows an initial state and
g shows a goal state. These are converted to symbolic form
using the SAE, and the problem is solved by the symbolic
planner. For example, an 8-puzzle problem instance in our
system consists of an image of the start (scrambled) config-
uration of the puzzle (i), and an image of the solved state
(g). Finally, the symbolic, latent-space plan is converted to a
sequence of human-comprehensible images visualizing the
plan (Sec. 3.4).

3.1 Symbol Grounding with a State Autoencoder

The State Autoencoder (SAE) provides a bidirectional map-
ping between images and a symbolic representation.

First, note that a direct 1-to-1 mapping between images
and discrete objects can be trivially obtained simply by us-
ing the array of discretized pixel values as a “symbol”. The
model generation method of Sec. 3.2 could be applied to
such “symbols”. However, such a trivial SAE lacks the cru-
cial properties of generalization – ability to encode/decode
unforeseen world states to symbols – and robustness – two
similar images that represent “the same world state” should
map to the same symbolic representation. Thus, we need
a mapping where the symbolic representation captures the
“essence” of the image, not merely the raw pixel vector. The
main technical contribution of this paper is the proposal of
a SAE which is implemented as a Variational Autoencoder
(Kingma et al. 2014) with a Gumbel-Softmax (GS) activa-
tion function (Jang, Gu, and Poole 2017).

The SAE is comprised of multilayer perceptrons com-
bined with Dropouts and Batch Normalization in both the
encoder and the decoder networks, with a GS layer in be-
tween. The input to the GS layer is the flat, last layer of the
encoder network. The output is an (N,M) matrix where N
is the number of categorical variables and M is the num-
ber of categories. The input is fed to a fully connected layer
of size N ×M , which is reshaped to a (N,M) matrix and
processed by the GS activation function.

Our key observation is that these categorical variables
can be used directly as propositional symbols by a symbolic
reasoning system, i.e., this provides a solution to the symbol
grounding problem in our architecture. We obtain the propo-
sitional representation by specifying M = 2, effectively ob-
taining N propositional state variables. It is possible to spec-
ify different M for each variable and represent the world us-
ing multi-valued representation as in SAS+ (Bäckström and
Nebel 1995). In this paper, we use M = 2 for all variables
for simplicity, and also for leveraging GPU parallelism by
running the computation as a matrix operation. This does
not affect the expressive power in the model induced by the
SAE because bitstrings of sufficient length can represent ar-
bitrary integers in multi-valued encoding.

The trained SAE provides bidirectional mapping between
the raw inputs (subsymbolic representation) to and from
their symbolic representations:

• b = Encode(r) maps an image r to a boolean vector b.

• r̃ = Decode(b) maps a boolean vector b to an image r̃.

Encode(r) maps raw input r to a symbolic representation
by feeding the raw input to the encoder network, extract
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Goal State

Domain-independentClassical Planner
Plan

Action definitionsin PDDL/SAS
Symbolic

Encode
Decode

Solution Plan as images

Encode Subsymbolic

Action1Action2Action3

Intermediatestates
PDDL Plan Simulator

Input 1: (a) Training images for training the State AutoEncoder and (b) image pairs representing valid actions 
Input 2:Initial state& goal state image

Figure 3: Classical planning in latent space: We use the
learned State AutoEncoder (Sec. 3.1) to convert pairs of im-
ages (pre, post) first to symbolic ground actions and then
to a PDDL domain (Sec. 3.2) We also encode initial and
goal state images into a symbolic ground actions and then a
PDDL problem. A classical planner finds the symbolic solu-
tion plan. Finally, intermediate states in the plan are decoded
back to a human-comprehensible image sequence.

the activation in the GS layer, and take the first row in the
N × 2 matrix, resulting in a binary vector of length N . Sim-
ilarly, Decode(b) maps a binary vector b back to an im-
age by concatenating b and its complement b̄ to obtain a
N × 2 matrix and feeding it to the decoder network. These
are lossy compression/decompression functions, so in gen-
eral, r̃ = Decode(Encode(r)) is similar to r, but may have
negligible errors from r. This is acceptable for our purposes.

It is not sufficient to simply use traditional activation func-
tions such as sigmoid or softmax and round the continuous
activation values in the latent layer to obtain discrete 0/1
values. As explained in Sec. 3.4, we need to map the sym-
bolic plan back to images, so we need a decoding network
trained for 0/1 values approximated by a smooth function,
e.g., GS or similar approach such as (Maddison, Mnih, and
Teh 2017). A rounding-based scheme would be unable to
restore the images from the latent layer because the decoder
network is trained using continuous activation values. Also,
representing the rounding operation as a layer of the network
is infeasible because rounding is non-differentiable, preclud-
ing backpropagation-based training of the network.

In some domains, an SAE trained on a small fraction of
the possible states successfully generalizes so that it can
Encode and Decode every possible state in that domain.
In all our experiments below, on each domain, we train the
SAE using randomly selected images from the domain. For
example, on the 8-puzzle, the SAE trained on 12000 ran-
domly generated configurations out of 362880 possible con-
figurations is used by the domain model generator (Sec. 3.2)
to Encode every 8-puzzle state.

3.2 Domain Model Generation

The model generator takes as input a trained SAE, and a
set R contains pairs of raw images. In each image pair
(prei, posti) ∈ R, prei and posti are images represent-
ing the state of the world before and after some action ai
is executed, respectively. In each ground action image pair,
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the “action” is implied by the difference between prei and
posti. The output of the model generator is a PDDL domain
file for a grounded unit-cost STRIPS planning problem.

For each (prei, posti) ∈ R we apply the learned SAE to
prei and posti to obtain (Encode(prei), Encode(posti)),
the symbolic representations (latent space vectors) of the
state before and after action ai is executed. This results in
a set of symbolic ground action instances A.

Ideally, a model generation component would induce
a complete action model from a limited set of symbolic
ground action instances. However, action model learning
from a limited set of action instances is a nontrivial area
of active research (Cresswell, McCluskey, and West 2013;
Gregory and Cresswell 2015; Konidaris, Kaelbling, and
Lozano-Pérez 2014; Mourão et al. 2012; Yang, Wu, and
Jiang 2007; Celorrio et al. 2012). Since the focus of this pa-
per is on the overall LatPlan architecture and the SAE, we
leave model induction for future work.

Instead, the current implementation LatPlanα uses a triv-
ial, baseline strategy which generates a model based on
all ground actions, which are supposed to be easily re-
placed by existing off-the-shelf action model learner. In this
baseline method, R contains image pairs representing all
ground actions that are possible in this domain, so A =
{Encode(r)|r ∈ R} contains all symbolic ground actions
possible in the domain. In Sec. 6, we further discuss the im-
plication and the impact of this model.

In the experiments (Sec. 4), we generate image pairs for
all ground actions using an external image generator. It is
important to note that while R contains all possible actions,
R is not used for training the SAE. As explained in Sec. 3.1,
the SAE is trained using at most 12000 images while the
entire state space is much larger.

LatPlanα compiles A directly into a PDDL model as fol-
lows. For each action (Encode(prei), Encode(posti)) ∈
A, each bit bj(1 ≤ j ≤ N) in these boolean vectors
is mapped to propositions (bj-true) and (bj-false)

when the encoded value is 1 and 0 (resp.). Encode(prei)
is directly used as the preconditions of action ai. The
add/delete effects of action i are computed by taking the bit-
wise difference between Encode(prei) and Encode(posti).
For example, when bj changes from 1 to 0, it compiles into
(and (bj-false) (not (bj-true))).

The initial and the goal states are similarly created by ap-
plying the SAE to the initial and goal images.

3.3 Planning with an Off-the-Shelf Planner

The PDDL instance generated in the previous step can be
solved by an off-the-shelf planner. LatPlanα uses the Fast
Downward planner (Helmert 2006). However, on the mod-
els generated by LatPlanα, the invariant detection routines in
the Fast Downward PDDL to SAS translator (translate.py)
became a bottleneck, so we wrote a trivial, replacement
PDDL to SAS converter without the invariant detection.

LatPlan inherits all of the search-related properties of the
planner which is used. For example, if the planner is com-
plete and optimal, LatPlan will find an optimal plan for the
given problem (if one exists), with respect to the portion
of the state-space graph captured by the acquired model.

Domain-independent heuristics developed in the planning
literature are designed to exploit structure in the domain
model. Although the structure in models acquired by Lat-
Plan may not directly correspond to those in hand-coded
models, intuitively, there should be some exploitable struc-
ture. The search results in Sec. 4.3 suggest that the domain-
independent heuristics can reduce the search effort.

3.4 Visualizing/Executing the Plans

Since the actions comprising the plan are SAE-generated la-
tent bit vectors, the “meaning” of each symbol (and thus the
plan) is not necessarily clear to a human observer. However,
we can obtain a step-by-step visualization of the world (im-
ages) as the plan is executed (e.g. Fig. 4) by starting with the
latent state representation of the initial state, applying (sim-
ulating) actions step-by-step (according to the PDDL model
acquired above) and Decode’ing the latent bit vectors for
each intermediate state to images using the SAE.

In this paper, we evaluate LatPlan in Sec. 4 using puz-
zle domains such as the 8-puzzle, LightsOut, and Towers of
Hanoi. Thus, physically “executing” the plan is not neces-
sary, as finding the solution to the puzzles is the objective,
so a “mental image” of the solution (i.e., the image sequence
visualization) is sufficient. In domains where actions have
effects in the world, it will be necessary to consider how ac-
tions found by LatPlan (transitions between latent bit vector
pairs) can be mapped to actuation (future work).

4 Experimental Evaluation

All of the SAE networks used in the evaluation have the
same network topology except the input layer which should
fit the size of the input images. They are implemented with
TensorFlow and Keras libraries under 5k LOC. We did not
put much effort in parameter tuning. All layers except GS in
the network are the very basic ones introduced in a standard
tutorial.

The network consists of the following layers: [In-
put, GaussianNoise(0.1), fc(4000), relu, bn, dropout(0.4),
fc(4000), relu, bn, dropout(0.4), fc(49x2), GumbelSoftmax,
dropout(0.4), fc(4000), relu, bn, dropout(0.4), fc(4000),
relu, bn, dropout(0.4), fc(input), sigmoid]. Here, fc = fully
connected layer, bn = Batch Normalization, and tensors are
reshaped accordingly. The last layers can be replaced with
[fc(input × 2), GumbelSoftmax, TakeFirstRow] for better
reconstruction when we can assume that the input image is
binarized. The network is trained to minimize the sum of
the variational loss and the reconstruction loss (binary cross-
entropy) using Adam optimizer (lr:0.001) for 1000 epochs.

The latent layer has 49 bits, which sufficiently covers the
total number of states in any of the problems that are used in
the following experiments. This could be reduced for each
domain (made more compact) with further engineering.

4.1 Solving Various Puzzle Domains with LatPlan

MNIST 8-puzzle This is an image-based version of the 8-
puzzle, where tiles contain hand-written digits (0-9) from the
MNIST database (LeCun et al. 1998). Each digit is shrunk
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to 14x14 pixels, so each state of the puzzle is a 42x42 im-
age. Valid moves in this domain swap the “0” tile with a
neighboring tile, i.e., the “0” serves as the “blank” tile in the
classic 8-puzzle. The entire state space consists of 362880
states (9!). From any specific goal state, the reachable num-
ber of states is 181440 (9!/2). Note that the same image is
used for each digit in all states, e.g., the tile for the “1” digit
is the same image in all states.

Out of 362880 images, 12000 randomly selected images
are used for training the SAE. This set is further divided into
a training set and a validation set, each consisting of 11000
and 1000 images, where the actual backpropagation-based
training of the network is performed on the training set, and
the validation set is not given to the learner. Validation set
represents the unseen instances: It is later used for ensur-
ing the network is not overfitting, by computing the recon-
struction loss |r − r̃| of the validation set and ensure that it
is comparable to the reconstruction loss of the training set.
Training takes about 40 minutes with 1000 epochs on a sin-
gle NVIDIA GTX-1070.

0-tile corresponds to the blank tile in standard 8-puzzle
Figure 4: Output of solving the MNIST 8-puzzle instance
with the longest (31 steps) optimal plan. [Reinefeld 1993]

Scrambled Photograph 8-puzzle The above MNIST 8-
puzzle described above consists of images where each digit
is cleanly separated from the black region. To show that Lat-
Plan does not rely on cleanly separated objects, we solve
8-puzzles generated by cutting and scrambling real pho-
tographs (similar to sliding tile puzzle toys sold in stores).
We used the “Mandrill” image, a standard benchmark in the
image processing literature. The image was first converted
to greyscale and then rounded to black/white (0/1) values.
The same number of images as in the MNIST-8puzzle ex-
periments are used.

Towers of Hanoi (ToH) Disks of various sizes must be
moved from one peg to another, with the constraint that a
larger disk can never be placed on top of a smaller disk. We
generated the training and planning inputs for this task, with
3 and 4 disks. Each input image has a dimension of 24×122
and 32 × 146 (resp.), where each disk is presented as a 8px
line segment.

Due to the smaller number of states (3d states for d disks),
we used images of all states as the set of images for training
SAE. This is further divided into the training set (90%) and
the validation set (10%), and we verified that the network
has learned a generalized model without overfitting.

3-disk ToH is solved successfully and optimally using
the default hyperparameters (Fig. 6, top). However, as the

Right-eye tile corresponds to the blank tile instandard 8-puzzle
OriginalMandrillimage:

Figure 5: Output of solving a photograph-based 8-puzzle
(Mandrill). We emphasize that LatPlan has no built-in no-
tion of “sliding object”, or “tile arrangement”; furthermore,
the SAE is being trained completely from scratch when Lat-
Plan is applied to this scrambled photograph puzzle – there
is no transfer/reuse of knowledge from the SAE learned for
the MNIST 8-puzzle above.

↑Result of solving 3-disk Tower of Hanoi with the default network parameters. 

↑4-disk ToH with tuned parameters (optimal plan for the correct model)

↑4-disk ToH with the default parameters(optimal plan wrto the flawed model by a confused SAE) 

Binarized results of the last steps→

Figure 6: Output of solving ToH with 3 and 4 disks. The
third picture is the result of SAE with different parameters.

images become more complex, training the SAE becomes
more difficult. On 4-disks, the SAE trained with the de-
fault hyperparameters (Fig. 6, middle) is confused, resulting
in a flawed model which causes the planner to choose sub-
optimal moves (dashed box). Sometimes, the size/existence
of disks is confused (red box). Tuning the hyperparameters
to reduce the SAE loss corrects this problem. Increasing
the training epochs (10000) and tuning the network shape
(fc(6000), N = 29) allows the SAE to learn a clearer model,
allowing correct model generation, resulting in the optimal
15-step plan (Fig. 6, bottom).

LightsOut A video game where a grid of lights is in
some on/off configuration (+: On), and pressing a light tog-
gles its state (On/Off) as well as the state of all of its neigh-
bors. The goal is all lights Off. Unlike the 8-puzzle where
each move affects only two adjacent tiles, a single opera-
tor in 4x4 LightsOut can simultaneously flip 5/16 locations.
Also, unlike 8-puzzle and ToH, the LightsOut game allows
some “objects” (lights) to disappear. This demonstrates that
LatPlan is not limited to domains with highly local effects
and static objects.

4x4 LightsOut has 216 = 65536 states and 16 × 216 =
1048576 transitions. Similar to the 8-puzzle instances, we
used 12000 randomly selected images out of 65536 images,
which is then divided into 11000 training images and 1000
validation images.

Twisted LightsOut In all of the above domains, the “ob-



32

Figure 7: Output of solving 4x4 LightsOut (left) and its bi-
narized result (right). Although the goal state shows two
blurred switches, they have low values (around 0.3) and dis-
appear in the binarized image.

Figure 8: Output of solving 3x3 Twisted LightsOut.

jects” correspond to rectangles. To show that LatPlan does
not rely on rectangular regions, we demonstrate its result on
“Twisted LightsOut”, a distorted version of the game where
the original LightsOut image is twisted around the center.
Unlike previous domains, the input images are not binarized.

4.2 Robustness to Noisy Input

We show the robustness of the system against the input
noise. We corrupted the initial/goal state inputs by adding
Gaussian or salt noise, as shown in Fig. 9. The system is ro-
bust enough to successfully solve the problem, because our
SAE is a Denoising Autoencoder (Vincent et al. 2008) which
has an internal GaussianNoise layer which adds a Gaussian
noise to the inputs (only during training) and learn to re-
construct the original image from a corrupted version of the
image.

8puzzle+N(0,0.3) Twisted LightsOut+N(0,0.3) Twisted LightsOut+salt(0.06)

Figure 9: SAE robustness vs noise: Corrupted initial state
image r and its reconstruction Decode(Encode(r)) by SAE
on MNIST 8-puzzle and Twisted LightsOut. Images are cor-
rupted by Gaussian noise of σ up to 0.3 for both prob-
lems, and by salt noise up to p = 0.06 for Twisted Light-
sOut. LatPlanα successfully solved the problems. The SAE
maps the noisy image to the correct symbolic vector b =
Encode(r), conduct planning, then map b back to the de-
noised image Decode(b).

4.3 Are Domain-Independent Heuristics Effective
in Latent Space?

We compare search using a single PDB with greedy merg-
ing (Sievers, Ortlieb, and Helmert 2012) and blind heuristics
(i.e., breadth-first search) in Fast Downward. The numbers
of nodes expanded were:

• MNIST 8-puzzle (6 instances, mean(StdDev)): Blind
176658(25226), PDB 77811(32978)

• Mandrill 8-puzzle (1 instance with 31-step optimal solu-
tion, corresponding to the 8-puzzle instance (Reinefeld
1993)): Blind 335378, PDB 88851

• ToH (4 disks, 1 instance): Blind 55, PDB 17,

• 4x4 LightsOut (1 instance): Blind 952, PDB 27,

• 3x3 Twisted LightsOut (1 instance): Blind 522, PDB 214

The domain-independent PDB heuristic significantly re-
duced node expansions. Search times (< 3 seconds for all
instances) were also faster for all instances with the PDB.
Although total runtimes including heuristic initialization is
slightly slower than blind search, in domains where goal
states and operators are the same for all instances (e.g., 8-
puzzle) PDBs can be reused (Korf and Felner 2002), and
PDB generation time can be amortized across many in-
stances.

While the symbolic representation acquired by LatPlan
captures the state space graph of the domain, the propo-
sitions in the latent space do not necessarily correspond
to conceptual propositions in a natural, hand-coded PDDL
model. Although these results show that existing heuristics
for classical planning are able to reduce search effort com-
pared to blind search, much more work is required in order
to understand how the features in latent space interact with
existing heuristics. In addition, a deeper understanding of
the symbolic latent space may lead to new search heuristics
which better exploit the properties of latent space.

5 Related Work

Konidaris, Kaelbling, and Lozano-Pérez propose a method
for generating PDDL from a low-level, sensor actuator space
of an agent characterized as a semi-MDP (2014). The inputs
to their system are 33 variables representing structured sen-
sor input (e.g., x/y distances between each effector and each
object, light level) and categorical states (the on/off state of
a button, whether the monkey has cried out). It does not ex-
plicitly deal with robustness with regard to noisy sensor in-
put, and they focus on action model learning. In contrast, the
inputs to LatPlan are unstructured images (e.g., for the 8-
puzzle, 42x42=1764-dimensional arrays). We focus mostly
on generating propositions from noisy, unlabeled raw im-
ages via our neural-net based SAE, and LatPlanα does not
perform action model learning (Sec. 3.2). Integrating action
modeling (Konidaris, Kaelbling, and Lozano-Pérez 2014;
Mourão et al. 2012; Yang, Wu, and Jiang 2007) is a direction
for future work.

Our approach differs from the work on learning from ob-
servation (LfO) in the robotics literature (Argall et al. 2009)
in that: (1) LatPlan is trained based on image pairs show-
ing valid before/after images of valid individual actions,
while LfO work is largely based on observation (e.g., of
videos) of plan executions; (2) LatPlan generates PDDL for
symbolic planners which are suited for high-level (puzzle-
like) tasks, while LfO focuses on tasks such as motion
planning/manipulation. A closely related line of work in
LfO is learning of board game play from observation of
video/images (Barbu, Narayanaswamy, and Siskind 2010;
Kaiser 2012; Kirk and Laird 2016). These works make rel-
atively strong assumptions about the environment, e.g., that
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there is a grid-like environment with “piece”-like objects. In
contrast, as shown in Sec. 4, LatPlan does not make assump-
tions about the contents of the images.

There is a large body of previous work using neural net-
works to directly solve combinatorial search/planning tasks,
starting with the well-known use of neural network to solve
the TSP (Hopfield and Tank 1985). With respect to state-
space search problems similar to those we consider, Neuro-
solver, a neural network where each node corresponds to a
state in the search space (Bieszczad and Pagurek 1998), has
been used to solves Tower of Hanoi (Bieszczad and Kuchar
2015). Although such solvers use neural networks to solve
the search problem, they assume a fully symbolic represen-
tation of the problem as input.

Previous work combining symbolic search algorithms and
NNs embedded NNs inside a search algorithm to provide
search control knowledge (Silver et al. 2016; Arfaee, Zilles,
and Holte 2011; Satzger and Kramer 2013). In contrast, we
use a NN-based SAE for symbol grounding, not for search
control.

Deep Reinforcement Learning (DRL) has solved complex
problems where the input is provided as images, perform-
ing well on many video games (Mnih et al. 2015). For unit-
action-cost planning, LatPlan does not require a reinforce-
ment signal (reward function). Also, LatPlan does not re-
quire expert solution traces, but only a random sample of
the valid moves. Access to expert traces (as in the game of
Go (Silver et al. 2016)) is a significant limitation of RL ap-
proach because such data may not be readily available. Fi-
nally, since LatPlanα uses a classical planner, it can pro-
vide guarantees of completeness and solution cost optimal-
ity (with regard to the acquired domain model) on deter-
ministic, fully-observable single-agent domains. An inter-
esting avenue for future work is extending our SAE-based
approach as a symbol grounding mechanism for a symbolic,
probabilistic (MDP) planner.

6 Discussion and Conclusion
We proposed LatPlan, an integrated architecture for do-
main model acquisition and planning which, given only a
set of unlabeled images and no prior knowledge, generates
a classical planning problem model, solves it with a sym-
bolic planner, and presents the resulting plan as a human-
comprehensible sequence of images. We demonstrated its
feasibility using image-based versions of planning/state-
space-search problems (8-puzzle, Towers of Hanoi, Lights
Out). The key technical contribution is the SAE, which
leverages the Gumbel-Softmax reparametrization technique
(Jang, Gu, and Poole 2017) and learns (unsupervised) a
bidirectional mapping between raw images and a proposi-
tional representation usable by symbolic planners. For ex-
ample, as shown in Sec. 4, on the MNIST 8-puzzle, the
“gist” of 42x42 training images are compressed into 49-bit
representations that capture the essence of the images which
is robust to noise.

Aside from the key assumptions that (1) the domain can
be modeled and solved as a classical planning problem, and
(2) the domain can be correctly inferred from the given train-
ing images, we avoid assumptions about the input domain.

Thus, we have shown that domains with significantly dif-
ferent characteristics can all be solved by the same sys-
tem, without modifying any code or manually modifying
the neural network architecture. In other words, LatPlan is a
domain-independent, image-based classical planner.

To our knowledge, LatPlan is the first system which com-
pletely automatically constructs a logical representation us-
able by an off-the-shelf symbolic planner from a set of unla-
beled images for a diverse set of problems, with no explicit
assumptions or knowledge about the nature of the domains
other than the assumption that the domain can be solved by
classical planning and that a sufficient set of training images
is available. However, as a proof-of-concept first implemen-
tation, it has significant limitations to be addressed in future
work.

6.1 Automated Validation of Plans

Since this paper focuses on demonstrating the feasibility of a
symbolic planning system with neural perception, the exper-
imental results included in the paper is mostly qualitative. To
facilitate a more quantitative evaluation of LatPlan, one im-
portant direction for future work includes the development
of a practical methods for validating plans. LatPlan should
return a valid visual plan, i.e., a plan which does not violate
the rules in the original input. In Sec. 4, we observed that the
result plan may be invalid depending on the performance of
the SAE. In classical planning, the validation of the solu-
tion plan is trivial as the plan simulator is readily available.
However, validating the plan returned by LatPlan requires
manual validation by human eye which checks every moves
presented in the result, which does not scale to a large num-
ber of problem instances/plans, and is also prone to errors.
This prevents a convenient and reliable evaluation of Lat-
Plan. One approach to this problem is to use crowd sourcing
infrastructure like Amazon Mechanical Turk, in combina-
tion with techniques for reducing the variance of the evalua-
tion (Yuen, King, and Leung 2011). However, development
of automated methods for plan validation is more preferable.
Approaches such as the inception score for evaluating the
performance of Generative Adversarial Network (Salimans
et al. 2016) suggests that such automated approaches may
be feasible for LatPlan as well.

6.2 Action Learning

The SAE successfully solves the problem of mapping a pair
of images into a ground symbolic action using only a sub-
set of the world state images (Sec. 3.2). On the other hand,
the domain model generator in the current LatPlanα imple-
mentation does not perform action model learning/induction
from a small set of sample actions.

Since the focus of this paper is the evaluation of SAE
and not action learning, the current, baseline domain model
generator requires the entire set of latent states/transitions,
which in turn requires an image for each state in the state
space. LatPlanα essentially constructs an explicit state space
graph based on action image pairs for all ground actions
in the domain, so the planner is being used to find opti-
mal paths in an explicit graph. In other words, the precon-
ditions of the actions generated by LatPlanα specify every
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bit in a state, unlike the partial specification of a state that
is common in IPC benchmark domains which allows the
implicit definition of very large state spaces. This kind of
trivial domain model generator which uses images for all
states in the entire state space is obviously impractical in
many domains. Aside from the modeling issue, the trivial
explicit state-space model causes practical issues with cur-
rent off-the-shelf planners, as the huge total number of ac-
tions (edges in the explicit state space model) causes major
slowdowns in both the PDDL parser (Sec. 3.3), as well as
the initialization runtime of heuristics (Sec. 4.3).

However, these are not fundamental limitations of the
LatPlan architecture. The current primitive model genera-
tor in LatPlanα is merely a placeholder which was neces-
sary to enable us to investigate the utility of the SAEs (our
major contribution) and the overall feasibility of an end-to-
end planning system based on raw images. Thus, the fo-
cus of our work and our contributions are orthogonal and
complementary to the goals of previous work on domain
model learning. To our knowledge, all previous planning
domain model learning methods assume/require as input
representations of states which are highly structured (e.g.,
propositional). We believe that it should be possible to re-
place our primitive generator with a more sophisticated gen-
erator (Cresswell, McCluskey, and West 2013; Konidaris,
Kaelbling, and Lozano-Pérez 2014; Mourão et al. 2012;
Yang, Wu, and Jiang 2007) which have been developed for
environments with deterministic effects and fully observable
states (Celorrio et al. 2012, Sec.3,Fig.2).

Another related direction for future work is how to spec-
ify the goal condition for LatPlan. Since LatPlanα assumes a
single goal state as an input, developing a method for spec-
ifying a set of goal states with a partial goal specification
as in IPC domains is an interesting future work. For exam-
ple, one may want to tell the planner “the goal states must
have tiles 0,1,2 in the correct places” in a MNIST 8-puzzle
instance.

6.3 Collecting Images

LatPlan is a proof-of-concept architecture which shows the
feasibility of constructing an end-to-end planning which
uses raw images as input. As such, we did not address the
practical issue of how the images are obtained by a sytem
which uses image-based planning. However, in a real-world
implementation of a system like LatPlan i.e., an image-based
planner for a robot with sensors/camera and manipulators,
collecting the data (images) needed to train the SAE is a
practical issue. The requirement for collecting data for Lat-
Plan would be significantly different from those that are
common in learning-from-observatoin systems.

Unlike learning-from-obseration, where the learner does
not know when an action starts/ends and should recognize
each action from the plan traces, we assume that a robot has
a lower-level manipulation capabilities of safely, randomly
exploring the world by itself, deciding to initiate/terminate
its own action, manipulating the state of the world and ob-
serving the consequences.2 The robot can perform a random

2Note that if the learner controls when actions are initi-

walk, collecting images along the way. In many domains,
physical constraints will ensure that the robot can only per-
form legal moves (e.g., the physical tile board in 8-puzzle,
the touch display in a LightsOut video game). In domains
such as Towers of Hanoi where illegal moves are physically
possible, we can assume either that a teacher (e.g., human)
prevents the robot from making illegal moves, or that the
teacher filters the training images taken by the robot. If we
further assume that it is possible to periodically “reset” the
world (e.g., a teacher comes and resets the world into a ran-
dom configuration), then, given enough time, the robot could
obtain images of the entire state space.

In domains where obtaining training images is expensive,
another bottleneck in LatPlan is the number of images re-
quired to train the SAE. Developing more effective learner
for minimizing the training data, such as One-shot learning
methods (Lake, Salakhutdinov, and Tenenbaum 2013), is an
important direction for future work. Since a better learner
needs less examples, the number of required images depends
on the performance of AE, which is ongoing work in the DL
community.

6.4 Improving the SAE

Although we showed that LatPlanα works on several
kinds of images, including MNIST handwritten digits, pho-
tographs (Mandrill), and several synthetic images (Hanoi,
Lights Out), we do not claim that the specific implementa-
tion of SAE used in this paper works robustly on all im-
ages/data. For example, some tuning of the image (shrink-
ing/binarization) was necessary in order to get the SAE
working for the photograph-based 8-puzzles. Making a truly
robust autoencoder is not a problem unique to LatPlan, but
rather, a fundamental problem in deep learning. A contribu-
tion of this paper is the demonstration that it is possible to
leverage some existing deep learning techniques quite effec-
tively in an integrated learning/planning system, and future
work will seek to continue leveraging further improvements
in deep learning and other image processing techniques.
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Abstract

Scenario planning is a commonly used method that
various organizations use to develop their long term
plans. Scenario planning for risk management puts an
added emphasis on identifying the extreme yet possi-
ble risks that are not usually considered in daily op-
erations. While a variety of methods and tools have
been proposed for this purpose, we show that formu-
lating an AI planning problem, and applying AI plan-
ning techniques to develop the scenarios provides a
unique advantage for scenario planning. Our system,
the Scenario Planning Advisor (SPA), takes as input
the relevant news and social media trends that char-
acterize the current situation, where a subset of them
is selected to represent key observations, as well as the
domain knowledge. The domain knowledge is acquired
using a graphical tool, and then automatically trans-
lated to a planning domain. We use a planner to gen-
erate multiple plans explaining the observations and
projecting future states. The resulting plans are clus-
tered and summarized to generate the scenarios for use
in scenario planning. We discuss our knowledge engi-
neering methodology, lessons learned, and the feedback
received from the pilot deployment of the SPA system
in a large international company. We also show our ex-
periments that measure planning performance and how
balanced and informative the generated scenarios are
as we increase the complexity of the problem.

1 Introduction

Scenario planning is a commonly used method for
strategic planning (Schoemaker 1995). Scenario plan-
ning involves analyzing the relationship between forces
such as social, technical, economic, environmental, and
political trends in order to explain the current situ-
ation in addition to providing insights about the fu-
ture. A major benefit to scenario planning is that it
helps businesses or policy-makers learn about the pos-
sible alternative futures and anticipate them. While the
expected scenarios are interesting for verification pur-
poses, scenarios that are surprising to the users (e.g.,
policy-makers businesses) are the ones that are the most
important and significant (Peterson et al. 2003).

Risk management is a set of principles that focus
on the outcome for risk-taking (Stulz 1996). A variety

of methods and standards for risk management under
different assumptions have been developed (Avanesov
2009). In this paper, we address scenario planning for
risk management, the problem of generating scenarios
with a significant focus on identifying the extreme yet
possible risks that are not usually considered in daily
operations. The approach we take in this paper is differ-
ent from previous work in that we reason about emerg-
ing risks based on observations from the news and social
media trends, and produce scenarios that both describe
the current situation and project the future possible ef-
fects of these observations. Our objective is not to find a
precise answer, that is to predict or forecast, but rather
to project the possible alternative scenarios that may
need consideration. Each scenario we produce highlights
the potential leading indicators, the set of facts that
are likely to lead to a scenario, the scenario and emerg-
ing risk, the combined set of consequences or effects in
that scenario, and the business implications, a subset
of potential effects of that scenario that the users (e.g.,
policy-makers, businesses) care about. The business im-
plications are akin to the set of possible goals.

For example, given a high inflation observation, eco-
nomic decline followed by a decrease in government
spending can be the consequences or the possible ef-
fects in a scenario, while decreased client investment
in the company offerings is an example of a business
implication (i.e., the resulting goal). Furthermore, an
increase in the cost of transportation could have been
the leading indicator for that scenario. To the best of
our knowledge, we are the first to apply AI planning
in addressing scenario planning for enterprise risk man-
agement. We believe that AI planning provides a very
natural formulation for the efficient exploration of pos-
sible outcomes required for scenario planning.

In this paper, we propose to view the scenario plan-
ning problem for enterprise risk management as a prob-
lem that can be translated to an AI planning prob-
lem. An intermediate step is a plan recognition prob-
lem, where the set of given business implications forms
the set of possible goals, and the observations are se-
lected from the news and social media trends. The
domain knowledge is acquired from the domain ex-
pert via a graphical tool and is then automatically



37

translated to an AI planing domain. AI planning is
in turn used to address the plan recognition prob-
lem (Ramı́rez and Geffner 2009; Sohrabi et al. 2016a;
2017). Top-k planning or finding a set of high-quality
plans is used to generate multiple plans that can be
grouped into a scenario (Riabov et al. 2014; Sohrabi et
al. 2016b). The set of plans is then clustered and sum-
marized to generate the scenarios. Hence, each scenario
is a collection of plans that explain the observations and
considers the possible cascading effects of the actions to
identify potential future outcomes.

2 System Architecture
The system architecture for our system, Scenario Plan-
ning Adviser (SPA), is shown in Figure 1. There are
three major components. The planning engine, shown
under the Scenario Generation and Presentation com-
ponent, takes as input the output of the other two
components: the News Aggregation component and the
Domain Knowledge component. The News Aggregation
component deals with analyzing the raw data coming
from the news and social media feeds. To this end, sev-
eral text analytics are implemented in order to find the
information that is relevant for a particular domain as
filtered by the provided Topic Model. The Topic Model,
provided by the domain expert, includes the list of im-
portant people, organization, and keywords. The result
of the News Aggregation component is a set of relevant
key observations, a subset of which can be selected by
the business user and is fed into the Scenario Gener-
ation component. The Domain Knowledge component
captures the necessary domain knowledge in two forms,
Forces Model and Forces Impact. The Forces Model
is a description of the causes and effects for a certain
force, such as social, technical, economic, environmen-
tal, and political trends, and is provided by a domain
expert who have little or no AI planning background.
Forces Model are captured by a Mind Map (http:
//freemind.sourceforge.net/wiki/), a graph-
ical tool that encodes concepts and relations. An exam-
ple of a Mind Map for the currency depreciation force
is shown in Figure 3. The Forces Impact, describes po-
tential likelihoods and impact of a cause (i.e., concepts
with an edge going into the main force) or an effect (e.g.,
concepts with an edge going from the main force and
all other cascading concepts). The Scenario Generation
component takes the domain knowledge and the key
observations and automatically generates a planning
problem whose outcome when clustered in the post-
processing step generates a set of alternative scenarios.
Our system is currently deployed for an interna-

tional organization. We use a company name Acme,
for anonymity, in our examples. The system generates
thousand plans and presents three to six scenarios to
the business user. The extensive feedback we have col-
lected has been encouraging and helpful in improving
our system. We report on our knowledge engineering ef-
forts, collected feedback, and the lessons learned in the
rest of this paper.
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Figure 1: The SPA system architecture

3 Problem Definition
In this section, we briefly review necessary background
on AI planning and Plan Recognition before defining
the scenario planning for risk management problem.

Definition 1 A planning problem is a tuple P = (F,
A, I,G), where F is a finite set of fluent symbols, A
is a set of actions with preconditions, pre(a), add ef-
fects, add(a), delete effects, del(a), and action costs,
cost(a), I ⊆ F defines the initial state, and G ⊆ F
defines the goal state.

The solution to the planning problem, P , is a se-
quence of executable actions, π = [a0, ..., an] such that
if executable from the initial state, I, meets the goal
(i.e., G ⊆ δ(an, δ(an−1, . . . , δ(a0, I))), where δ(a, s) =
((s\del(a)) ∪ add(a)) defines the successor state.

Definition 2 A Plan Recognition (PR) problem is a
tuple R = (F,A, I,O,G, prob), where (F,A, I) is the
planning domain as defined above, O = {o1, ..., om},
where oi ∈ F , i ∈ [1,m] is the set of (partially ordered)
observations, G is the set of possible goals G, G ⊆ F ,
and prob is a probability distribution over G, P (G).

The solution to the PR problem is the posterior
probabilities P (π|O) and P (G|O). Plan recognition
problem can be transformed to an AI planning prob-
lem and the posterior probabilities can be approxi-
mated using AI planning (Ramı́rez and Geffner 2010;
Sohrabi et al. 2016a). Note, the observations are said
to be satisfied by an action sequence if it is either ex-
plained or discarded following the work of Sohrabi et
al. 2016a. This allows for some observations to be left
unexplained in particular if they are out of context with
respect to the rest of the observations.

Definition 3 A scenario planning for enterprise risk
management problem is defined as a tuple SP =
(F,A, I,O,G), where (F,A, I) is the planning domain
acquired by the domain experts, O = {o1, ..., om}, where
oi ∈ F , i ∈ [1,m] is a set of observations selected from
the news and social media trends, G is a set of possi-
ble goals G ⊆ F ; the set of goals are called business
implications in the scenario planning problem.
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Figure 2: Sample questions

As shown in Figure 1, the input to the SPA system
are raw social media posts and news articles with RSS
feeds. The News Aggregation component analyzes such
news and posts and suggests possible observations. In
the deployment of the SPA system, we addressed un-
ordered set of observations as input; however, in the-
ory, the observations can be expressed in any Linear
Temporal Logic (LTL) formula (Sohrabi et al. 2011).
The solution to the SP problem is defined as a set of

scenarios, where each scenario is a collection of plans Π
such that: (1) each plan π = [a0, ..., ai, ai+1, ..., an] is an
action sequence that is executable from the initial state
I and results in state s = δ(an, . . . , δ(a0, I)), (2) at least
one of the goals is met (i.e., ∃G ∈ G, where G ⊆ s), and
(3) the set of observations is satisfied by the action se-
quence [a0, ..., ai] (i.e., observations are either explained
or discarded). The SP problem can be thought of as a
plan recognition problem, where observations and a set
of goals are given. Rather than computing P (π|O) and
P (G|O), the solution to the SP problem is a set of sce-
narios showcasing the alternative possible outcomes.

4 Knowledge Engineering

While several knowledge engineering tools exists, most
of them assume that the domain expert has some AI
planning background and these tools provide the addi-
tional support in writing the domain knowledge (e.g.,
(Muise 2016; Simpson et al. 2007)). However, we an-
ticipate the lack of proper AI planning expertise in
writing the domain knowledge and the unwillingness to
learn a planning language. Instead, the domain expert
may choose to express their knowledge in a light-weight
graphical tool and have this knowledge translated au-
tomatically to a planning language such as Planning
Domain Description Language (PDDL) (McDermott
1998). In this section, we discuss the representation of
the domain knowledge and its translation to planning.
As shown in Figure 1, the domain knowledge comes

in two forms: Forces Model and Forces Impact. Forces
Model, is the domain knowledge corresponding to the

High inflation 

Increasing trade deficit 

Increasing debt levels Trapped cash 

Contoso workforce capital available at better rates 

Challenging environment for Contoso to 

identify opportunities to invest & expand 

Lower domestic demand Economic decline 

      Currency  

depreciation against 

      US dollar  

Acme

Acme

Figure 3: Part of the Mind Map for the currency depre-
ciation against US dollar force.

causes and effects of the different forces influencing the
risks in a business organization such as the economy,
currency, corruption, social unrest, and taxes. The do-
main experts express these relationship for each force
trends (e.g., economic decline and economic growth)
in separate Mind Maps. A Mind Map1 is a graphical
method that can be used to express the Forces Model
in a simple way. The Mind Maps can be created in a
tool such as FreeMind2 which produces an XML rep-
resentation of the Mind Maps which can serve as an
input to our system. An example Mind Map is shown
in Figure 3. The force in this Mind Map is the cur-
rency depreciation. The concepts with an edge going
towards the force, are the possible causes, and the con-
cepts with an outgoing edge from the force, are the
possible effects. The causes and effects can appear in
chains, and cascade to other causes, and effects, with
a leaf concept of either a business implication (i.e., the
planning goal), or another force, with its own separate
Mind Map that describes it. For example, “Acme work-
force capital available at better rates” is an example of
a business implication, where Acme is the name of the
organization. Note, one of the leafs of this Mind Map,
economic decline, is another force which would be de-
scribed in a separated Mind Map. Any of the concepts
in the Mind Map, except for the business effects, can
serve as observations in order to generate the scenarios.
Additional information on the Mind Maps is encoded

through the Forces Impact, which is captured by a se-
ries of automatically generated questions based on the
Mind Maps. These questions are created by a script
that reads the XML encoding of the Mind Maps. Sam-
ple questions are shown in Figure 2. The domain expert
is given options of low, medium, and high in addition
to the option of “do not know” in which a default value
is selected for them. The answers to these questions de-
termine the weight of the edges in the Mind maps.
The domain knowledge encoded in the Mind Maps

(i.e., Forces Model), together with the answers from
the questionnaire (i.e., Forces Impact), is automatically
translated into a planning language such as PDDL.
There are at least two ways to translate the Mind Maps
into a planning language. The first method, we call
“ungrounded”, defines one general and ungrounded set
of actions in the PDDL domain file with many possi-
ble groundings of the actions based on the given Mind

1https://en.wikipedia.org/wiki/Mind_map
2http://freemind.sourceforge.net/wiki/
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Maps. The domain file includes an action named “indi-
cator” for each of the causes in a Mind Map. There
would be three different “indicator” actions, one for
each level (i.e., “indicator-low”, “indicator-med” and
“indicator-high”). The levels are determined based on
the answers to the questionnaire. The domain file also
includes an action named “next”, and “next-bis” for
each of the edges in the Mind Map. The “next” action
also has three different versions, one for each level. The
“next-bis” actions do not have levels and are those that
end in a business implication concept (i.e., a concept
that includes the name of the company).
Table 1 shows part of the planning domain. For ex-

ample, the “next-med” action will be grounded by set-
ting the parameter x1 to “increasing trade deficit” and
the parameter x2 to the “currency depreciation against
US dollar”. Each of the “next” actions (-low, -med, -
high) have a cost that maps to the importance of that
edge such that lower impact/likelihood answers map to
a higher cost. Hence, while the domain is fixed, based
on the answers obtained by the domain experts, the
actions will have a different set of possible groundings
defined in the problem file. The “next-bis” action is
the action that if executed, indicates that at least one
of the business effects have been reached and the “bis-
implication-achieved” predicate is set to true; this is the
goal of the planning problem. The problem file (i.e., the
initial state) will include all the possible groundings of
these actions by including a grounding for the predi-
cates “(next-med ?from ?to)”, “(next-bis ?from ?to)”,
and “(indicator-med ?y ?x)”. Note that the size of the
Mind Map leads to a larger problem file, as the domain
file is fixed. A successful plan maps to an execution
of an “indicator” action, followed by the execution of
one or more “next” actions, followed by an execution of
a “next-bis” action. This maps to a path through the
connected Mind Maps.
The second method to translate the Mind Maps into

a planning language is called “grounded” which as the
name suggests, defines one action per each edge in the
Mind Map in addition to one action for each of the
causes in the Mind Map in the planning domain it-
self. So rather than having one fixed planning domain
which can get grounded by the problem file, the second
approach fully specifies all the possible actions in the
planning domain. We evaluate the performance of both
methods in the experimental evaluation.

5 Computing Plans
In the previous section, we discussed how to translate
the information available in the Mind Maps into a plan-
ning domain and problem. However, we are also given
the set of observations as the input and we need to com-
pile away the observations in order to use planning. To
do so we follow the work of Sohrabi et al. 2013; 2016a
which adds a set of “explain” and “discard” actions for
each observation. The discard action can be selected in
order to leave some observations unexplained. The ob-
servations are driven from news and social media posts

(:action next-med
:parameters (?x1 - occ ?x2 - occ)
:precondition (and (occur ?x1)

(next-med ?x1 ?x2))
:effect (and (occur ?x2)

(not (occur ?x1))
(increase (total-cost) 10)))

(:action indicator-med
:parameters (?y - force ?x - occ)
:precondition (and (indicator-med ?y ?x))
:effect (and (occur ?x)

(increase (total-cost) 15)))

(:action next-bis
:parameters (?x1 - occ ?x2 - bisimplication)
:precondition (and (occur ?x1)

(next-bis ?x1 ?x2)
:effect (and (bis-implication-achieved)

(increase (total-cost) 6)))

Table 1: Part of the planning domain.

and not all of them are reliable; in addition, some of
them could be mutually exclusive and not all of them
could be explainable. Hence, it is important to have
the ability to discard some observations. However, to
encourage the planner to generate plans that explain as
many observations as possible, a penalty is set for the
“discard” action in the form of a cost. The penalty is
relative to the cost of the other action in the domain;
we currently set it to be five times the cost of a “next-
med” action. After considering multiple options, this
seemed to be good a middle-ground option between the
two extremes; a high discard cost will cause the planner
to consider many long and unlikely paths, while a low
discard will cause the planner to discard observations
without trying to explain them. In addition, to ensure
all observations are considered, whether explained or
discarded, a set of special predicates, one per each ob-
servation is used and must hold true for each of the
“next-bis” actions. This ensures that a plan that meets
one of the goals also has considered all of the observa-
tions. To disallow different permutation of the discard
action, we discard observations using a fixed order.

The resulting planning problem captures both the
domain knowledge that is encoded in the Mind Maps
and its associated weights of the edges as well as the
given set of observations, and possible set of goals,
associated with the plan recognition aspect of the
problem. To compute a set of high-quality plans on
the transformed planning problem, we use the top-k
planning approach proposed in (Riabov et al. 2014;
Sohrabi et al. 2016b). Top-k planning is defined in as
the problem of finding k set of plans that have the high-
est quality. The best known algorithm to compute the
set of top-k plans is based on the k shortest paths al-
gorithm called K∗ (Aljazzar and Leue 2011) which also
allows use of heuristics search. We use theK∗ algorithm
together with the LM-cut heuristic (Pommerening and
Helmert 2012) in our system. Next, we discuss how the
generated plans are post-processed into the scenarios.
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Figure 4: The screenshot of a sample generated scenario for the high inflation observation. Each scenario is divided
into three parts, the leading indicators, scenario and emerging risks, and the business implications.

Observations

Concepts

Figure 5: Part of the screenshot of a explanation graph for the scenario shown in Figure 4. Observations are shown
in green, leading indicators are shown in blue, and business implications are shown in yellow.
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6 Computing Scenarios
To compute the type of scenarios shown in Figure 4,
we perform a set of post-processing steps on the com-
puted set of plans. All of the post-processing steps are
done automatically. First, we identify the number of
plans out of the top-k plans (e.g., 1000) generated by
the planner to consider for scenario generation. We ar-
gue that this number is problem-dependent rather than
being a fixed number for all problems. To calculate the
cost cutoff, we calculate the average and the standard
deviation of the cost of all plans among the top-k plans.
We then consider plans that have a lower cost than the
average cost subtracted by the standard deviation. The
number of plans considered for scenario generation is
shown under the “# of Plans” column in Table 2.
Next, we cluster the resulting plans to create scenar-

ios. Hence, rather than presenting all plans, we group
similar plans and only present 3-6 clusters of plans to
the end user. We cluster plans according to the predi-
cates present in the last state. Given that the number
of ground predicates (i.e, F) is finite, we first represent
each plan through a bit array of the same size such that
1 indicates the predicate is in the final state, and 0 in-
dicates that the predicate is not in the final state. To
determine the Euclidean distance between two plans,
we compute a XOR of the corresponding bit arrays
and take the square root of the sum of 1 bits. Nor-
mally, we want to avoid plans with opposite predicates
(e.g., weakening/strengthening economic environment,
increase/decrease in inflation, etc.) ending up in the
same cluster. To ensure this, we add a penalty factor
to the number of 1 bits we use to compute the distance
for every pair of opposite predicates. Given this distance
function for each pair of plans, we compute a dendro-
gram bottom-up using the complete-linkage clustering
method (Defays 1977). The user can specify a minimum
and maximum consumable number of scenarios. These
settings are used to perform a cut through the dendro-
gram that yields the number of plans in the specified
interval with the optimal Dunn index (Dunn 1973), a
metric for evaluating clustering algorithms that favors
tightly compact sets of clusters that are well separated.
After post-processing is complete, we automatically

perform several tasks to prepare the scenarios for pre-
sentation. First, we separate the predicates in each clus-
ter (scenario) into business implications and regular
predicates. At the same time, we separate probable and
possible predicates in each of these categories by de-
termine the proportion of plans where the predicate is
present in the last state from all plans in the scenario;
predicates that appear in more than 66% of plans are
put into the probable category, those that appear be-
tween 25% and 66% are placed in the possible category.
Second, we identify discriminative predicates, i.e. pred-
icates that appear early on the plans that are part of
one scenario but not other scenarios (i.e., they tend to
lead to this scenario and not others); these are useful to
monitor in order to determine early on whether a sce-
nario is likely to occur. Third, we compute a summary

of all plans that are part of the scenario and present
this as a graph to the user. Figure 5 shows an exam-
ple of this graph. This serves as an explanatory tool
for the predicates that are presented in each scenario.
This graph also shows how the different Mind Maps are
connected with each other through concepts that are
shared between them.

7 Experimental Evaluations
In this section, we evaluate: (1) the performance of the
planner, (2) quality of the clusters measured by the
size of the cluster, and (3) how informative each clus-
ter measured by number of predicates and business im-
plications. In the next section, we provide details on
the pilot deployment of the Scenario Planning Adviser
(SPA) tool, feedback and the lessons learned in inter-
acting with the domain experts as well as the business
users. All our experiments were run on a 2.5 GHz Intel
Core i7 processor with 16 GB RAM.
We compare the performance of the planner on our

two proposed methods to translate the Mind Maps
into a planning domain: “ungrounded” and “grounded”.
The “grounded” method creates 670 actions when con-
sidering the full set of Mind Maps. We remove some
of these Mind Maps creating 403 actions instead and
report on that result under the “ungrounded small”
method. To increase the difficulty of the problem, we
increase the size of the O. Observations are chosen ran-
domly from the set of possible observations.
Table 2 presents a comparison between “ungrounded

small” and “grounded”. The objective of this experi-
ment is to show how the planning domain size influence
performance and the generated clusters. All numbers
shown in each row are averages over 10 runs of the same
type of problem, where the same number of observa-
tions is considered in both cases. The columns show the
planning performance in seconds, total number of busi-
ness implications, G, number of actions, A, number of
observations O, number of discarded observations in the
optimal plan, “# of Discards”, number of plans consid-
ered for scenario generation, “# of Plans”, and number
of scenarios generated “# of Scenarios”. We also show
the average, standard deviation, max, and min count
on the number of members of each cluster, number of
predicates, and number of business implications in each
scenario. We used a timeout of 900 seconds. The prob-
lems with 30 or more observations did not finish within
the time limit.
The results show that the performance of the plan-

ner depends on both the number of observations and
the size of the domain, as expected. As the number of
observations grow the planner’s performance worsens
but this does not influence the number of plans, the
number of scenarios, size of the clusters, or the number
of scenario predicates. However, the number of business
implications decreases, as expected, as the observation
size grows. Looking at the average number of cluster
members, the average number of scenarios predicates,
and the average number of bossiness implications, the
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#of #of #of Cluster Members Scenario Predicates Bis Implications
Time |G| |A| |O| Discards Plans Scenarios Avg σ Max Min Avg σ Max Min Avg σ Max Min

U
n
g
ro
u
n
d
e
d
S
m
a
ll

0.03 65 403 1 0.0 129.0 3.8 37.0 28.6 76.9 11.2 9.6 2.7 13.5 6.6 4.8 1.7 7.1 2.7
0.03 65 403 2 0.5 141.7 3.8 39.9 31.7 83.4 6.5 9.8 3.1 13.7 5.4 4.1 1.7 6.1 1.8
0.05 65 403 4 1.6 120.5 3.6 34.6 27.9 72.1 7.9 10.9 2.7 13.9 6.9 3.7 1.2 5.3 2.1
0.22 65 403 8 4.4 122.4 3.8 34.8 33.4 82.6 4.3 10.0 2.4 13.0 6.9 2.1 0.9 3.5 1.3
0.80 65 403 10 5.0 112.6 4.5 25.6 26.0 71.5 5.6 7.6 2.0 10.1 5.4 2.3 0.8 3.8 1.6
2.33 65 403 12 5.9 100.1 4.2 25.3 20.7 56.2 4.4 9.4 1.4 11.1 7.4 1.7 0.4 2.6 1.2
9.16 65 403 15 8.8 104.8 3.9 30.2 25.6 68.5 8.8 10.6 1.2 12.4 8.8 1.9 0.4 2.8 1.5
27.85 65 403 18 9.9 92.8 4.8 20.2 23.5 61.3 3.0 8.5 1.2 10.3 6.7 1.6 0.5 2.4 1.3
103.71 65 403 20 11.3 117.7 3.9 30.9 26.8 68.0 3.7 9.0 1.4 11.0 7.3 1.8 0.6 2.5 1.0
179.90 65 403 23 14.9 103.7 4.1 26.3 21.2 58.6 4.4 9.0 1.4 11.1 6.9 1.9 0.6 2.7 1.2
282.87 65 403 26 16.9 90.6 4.9 20.3 19.0 53.5 5.3 9.5 1.1 11.3 7.8 1.6 0.3 2.0 1.3

U
n
g
ro
u
n
d
e
d

0.03 112 670 1 0.0 91.5 4.4 24.4 16.6 48.6 6.6 7.0 2.5 10.4 4.3 4.5 1.7 6.6 2.2
0.04 112 670 2 0.4 132.1 4.3 34.4 32.2 80.3 3.7 8.0 3.0 11.7 4.0 3.8 1.8 6.1 1.5
0.08 112 670 4 1.5 114.1 3.6 32.9 30.7 77.9 4.3 10.2 2.9 13.2 6.1 3.6 1.4 6.0 2.3
0.35 112 670 8 3.7 109.7 3.6 31.5 24.6 65.9 7.0 9.1 1.9 11.4 6.5 3.8 1.3 5.4 2.3
1.17 112 670 10 5.1 139.4 4.2 34.6 27.9 73.2 5.9 7.8 2.0 10.1 4.9 2.6 0.8 3.9 1.6
3.35 112 670 12 5.4 99.5 4.8 22.8 24.8 64.7 3.5 8.6 1.9 11.0 6.3 1.6 0.4 2.8 1.2
22.01 112 670 15 8.1 92.3 4.1 23.3 22.1 57.9 3.2 9.9 1.8 12.0 7.0 2.5 1.0 4.0 1.5
85.73 112 670 18 9.4 88.5 4.3 22.2 19.2 51.6 6.7 7.2 1.1 8.7 5.5 2.2 0.3 2.7 1.7
144.89 112 670 20 10.7 124.3 5.1 26.0 19.4 57.0 5.0 9.0 1.0 10.0 7.2 2.1 0.2 2.3 1.9
284.73 112 670 23 14.5 106.8 4.8 24.5 23.9 62.5 4.0 8.6 1.6 10.6 6.5 2.9 0.6 3.6 2.0
511.95 112 670 26 16.8 80.0 4.7 17.2 9.0 30.2 7.8 7.8 1.0 9.5 6.5 1.7 0.7 2.8 1.2

Table 2: Comparison between “ungrounded” and “ungrounded small” as we increase the number of observations:
“grounded” considers all of the Mind Maps, “ungrounded small” considers a smaller set of Mind Maps.

Figure 6: Planning performance comparison between the
“grounded” and “ungrounded” methods, as we increase the
number of observations. The time is in seconds and is shown
in logarithmic scale.

results show that the clusters in both cases are balanced
and informative.
We also compare the planning performance between

two methods of translating the Mind Maps. The results
in logarithmic scale is shown in Figure 6. Each shown
point in the figure is an average over 20 instances. The
results show that in our current implementation, as the
number of observations increases, planning performance
using the “ungrounded” method is significantly better
than the “grounded” method.
Considering problems with 20, 23, and 26 observa-

tions, we also looked at the number of discarded obser-
vations in the optimal plan in each case. This indicates
whether or not the observations are explainable in a

Figure 7: Planning performance comparison between two
methods (i.e, “grounded” and “ungrounded”) as the number
of discarded observations in an optimal plan increases when
considering problems with 20, 23, and 26 observations. The
time is in seconds and is shown in logarithmic scale.

single path through the Mind Maps. The results in log-
arithmic scale is shown in Figure 7. The results confirm
that the performance of the “ungrounded” method is
better than the “grounded” method. It also shows that
as the number of discarded observation increases, the
planning time decreases. This seems to indicate that
the planner identifies the unexplainable observations,
through its heuristics, and does not spend time on ex-
plaining the unexplainable observations.

Based on these results, we conclude that performance
of the planner depends on number of observations, the
size of the domain, the method used in the translation of
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the Mind Maps, as well as the number of unexplainable
observations. Given this result, we deployed the “un-
grounded” method and use the full set of Mind Maps.

8 User Experience
The SPA tool was evaluated in a pilot deployment
with 7 teams of business users, whose responsibilities
included risk management within their business area.
For those teams SPA was introduced together with the
new scenario planning process; hence, there was no pre-
automation baseline available to compare against. In
addition the functionality provided by the tool cannot
be reproduced manually due to the broad news analysis
the tool provides.
The Mind Map were developed over the course of

three months by one enterprise risk management ex-
pert working with an assistant and in consultation with
other experts. While Mind Maps in general can be in
any form, we briefly educated the domain expert to pro-
vide Mind Maps that have one force (e.g., currency dep-
recation against US dollar) as their main concept and
provide causes and consequences of this force in one
Mind Map; the concepts with an edge to the central
concept and the concepts with an edge from the main
concept and their cascading effects where the last effect
is either a business implication or another force with
its own separate Mind Map. This ensures that we can
automatically translate the Mind Maps into a planning
language. We used 23 Mind Maps in the pilot deploy-
ment and used the “ungrounded” method to translate
the Mind Maps. The resulting planning problem that
aggregates the knowledge of all Mind Maps (i.e., the
grounding of the actions based on the edges on the Mind
Maps) has around 350 predicates and 670 actions.
Additionally, the end users (i.e., the analysts) pro-

vided us with a list of possible keywords, such as organi-
zations of interest, key people, key topics, and were able
to pick the relevant sequence of observations when we
presented them with the summary of relevant news and
RSS publications. For RSS publications, around 3,000
news abstracts from 64 publishers, and for Twitter,
around 73,000 tweets from around 32,000 users matched
our keyword search criteria.
The teams have universally found the tool easy to use

and navigate. Although no detailed feedback was col-
lected for each scenario, the teams have reported that
approximately 80% of generated scenarios had identi-
fied implications directly or indirectly affecting the busi-
ness. By design, the tool is trying to help the business
users to think outside the box and it is expected that
some of the scenarios it generates will not be relevant.
Judging by the provided comments, the teams whose
business is affected by frequent political, regulatory and
economic change have found the tool more useful than
those operating under relatively stable conditions.
In addition, the teams found the explanation graph,

visualization of a set of plans, essential to the adapta-
tion of the tool (Figure 5). They believe that the expla-
nation graph “demystifies” the tool by providing them

with an explanation of why they are presented with a
particular scenario. This is critical for the business users
or policy-makers who would be basing their decisions on
the generated scenarios.
The suggestions for improvement focused primarily

on the need for further automated assistance in select-
ing observations based on the news, to ensure that no
important context is lost, and on the additional in-
formation about the scenarios. Several teams have re-
quested confidence levels or at least ranking informa-
tion provided with the generated scenarios. We believe
this is an interesting future direction and believe more
accurate models are required in order to provide that
additional information.
In working with the domain experts and users from

the start of the pilot deployment, we learned several
lessons: (1) The users are interested in being presented
with several scenarios rather than one along with the
explanation of each scenario. This captures the possible
alternatives rather than a precise prediction, analogous
to a generation of a multiple plans rather than a single
(optimal) plan; (2) The users wanted personalized sce-
narios specific to their particular use case. To address
that we consider the Mind Maps as a template that
holds true for all use cases and allow personalization of
the scenarios by incorporating different weights of the
edges of the Mind Maps. As mentioned previously we
automatically generate a serious of questions in order
to obtain the impact and likelihoods that are specific
to a use case. Hence, computing a set of high-quality
plans for different use cases results in different set of
plans, which in turn results in different scenarios; (3)
The domain experts found themselves continuously up-
dating the Mind Maps after interacting with the tool
and we had to enable those continuous updates. In ad-
dition to building the automated technique of translat-
ing the Mind Maps to planning language, we assigned
unique identifiers to each of the concepts in the Mind
Maps. This allowed us to develop scripts for supervised
detection and propagation of the associated knowledge
throughout theses changes.

9 Related Work and Summary
There exist a body of work on the plan recognition
problem with several different approaches (e.g., (Zhuo
et al. 2012)). However, most approaches assume that
the observations are perfect, mainly because they do
not take as input the raw data and that they do not
have to analyze and transform the raw data into ob-
servations (Sukthankar et al. 2014). Also, most plan
recognition approaches assume plan libraries are given
as input, whereas we use AI planning (Goldman et
al. 1999). Furthermore, there is a body of work on
learning the domain knowledge (Yang et al. 2007;
Zhuo et al. 2013). Our focus in addressing knowledge
engineering challenges was to transform one form of
knowledge, expressed in Mind Maps, into another form
that is accessible by planners. Learning can be benefi-
cial in domains in which plan traces are available.
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In this paper, we applied AI planning techniques for
a novel application, scenario planning for enterprise
risk management and addressed knowledge engineering
challenges of encoding the domain knowledge from do-
main experts. To this end, we designed Scenario Plan-
ning Adviser (SPA), that takes as input the raw data,
news and social media posts, and interacts with the
business user to obtain key observations. SPA also al-
lows upload of Mind Maps, as one way of expressing the
domain knowledge by the domain experts, and obtains
additional information based on these Mind Maps by an
automatically generated questionnaire. SPA then auto-
matically generates scenarios by first generating large
number of plans and then clustering the generated plans
into a small set (i.e., 3-6) in order to be consumable by
a human user. The SPA system is in pilot deployment
with several teams of business users. The feedback we
have received so far have been positive and show that
our approach seems promising for this application.
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Abstract

The paper presents attribute grammars as a unifying frame-
work for modeling planning domains and problems. The mo-
tivation is to exploit techniques from formal languages in do-
main model verification, plan and goal recognition, domain
model acquisition, as well as in planning. Grammar rules are
used for action selection while a specific set attribute is used
to collect events (preconditions and effects of actions) that
are ordered using a global timeline constraint. We show how
classical STRIPS, hierarchical task networks, and procedural
domain models are transformed to attribute grammars.

Introduction

There is an increasing interest in the connection between au-
tomated planning and formal language theory. As pointed
in (Geib and Steedman 2007), there are many commonal-
ities between these two fields. Generating valid sentences
from a set of syntactic rules can be compared to planning
from a set of actions and state variables, that implicitly de-
fine acceptable orderings of these actions. In the other way,
parsing, as the process of assessing whether or not a sen-
tence is grammatically correct with respect to a grammar, is
close to plan recognition where the objective, given obser-
vations, is to recognize the goal of an agent with respect to
a, generally hierarchical, model of actions. Links between
these fields have lead to some bridging tentatives, for ex-
ample in (Koller and Petrick 2011), where the problem of
sentence generation is tackled with a planning technique.
Generally speaking, highlighting similarities between sub-
fields may open new areas of research. It allows to consider
progresses made in both fields to be beneficial to each other.

More specifically, it has already been noted that derivation
trees of Context-Free (CF) grammars resemble the structure
of Hierarchical Task Networks (HTN). This has been used
in (Erol, Hendler, and Nau 1996) to show the expressive-
ness of planning formalisms. Then, there have been some at-
tempts to represent HTNs as CF grammars or equivalent for-
malisms (Nederhof, Shieber, and Satta 2003) but as demon-
strated in (Höller et al. 2014), the languages defined by HTN
planning problems (with partial-order, preconditions and ef-
fects) lie somewhere between CF and context-sensitive (CS)
languages. In (Geib 2016), the author presents an approach
with a similar intention with the help of Combinatory Cate-
gorial Grammars (CCGs), which are part of a category lying

between CF and CS grammars, the mildly context-sensitive
grammars. The author proposes a single model for both plan
recognition and planning and he also proposes a planning al-
gorithm based on CCGs. However, it appears that this mod-
eling process is counter-intuitive as it requires a lexicaliza-
tion (the hierarchical structure is contained in the terminal
symbols) while decomposition models are more natural in
planning. Also, it is not yet sure that this formalism and its
planning technique can produce the full range of HTN plans.

Though there is intrinsic similarity between task decom-
position in HTNs and symbol rewriting in grammars, there
does not exist any approach showing that a full HTN model
can be represented using a formal grammar. The major
problem is that actions obtained from different high-level
tasks may interleave in the plan to satisfy causal links (see
the example in Figure 1, where high-level tasks for trans-
ferring two containers interleave to share common move-
r actions). The hierarchical structure of the derivation tree
cannot solely describe such interleaving. Therefore, we pro-
pose using attribute grammars with the timeline constraint
to model HTNs (and STRIPS and procedural domain mod-
els), where the grammar describes the hierarchical structure
while the timeline constraint ensures the correct ordering of
actions satisfying the causal links.

Attribute grammars have been introduced by Knuth
(Knuth 1968) to add semantics to CF grammars, making
them able to express CS languages. The idea is to add a
set of attributes (variables) to each symbol (terminal or non-
terminal) and attribute computation rules, modifying the val-
ues of attributes depending on the values of other attributes,
to each production rule of the grammar. These grammars
were originally used for the design of compilers but they
are now used for other applications (solving knapsack prob-
lems for example (Cleary and O’Neill 2005)). Recently,
attribute grammars have been used to model nested work-
flows (Barták 2016), a process-modeling framework that
have common points with hierarchical planning. With this
approach, it was possible to derive a verification algorithm
from the classical reduction techniques used in CF gram-
mars (Barták and Dvořák 2017). This algorithm verifies that
nested workflows are internally consistent (e.g. every branch
of a workflow can be used in a valid process), that is, the
workflow has been well modeled. We are not aware of any
similar method for planning domain models.
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In this paper, we extend attribute grammars with a set at-
tribute and a global timeline constraint and we show that this
formalism can represent STRIPS planning, HTN planning
(with or without task insertion), and also procedural plan-
ning domain models. This is the first time when such a con-
version has been done for a full HTN model with action in-
terleaving and hence attribute grammars may serve as a truly
unifying framework for various planning domain models.
The results are presented for classical sequential planning
with propositional state representation, but they can be nat-
urally extended to temporal planning with resources, state
variables, and action costs.

Attribute Grammars

An attribute grammar is basically a CF grammar, where the
symbols are annotated by sets of attributes. In the orig-
inal formulation (Knuth 1968), the values of synthesized
attributes were calculated from the values of inherited at-
tributes using semantic rules, which were assignment state-
ments. We use a later generalization, where the attributes are
connected by constraints – relations between the attributes in
the sense of constraint satisfaction problems (CSPs). Briefly
speaking, the attribute grammar generates words consisting
of terminal symbols, exactly as the context-free grammar
does, but additionally, the values are assigned to all attributes
such that all the constraints are satisfied.

Formally, an attribute grammar is defined as a tuple G =
(Σ, N,P, S, A,C) where Σ is an alphabet — a finite set of
terminal symbols, N is a finite set of non-terminal symbols
with S as the start symbol, P is a set of rewriting (produc-
tion) rules (see below), A associates each grammar symbol
X ∈ Σ ∪ N with a set of attributes, and C associates each
production R ∈ P with a set of constraints over the at-
tributes of symbols used in the rule. G = (Σ, N,P, S) is
a classical CF grammar with production rules having the
form X → w where X ∈ N is a non-terminal symbol
and w ∈ (Σ ∪ N)∗ is a finite sequence of terminal and
non-terminal symbols. In the following, we will write the
constraints associated with a rule inside brackets [ ]. If A

are the attributes for symbol X , we will write X( ~A). The

production rule X( ~A) → u[c] is used to rewrite a word w
with constraints C to word w′ with constraints C ′, denoted

as (w,C) ⇒ (w′, C ′), if and only if w = u1.X( ~B).u2,

C ′ = C ∪{ ~A = ~B}∪ c, and C ′ is a consistent CSP over the
variables from attributes of w′, where w′ = u1.u.u2. Then
the language generated by an attribute grammar G is:

L(G) = {wσ | (S, ∅) ⇒∗ (w,C), w ∈ Σ∗, σ solves C}

where σ is an instantiation of attributes (substitution of val-
ues to variables) satisfying the constraints C and wσ means
applying substitution σ to w, i.e. a word w where the at-
tributes are substituted by values defined in σ. The CSP C
is obtained by collecting the constraints from the rules used
in the derivation of the word w.

To demonstrate the capabilities of attribute grammars, let
us start with a classical context-free grammar for the lan-
guage aibjck (capital letters denote non-terminal symbols,

terminals are denoted by lower-case letters):

S → A.B.C (1)

A→ a|a.A (2)

B → b|b.B (3)

C → c|c.C (4)

After adding attributes and constraints between them, the
attribute grammar can describe the well-known context-
sensitive language aibici:

S(n) → A(na).B(nb).C(nc) [n = na = nb = nc] (5)

A(n) → a [n = 1] (6)

A(n) → a.A(m) [n = m+ 1] (7)

B(n) → b [n = 1] (8)

B(n) → b.B(m) [n = m+ 1] (9)

C(n) → c [n = 1] (10)

C(n) → c.C(m) [n = m+ 1] (11)

Assume now, that we want to index each terminal symbol
(via its attribute) by a unique number between 1 and the to-
tal number of symbols in the word and we want the grammar
to generate all such words, such as a1b2c3, a1b3c2, a2b1c3
etc. We propose to extend further the attributes by allowing
a set as a value of the attribute and by using constraints over
these sets. The idea of the grammar is based on collecting
the indexes in a set attribute, defining the domain of indexes
using a single dom constraint, and using the global constraint
allDiff over this set (Régin 1994). The following gram-
mar generates the requested language (the set attributes are
denoted by the capital letters):

S(n, I) →A(na, Ia).B(nb, Ib).C(nc, Ic)

[n = na = nb = nc, I = Ia ∪ Ib ∪ Ic,

dom(I, 1, 3n), allDiff(I)] (12)

A(n, I) →a(i)

[n = 1, I = {i}] (13)

A(n, I) →a(i).A(m, I ′)

[n = m+ 1, I = I ′ ∪ {i}] (14)

B(n, I) →b(i)

[n = 1, I = {i}] (15)

B(n, I) →b(i).B(m, I ′)

[n = m+ 1, I = I ′ ∪ {i}] (16)

C(n, I) →c(i)

[n = 1, I = {i}] (17)

C(n, I) →c(i).C(m, I ′)

[n = m+ 1, I = I ′ ∪ {i}] (18)

Note that when implementing the word generator for such
grammars, one may exploit so called open (dynamic) global
constraints, where the set of constrained variables can ex-
tend (and shrink) during problem solving (Barták 1999).
Hence the constraint allDiff can be posted to the con-
straint store immediately, when the rule (12) is applied,
rather than waiting until all the indexes I are collected.
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Planning and Timeline Constraint
In this paper we will describe formal domain models for
classical sequential planning that deals with sequences of
actions transferring the world from a given initial state to a
state satisfying certain goal condition. World states are mod-
eled as sets of propositions that are true in those states and
actions are changing validity of certain propositions.

Formally, let P be a set of propositions, then a state
S ⊆ P is a set of propositions that are true in that state
(every other proposition is false). Each action a is de-
scribed by four sets of propositions (B+

a , B
−

a , A
+
a , A

−

a ),
whereB+

a , B
−

a , A
+
a , A

−

a ⊆ P,B+
a ∩B−

a = ∅, A+
a ∩A−

a = ∅.
Sets B+

a and B−

a describe positive and negative precondi-
tions of action a, that is, propositions that must be true and
false right before the action a. Action a is applicable to state
S iffB+

a ⊆ S∧B−

a ∩S = ∅. SetsA+
a andA−

a describe posi-
tive and negative effects of action a, that is, propositions that
will become true and false in the state right after executing
the action a. If an action a is applicable to state S then the
state right after the action awill be γ(S, a) = (S\A−

a )∪A
+
a .

If an action a is not applicable to state S then γ(S, a) is un-
defined.

The classical planning problem consists of a set of ac-
tions A, a set of propositions S0 called an initial state, and
disjoint sets of goal propositions G+ and G− describing the
propositions required to be true and false in the goal state.
A solution to the planning problem is a sequence of actions
a1, a2, . . . , an such that S = γ(...γ(γ(S0, a1), a2), ..., an)
and G+ ⊆ S ∧ G− ∩ S = ∅. This sequence of actions is
called a plan.

In our formal models, we will separate generation of ac-
tions (using grammar rules) and their sequencing to get valid
plans. These valid sequences will be enforced by a timeline
constraint defined over events imposed by the actions. As-
sume that action a is an action at position k in the plan. This
action imposes the following set of events

events(a, k) = {b+(k, p) | p ∈ B+
a } ∪ {b−(k, p) | p ∈ B−

a }

∪ {a+(k, p) | p ∈ A+
a } ∪ {a−(k, p) | p ∈ A−

a }.

We call b+ and b− before-events and they correspond to
action preconditions, while a+ and a− are after-events de-
scribing action effects. If the position of action in the plan
is unknown then k is a variable. The timeline constraint en-
sures that instantiation of these time variables will order the
actions to get a valid plan. We will first describe the se-
mantics of the timeline constraint over events with the same
proposition.

Let TLp be a multiset1 of events related to proposition p.
The constraint Timeline(TLp) is consistent if and only if it
is possible to linearly order the events in TLp such that they
describe a correct evolution of the proposition p. Formally,
let n = |TLp| be the number of events in TLp. A solu-
tion of the timeline constraint is a linear ordering of events,
represented by the mapping of events to the set {1, . . . , n},
and instantiation of time indexes of events satisfying the fol-
lowing constraints. Let ei and ei+1 be two events such that

1We allow the same event to appear more times in the set to
model events originated from task decomposition in HTN models.

ei is right before ei+1 in the linear order mentioned above.
Then only the following transitions between the events are
allowed:

ei ei+1 constraints

ax(k, p) ay(l, p) x, y ∈ {+,−}, k < l

bx(k, p) ay(l, p) x, y ∈ {+,−}, k ≤ l

ax(k, p) bx(l, p) x ∈ {+,−}, k < l

bx(k, p) bx(l, p) x ∈ {+,−}, k ≤ l

Briefly speaking, the first two rows of the above table say
that an after-event can follow any other event (but two after-
events cannot happen at the same time as it is not possible to
set the value of the proposition two times at the same time).
The last two rows say that a before-event must follow events
of the same ”value“, either the requested value of the propo-
sition was set by the previous after-event or it was already
verified by the previous before-event so it has been set even
earlier. Notice that the above transition constraints require
events to be ordered by their time indexes.

If TL is a multiset of events related to propositions from
the set P then the constraint Timeline(TL) is consistent iff
∀p ∈ P : Timeline(TL ↓ p) is consistent, where TL ↓ p
are all events from TL related to the proposition p.

Assume a multiset of n actions A (|A| = n), initial state
S0 and goal conditions G+ and G−. We can describe the
problem of deciding if the actions in A can be ordered to
get a valid plan for this planning problem using a timeline
constraint over the following set of events:

TL(A,S0, G
+, G−) =InitEvents(S0) ∪

GoalEvents(G+, G−, |A|)

∪
⋃

a∈A

events(a, ia)} (19)

InitEvents(S0) ={a+(0, p) | p ∈ S0} ∪

{a−(0, p) | p 6∈ S0} (20)

GoalEvents(G+, G−, n) ={b+(n+ 1, p) | p ∈ G+} ∪

{b−(n+ 1, p) | p ∈ G−} (21)

Notice that we use variables ia to describe the yet unknown
position of action a in the plan. The domain of these vari-
ables is {1, . . . , n} and we assume that different actions are
at different positions, which is enforced by the constraint
allDiff({ia|a ∈ A}).

Proposition 1. The plan with actions A (|A| = n) for the
initial state S0 and goal conditions G+ and G− exists if and
only if the following CSP has a solution:

Timeline(TL(A,S0, G
+, G−)) ∧

dom({ia|a ∈ A}, 1, n) ∧

allDiff({ia|a ∈ A})

Proof. (sketch) If there is a plan then actions in A are lin-
early ordered and the dom and allDiff constraints are sat-
isfied. Vice versa, if these constraints are satisfied then they
define a linear order of actions.
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Now, if we have a valid plan, it is easy to verify that events
can be linearly ordered to satisfy the timeline constraint for
each proposition. The first event will always be the after-
event defined by the initial state and then the action events
will be ordered increasingly by the time indexes ia of the
actions. If action uses some proposition both in its precon-
dition and effect then the corresponding before-event will be
ordered right before the corresponding after-event. As the
plan reaches the goal, the before-events defined by the goal
conditions can be placed at the ends of corresponding time-
lines while satisfying the transition constraints in the time-
lines.

Vice versa, if we have a linear sequence of actions such
that their corresponding events are consistently ordered us-
ing the timeline constraint, one can verify that action pre-
conditions are satisfied (for each before-event there is some
after-event of the same value that is placed earlier in the se-
quence and no action in between them destroys this causal
link). The goal events must be placed at the ends of cor-
responding timelines due to their time indexes and using
the similar argument as for action preconditions, these goal
events must be satisfied by some previous after-events of the
same value.

Running example

In the next section, we will show how to translate planning
domain models into attribute grammars. We will use a sim-
plified Dock-Worker Robots (DWR) domain (Ghallab, Nau,
and Traverso 2004) to give particular examples of grammar
rules. The goal in DWR is to transfer containers from their
start locations to destinations. For that, the container can be
loaded onto a robot that can itself move between adjacent
locations. This domain consists of four primitive actions,
that are used to build a STRIPS model, and five compound
tasks for the HTN model. The no-op action is used in the
HTN model when the robot is already in the requested loca-
tion (Movefake). There is one method for each task, except
for the Move-rob task that has two methods (Figure 1). No-
tice also that plans for tasks Tranfer1 may interleave when
locations are shared between containers.

Planning Domain Modeling using Attribute

Grammars

Attribute grammars have already been proposed as a model-
ing framework for workflows (scheduling problems) (Barták
2016). In this paper we will demonstrate that they can
also be used to describe planning domain models. We will
present the models for classical propositional representation
of planning domains introduced in the previous section.

The core idea of models is that the attribute grammar gen-
erates the actions (represented by the terminal symbols) in
the plan, though the order of terminals in the word is not rel-
evant, the time indexes will be used to determine the proper
action order in the plan. The Timeline, allDiff, and dom

constraints expressed over the indexes will model the order
of actions and causal relations. This way it is possible to
describe feasible plans fully by the means of attribute gram-
mars without the need of any external mechanism (beyond

the constraint solver). As far as we know, this is the first time
when a pure formal grammar formalism is shown to describe
various planning domain modeling formalisms completely.

STRIPS Domain Models

A STRIPS-style planning domain defines a regular language
(Erol, Hendler, and Nau 1994), which is recognizable by a
finite-state automaton (Kleene’s Theorem). Hence a natural
representation for STRIPS planning with attribute grammars
is using a single non-terminal symbol T that generates ac-
tions using a simple rewriting rule T (S) → a.T (S′) and
that disappears when a goal state is reached. The evolu-
tion of the state is put into attributes. When generating a
sentence, before choosing one of the rules (one of the ac-
tions), action preconditions must be valid in the current state
S, which can be verified by the rule constraints. Similarly
the change of the state from S to S′ can be described using
a state transition constraint.

In this paper, we do not use this representation because
it implies that forward planning is the only applicable plan-
ning technique. In our framework, we will rather use the
attribute grammar to generate actions in the plan and the
Timeline constraint to sequence them. The planner can
then exploit forward, backward, or partial-order planning
approaches to generate the plans. Moreover, this model can
later be integrated with our HTN model to include task in-
sertion.

Formally, STRIPS planning domains can be represented
using an attribute grammar with two non-terminal symbols
S and Tgen. The top-level rule of the grammar is:

S(S0, G
+, G−) →Tgen(I,TL

′) (22)

[n = |I|, dom(I, 1, n), allDiff(I),

TL = TL
′ ∪ InitEvents(S0)

∪ GoalEvents(G+, G−, n),

Timeline(TL)]

For each action ak ∈ A, we introduce the following rule:

Tgen(I,TL) →ak(i).Tgen(I
′,TL′) (23)

[I = I ′ ∪ {i},TL = TL
′ ∪ events(ak, i)]

Finally, the following rule will stop generating actions:

Tgen(I,TL) →λ [I = ∅,TL = ∅] (24)

The described grammar, let us call it a STRIPS grammar,
generates words corresponding to valid plans. Note how-
ever, that the order of actions in the word does not neces-
sarily correspond to the order of actions in the plan, which
is determined by the Timeline constraint. The order of ac-
tions in the word corresponds to the order in which the plan-
ner introduced them. Hence, for a single plan there might be
several words generated by the grammar.

Proposition 2. Let S0 be an initial state and G+ and G−

be the goal conditions. Then for each valid plan for the se-
quential planning problem defined by S0, G+, andG− there
exists a word generated by the corresponding STRIPS gram-
mar from the symbol S(S0, G

+, G−) such that the word
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Figure 1: A DWR planning domain (taken from (Ghallab, Nau, and Traverso 2004) and modified); HTN methods (in plain
italics) describe how compound tasks (in bold) are decomposed into subtasks until primitive tasks (in bold italics) are obtained.

contains exactly the actions from the plan in the same or-
der. Vice versa, each word generated by the STRIPS gram-
mar from the symbol S(S0, G

+, G−) describes a valid plan
for the sequential planning problem defined by S0, G+, and
G−.

Proof. If there is a valid plan, that is, a sequence of actions,
the grammar rules (23)-(24) can generate the same sequence
of actions. The grammar rule (22), that initiates generation
of the word, adds the events corresponding to the initial state
and goal conditions to the timeline and posts the Timeline,
dom, and allDiff constraints. According to Proposition 1
these constraints are consistent and hence the grammar gen-
erates the described word.

Vice versa, if a terminal word is generated by the STRIPS
grammar then the grammar rule (22) is used first so the
above constraints are introduced. As they are satisfied by
the generated word and according to Proposition 1 the word
corresponds to a plan that is obtained by ordering the actions
based on their time indexes.

Example. Here is one example rule for the grounded ac-
tion move-r(r, l, l′) from the DWR domain. The action is
represented as a terminal symbol move-rr,l,l′ .

Tgen(I,TL) →move-rr,l,l′(i).Tgen(I
′,TL′) (25)

[I = I ′ ∪ {i},

TL = TL
′ ∪ events(move-rr,l,l′ , i)]

where

events(move-rr,l,l′ , i) ={b+(i, at(r, l)), (26)

b+(i, adjacent(l, l′)),

a+(i, at(r, l′)), a−(i, at(r, l))}

Hierarchical Task Networks Domain Models

Hierarchical Task Networks (HTN) planning (Erol,
Hendler, and Nau 1996) is a formalism in which problems
are structured in a hierarchical way. While there are only
actions (called also primitive tasks) in a classical planning
problem, HTN planning introduces abstract compound tasks
that are referring to hierarchies of other compound tasks and

primitive tasks. The compound task decomposes to a task
network, which is a pair (T, ψ), where T is a finite set of
tasks, and ψ is a set of constraints that a plan must satisfy to
be valid. The constraints may be of two types:

• ordering constraints between tasks from T ,

• before and after constraints that are generalizations, re-
spectively, of preconditions and effects for tasks; for ex-
ample before(Q, p), whereQ ⊆ T means that proposition
p must be true right before the first task from Q and simi-
larly after(Q, p) means that p must be true right after the
last task from Q.

For a single compound task, there may be several methods
to realize it, that is, to decompose it to a task network. For-
mally, a method is a pair (ct, tn), where ct is a compound
task, and tn is a task network. One of the decision points in
HTN planning consists in choosing which method to apply.

In an HTN planning problem we are given an initial task
network tn0, that plays the role of a goal (the tasks to be
solved by decomposing them to actions), and an initial state
S0. To solve the problem one needs to decompose all tasks
in tn0 by available methods until primitive tasks (actions)
are obtained and these primitive tasks need to be linearly
ordered to form a plan that is applicable to the initial state
S0. Also, all the ordering, before, and after constraints that
are introduced during task decompositions must be satisfied.

HTN planning naturally resembles the idea of CF gram-
mars, but because of the other constraints a more powerful
mechanism is necessary (Höller et al. 2014). Now we detail
how to translate an HTN problem into an attribute grammar
with set attributes. We will use one starting non-terminal
symbol S, non-terminal symbols TN i for task networks,
and non-terminal symbols Ti for tasks (both compound and
primitive). Actions will correspond to terminal symbols.

For the top-level symbol of the grammar, the initial rule
generates the initial task network tn0 and adds the events
corresponding to the initial state S0. This is also where the
global constraints including the Timeline constraint are in-
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troduced:

S(S0) →TN 0(I,TL
′) (27)

[n = |I|, dom(I, 1, n), allDiff(I),

TL = TL
′ ∪ InitEvents(S0),

Timeline(TL)]

The task network tn0 = ({t1, . . . , tm}, ψ) is described
using a single rewriting rule that generates the tasks
{t1, . . . , tm} and introduces the constraints ψ; the same ap-
proach can be used for other task networks in the HTN
model:

TN 0(I,TL) →T1(I1,TL1) . . . Tm(Im,TLm) [C] (28)

where the constraints C are in the following form:

C : I = I1 ∪ . . . ∪ Im,

TL = TL1 ∪ . . . ∪ TLm∪

∪ {b+(min∪tj∈QIj , p) | before(Q, p) ∈ ψ}

∪ {b−(min∪tj∈QIj , p) | before(Q,¬p) ∈ ψ}

∪ {b+(1 + max∪tj∈QIj , p) | after(Q, p) ∈ ψ}

∪ {b−(1 + max∪tj∈QIj , p) | after(Q,¬p) ∈ ψ},

max(Ii) < min(Ij) ∀(ti ≺ tj) ∈ ψ (29)

Notice how the events, obtained from the before and after
constraints, are defined. First, these events are modeled us-
ing the before-events because they define which proposition
and when should be true in the plan. In particular, differ-
ently from action effects, the after event is not making the
proposition true (or false), it only says that the proposition
should be true (or false) right after all the actions generated
from the corresponding tasks Q.

Now, for each method (tk, tnk) for the compound task
tk we introduce the following rewriting rule (note that there
might be more such rules for the non-terminal symbol Tk, if
there are more decomposition methods):

Tk(I,TL) →TN k(I,TL) [] (30)

and for each primitive task Tk that corresponds to action ak
we introduce the following rule:

Tk(I,TL) →ak(i) [I = {i},TL = events(ak, i)] (31)

Example. We show how to translate two compound tasks
from Figure 1 into rules of the attribute grammar. Rules 32-
34 translate methods Movereal and Movefake decomposing
the task Move-rob.

Move-robr,l,l′(I,TL) →Moverealr,l,l′(I,TL) | (32)

Movefaker,l,l′(I,TL)

Moverealr,l,l′(I,TL) →move-rr,l,l′(i) (33)

[I = {i},

TL = events(move-rr,l,l′ , i)]

Movefaker,l,l′(I,TL) → no-op(i) (34)

[I = {i},

TL = {b+(i, at(r, l′))}]

Notice that the no-op action is used to get index i in the plan
so the event is placed in the right place of the timeline.

The task Transfer1 is decomposed using a method
Transfer1cont which can be expressed using the following
rules 35 and 36 :

Transfer1c,l,l1,l2,r(I,TL) →Transfer1contc,l,l1,l2,r(I,TL)
(35)

Transfer1cont c,l,
l1,l2,r

(I,TL) →Move-robr,l,l1(I1,TL1).

Load-robc,r,l1(I2,TL2).

Move-robr,l1,l2(I3,TL3).

Unload-robc,r,l2(I4,TL4)

[C] (36)

where

C ={TL = TL1 ∪ TL2 ∪ TL3 ∪ TL4,

I = I1 ∪ I2 ∪ I3 ∪ I4, max(I1) < min(I2),

max(I2) < min(I3), max(I3) < min(I4)}

Proposition 3. Let S0 be an initial state and tn0 be the ini-
tial task network. Then for each valid plan obtained by the
decomposition of tasks in tn0 there exists a word generated
by the corresponding HTN grammar from the symbol S(S0)
such that the word contains exactly the actions from the plan
and their time indexes correspond to their order in the plan.
Vice versa, each word generated by the HTN grammar from
the symbol S(S0) describes a valid plan obtained by the de-
composition of tasks in tn0 and applicable to state S0

Proof. (sketch) If there is a valid plan obtained by the de-
composition of tn0 then the rewriting rules (27), (28), (30)
(31) can generate the actions in the plan. As the plan is
applicable to S0 then according to Proposition 1 (where
G+ = G− = ∅) the Timeline constraint over the action
events and events for the initial state is consistent. The plan
must also satisfy the ordering, before, and after constraints
from task networks used in the decompositions and hence
the constraints (29) are also consistent. Together, the ter-
minal word obtained by the rewriting rules mimicking the
decomposition process is generated by the HTN grammar.

A terminal word generated by the above HTN grammar
describes actions that can be obtained by decomposing the
initial task network tn0. Moreover, as the initial state and ac-
tion preconditions and effects are modeled using the events
that satisfy the Timeline constraint, the actions, when or-
dered by their time indexes, form a valid plan applicable
to the initial state S0 (Proposition 1). Finally the ordering,
before, and after constraints from task networks used in the
decomposition are also satisfied as they were added when
the corresponding rewriting rule (28) was applied.

HTNs with Task Insertion A pure HTN model requires
all actions to be generated by task decompositions only.
This may be limiting if the description of tasks, in particular
methods how to achieve the tasks, is incomplete. For such
a problem HTN with Task Insertion (TIHTN) was suggested
as a method where missing gaps in the task decomposition
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can be filled by arbitrary actions (Kambhampati, Mali, and
Srivastava 1998). To demonstrate versatility of the proposed
modeling framework, let us show how to model TIHTN us-
ing attribute grammars. The only necessary modification is
adding the rewriting rules (23)-(24) to the HTN grammar
and modifying the rule (27) as follows:

S(S0) →TN 0(I1,TL1).Tgen(I2,TL2) (37)

[I = I1 ∪ I2, n = |I|,

TL = TL1 ∪ TL2 ∪ InitEvents(S0),

dom(I, 1, n), allDiff(I),

Timeline(TL)]

Procedural Domain Models

Domain Control Knowledge (DCK) allows to express
domain-specific constraints over the definition of a valid
plan. When it is well-crafted, it can considerably reduce
the amount of search needed to get a solution. Proce-
dural DCK (PDCK) (Baier, Fritz, and McIlraith 2007) is
closer to a programming language than DCK as it includes
constructs from imperative programming languages such as
loops and conditionals. PDCK is closely related to HTN as
it is action-centric and provides plan templates or skeletons
of plans, constraining the appearance and order of actions
in a plan. For the domain described on Figure 1, a naive
PDCK program could be ”while there are some containers
in l1, choose any container and load it onto the robot, then
move to l2, and finally unload all the containers” (Figure 2).

Name of the atomic program Formal expression

Translation to AG

Empty program nil

Ti(j, j’,TL, ~V ) → λ [j’ = j,TL = ∅]

Single action a ∈ A a

Ti(j, j’,TL, ~V ) → a [j’ = j+1,TL = events(a, j)]

Choosing any action any

Ti(j, j’,TL, ~V ) → a [j’ = j+1,TL = events(a, j)]

∀a ∈ A

Test action θ?

Ti(j, j’,TL, ~V ) → λ [j’ = j,TL = {b+(j, p)|p ∈ θ} ∪

{b−(j, p)|¬p ∈ θ}]

Negated test action ¬θ?

Ti(j, j’,TL, ~V ) → λ [j’ = j,TL = {b−(j, p)}] ∀p ∈ θ

Ti(j, j’,TL, ~V ) → λ [j’ = j,TL = {b+(j, p)}] ∀¬p ∈ θ

Non-deterministic choice of vari-
able vk of type t

π(vk, t)

Ti(j, j’,TL, ~V ) → λ [j’ = j,TL = ∅, ~Vk = vk ∈ t]

Table 1: Translation of atomic programs to attribute gram-
mars rules.

Name of the composed
program

Formal expression

Translation to AG

Sequence of programs (σi1 ;σi2)

Ti(j, j’,TL, ~V ) →Ti1(j, j1,TL1, ~V ).Ti2(j1, j’,TL2, ~V )

[TL = TL1 ∪ TL2]

Conditional sentence if θi1? then σi2 else σi3

Ti(j, j’,TL, ~V ) →Ti1(j, j1,TL1, ~V ).Ti2(j1, j’,TL2, ~V )

[TL = TL1 ∪ TL2]

Ti(j, j’,TL, ~V ) →Tī1(j, j1,TL1, ~V ).Ti3(j1, j’,TL2, ~V )

[TL = TL1 ∪ TL2],where θī1 = ¬θi1
While-loop while θi1? do σi2
Ti(j, j’,TL, ~V ) →Ti1(j, j1,TL1, ~V ).

Ti2(j1, j2,TL2, ~V ).Ti(j2, j’,TL3, ~V )

[TL = TL1 ∪ TL2 ∪ TL3]

Ti(j, j’,TL, ~V ) →Tī1(j, j’,TL,
~V ),where θī1 = ¬θi1

Non-deterministic
choice between two
programs

(σi1 |σi2)

Ti(j, j’,TL, ~V ) →Ti1(j, j’,TL,
~V )

Ti(j, j’,TL, ~V ) →Ti2(j, j’,TL,
~V )

Non-deterministic itera-
tion

σ∗

i1

Ti(j, j’,TL, ~V ) →Ti1(j, j1,TL,
~V ).Ti(j1, j’,TL, ~V )

Ti(j, j’,TL, ~V ) →λ [j’ = j]

Table 2: Translation of composed programs to attribute
grammars rules.

PDCK naturally provides a more informed and directed
search. In (Baier, Fritz, and McIlraith 2007), the PDCK
language is based on a robot programming language. The
authors showed that it is possible to translate that language
to a non-deterministic finite automaton with λ-moves (NFA-
λ). Hence it is straightforward to model plans accepted by
that automaton using attribute grammars. However, we will
show that the original program can be directly encoded in an
attribute grammar to preserve its compactness. The PDCK
program itself can be recognized by a context-free grammar
so we take the derivation tree of a specific PDCK program
and define an attribute grammar based on it with attributes
modeling the evolution of state variables, the indexing of ac-
tions, and the global variables in the program.

As there is no interleaving of actions in plans generated
by the PDCK program, we may omit the I attribute collect-
ing the action indexes and substitute it by direct indexing of
actions. Two integer attributes will be used for that purpose.
The first attribute defines the index of the first action gener-
ated from the non-terminal symbol and the second attribute
defines the index of an action that will be right after the ac-
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Figure 2: A piece of PDCK program and its derivation tree.
The predicate clear(l) is true when there is no container in
location l. The predicate empty(r) is true when there is no
container on robot r. Each number between brackets refers
to one programming construct.

tions generated from a given non-terminal. We preserve the
timeline attribute TL, but note that events will only be added
to the end of the timeline as the program proceeds.

There are two PDCK programming constructs that need
extra explanation. One is a test action θ?, which is logi-
cal formula over the state variables. We assume that it is
a conjunction of propositions from the current state so it
can be represented as a set of propositions (both positive
and negative) that are assumed to be true (false) in the cur-
rent state, similarly to a precondition of an action. Note
that a disjunction can be modeled using a non-deterministic
choice between two programs. This is useful, if we need to
model a negation of the test action ¬θ?, for example, in the
compound programs with while-loops and if-then-else con-
structs. The second PDCK construct is a non-deterministic
choice of a variable π(v, t). Basically, it means that the pro-
gram assigns a value to some global variable that can be
used later in the code. To model such variables, we intro-

duce a new attribute ~V , which is a vector of these variables.
This way, we can easily access these global variables and
use them, for example, in constraints.

In summary, each programming construct σi is repre-
sented as a non-terminal symbol Ti. If this construct is an
atomic program then the non-terminal symbol is rewritten
to a terminal symbol, for example to an action (Table 1).
If the programming construct represents a compound pro-
gram then the non-terminal symbol is rewritten to other
non-terminal symbols representing the sub-programs (Ta-
ble 2). The top-level rule of the grammar is very close to
the STRIPS modeling rule (22):

S(S0, G
+, G−) →TRoot(1, n,TL

′, ~V ) (38)

TL = TL
′ ∪ InitEvents(S0)

∪ GoalEvents(G+, G−, n− 1),

Timeline(TL)]

where the only difference is that TRoot is a pointer to the
translation of the top-level program block.

Example. Table 3 shows an attribute grammar obtained
from the PDCK program in Figure 2. In this example,
TRoot is T1,7 and the non-terminal symbol Ti,j represents the
PDCK code at lines i− j. We used some classical simplifi-
cation of rewriting rules. Namely, the rules

O → P.Q [c1], P → R.S [c2]

can be merged to a single rule

O → R.S.Q [c1 ∪ c2].

Also, we used the attribute for global variables only in non-
terminal symbols, where that variable is used.

T1,7(j, j’,TL) →T1,3(j, j1,TL1). (39)

T4(j1, j2,TL2).

T5,7(j2, j’,TL3)

[TL = TL1 ∪ TL2 ∪ TL3]

T1,3(j, j’,TL) →T2(j, j1,TL1, V ). (40)

T3(j1, j2,TL2, V ).

T1,3(j2, j’,TL3)

[TL = TL1 ∪ TL2 ∪ TL3∪

{b−(j, clear(l1))}]

T1,3(j, j’,TL) →λ (41)

[TL = {b+(j, clear(l1))}, j’ = j]

T2(j, j’,TL, V ) →λ [V ∈ C, j’ = j,TL = ∅] (42)

T3(j, j’,TL, V ) → load-rV,r,l1 (43)

[TL = events(load-rV,r,l1, j), j’ = j+1]

T4(j, j’,TL) →move-rr,l1,l2 (44)

[TL = events(move-rr,l1,l2, j),

j’ = j+1]

T5,7(j, j’,TL) →T6(j, j1,TL1, V ). (45)

T7(j1, j2,TL2, V ).

T5,7(j2, j’,TL3)

[TL = TL1 ∪ TL2 ∪ TL3∪

{b−(j, empty(r))}]

T5,7(j, j’,TL) →λ (46)

[TL = {b+(j, empty(r))}, j’ = j]

T6(j, j’,TL, V ) →λ [V ∈ C, j’ = j,TL = ∅] (47)

T7(j, j’,TL, V ) → unload-rV,r,l1 (48)

[TL = events(unload-rV,r,l1, j), j’ = j+1]

Table 3: Grammar for PDCK of Figure 2.

Conclusions

In this paper we suggested attribute grammars as a unifying
modeling framework for STRIPS, HTN, and procedural do-
main models and we showed that any such domain model
can be represented fully by an attribute grammar with the
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Timeline constraint. This is the first time, when such a
conversion of planning domain models to formal grammars
has been presented. The existing approaches of using formal
grammars in planning used intuitive similarity between the
concepts but never provided a complete translation of a plan-
ning domain model to a grammar (in particular, interleaving
of actions in HTN has never been satisfactory presented in
existing works).

To simplify notation, we used grounded representation,
but the ideas can be naturally extended to lifted domain mod-
els with object variables (in addition to time indexes). For
the same reasons, we focused on sequential planning with
the propositional state model, but the presented concept can
be used for temporal planning with state variables too, just
the Timeline constraint will be modified to handle general
temporal relations, as this is for example the case in (Ver-
faillie, Pralet, and Lemaı̂tre 2010).

The presented modeling framework opens new directions
of research exploiting relations between automated plan-
ning and formal languages. Formal grammars are already
used for plan/goal recognition (Geib and Steedman 2007)
and there are initial attempts to use them for planning (Geib
2016) and for domain model verification (Barták 2016). The
grammar model also simplifies development of algorithms
verifying if the plan complies with the hierarchical domain
model, which is a problem not yet solved for HTN domain
models. Automated acquisition/learning of grammar rules
is another promising area for future research. Incremen-
tal design of models is supported starting with an initially
flat STRIPS-like model (STRIPS-grammar) that can be later
extended with high-level tasks modeling typical sub-plans.
This gives a complete model as the resulting grammar cor-
responds to HTN with Task Insertion, where the HTN part
of the model can be incomplete.

Acknowledgments

Research is supported by the Czech Science Foundation un-
der the project P103-15-19877S.

References

Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploiting
Procedural Domain Control Knowledge in State-of-the-Art
Planners. In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds.,
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Abstract

Classical planning is a computationally expensive task,
especially when tackling real world problems. To over-
come such limitations, most realistic applications of
planning rely on domain knowledge configured by a do-
main expert, such as the hierarchy of tasks and methods
used by Hierarchical Task Network (HTN) planning.
Thus, the efficiency of HTN approaches relies heavily
on human-driven domain design. In this paper, we aim
to address this limitation by developing an approach to
generate useful methods based on classical domains.
Our work does not require annotations in the classical
planning operators or training examples, and instead,
relies solely on operator descriptions to identify task
patterns and the sub-problems related to each pattern.
We propose the use of methods that solve common sub-
problems to obtain HTN methods automatically.

Introduction

Finding a sequence of actions to reach a desired state may
be considered a trivial problem for a human, but when faced
with many possible actions, the task of finding such se-
quence become a complex problem. Classical planners have
no global view of which actions should be prioritized to ef-
ficiently decide strategies to explore the space of possible
plans during search. Domain knowledge may be used to pro-
vide such a global view in terms of macros (sequences of ac-
tions) (Botea et al. 2005) or hierarchical constructions that
require decomposition to obtain a plan (Nau et al. 1999).
Hierarchical planners use domain knowledge to be able to
solve problems orders of magnitude faster than classical
planners. However, hierarchical planners rely exclusively on
the availability and quality of such domain knowledge to
be able to solve problems correctly and fast. Such domain
knowledge must be carefully designed by a domain expert
so that all valid decompositions may be used to obtain a
solution, or risk having a planner that either fails to find
a solution, or finds a sub-optimal or even invalid solution.
This knowledge requires a domain expert to consider gener-
alized solutions that solve common sub-problems within the
domain, often involving recursive decomposition. As a con-
sequence, describing a domain and its possible decomposi-
tions is time consuming, especially when a domain expert
needs to test the general solution in order to avoid infinite

recursions and ensure that the planner eventually returns a
solution when one exists for all valid states.

By analyzing a number of existing Hierarchical Task Net-
work (HTN) domains, we notice that similar domains rely
on similar methods to solve analogous sub-problems, such
as recursively moving until a certain destination is reached.
While some descriptions, such as the Action Notation Mod-
eling Language (ANML), allow a debugger to describe such
dependency mechanisms (Smith, Frank, and Cushing 2008)
to make domain knowledge explicit, we aim to generate
domain knowledge using only the information available in
a classic domain description. Descriptions of different do-
mains may use different predicates, but share the same plan
construction patterns to solve common sub-problems. Gen-
eralizing such construction patterns that appear in the do-
main operators make it possible to automate the process and
obtain task descriptions to solve each sub-problem. Without
generalizing such patterns one could solve using the method
of Erol et al. (Erol, Nau, and Subrahmanian 1995), which
tries operators using a recursive method, a brute-force so-
lution. Automating the process of task description based
on the classical domain description can save development
time while taking advantage of hierarchical planners poten-
tial speed-up. In this paper, we address the need for domain
knowledge for HTN planners using an approach that auto-
matically generates HTN methods from a classical planning
domain. The methods generated by our approach not only
improves the efficiency of the resulting HTN planner com-
pared to the conversion from PDDL to HTN described by
Erol et al. (Erol, Nau, and Subrahmanian 1995), but are also
readable by a human, allowing manual refinements to further
improve the efficiency of the generated HTN domain knowl-
edge. The resulting approach can then be applied to both
allow HTN planners to be used efficiently to solve classi-
cal planning domains with minimal or no expert-knowledge,
or enhance hybrid planners such as GoDel (Shivashankar et
al. 2013) and obviate the need for human-designed domain
knowledge in order to achieve solution speed ups.

Background

Classical Planning

Automated planning is concerned with finding a set of ac-
tions that reaches a goal state from a initial state of the world.
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States encode properties of the objects in the world at a par-
ticular time. Specifically, the goal is represented by a state
formula indicating which properties must be true at the end
of a plan. In order to achieve the goal state the operators
defined in the domain are used as a transition function that
modified states in terms of preconditions and effects. During
the planning process the preconditions of actions are used to
test which actions are applicable at each state. If applicable,
the action effects can be applied, creating a new state. Pre-
conditions are satisfied when a formula (usually a conjunc-
tion of predicates) is valid in the state the action is being
applied. The effects contain positive and negative sets that
add or remove object properties from the state, respectively.
Once we reach a state that satisfies the goal, the sequence of
actions taken, starting at the initial state, is the plan or so-
lution (Nebel 2000) to a planning problem. This formalism
was standardized in the Planning Domain Definition Lan-
guage (PDDL)(McDermott et al. 1998) to allow direct com-
parisons of efficiency between planning algorithms using a
uniform input file format.

Hierarchical planning

Hierarchical planning shifts the focus from goal states to
tasks to be solved in order to exploit human knowledge
about problem decomposition using an hierarchy of meth-
ods and operators as the planning domain. This hierarchy
is created by non-primitive tasks, which uses methods with
preconditions and sub-tasks to decompose according to con-
text. The sub-tasks are also decomposed until only primitive-
tasks mapping to operators remain, which results in the plan
itself. The goal is implicitly achieved by the plan obtained
from the decomposition process. If no decomposition is pos-
sible the task is considered unachievable. Unlike classical
planning, hierarchical planning only considers what appears
during the decomposition process to solve the problem. With
domain knowledge the domain description is more com-
plex than the classical planning description, as recursive
loops can be described. Recursive loops occur when a non-
primitive task is decomposed by a method that contains itself
in the sub-tasks, this may be the desired behavior when we
need to apply the same set of operators several times until a
stop condition is met, for example, to walk until a destina-
tion is reached.

Each task is represented by a name, a set of parame-
ters, a set of preconditions, and a set of sub-tasks. Once a
non-primitive task is decomposed, the sub-tasks replace the
current task in the task network. Some tasks may have an
empty set of sub-tasks, representing no further decompo-
sition. Backtracking is required for flexibility, as branches
may fail during decomposition. Backtracking is costly, but
in some cases can be avoided by look-ahead preconditions
that check an entire branch of the domain. In some domains
it is possible to guide the search directly to a solution or
failure. This planning formalism is capable of describing
the same domains as STRIPS with a built-in heuristic func-
tion tailored to the domain and expert preferences (Lekavỳ
and Návrat 2007), with all the methods required beforehand,
which consumes project time to consider every single case.

SHOP (Nau et al. 1999) is one of the best known imple-

mentations of HTN planning algorithms. The successors of
SHOP, SHOP2 and JSHOP2 (Ilghami and Nau 2003), share
most of their algorithm using a more complex decision about
which task to decompose at any step in order to support
interleaved tasks. Since no standard description exists for
HTN, we opted to use the same description used by SHOP2
and JSHOP2. SHOP2 (Nau et al. 2001), for example, sup-
ports unordered task decomposition, a feature that separates
this planner from its predecessor, SHOP (Nau et al. 1999).
JSHOP2 description follows a simplified version of the LISP
style adopted by PDDL, without labels for every part of the
operator or method. The operator represents the same as the
classical operator, an action that can take place in this do-
main. The operators have a name, a set of parameters and
three sets. The first set represents the preconditions, the sec-
ond set the negative-effects with what is going to be false
in the next state, while the final set represents the positive-
effects with what is going to be true at the next state. The
methods have a name, a set of parameters, a set of precon-
ditions, and instead of effects they have a set of sub-tasks to
be performed. Methods can also be decomposed in different
ways and have an optional label for each case. The problem
contains two sets, the first represents the initial state and the
second a list of tasks to be performed. Instead of just in-
terpreting the domain and problem, the description can be
compiled to achieve better results with static structures.

Identifying operator patterns
To generate HTN methods based on classical planning de-
scriptions, one must first identify common patterns of oper-
ator usage in order to obtain generic methods that could be
used in planning domains. Such common patterns are based
on how predicates are used by operators. The use of predi-
cates as source of information has already been explored by
Pattison and Long (2010) in goal recognition. Here, predi-
cates were partitioned into groups to help differentiate which
predicates are more likely to be a goal. Instead of the parti-
tions defined by Pattison and Long, we partition predicates
based on their mutability, as shown in Algorithm 1. Pred-
icates that appear only in the initial state (but not in any
action) are considered irrelevant, they make no difference
in the action application. However predicates that appear in
any action precondition but never as an effect define con-
stant relations of the domain. Predicates that appear in the
effects of any action represent what is possible to change,
the mutable relations of the domain. Knowing which pred-
icates are constant helps to prune impossible values for the
variables at any state, while mutable predicates can indicate
which actions can take place once (adding or removing a
feature from the current state) or several times in the same
plan. Based on the previous observation of how actions with
certain predicate types are used we defined a set operator
patterns that once matched against an action can relate to a
method that solves its related sub-problem. The following
subsections explore such operator patterns.

Swap pattern

Some planning instances require the application of an ac-
tion repeatedly, the only difference being the values of the
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Algorithm 1 Classification of predicates into irrelevant,
constant or mutable

1: function CLASSIFY PREDICATES(predicates, operators)
2: ptypes← Table
3: pre← PRECONDITIONS(operators)
4: eff← EFFECTS(operators)
5: for each p ∈ predicates do
6: if p ∈ eff
7: ptypes[p]← mutable
8: else if p ∈ pre
9: ptypes[p]← constant

10: else
11: ptypes[p]← irrelevant

12: return ptypes

parameters. Such actions usually revolve around swapping
the truth value of two instances of the same predicate, such
as moving from one place to another affects the predicate
at in the example action from Listing 1. Once the swaps
achieve the predicate required by another action precondi-
tion or goal predicate the process can stop. This pattern
commonly appears in discretized scenarios where an agent
swaps its current position among adjacent and free coordi-
nates in an N-dimensional space, where N is the arity of the
position predicate. The position is the predicate that is going
to be swapped, while the adjacency is a constraint that im-
plies this operator may be executed several times in order to
traverse a discretized space.

This operator pattern is related to the path-finding sub-
problem and was already identified and exploited by other
planners to speed up search. Hybrid STAN (Fox and Long
2001) is one such planner; it uses a path planner and a
resource manager to solve sub-problems with specialized
solvers. We classify operators involved in the swap pattern
using Algorithm 2. Swap operators contain a constraint in
the preconditions, otherwise the swap would have no restric-
tions requiring only one operator to solve the sub-problem,
and a predicate that is modified from the preconditions to
the effects using the same parameters as in the constraint.
Since several operators may include the swap pattern over
the same predicate, they can be merged into a single method
with different constraints, such as a climb operator that
changes the agent position like a move operator, but only

✞ ☎

(:action move :parameters (

?bot - robot

?source ?destination - hallway)

:precondition (and

(at ?bot ?source)

(not (at ?bot ?destination))

(connected ?source ?destination) )

:effect (and

(not (at ?bot ?source))

(at ?bot ?destination) ) )
✝ ✆

Listing 1: Move operator with swap pattern in PDDL.

✞ ☎

(:method (swap_predicate ?object ?goal)

base

( (predicate ?object ?goal) )

()

using_operator

(

(constraint ?current ?intermed)

(swap_predicate ?object ?current)

(not (predicate ?object ?goal))

(not (visited_predicate ?object

?intermed))

)

(

(!operator ?object ?current ?intermed)

(!!visit_predicate ?object ?current)

(swap_predicate ?object ?goal)

(!!unvisit_predicate ?object ?current)

) )
✝ ✆

Listing 2: Methods for swap operator pattern using JSHOP
description.

if there is a wall nearby the current position. Swap identifi-
cation can also be used to infer that an agent or object will
never be at two different configurations in the same state,
proving that no plan exists for such goal state. Listing 1
shows the move operator with the swap pattern in PDDL,
in which a robot moves from source to destination when
source and destination are connected. Listing 2 shows two
decompositions for the generic swap predicate. The first de-
composition acts as the base of the recursion, with the pred-
icate with goal values. The second decomposition applies
one more step, marks the current position as visited to avoid
loops, recursively decomposes swap predicate and unvisits
the previously visited positions to be able to reuse such posi-
tions later if needed. Visit and unvisit are internal operations
done by bookkeeping operators, prefixed by !! in JSHOP.

Algorithm 2 Classification of swap operators

1: function CLASSIFY SWAP(operators, ptypes)
2: swaps← Table
3: for each op ∈ operators do
4: constraints← CONST POS PRECOND(op, ptypes)
5: pre+ ← MUTABLE POS PRECOND(op, ptypes)
6: pre− ← MUTABLE NEG PRECOND(op, ptypes)
7: eff+ ← ADD EFFECTS(op)
8: eff− ← DEL EFFECTS(op)
9: for each pre ∈ (pre+ ∩ eff−) do

10: pre2← NAME(pre) ∈ eff+

11: if pre2
12: cparam← PARAM(pre)△ PARAM(pre2)
13: for c ∈ constraints do
14: if c ⊆ cparam
15: swaps[op]← 〈pre, constraint〉
16: break
17: return swaps
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✞ ☎

(:action report :parameters (

?bot - robot

?location - hallway

?beacon - beacon)

:precondition (and

(at ?bot ?location)

(in ?beacon ?location)

(not (reported ?bot ?beacon)) )

:effect (reported ?bot ?beacon) )
✝ ✆

Listing 3: Report operator with dependency pattern with
move in PDDL.

Dependency pattern

In the same way some planning instances require the effects
of an action to make another action applicable, fulfilling the
preconditions. Such precondition turns the first action ef-
fects into a dependency for the second action preconditions
to be satisfied and the action applied. The operators are clas-
sified as dependency using Algorithm 3. Each pair of oper-
ators is compared to find a match between effects and pre-
conditions of operators that have not already been classified
as swap operators. Listing 3 shows the report operator with
the dependency pattern in PDDL, which requires a robot to
be at the same location of a beacon to report its status. To
achieve the at precondition there is a dependency with the
move operator.

Algorithm 3 Classification of dependency operators

1: function CLASSIFY DEPENDENCY(operators, ptypes,
swaps)

2: dependencies← Table
3: for each op ∈ operators do
4: pre+ ← POS PRECOND(op, ptypes, mutable)
5: pre− ← NEG PRECOND(op, ptypes, mutable)
6: eff+← ADD EFFECTS(op)
7: eff− ← DEL EFFECTS(op)
8: for each op2 ∈ operators do
9: swap op← swaps[op]

10: swap op2← swaps[op2]
11: if swap op 6= ∅ and swap op2 6= ∅ and

NAME(swap op) = NAME(swap op2)
12: continue
13: pre2+ ← POS PRECOND(op2)
14: pre2− ← NEG PRECOND(op2)
15: if op = op2 or (pre2+ ⊆ eff+ and pre2− ⊆ eff−)
16: continue
17: eff2+← ADD EFFECTS(op2)
18: for each pre ∈ pre+ do
19: if not NAME(pre) ∈ eff2+

20: continue
21: if dependencies[op] = ∅

22: dependencies[op]← Set

23: APPEND(dependencies[op], 〈op2, pre〉)

24: return dependencies

✞ ☎

(:method (dependency_first_before_second

?param)

goal_satisfied

( (goal_predicate) )

() )

(:method (dependency_first_before_second

?param)

satisfied

( (predicate ?param) )

( (!second ?param) ) )

(:method (dependency_first_before_second

?param)

unsatisfied

( (not (predicate ?param)) )

( (!first ?param) (!second ?param) ) )
✝ ✆

Listing 4: Methods for dependency operator pattern using
JSHOP description.

There are three possible cases we need to handle with this
pattern. In the first case the goal predicate is already satisfied
and no action takes place. In the second case the precondi-
tions of the second action are already fulfilled and the action
can be applied immediately. In the third case the precon-
dition of the second action require the first action applied
before the second action. This operator pattern is common
in many planning domains (e.g. able to pickup item after
achieving a certain position with move), as several distinct
actions may be required to fulfill a sequence of preconditions
to achieve a goal predicate. Actions that already matched the
swap pattern are not tested against the dependency pattern,
otherwise such actions would be classified with a depen-
dency of themselves. We consider the dependency pattern a
specialization of the swap pattern between different actions.
Listing 4 shows the three cases defined for the operator de-
pendency pattern using a JSHOP-style description.

Free-variable pattern

Some goal state predicates may leave some variables open
while mapping to a task. For example a position that must
be occupied requires an, as yet unspecified, agent, but no
agent is bound to this variable while other similar tasks re-
quire an agent at a place, which maps to the same task with a
specific agent. Methods can propagate bound variables to be
used by operators or other method as tasks are decomposed.
Before propagated, free-variables must be bound. In order
to unify variables such as the agent we create a new method
with the single purpose of unification according to the con-
stant preconditions of the related operator, acting as typed
parameters of PDDL. Therefore we add a new level to the
hierarchy with a method that simply unifies and propagates
to the next level with all variables bound. Listing 5 shows a
possible scenario where op1 requires 3 terms to be applied.
Terms t1 and t2 are known based on information from goal
state, while t3 is left to be decided at run-time. It is pos-
sible to apply directly the original method in cases where
the three terms are known. We do not merge both methods
in one method to explicitly say that we are looking for the
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✞ ☎

(:method (three_terms ?t1 ?t2 ?t3)

apply_op_with_three_terms

( (precond1 ?t1 ?t2) (precond2 ?t2 ?t3) )

( (!op1 ?t1 ?t2 ?t3) ) )

(:method (unify_three_terms ?t1 ?t2)

unify_term_t3

( (precond2 ?t2 ?t3) )

( (three_terms ?t1 ?t2 ?t3) ) )
✝ ✆

Listing 5: Methods for free-variable operator pattern using
JSHOP description.

value of t3.

With the predicates classified and each operator related to
the operator patterns previously defined, we need to relate
the goal state with a set of tasks that achieve each part of the
goal using the methods generated for each pattern.

Composing methods and tasks

With the methods obtained based on the patterns previously
described we need to relate such methods with the original
goal predicates to create tasks that reach a valid goal state.
In order to determine which method to apply we select the
operators that are more closely related to the goal, the ones
that contain a goal predicate in their effect list. We can use
such goal operators to identify which sub-problems we are
trying to solve based on the patterns available. If the goal op-
erator matches the dependency pattern, we use methods for
each case: a goal that is already satisfied decomposes to an
empty set of subtasks; a satisfied precondition decomposes
to the operator that achieves the goal predicate; otherwise
it decomposes to the dependency operator that achieves a
precondition required by another operator that achieves the
goal predicate. If the goal operator matches the swap pat-
tern, we create a specific swap method for the predicate be-
ing swapped containing all operators that match the swap
pattern with this predicate.

Some methods may depend on other methods, to solve
this we also apply a dependency check between methods to
decompose the required methods first. This happens when
the first operator of a dependency also requires a dependency
or an operator used in a dependency is also classified as a
swap. A new level in the hierarchy is created as such opera-
tors are replaced by their respective methods. With the meth-
ods selected, we only need to add tasks with the correspond-
ing objects based on goal predicates. If such information is
not available in the goal predicates some variables remain
free to be unified at run-time. To avoid repeating costly uni-
fications, we use the free-variable pattern to unify variables
as high in the hierarchy as possible. At the end of the process
we have the original set of operators incremented with some
bookkeeping operators, the set of generated methods, and
the set of tasks replacing the goal predicates. Algorithm 4
shows such steps to convert a classical description to an
HTN description using our approach. The operator patterns
identified generate methods that are currently added inde-
pendently of usage, as some methods may hint the domain

expert about the relation among operators even when certain
methods are not connected to the rest of the hierarchy.

Algorithm 4 Convert goals to tasks

1: function GOALS TO TASKS(domain, problem)
2: op← OPERATORS(domain)
3: pred← PREDICATES(domain)
4: goals← GOALS(problem)
5: tasks← Set
6: met← Set
7: ptypes← CLASSIFY PREDICATES(op, pred)
8: swaps← CLASSIFY SWAP(op, ptypes)
9: dependencies ← CLASSIFY DEPENDENCY(op,

ptypes, swaps)
10: goal op← Array
11: for each o ∈ op do
12: for each goal ∈ goals do
13: if goal ∈ EFFECTS(o)
14: APPEND(goal op, 〈goal, o〉)

15: ADD SWAP METHODS(swaps, op, met, ptypes)
16: ADD DEPEND METHODS(swaps, dependencies, op,

met, ptypes)
17: goal tasks← Array
18: for each m ∈ met do
19: for each d ∈ DECOMPOSITION(m) do
20: for each 〈goal, o〉 ∈ goal op do
21: if o ∈ SUBTASKS(d)
22: met2← UNIFY VARIABLES(m, o)
23: APPEND(goal tasks, 〈goal, met2〉)

24: INJECT METHOD DEPENDENCIES(swaps, met)
25: for each 〈goal, met2〉 ∈ goal tasks do
26: if free-variable ∈ met2
27: APPEND(tasks, UNIFY METHOD(met2))
28: else
29: APPEND(tasks, met2)

30: return 〈op, met, tasks〉

Use case: Rescue Robot domain

In order to illustrate how our operator patterns can be applied
to a concrete domain, we use the rescue robot domain 1 as a
use case, as several patterns are identified in the operator set.
This domain has a small operator set and can be represented
by a 2D map, which means we can explore it deeply without
complex constructions. The map contains rooms and hall-
ways as locations where the rescue robot and beacons may
be located. The robot must be in the same hallway or room
of a beacon to report the status. The set of operators include:

• Enter a room connected to the current hallway.

• Exit the current room to a connected hallway.

• Move from the current hallway to a connect hallway.

• Report status of beacon in the current room or hallway.

1The rescue robot domain was created by Kartik Talamadupula
and Subbarao Kambhampati.
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We use our operator patterns to infer how such operators
are related to the problem. The operators Enter, Exit and
Move swap the predicate at. They all require source and des-
tination to be connected locations, which matches our con-
straint requirement. Move creates a dependency for Enter,
as Enter creates a dependency for Exit, but since they are
already considered swap operators we can prioritize swap
over dependency patterns. Swap at method may be needed
zero or more times to match the destination at, which be-
haves as shown in Figure 1, without the invisible visit/unvisit
operators to control which source and intermediate positions
where visited, and the equivalent JSHOP output in Listing 6.

at source at destination

source = destination

operator enter

operator exit

operator move

at intermediate

Figure 1: Source, intermediate and destinations are reach-
able locations the robot may visit using move, enter or exit
operations.

Only one operator remains unclassified in this domain,
Report, which has a precondition at. Instead of creating a
dependency for each swap operator we can inject the depen-
dency between such methods and make clear that Report
have a dependency with the swap at method previously cre-
ated, generating a new method. Now this higher level task
can be used to report each beacon in the problem, the possi-
ble branches the dependency method may take are shown in
Figure 2 and the equivalent JSHOP output in Listing 7.

at destination operator report
(dependent)

dependency satisfied

at destinationnot at destination method swap at
(dependency)

reported beaconreported beacon goal satisfied

Figure 2: The destination must be reached by the swap at
method before any non-reported beacon is reported.

✞ ☎

(:method (swap_at_until_at ?bot ?source)

base

( (at ?bot ?source) )

() )

(:method (swap_at_until_at ?bot ?source)

using_enter

(

(at ?bot ?current)

(connected ?current ?intermediate)

(not (at ?bot ?source))

(not (visited_at ?bot ?intermediate))

)

(

(!enter ?bot ?current ?intermediate)

(!!visit_at ?bot ?current)

(swap_at_until_at ?bot ?source)

(!!unvisit_at ?bot ?current) ) )

(:method (swap_at_until_at ?bot ?source)

using_exit

(...)

(

(!exit ?bot ?current ?intermediate)

(!!visit_at ?bot ?current)

(swap_at_until_at ?bot ?source)

(!!unvisit_at ?bot ?current) ) )

(:method (swap_at_until_at ?bot ?source)

using_move

(...)

(

(!move ?bot ?current ?intermediate)

(!!visit_at ?bot ?current)

(swap_at_until_at ?bot ?source)

(!!unvisit_at ?bot ?current) ) )
✝ ✆

Listing 6: Methods generated to solve the identified swap at
pattern, one base method that decompose to an empty set of
tasks when the goal location is reached by a robot and other
three recursive methods that move a robot to new locations.

Implementation and Experiments

We implemented a SHOP-like (Nau et al. 1999) HTN plan-
ner in Ruby much like JSHOP2 (Ilghami and Nau 2003) that
translates PDDL domains into an HTN structure in Ruby
whose execution is equivalent to the HTN forward decom-
position algorithm 2. Thus, a PDDL domain is translated into
an intermediate representation in Ruby upon which our al-
gorithm operates, therefore maintaining the system indepen-
dent of language and style choices, as special features from
the language are downgraded to commonly supported fea-
tures. This is the case for PDDL type support, typed objects
are added as propositions to the initial state and typed pa-
rameters are compiled into preconditions.

Since many domains require predicates that do not match
any of the templates described in this paper, we add meth-
ods to achieve such predicates using the PDDL to HTN con-
version process from Erol et al. (Erol, Nau, and Subrahma-
nian 1995) as fallback, essentially “brute-forcing” a search
through HTN methods to achieve a particular predicate. To

2Available at https://github.com/Maumagnaguagno/HyperTensioN
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✞ ☎

(:method

(dependency_swap_at_until_at_before_report

?bot ?source ?beacon)

goal-satisfied

( (reported ?bot ?beacon) )

() )

(:method

(dependency_swap_at_until_at_before_report

?bot ?source ?beacon)

satisfied

(

(robot ?bot)

(location ?source)

(beacon ?beacon)

(in ?beacon ?source)

(at ?bot ?source)

)

( (!report ?bot ?source ?beacon) ) )

(:method

(dependency_swap_at_until_at_before_report

?bot ?source ?beacon)

unsatisfied

(

...

(not (at ?bot ?source)) )

(

(swap_at_until_at ?bot ?source)

(!report ?bot ?source ?beacon) ) )
✝ ✆

Listing 7: Methods generated to solve the identified
dependency between the action report and the predicate at.

avoid infinite loops in the brute-force mechanism we mark
visited actions as they are applied during the recursion, and
unmark them as the recursion backtracks. Since our cur-
rent approach does not check for task interference and order
we permute the generated tasks until the original goal state
is satisfied. Such behavior can be emulated by expressive
enough HTN planners using ordering constraints.

We have tested our approach with multiple domains to
discover variations of the operator patterns identified. Our
approach took 0.1s or less to generate HTN domain knowl-
edge using the patterns in this paper, and thus it is very effi-
cient in terms of the overall time it can save during search.
We performed our experiments using an Intel E5500 2.8GHz
CPU with 2GB of RAM running Windows. The classical
planner (CP) used in the comparison was also developed in
Ruby and is doing Breadth-first search with a binary-vector
state representation. In a small set of problems from the Res-
cue Robot domain, Table 1, we can see that the patterns
found were enough to greatly speed up plan search when
compared with the pure Brute-Force (BF) approach. Con-
sider the Goldminers domain at Table 2, in which two prob-
lems with grids of size 10x10 cells contain agents that must
move to pick and deposit gold at certain positions. State-
space planners suffer with more positions, gold and agents
available, while an HTN can focus its search and solve such
problems much faster. The sequences of movement actions
is where HTN can focus its search in the experiments. More

complex domains, such as the ones from ICAPS, still re-
quire human intervention to either complete or correct the
domain with knowledge that was not inferred from the pro-
vided PDDL. Such as the Floortile domain in which an agent
can move to the four cardinal directions and paint either to
its north or south position, our approach fails to see that both
actions are required to color the top and bottom rows of the
grid, which returns failures for solvable problems. Other do-
mains such as the Grid, requires an agent to collect keys to
open doors in a labyrinth scenario to reach a goal position,
which requires several journeys to move towards key, door
and goal. Our solution only generates methods to fulfill a
single journey, making problems with several doors unsolv-
able.

Table 1: Rescue Robot tested with multiple planners. Time-
outs occur at 100 seconds.

Problem CP HTN BF HTN Patterns + BF

pb1 0.001 0.044 0.067
pb2 0.002 11.190 0.255
pb3 0.009 Time-out 0.072
pb4 0.004 20.353 0.197
pb5 0.001 96.979 0.218
pb6 0.001 Time-out 0.132

Table 2: Goldminers tested with diverse planners using 100s
as time-out.

Problem CP HTN BF HTN Patterns + BF

pb1 Time-out Time-out 6.270
pb2 Time-out Time-out 3.668

Conclusions and Future Work
In this paper we have developed an approach to automati-
cally generate HTN domain knowledge using a PDDL spec-
ification. Our approach relies exclusively on a number of
patterns of state changes we identified as common in most
planning domains, therefore dispensing with example plans.

Existing work has investigated techniques to bridge the
gap between classical planning and HTN in multiple ways,
however, most such work either require a dataset com-
prised of a number of solution plans or generated methods
that are not competitive with a fast classical planner. The
first approach comparable to ours is the brute-force conver-
sion (Erol, Nau, and Subrahmanian 1995). Although this ap-
proach translates any PDDL problem into an HTN one that
generates equivalent plans, the resulting domain knowledge
is not competitive with current classical planners. Indeed,
the translation proposed by Erol et al. (with some modifica-
tions to avoid being stuck doing and undoing by applying the
same set of actions) is our fallback approach when neither
of the patterns we found apply. The approach from Lotinac
and Jonsson (Lotinac and Jonsson 2016) is the most com-
parable to ours and generates HTNs from invariance analy-
sis (Lotinac and Jonsson 2016). Finally, the GoDeL (Shiv-
ashankar et al. 2013) planner is an hybrid approach that
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uses methods with sub-goals and landmarks to guide search.
Here, instead of trying to decompose a task, methods gen-
erate plans to achieve parts of a state-based goal, and uses a
classical planner as a fallback option when methods fail or
are insufficient. GoDeL’s approach is able to perform better
if a domain expert supplies more domain knowledge while
performing as a classical planner if only classical operators
are supplied.

Empirical evaluation has shown that our approach is capa-
ble of not only generating valid HTN methods for domains
that relate with our operator patterns, it also generates effi-
cient HTN method libraries that can greatly speed-up search.
Nevertheless, the HTN knowledge generated for many do-
mains does not allow an HTN planner using blind search
to surpass a fast classical planner. Domains in which most
of our patterns apply tended to result in better performance,
whereas domains that relied on a brute force translation of
a PDDL task into HTN methods did worst. Our initial ap-
proach focused on obtaining plans faster than what a clas-
sical planner or a brute-force translation could achieve, no
work has been done regarding plan quality. We expected all
planners to eventually return a plan when one is possible, un-
less some limitation forces the planner to stop, such as time
or memory available. Thus, as future work, we aim to in-
vestigate mechanisms to further improve the efficiency and
quality of the resulting HTN domain knowledge and its in-
teraction with more advanced HTN planners. First, we aim
to search for new patterns that could be applicable to the re-
maining domains, which would make it possible to use more
domains to better benchmark our implementation against
more planners. Second, we will evaluate the performance of
the methods we generate with HTN planners that selectively
choose methods for decompositions rather than performing
blind search.
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Abstract

Despite increasing interest in leveraging the wealth of
online social media data to support data-based deci-
sion making, much work in this direction has focused
on tasks with straightforward “labeling” decisions. A
much richer class of tasks can benefit from the power of
sequential decision making. However, supporting such
tasks requires learning some form of action or decision
models from unstructured data – a problem that had
not received much attention. This paper leverages and
extends machine learning techniques to learn decision
models (incomplete action models) for planning from
unstructured social media data. We provide evaluations
showing the potential of unstructured data to build in-
complete planning action models, which can further be
extended to build PDDL-style action models for many
real-world domains. Our models can be used to support
novel quantitative analysis of online behaviors that can
indirectly explain the offline behaviors of social media
users.

1 Introduction

There is a growing interest in exploiting the burgeoning
amount of user-generated data on the Internet – especially
on social media platforms – to provide data-based decision
support. While the initial wave of work in this direction was
limited to support single labeling decisions (e.g. recommen-
dations), there is an increasing interest in supporting more
complex scenarios that require planning and other forms of
sequential decision making. A prime example is the cate-
gory of tasks that are classified as “self-help”, and which
involve a number of steps and often complicated sequences
of actions. Examples here include quitting smoking, losing
weight, or traveling the world. A number of online groups
contain a plethora of crowd-generated wisdom about appro-
priate courses of action that have worked for a variety of
different individuals. The main problem we consider in this
paper is the extraction of such information so that it can be
applied towards an automated way of helping new users with
similar goals. Such automated approaches need not be re-
stricted to plan synthesis alone; they can also include a num-
ber of other sequential decision making problems including
plan critiquing, plan ranking, and even merely the extraction
of plan traces that can be used as input to existing model-
learning methods.

Although there exists a large body of literature on plan-
ning and decision making, almost all of it assumes that the
action model has been specified a priori. This has turned
into a very pressing bottleneck for the AI planning com-
munity as a whole, where planning techniques depend very
heavily on the availability of complete and correct mod-
els (Kambhampati 2007). One of the challenges that must be
overcome to tide over this problem is to extract usable causal
relationships from unstructured natural language data on so-
cial media. This can be a very daunting problem, since social
media posts are made in unrestricted natural language, and
meant for human consumption. The text from these posts
can be highly nuanced and extremely arbitrary, making au-
tomated extraction of causal relationships and action models
an AI-complete task.

While parsing individual posts can be arbitrarily hard, our
aim is to investigate if the massive scale and redundancy of
the posts might nevertheless help extract reasonable approx-
imations of causal and action models. We hypothesize that
the feasibility of this endeavor might increase if we further
focus on the so-called shallow models (c.f. (Kambhampati
2007; Tian, Zhuo, and Kambhampati 2016)). To this end,
we propose and experiment with a six-phase pipeline that
leverages shallow natural language processing (NLP) tech-
niques to extract incomplete causal relationships. We en-
vision that these relationships can be extended to generate
complete PDDL-style domain models, in the spirit of (Sri-
vastava and Kambhampati 2005) – however, this specifically
is not the main focus of this paper.

As mentioned earlier, such approximate causal models
can be utilized to automatically explain (c.f. plan expla-
nation, plan critiquing) the experiences shared by users on
online social media towards achieving their personal goals.
In order to achieve this, our proposed pipeline addresses five
main tasks: (1) extract actions from users’ posts; (2) pro-
cess the extracted actions to reduce redundancy; (3) build
plan traces from the extracted actions; (4) construct an ac-
tion precedence graph from these traces; and (5) plan using
these precedence graphs. While we focus on an end-to-end
solution, mid-stream output from our pipeline—e.g. plan
traces—can also be fed to existing approaches for learning
action models from complete, partial, or noisy plan traces
(c.f. (Yang, Wu, and Jiang 2007; Tian, Zhuo, and Kamb-
hampati 2016)). We evaluate the plans – which are repre-
sented as shallow workflows – to demonstrate the utility of
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subreddit Main goal

(/r/stopsmoking) How to quit smoking ?

(/r/C25K) With no experience of running, how to run a 5K ?

(/r/weddingplanning) How to plan for a wedding ?

Table 1: Subreddits and their main goals

our novel six-phase pipeline. Within the current context, we
define (shallow) workflows as a sequence of actions where
the final action in the sequence is/achieves the user’s goal.

In the rest of this paper, we will describe the details of our
proposed pipeline; we first focus on explaining the data in
Section 2. Details of the six-phase pipeline that we imple-
mented, including the metrics for evaluating the action mod-
els we extracted to support sequential decision problems, are
presented in Section 3. Section 4 describes the evaluation
methodology and the results obtained through quantitative
and qualitative analyses. Section 5 presents the related work
focusing on how the existing literature and the proposed so-
lution through the pipeline are different. Section 6 concludes
the paper with a discussion on future work.

2 Data

In this paper, we utilize social media data to identify the
important actions which are described by the users try-
ing to achieve a goal. Towards this goal, we consider
posts from the popular social news website called “Reddit”
(https://www.reddit.com/) where the registered users submit
content in different forms like web urls or text posts. Along
with sharing content, users can comment and vote on a given
post (up or down votes) that determines the popularity or
rank of a post in a given thread. The content entries on this
platform are designed in a tree format where each branch
of a tree represents a sub-community referred as “Subred-
dit”. Each subreddit is categorized to a particular domain
that ranges from being very general to sometimes very per-
sonal.

We used the Python Wrapper for Reddit API1 to crawl
posts and their metadata from three different subreddits
shown in Table 1. For the ease of reading, we represent the
subreddit ‘/r/stopsmoking’ as Quit Smoking; ‘/r/C25K’ as
Couch to 5K; ‘/r/weddingplanning’ as Wed. Planning. Note
that the entire pipeline is automated and there is no man-
ual intervention in any of the processes. Table 2 provides
the relevant statistics about the raw dataset and the actions
extracted by the pipeline to build an action model.

3 Pipeline

We utilize the automated planning and NLP techniques to
build a six-phase pipeline (as shown in Figure 1). This
pipeline utilizes the raw unstructured social media data to
extract structured shallow workflows. The main contribu-
tions or the challenges addressed by this pipeline are: 1) ex-
tract the plan traces from the raw unstructured data, 2) utilize
the plan traces for building an incomplete action model that
are capable of generating workflows that are near optimal.
Our main contribution lies in considering the unstructured

1https://praw.readthedocs.io/en/latest/index.html

Domain Name

Quit Smoking Couch to 5K Wed. Planning

# Users 787 604 969

Tot. # of traces 1598 1131 3442

Avg. trace len. 17.97 16.7 21.29

# Unique Actions (orig) 1712 1299 2666

# Unique Actions (model) 234 194 355

# Pre-actions 1499 1060 2795

(117,6.4,16.9) (84,5.5,13.8) (170,7.9,22.5)

# Post-actions 1398 982 2619

(31,6,6.5) (29,5.1,5.6) (37,7.4,8.2)

Table 2: Statistics of users, plan traces and actions. Num-
bers in bracket are max, avg and std. dev.; min=1; Unique
Actions (orig) are the set of actions that are extracted from
the crawled raw data; Unique Actions (model) are the set of
actions obtained after generalization.

social media data and building shallow models which are
capable of generating plans that are near optimal.

Achieving the first goal is an important contribution of
this paper, as most of the existing work (e.g., (Gregory
and Lindsay 2016; Tian, Zhuo, and Kambhampati 2016;
Yang, Wu, and Jiang 2007; Yoon 2007)) for domain model
acquisition, assume that the plan traces required are readily
available. Hence, these systems may not be functional when
the traces are not available. To address the first challenge we
mentioned earlier, the pipeline utilizes raw unstructured so-
cial media data that is processed to remove redundancies and
repetitions to extract plan traces in lifted representations. To
address the second challenge, these plan traces are utilized
to compute the probabilities which determine the causal re-
lationships between actions to finally build an incomplete
action model. For each of the three domains we described in
Section 2, we automatically extract the important actions to
build a shallow model that is used to generate workflows.

The pipeline consists of six different components which
are executed sequentially. The six different components of
this pipeline shown in Figure 1 consists of: (1) fragment
extractor - filtering the available data or posts to find the rel-
evant posts, given a particular goal; (2) action extractor -
identifying the candidate list of action names and their pa-
rameters as well as the initial plan fragment; (3) general-
izer - grouping similar action names into the same cluster;
(4) trace builder - converting the posts into plan traces; (5)
sequential probability learner: learning the ordering among
actions; (6) model validator: validating the extracted model.
More details about each of the component are explained in
detail below along with a running example.

3.1 Phase-1: Fragment Extractor

The main goal of this component is to extract the fragments
from the corresponding subreddit. We define fragment as
the relevant post that contains information about achieving
the given goal of the subreddit. An individual fragment may
contain more than one action that helps achieve the goal. To
do this, we first crawl the individuals who are actively par-
ticipating on a subreddit associated with a given goal. We
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Figure 1: Six-phase pipeline

crawl the timelines of these individuals that we assume are
the sequence of actions or a workflow that helps these indi-
viduals to achieve the given goal. We define timeline as the
set of goal-related posts shared by the same user chronolog-
ically.

Running example [relevant posts]: I spent few weeks drink-
ing and partying. In a similar situation in the past, I take a
cigarette and used to smoke pretty much non-stop. But this
season I was assaulted by the triggers. Smoking in restau-
rants, communal areas. Many times I thought I can get a
cigarette now. But those thoughts were always chased by
reason and the power of conviction I have to quit smoking.

The running example is taken from the Quit Smoking do-
main. This example is an excerpt of a post shared by a user
on Reddit whose main goal is to quit smoking. In this study,
we consider each post made by a user as a plan trace. Posts
made by all users on this subreddit are aggregated to build
the model in latter steps.

3.2 Phase-2: Action Extractor

Each post may have more than one sentence, where each
sentence may have more than one verb. For each sentence,
we extract the verbs and their corresponding nouns using
the Stanford part of speech tagger (Toutanova et al. 2003), a
state of the art tagger with reported 97.32% accuracy. The
extracted verbs are the candidate list of action names. We as-
sume that the order of sentences in a post is indicative of the
order of actions we extract from them. In the plan trace, the
extracted action names from the first sentence will appear
before the extracted action names from the second sentence.

Along with the action names (verbs), we also extract the
action parameters (nouns) using the similar strategy and
attach the most frequently co-occurring action parameter
(noun) with a given action name (verb). For this pipeline,
we assume that each action (verb) will have only one ac-
tion parameter (noun) and two action words can have the
same action parameter. For example, assume that there is
an action ai in our dataset which occurs in multiple plan
traces and co-occurs with nouns na, nb and nc. Noun with
the largest co-occurrence frequency with ai is chosen to be
the action parameter for ai. In the examples provided in
this paper, action parameters are attached to an action as
<action name> <action parameter name> (or sometimes
we use <action name> (<action parameter name>) in-
terchangeably). Since certain English words can be clas-
sified as multiple parts of speech tags, we make similar as-
sumptions.

Running example: [action names]: spent smoke drink beer
party hard take day smoke day assault trigger smoke day
thought smoke chase life quit smoke

From the post made by the user obtained in phase-1, we

extract all the verbs and their associated nouns. We assume
that the sequentiality among actions is pre-established in the
original post made by the user. This assumption sets a con-
straint that all the verbs extracted are ordered in the same
way they occur in the post made by the Reddit user. Since
the word ‘smoke’ can be either a noun or verb, we see the
similar pattern in this extracted set of actions and their cor-
responding parameters.

3.3 Phase-3: Generalizer

Since we are handling unrestricted natural language text, it
is normal that a same action is used to represent this action’s
synonyms. Across the aggregated set of posts, there might
be verbs that can summarize or subsume a given verb. This
motivated us to utilize hierarchical agglomerative clustering
approach where low level actions are expressed in high level
format. Performing this operation helps reduce the redun-
dancy of actions.

To remove redundant actions, we utilize the agglomera-
tive clustering approach to group semantically similar ac-
tions. When clustering the actions, only the action names
are considered and their parameters are ignored. This
approach (Han, Kamber, and Pei 2011) utilizes Leacock
Chodorow similarity metric (lch for short)2 to measure the
distance between any two given actions (Wi and Wj – action
words). This is one of the popular metrics utilized to com-
pute the semantic similarity between pairs of words. The lch
similarity is computed as follows:

Sim(Wi,Wj) = Max[log2D − logDist(ci, cj)] (1)

where Dist(ci, cj) is the shortest distance between concepts
ci and cj (a concept is the general notion or abstract idea)
and D is the maximum depth of a taxonomy.

We consider a threshold metric (or closeness metric) α
to verify the quality and stop the process of agglomeration.
The agglomerative clustering algorithm terminates when the
closeness metric is greater than the linkage metric at any
given point of time. In hierarchical clustering, there are
three different types of linkage metrics – single, complete
and average. In this paper, we utilize the complete link-
age metric as the Clustering Quality (we refer to as cq)
measured is higher (cq=8.33) compared to the other link-
age metrics (single (cq=5.23) and average (cq=7.17)). The
formal equation to compute the complete linkage metric is
max{d(a, b) : a ∈ A, b ∈ B} where, d(a, b) is the dis-
tance metric, A and B are two separate clusters. When the
algorithm terminates, semantically similar actions will be
grouped into the same cluster.

Each cluster may have more than a single action that re-
quires us to find a unique cluster representative. To do

2http://www.nltk.org/howto/wordnet.html
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this, we utilize a popular statistic from Information Retrieval
community – Term Frequency–Inverse Document Frequency
to rank all the actions present in a cluster based on this met-
ric. For each cluster, we choose the top-ranked action with
the highest tfidf value to be the representative of the respec-
tive cluster. The original parameter associated with this ac-
tion word is continued to be the action parameter after this
action word is chosen to be the cluster representative. The
statistic can be computed as shown in equation 4 that uses
the TF and IDF equations in 2 and 3 respectively.

tf(t, d) =
ft,d

maxft′ ,d : t′ ∈ d
(2)

idf(t,D) = log
N

|d ∈ D : t ∈ d|
(3)

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D) (4)

where t is the given action; d is the set of raw posts shared by
a given user; D is the super set of all sets of raw posts made
by all the users in our raw dataset (where |D| will be equal
to the number of unique users in our dataset). Each cluster
will be represented by a unique top-ranked action word.

Running example: [clustering]: We map the action names
to the cluster representatives of their corresponding cluster.
spent → spend, drink → party, take → taken

3.4 Phase-4: Trace Builder

The initial plan fragments are converted into plan traces by
replacing the action names with their corresponding cluster
representatives3. This process is repeated on all the posts to
build the traces.

Running example: [rebuilding plan traces]: initial plan
fragment: [spent smoke, drink beer, party hard, take day,
smoke day, assault trigger, smoke day, thought smoke,
chase life, quit smoke], plan trace: [spend time,
party hard, taken hold, smoke day, assault trigger,
smoke day, thought smoke, chase life, quit smoke]

The actions in the running example such as spent,
drink, take are represented in their corresponding high
level mapped format. Since drink is mapped to party,
drink beer is represented as party hard. In the plan frag-
ment, [spend time, party hard, party hard, taken hold, . . . ],
two ‘party’ actions are occurring sequentially. Hence, we re-
move repetitions and include only one such instance. How-
ever, in general a plan may include repeated actions and we
acknowledge that our system may miss out on those plans
with repeated actions.

3.5 Phase-5: Sequence Probability Learner

After extracting the plan traces, we then extract the pre-
actions and post-actions for any given action. Due to co-

3Note, it is possible to replace two sequential action names by
the same cluster representative. In that case we remove the repeated
action name; hence, reducing the length of the plan trace. For ex-
ample, if the representation of a plan trace is: [a1, a2, a2, a5, a8],
after post-processing it will be converted to [a1, a2, a5, a8].

occurrence in the plan traces, actions are inter-related to
other actions with a probability (p(ai, aj)) describing the
chance of action aj following action ai. This probability
is computed purely in a data-driven fashion. This proce-
dure considers a constraint metric θ that decides whether a
co-occurring relation should be included in the model. We
compute the conditional probability p(ai | aj) using the fol-
lowing equation:

p(ai | aj) =
p(ai ∩

∗ aj)

p(aj)
(5)

Let a1 and a2 are two actions where a1 is an effect of
a2 which indicates that unless a2 is executed, a1 cannot be
executed. The support-based probability then is computed
where a1 will be the postcondition of a2 if p(a1 | a2) > θ
and a2 will be the precondition of a1. The ∩∗ in Equation 5
represents an ordered conjunction that considers the sequen-
tiality of a1 and a2 while computing the frequency of their
occurrence together.

Once we extract the pre-actions and post-actions for ev-
ery action in the data set, we represent the relationships in
the form of an Action Graph (AG) as our incomplete action
model (M) to generate shallow workflows. AG consists of
actions as nodes and each edge is a transition between two
actions ai and aj . The edge weight between any two nodes
ai and aj is the support-based probability p(ai, aj).

Running example: [data-driven probabilities]: In the plan
trace dataset, we compute the sequential probabilities for
any given action pairs. This results in generating a prece-
dence graph shown in Figure 2 for the “Quit Smoking” do-
main, where the sink node is the action quit with no subse-
quent effect.

Figure 2: Part of the directed graph G for the QuitSmoking
domain with quit smoke as the sink node.

3.6 Phase-6: Model Validator

We divide the set of plan traces D into training data, Dtr,
and testing data, Dte. By this step, we have the set of plan
traces represented in the lifted action format. This com-
mon lifted representation ensures that a given action uses
the same name in both Dtr and Dte. We use Dtr to build
the model M. Let T be the set of transitions present in M and



66

T
′

be the set of transitions in test dataset. Since M is used
to generate workflows, the goodness of this model should be
measured to trust the quality of these plans. To determine
goodness of M, we define a new metric called explainability
that can be computed as shown in Equation 6.

T
′′

= T ∩ T
′

Explainability =
|T

′′

|

|T ′ |

(6)

4 Evaluation Methodology

We evaluate the pipeline from two perspectives: 1) data
and approach employed to construct the incomplete action
model in terms of explainability 2) workflows generated by
the incomplete action model in terms of soundness and com-
pleteness. We evaluate the data utilized by the pipeline fol-
lowed by the extracted plans represented as shallow work-
flows. Although we have the incomplete action model in the
pre-action −→ action −→ post-action format (a sample of
these models extracted for the three domains is show in Ta-
ble 3), we are still in the process of attempting to convert and
refine this incomplete model to a PDDL-style model. This
attempt could be a valuable contribution to the automated
planning community (Srivastava and Kambhampati 2005).
Planning community can no longer depend on a fixed set of
domains for the International Planning Competition (IPC)
challenges but instead expand the domains to any real-world
scenarios.

Quit Smoking

(:action change(ability)

[:pre-action eat(gross) crave(succeed) dealt(reality)]

[:post-action set(goal) run(mile) quit(smoke)] )

Possible explanation: Someone is craving for success and is dealing with the reality

of eating gross food who wants to change his abilities that led that person to set some

goals, run miles and quit smoking.

Couch to 5K

(:action sign(race)

[:pre-action recommend(c25k) push(run) refer(program) ]

[:post-action begin(week) run(minute) cover(mile) know(battle) kept(pace) ] )

Possible explanation: A person was recommended the couch to 5K reddit forum and

was being pushed to run. So, he refers to a program and signs up for the race. After

this, he begins from the next week to run few minutes and cover few miles. The person

knows the battle but he kept the pace.

Wedding Planning

(:action hate(dress)

[:pre-action pick(dress) saw(dress) blame(problem) cost(much) prove(difficult)]

[:post-action kill(wed) find(dress) move(wed)])

Possible explanation: The person sees and picks her dress. It may cost a lot but starts

blaming someone for the problem and now hates the dress. The next steps could be to

kill the wedding at the moment, find a new dress and move the wedding date.

Table 3: Sample actions from the incomplete models ex-
tracted for the 3 domains automatically by this pipeline and
their possible explanations provided by the human subjects.

4.1 Evaluation-1 – Explainability

Prior to analyzing the pipeline, it is important to examine
whether the data we are utilizing to construct the incomplete
action models is consistent across all the experiential posts
shared online by the users. To evaluate this, we measure the
explainability of the incomplete action model by varying the
α value (clustering threshold). α decides on the amount of
redundancy to be removed from the posts. The smaller the
value of α, the larger the redundancy present in the data con-
sidered. We fix the size of the training data (Dtr) to 80% of
the entire set of plan traces and the remaining as the test data
set (Dte) and conduct experiments on all the three domains
separately. The dataset from each domain consists of a set of
plans that are aimed at achieving the primary goal of the cor-
responding domain. The pipeline first utilizes Dtr to build
the incomplete action model M and then use the test dataset
Dte to evaluate the explainability of M.

α Quit Smoking Couch to 5K Wed. Planning

2.50 65.66% 64.5% 73.39%

2.25 65.66% 64.59% 73.39%

2.0 68.41% 69.78% 77.7%

1.75 69.33% 70.67% 78.39%

1.50 80.58% 82.06% 84.68%

1.25 90.42% 89.43% 91.6%

1.0 89.31% 89.91% 91.04%

Table 4: Average explainability measured by Eq. 6 as we
vary α through 10-fold cross-validation

As shown in Table 4, the maximum explainability value
was reached at α = 1.25. It is expected that if the data and
the approach are correct, the explainability value should be
directly proportional to the value of α. This trend is clearly
visible in the results shown in Table 4. This trend also posi-
tions more confidence in building the best incomplete model
used to generate shallow workflows. Also, we focus on how
well can these incomplete domain models explain the newly
seen data to decide the consistency of goal-oriented experi-
ences shared by users. The results obtained through 10-fold
cross-validation show that M has the potential to obtain 90%
accuracy. The results display the strength of unstructured
data from social media platforms like Reddit could be em-
ployed to build incomplete models.

4.2 Evaluation-2 – Soundness & Completeness

Next, we examine the “goodness” of the incomplete ac-
tion models by evaluating the generated shallow workflows.
Each workflow is generated by representing the incom-
plete model as a graph and is the shortest path in this
graph from a given source node to the goal node. For ex-
ample, in Quit Smoking domain, the source node can be
start(smoke) and the goal node is quit(smoke). To iden-
tify the best path, we utilized the weight-based Djikstra’s
shortest path algorithm from the NetworkX (https://
networkx.github.io/) Python library. We rate each
plan on a binary-scale evaluating it’s soundness and com-
pleteness metrics.



67

Domain Soundness Completeness

Quit Smoking 42% 38%

Couch to 5K 66% 45%

Wedding Planning 36% 43%

Table 5: Soundness and Completeness as evaluated by the
human subjects. Note that higher the percentage values, the
better the workflows that are generated.

Soundness: is defined as whether a given shallow work-
flow is meaningful and can help achieve the goal.

Completeness: is defined as if a given shallow workflow
is missing any important actions to achieve the goal.

We recruited 10 human test subjects who evaluated the top-
5 workflows generated by M. We provide instructions to the
test subjects and ask them to rate the soundness and com-
pleteness of each workflow. Each subject evaluates all the
top-5 workflows from the three domains and the combined
statistics are shown in Table 5. Each percentage value in
this table is the average value of all the votes gathered by the
plans in a given domain.

The best plan among these 15 plans (combined all top-
5 plans from the 3 domains considered) is from the Couch
to 5K domain – inhale(nose) → exhale(mouth) → aid(loss)
→ transform(life) → outpaced(brain) → slow(pace) →
run(minutes). This shallow workflow was described by the
human subjects as “If you inhale through nose and exhale
from mouth (a powerful breathing pattern4) that will help
you relax and transforms by keeping your slow pace to run
the 5K in minutes.” Notice that these workflows are not par-
tially meaningful. However, the evaluation results showed
that they make sense to humans as shown by the results pre-
sented in Table 5. The table shows that the Couch to 5K do-
main has highest soundness and completeness values which
might be due to the fact that the number of original number
of actions are relatively lower that led to a model with less
redundancy. Another reason could be the workflows gen-
erated from this domain are more meaningful to the human
test subjects. With regard to completeness, test subjects ex-
pressed the difficulty of not being completely aware of the
domains and so by default assumed that there should be a
missing action in the plan.

5 Related Work

The work reported in this paper brings together work from
three communities that are quite far apart – traditional (clas-
sical) planning, social computing and Natural Language
Processing (NLP).

Automated Planning & AI: Classical planning tech-
niques have sought to mostly ignore domain acquisition and
maintenance issues in favor of search efficiency and plan
synthesis. Towards this goal, multiple works have focused
on learning the action models through inductive logic pro-
gramming, from sets of successful plan traces (Yang, Wu,
and Jiang 2007; Zhuo et al. 2010), improving partial mod-
els (Oates and Cohen 1996; Gil 1994), etc. Recent work

4https://goo.gl/BiKvGG

on model-lite planning (Kambhampati 2007; Yoon 2007;
Zhuo, Nguyen, and Kambhampati 2013) acknowledges that
learned models may be forever plagued by incompleteness
and laden with uncertainty, and plan synthesis techniques
themselves may have to change in order to accommodate
this reality. Other existing works (Addis and Borrajo 2011;
Lindsay et al. 2017; Tenorth, Nyga, and Beetz 2010; Waibel
et al. 2011) that includes literature from the field of robotics
attempts at learning action models from the web where they
consider plans recommended by websites like wikihow.com
for a given task. This work focuses on carefully construct-
ing well-curated complete domain models where as the work
proposed in this paper emphasizes on building incomplete
models that are efficient enough to perform automated plan-
ning tasks that include plan recognition and obtaining mean-
ingful plans.

Social Computing: On the other hand, work in the so-
cial media field puts a premium on the analysis of data,
but very little on complex decision-making that can build
on the knowledge embedded within that data (Kiciman and
Richardson 2015). Given the high level human engagement
with these platforms, researchers have sought to utilize the
data generated on them for various analyses that can help
understand and predict users’ behaviors (Golder and Macy
2011; Sarker et al. 2015; Paul and Dredze 2011). Building
on this theme of using human-generated data on social me-
dia, the crowd sourcing community realized that in addition
to using the inadvertent by-product of user participation on
social media, it could also directly utilize the “crowd” to
prepare plans for goal-oriented tasks (Law and Zhang 2011;
Manikonda et al. 2014). This work has gained traction in
recent years in part as a response to the unavailability of
good planning models for many real-world, everyday plan-
ning and scheduling tasks. Such “hybrid” intelligence sys-
tems utilize domain knowledge that is split between humans
and machines, with each party possessing complementary
information; unfortunately, these systems are still far from
being scalable and cost-effective.

NLP: There is another set of work (Harabagiu and Maio-
rano 2002; Collier 1998) from the natural language process-
ing (NLP) community which focus on extracting domain
templates. The templates extracted from this literature cap-
ture most important information of a particular domain and
they can be used across multiple instances of that domain
especially in the field of information extraction. For exam-
ple, the GISTexter summarization system considers seman-
tic relations from WordNet along with summary statistics
over an arbitrary document collection. This type of sum-
marization could be at a disadvantage if there is only one
instance of the domain as input as addressed by Filatova et.
al 2006. This direction of work is later extended to iden-
tify event schema using count-bases statistics and by build-
ing formal generative models (Chambers and Jurafsky 2008;
Chambers 2013). The main distinction of this line of re-
search from our work is two fold: (1) the model: our main
aim is to build shallow models where as, the existing liter-
ature aims at constructing full models; (2) the unstructured
natural language data on online social media platforms: our
proposed pipeline handles natural language with different
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styles of language, where as the existing literature consid-
ers fairly structured text available online.

6 Conclusions and Future Work

To support sequential decision making, action models ex-
tracted from the unstructured data are very valuable. How-
ever, extracting these models from unstructured data is dif-
ficult. Towards exploring these challenges and to measure
the feasibility of building usable action models, this paper
proposes a novel six-phase pipeline. This pipeline takes as
input the unstructured web data and automatically gener-
ates the incomplete action model. Through evaluations, we
show the capability of utilizing shallow NLP techniques to
overcome the challenges posed by various entities and suc-
cessfully generate incomplete action models. We acknowl-
edge that the workflows generated by the incomplete action
models are shallow. However, the evaluations displayed the
power of experiential statuses shared by the users on online
social media platforms can be used to generate incomplete
action model. Also, the capability of these models to gen-
erate plans as workflows are tagged by human subjects as
sound to a certain extent.

As a future work, these incomplete action models can be
translated to PDDL-style models. In addition, hierarchical
representation of actions can be extracted in order to en-
hance the extracted models. We hope that this work inspires
the research community to utilize the potential of incomplete
action models to perform automated planning tasks. Also,
considering the wealth of information present on online
social media platforms especially the goal-oriented posts
shared publicly, we envision that further action models are
constructed towards supporting sequential decision making.
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Abstract

In this work, we address the problem of learning planning do-
main models from example action traces that contain missing
and noisy data. In many situations, the action traces that form
the input to domain model acquisition systems are sourced
from observations or even natural language descriptions of
plans. It is often the case that these observations are noisy
and incomplete. Therefore, making domain model acquisi-
tion systems that are robust to such data is crucial. Previous
approaches to this problem have relied upon having access to
the underlying state in the input plans. We lift this assump-
tion and provide a system that does not require any state in-
formation. We build upon the LOCM family of algorithms,
which also lift this assumption in the deterministic version
of the domain model acquisition problem, to provide a do-
main model acquisition system that learns domain models
from noisy plans with missing information.

Introduction

When faced with the task of creating a planning domain
model that accurately models a real-world problem that
needs to be solved, in most current situations an AI Plan-
ning expert must also learn to become a domain expert in
the problem area to be modelled. Domain model acquisi-
tion is an area of research trying to reduce the gap between
domain expert and modelling expert. Domain model acqui-
sition is the problem of automatically generating planning
models from input data of some form. This input data can
vary in many ways, but typically at least contain collections
of plan traces in some form. Other information that may be
available are intermediate states, solution metadata (such as
plan costs, or whether plans are goal-directed or optimal),
etc.

In this work, we study the problem of domain model ac-
quisition when the input plans have noisy data and miss-
ing information. This problem has previously been studied
(Mourao et al. 2012) with the assumption that intermedi-
ate state information is present. We relax this assumption,
and provide an algorithm that does not rely on intermedi-
ate state information being present. There are important sit-
uations in which intermediate state information cannot be
accessed. For example, when translating plans created for
people to follow (e.g. the machine tool calibration plans in
(Parkinson et al. 2012)), the plans only mention the actions,

a) (new-move p1-0 p1-1 p1-2) b) (new-move p0-0 p1-1 p1-2)

(continue p1-2 p2-2 p3-2) (continue p1-0 p2-2 p3-2) *

(end-move p3-2) (end-move p3-2)

(new-move p3-1 p2-1 p1-1) (new-move p3-1 p2-1 p1-1)

(end-move p1-1) (end-move ____) **

Figure 1: The first plan (a) shown is an example plan from
the English Peg Solitaire domain. The second plan (b) shows
the same plan with noise (*) and missing information (**).

and there is no state description. Plans created by people for
other people can also be prone to mistakes and oversights,
or, in the language of this paper, noise and missing infor-
mation. Another place in which missing and noisy data is
a problem, and in fact a motivating reason for developing a
domain model acquisition system of this type, is the Framer
system (Lindsay et al. 2017): a domain model acquisition
system that has natural language descriptions of plans as its
input. Although the exact details are not important here, it
should be clear enough that natural language descriptions of
plans are prone to noise and missing information, and do not
provide information about intermediate states.

We call our system LC M, as it is a version of the LOCM
system with noisy and incomplete data (the C is misplaced
and the underscore represents missing data). The LOCM
family of algorithms (Cresswell, Mccluskey, and West 2009;
Cresswell and Gregory 2011; Gregory and Cresswell 2015;
Lindsay et al. 2017) are domain model acquisition systems,
all sharing the assumption that plan traces with no interme-
diate state form the input to the system. It has proven pos-
sible to correctly learn domain models with rich structure,
including the vast majority of the IPC domains, whilst still
adhering to this very strong assumption about the input data.
In this work, we assume that the input plans are generated
through some process of observation, whether human or ma-
chine. We assume that each action is observed, but that the
observer may either perceive the wrong action type (i.e. the
action name), and / or the wrong action parameters. Missing
data can be seen if the observer fails to perceive an action
or action parameter with any degree of certainty. We also
have the assumption that there is an underlying determinis-
tic planning model that would be learnt by LOCM if no noise
and missing information were present.
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Figure 2: An English Peg Solitaire board, and an example of
a move. Pegs must jump over other pegs, both removing the
peg jumped over whilst leaving their current position clear.

Background

The LOCM system (Cresswell, Mccluskey, and West 2009;
Cresswell, McCluskey, and West 2013) forms the basis for
the work in this paper, therefore we provide an introduction
to the most relevant parts of the LOCM system. To do this we
use a running example of the one-player board game English
Peg Solitaire. The goal is to clear the board of pegs, leaving
a single peg in the middle. Pegs are cleared when an adjacent
peg jumps over it, into another adjacent empty position, and
this jump must be in a straight line. If the same peg performs
more than one consecutive jump, then this counts as a single
move in the optimisation criteria. In the planning domain,
this is modelled as three different operators:

(new-move pos-from pos-over pos-end)

(continue pos-from pos-over pos-end)

(end-move pos)

The LOCM domain model acquisition system works by
building finite state machines for each type of object in a
planning domain, asserting that the behaviour of each object
can therefore be defined as a finite state machine. It oper-
ates with the assumption that each action parameter asserts
a transition in this state machine. Each object in a plan can
be seen as going through a sequence of transitions, where a
transition is defined by an action name and a parameter in-
dex. The transitions for the peg solitaire domain are shown
in Table 1. For the plan in Figure 1 a) for example, the object
p1-1 has the transition sequence new-move.2, new-move.3,
end-move.1. In Table 1, the imaginary zeroth parameters of
the actions are also listed as transitions. This is important, as
the structure of the plans can carry extra object-independent

Transition Meaning

end-move.1 The position that a move ends on.
new-move.1 The position of the peg to move.
new-move.2 The position of the middle peg to be removed.
new-move.3 The empty position that the peg will land on.

continue.1 The position of the peg to move.
continue.2 The position of the middle peg to be removed.
continue.3 The empty position that the peg will land on.

end-move.0 The imaginary zeroth parameter of end-move.
new-move.0 The imaginary zeroth parameter of new-move.

continue.0 The imaginary zeroth parameter of continue.

Table 1: Table of transition meanings in peg solitaire do-
main.
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Figure 3: The finite state machines derived by LOCM for the
Peg Solitaire domain. There are two state machines: one for
the ‘board position’ type, and another for the zero machine,
which models global dynamics of the system.

information about the domain structure. The zero transition
sequence for the plan in Figure 1 a) then, is new-move.0,
continue.0, end-move.0, new-move.0, end-move.0

The domain model that LOCM learns for this domain can
be described by the state machines in Figure 3, where there
are two different state machine types: one for board posi-
tions and a zero state machine. The zero machine is the ma-
chine generated by assuming that each operator has a hidden
zeroth parameter, and this represents zero place predicates
in the domain. A crucial assumption in the LOCM system is
that each transition appears at most once in each state ma-
chine. In order to construct the state machines for each type,
LOCM performs an incremental unification of states, based
on the transition sequences seen in the input. The conse-
quence of the rule that each transition appears at most once,
is that for a transition sequence pair A,B the end state of the
A transition is the start state of the B transition. For the zero
machine in Figure 3, the machine is constructed using the
steps defined in Figure 4. Note, importantly, that a transition
pair can change the structure of the generated state machine
significantly. This is important in the context of this work,
because even a small amount of noise can lead to incorrect
state machines being learnt, and hence provides strong mo-
tivation to find ways of dealing with noise.

The final aspect of the LOCM system to discuss is the
learning of state parameters. State parameters define tem-
porary relationships that exist between different object state

Transition In Parameter Out Parameter

end-move.0 end-move.1
new-move.0 new-move.3

continue.0 continue.3 continue.1

Table 2: Table of the position state parameter transitions for
the moving state of the zero machine in Figure 3.
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Initially:

A B C D E F

new-move.0 end-move.0 continue.0

After new-move.0,continue.0:

A BE F C D

new-move.0 end-move.0continue.0

After continue.0,end-move.0:

A BE FC D

new-move.0 end-move.0continue.0

After end-move.0,new-move.0:

AD BE FC

new-move.0

end-move.0

continue.0

After new-move.0,end-move.0:

AD BEFC

new-move.0

end-move.0

c
o
n
tin

u
e
.0

Figure 4: The progression of state unifications for the zero
machine on the input plan in Figure 1 by LOCM. Initially,
there is an assumption of independence between the differ-
ent transitions. After considering the transitions in the exam-
ple, the machine specified in Figure 3 is produced.

machines, typical examples include the location of a truck in
a logistics domain. In the zero machine of Figure 3, for ex-
ample, the moving state has the state parameter ‘[position]’
which records the board position that is currently active dur-
ing a move. In general, if a state in a LOCM state machine
has a parameter, this means that for each pair of consecutive
transitions in and out of the state there is a transition index
in each that always has the same value. They effectively pro-
vide constraints between the parameters of the actions that
affect the state machine with the parameter. The transition
positions for the moving state in the zero machine are shown
in Table 2.

Another convenient way of representing the input transi-
tions is to look at the transition matrix. This idea was impor-
tant in the LOCM2 system (Cresswell and Gregory 2011)
for deriving state machines for objects with multiple be-
haviours. We will, however, use the matrix for a different
purpose here. The transition matrix for the board position
type in the English Peg Solitaire domain is shown in Fig-
ure 5. The matrix has a row and a column for each transition
that a board position can go through. A cell in the matrix is
crossed if the input data sees two transitions in sequence row
label and then column label.

Missing Values

In this section, we discuss how we deal with missing infor-
mation in the absence of noise. It is important to discuss this
first, as we use the techniques here as a sub-procedure when
reasoning about plans with noise. To generate the state ma-
chines, we first split the input plans around the missing infor-
mation, so that there are now a greater number of shorter in-
put plans, with no missing information. Since we assume no
noise, then we can generate LOCM state machines, based on

end-move.1
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continue.1
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X X

Figure 5: The transition matrix for the English Peg Solitaire
domain. The names of the transitions are abbreviated on the
column labels in order to preserve space.

the parts of the input plans with no missing information. We
then employ the standard LOCM algorithm discussed above
to learn the state machines, along with their state parameters.

After this process, we then use these LOCM machines to
fill in the missing information. In order to deal with missing
information, we rely on a constraint encoding of the input
plans and the state machines generated by the LOCM sys-
tem. This constraint model is a matrix model of each plan,
in which the rows correspond to time-stamped variables for
each time t: the action label, the action parameters, the ob-
ject LOCM states and the values of the state parameters.
The constraints are conceptually similar to those used in the
constraint-based planners SeP (Barták and Salido 2011) and
Constance (Gregory, Long, and Fox 2010).

If an object is in the argument of an action, then it must
transition in the correct way that its LOCM state machine
defines. Constraints are posted to ensure that state param-
eters appear in the correct arguments of the actions. If an
object is an appropriate filler for a missing value then a con-
ditional constraint updates its state if is selected to fill the
missing value. If an object is inappropriate or not selected
then its state is unchanged between timesteps. Similarly, for
missing action names, conditional constraints are posted for
each of the possible action fillers. Because much of the plan
is known, the vast majority of the timeline can be filled in
immediately, leaving only the states in which there are gaps
in the operator name and arguments. Figure 8 shows an ex-
ample of a timeline, for the plan in Figure 1 a) with the miss-
ing parameter from 1 b). The missing parameter was in the
end-move.1 position of the final action, and is highlighted in
bold. The only consistent value that can occupy this position
is the p1-1 object: this can be seen by the fact that the object
performing the end-move.1 transition starts in the occupied
active state, and only p1-1 meets this condition.

Using this type of approach to finding missing data leads
to two risks. Firstly, that once the plans are split into smaller
plans, there will not be enough data to correctly learn the
LOCM state machines. However, LOCM typically only re-
quires a small amount of data to learn correct domain struc-
tures this is unlikely to be an issue. The other risk to this
kind of approach is that there are multiple consistent objects
which could take the place of the missing argument, which
is an unfortunately an unavoidable problem. An algorithmic
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⊲ The Missing Value Model Acquisition System
function missingValueModel(Π : a collection of plans)

Π′
← split plans on missing information

M ← LOCM (Π′)
Mc ← constructConstraintModel(M,Π)
if solve(Mc) is consistent then

return solve(Mc)
else

return inconsistent
end if

end function

Figure 6: The missing value model algorithm. The function
constructConstraintModel returns the constraint model
described above.

description of how to perform domain model acquisition in
the presence of missing information is shown in Figure 6.
We now change focus to discuss how we use these results to
help deal with problems involving noisy data.

Noisy Data

Consider the plan fragment in Figure 7, with a single mistake
in the parameters (where p2-1 in action 5 should be p2-2).
By simply changing a single object parameter, the transition
sequence of two objects are corrupted: the swapped in object
and the swapped out object (in this case, the objects p2-1 and
p2-2). Because of the error, the transition sequence for p2-1
is now new-move.3, end-move.1, new-move.3, new-move.1
and the transition sequence for p2-2 is new-move.2, end-
move.1, new-move.2. Each transition pair in those sequences
are invalid in the true domain. Figure 9 shows the occur-
rence matrix (a version of the transition matrix in which the
number of times each transition pair occurs is shown in each
cell) for a small number of plans, including a plan which
included the error from the previous example. The values
corresponding to the error are highlighted. Our technique
for domain model acquisition when plans may contain noise
rely on forming hypotheses about which cells in the occur-
rence matrix may contain errors, and trying to find replace-
ment values which still support the data.

In this section we consider the implications of noisy data
on the generated LOCM model. There are two ways an er-
ror may add connections to the transition matrix: where
obj✗ (an error action symbol) adds connections in the ma-
trix, because of the new transition pairs added, or where
obj✓ (the correct action symbol) adds a new spanning con-
nection, because of the missing transition. We consider each

1: (new-move p1-2 p2-2 p2-3)

2: (end-move p2-3)

3: (new-move p4-1 p3-1 p2-1)

4: (end-move p2-1)

5: (new-move p2-4 p2-3 p2-1)*

6: (end-move p2-2)

7: (new-move p2-1 p2-2 p2-3)

Figure 7: Plan fragment with single error.

time 0 1 2 3 4 5
action n-m c e-m n-m e-m
arg1 p1-0 p1-2 p3-2 p3-1 p1-1
arg2 p1-1 p2-2 p2-1
arg3 p1-2 p3-2 p1-1
zero NM M M NM M NM
M-prm p1-2 p3-2 p1-1
p1-0 OI E E E E E
p1-1 OI E E E OA OI
p1-2 E OA E E E E
p2-2 OI OI E E E E
p3-2 E E OA OI OI OI
p3-1 OI OI OI OI E E
p2-1 OI OI OI OI E E

Figure 8: Timeline visualisation of the plan from Figure 1 a)
with the missing parameter from 1 b). Abbreviations used in
the table are n-m (new-move), c (continue), e-m (end-move),
M-prm (the state parameter of the moving state of the zero
machine, NM (not moving), M (moving), OI (occupied inac-
tive), E (empty) and OA (occupied active). The correct value
of the missing parameter and its state value is shown in bold.

of these cases below.

Added transitions The modified action becomes a new ob-
servation, t, in the transition sequence of obj✗. If the obj✗

and obj✓ are of the same type then the added transition may
induce new connections due to new otherwise unseen order-
ings of transitions (e.g., an end-move.1 transition added, but
with no preceding jump-new-move.3 or continue-3). For ex-
ample, if we consider the plan fragment:

(end-move p3-6)

(new-move p4-0 p4-1 p4-2)

(end-move p3-6)

In this example, the final end-move action argument,
pos-4-2, has been replaced by pos-3-6. As a result the
transition sequence for pos-3-6 includes: end-move.1;end-
move.1. This will contrast with any correct sequence, which
will have either jump-new-move.3;end-move.1 or continue-
3;end-move.1.

If they are of different sorts then, from the definition of
sort in LOCM, t will not be a correct transition of obj✗.
However, this erroneous observation will collapse the sorts
together, losing any distinction between them. Also, new
connections will be made from the previous transition of
obj✗ to t and then from t to the next transition of obj✗.

Missing transitions There is not always enough informa-
tion to detect an error directly. In these cases we might de-
tect the error in the transition sequence of the correct argu-
ment. For example, consider the peg-solitaire sequence be-
low, where the last parameter of a jump-new-move action
has been swapped:

(new-move p5-2 p4-2 p3-2)

...

(new-move p4-0 p4-1 p3-6)

(move p4-2)

In this example, pos-3-6 does not appear in further transi-
tions; therefore there is no direct clue that this object is in-
correct. However, if we consider the correct argument: pos-
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Figure 9: The occurrence matrix for the English Peg Soli-
taire domain. Instead of showing just which pairs of transi-
tions occur, as in the transition matrix, we show the number
of times that the transition pairs happen (in this instance for
a set of random walks). A single error is introduced to the
data, and the faulty transitions are labelled with asterisks.

4-2 then this error will add the transition pair: jump-new-
move.2;end-move.1, which will not be observed in a cor-
rect trace. This indicates the possibility of a missing transi-
tion, M, which extends the current transition pair, X;Y, to
X;M;Y, for some M such that connected[X][M] and con-
nected[M][Y].
Action labels We assume that the number of arguments of
each action header in the plan trace is consistent with the
correct action. LOCM requires consistent arities for the same
action headers. We therefore select the most frequent ar-
ity for each action symbol and replace any others with the
missing value symbol. The implication of an incorrect ac-
tion symbol is that each argument will generate potentially
unexpected transition sequences, essentially acting similarly
to an added transition. In the case of structural redundancy
there will be no clues (e.g., fly and zoom in Zeno-travel).

Building Error Hypotheses

We define an error hypothesis as a set of symbols (either
action names or action parameters) in the input plans that
we have supporting evidence to believe are incorrect. In or-
der to detect noise in the plan traces, we have formulated
two distinct ways of hypothesising errors in the plan sym-
bols. These are from the occurrence matrix and from the po-
tential state parameters. Recall from Figure 9 that noise in
the data often translates into cells in the occurrence matrix
that have low values. Even a single error can impact on the
structure generated by LOCM. Firstly, it can lead to badly-
formed state machines. In Figure 4, for example, observing
two new-move.0 transitions incorrectly would lead to states
AD and BEFC being unified. An error can lead to state pa-
rameters not being discovered. The state parameter in the
‘moving’ state of the zero machine in Figure 3, for exam-
ple, is supported by action sequences having co-occurring
parameters. Take the action sequences:

a) (new-move p1-0 p1-1 p1-2) b) (new-move p1-0 p1-1 p1-2)

(continue p1-2 p2-2 p3-2) (continue p1-2 p2-2 p4-2)

(end-move p3-2) (end-move p3-2)

Where the continue.3 transition is an error in sequence b).

new-move.1

new-move.2

new-move.3

continue.1

continue.2

continue.3
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1.00 1.00 0.00 0.01

Figure 10: A state parameter ratio matrix for the moving
state in the zero state machine. Each element in the grid
represents the proportion of in-out transition pairs from the
moving state that accompany a transition and have the same
object in their respective arguments.

LOCM will reject the state parameter in the moving state of
the zero machine because the object in the continue.3 argu-
ment does not match the one in the following end-move.1
argument. In an analogous way to which we build the oc-
currence matrix, we build a state parameter ratio matrix in
order to see how frequently objects co-occur in the plans.
Figure 10 shows an example of this for the moving state of
the zero state machine in Figure 3. Taking the top-left corner
as an example, each time an end-move follows a continue ac-
tion, the object in the first argument of the end-move is the
same as the first argument in the continue action 1% of the
time. Strictly, in order to support a state parameter, then all
in-out actions should have a pair of transitions which always
coincide. However, we note that pairs with high ratios may
in fact always coincide without the presence of noise.

Our approach for forming hypotheses about the noise in
plan traces starts by examining each element of the struc-
tures generated by LOCM and considering to what extent it
is supported in the data. There are two main outputs of the
LOCM analysis: the transition matrix and the state param-
eters. In each case we can count the number of examples
in the data that either support (connections in the transition
matrix) or refute (state parameters) a structural element. We
interpret weak support for model structures as an indication
of erroneous input and use these as starting points for fixing
the data. Our approach is to focus on specific weakly sup-
ported elements and then attempt to remove them. The goal
here is to find small changes to the plan traces that result in
structures that are well supported in the data.

We start by attempting to remove connections (pairs:
t1; t2) from the transition matrix. We form only hypothe-
ses on values that fall underneath a threshold value tOcc.
We focus on each of the plan step pairs that are represented
by t1; t2 and attempt to find fixes that can be explained by
the model without the sequence: t1; t2. There should always
be an alternative explanation in the case of errors. This is
because we assume that correct structure will be well sup-
ported in the surrounding plan traces. For state parameters,
we look for high values in the state parameter ratio matrix.
Again, we apply a threshold, tSPR to the ratios between se-
quential transitions, and therefore identify the most likely
relationships obscured by noise.
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⊲ The LC M Domain Model Acquisition Algorithm
function LC M(Π : a collection of plans)

Occ← the occurrence matrix
SPR← the state parameter ratio matrices
OccTrs← the transition pairs in Occ < tOcc

SPRTrs← the transition pairs in SPR > tSPR

M ← missingValueModel(Π)
for all h ∈ hypotheses(OccTrs, SPRTrs) do

Π′
← replace hypothesised noise(Π, h)

if missingValueModel(Π′) is consistent then
M ← missingValueModel(Π′)

else
return M

end if
end for
return M

end function

Figure 11: The LC M algorithm. The function hypotheses
returns the hypothesised structural faults in the transitions,
ordered by how much support there is in the data for the
fault. The algorithm either completes when all the faults
have been shown to be faults or when one hypothesis leads
to an infeasible model.

The LC M Algorithm

So far we have described solutions to two separate problems.
Firstly, how to fill in missing data from plan traces, and sec-
ondly how to identify which structural elements seem badly
supported and may be artifacts of noise in the plan traces. We
now show a simple, but powerful, way in which these ideas
can be combined to provide an algorithm that generates do-
main models in the presence of both noise and missing in-
formation. The key to the algorithm is that once structural
elements are hypothesised as incorrect, all of the objects that
lead to the hypothesised faulty structure can be transformed
into missing information. At this point, the constraint model
for discovering the most likely missing objects can be em-
ployed as firstly a test of consistency over the data and (pro-
viding the changes are consistent) will provide suitable ob-
ject replacements for the noise values. The complete LC M
algorithm is given in Figure 11.

Consider the plan in Figure 7. Suppose that the occur-
rence matrix in Figure 9 and the state parameter ratio ma-
trix in Figure 10 represent the plans from which the plan
is taken. The transition pair new-move.3,end-move.1 in the
matrix has a ratio of 0.99, meaning that 99% of the time,
these arguments were equal in sequential actions. It seems
likely that this is really 100% and the 1% remaining is an
artifact of the noise. We hypothesise that this transition pair
is part of a state parameter and remove any argument value
that does not support this hypothesis. One part of the plan in
Figure 7 that does not support the hypothesis is:

(new-move p2-4 p2-3 p2-1)

(end-move p2-2)

The hypothesis leads to the removal of the new-move.3 and
end-move.1 argument values.

Domain ER AE TME SPE TME’ SPE’

Grid 0.001 3 3 0 1 0
0.005 24 12 1 1 0
0.010 52 20 3 7 1
0.050 224 36 5 15 3
0.100 497 47 5 28 4

Gripper 0.001 3 5 3 0 0
0.005 38 27 4 4 3
0.010 77 36 4 12 2
0.050 355 49 4 25 5
0.100 784 50 4 20 4

Logistics 0.001 3 6 6 8 11
0.005 30 37 11 9 11
0.010 66 84 13 16 12
0.050 301 187 13 56 14
0.100 649 214 13 63 12

Parking 0.001 3 4 3 1 0
0.005 38 23 5 4 3
0.010 78 36 5 10 4
0.050 360 50 5 18 4
0.100 785 59 5 16 5

Peg Sol. 0.001 1 1 0 0 0
0.005 15 12 2 6 3
0.010 34 14 2 1 1
0.050 134 31 2 9 5
0.100 296 34 4 7 4

Storage 0.001 3 2 3 0 9
0.005 29 31 12 4 3
0.010 63 65 12 16 6
0.050 269 175 12 76 12
0.100 583 231 12 94 12

TyreWorld 0.001 2 4 1 1 1
0.005 23 29 2 4 1
0.010 49 52 2 12 1
0.050 200 106 3 21 2
0.100 449 142 3 47 2

Table 3: The results of the empirical evaluation on noisy data
for the LC M system. The abbreviations in the headings are
ER (Error Rate), AE (Atomic Errors, TME (Transition Ma-
trix Errors), SPE (State Parameter Errors), TME’ (Transition
Matrix Errors in corrected model), SPE’ (State Parameter
Errors in corrected model)

(new-move p2-4 p2-3 ____)

(end-move ____)

The constraint model confirms that the data has a consistent
domain model, with the state parameter, and assigns a con-
sistent object to the missing arguments. For Figure 7, there
is only one value that can occupy these parameters: p2-2.

Empirical Analysis

In this section we present an evaluation of the system. The
aim is to establish how robust our approach is to missing
information and noise. In order to do this we first gener-
ate a model using plans with no errors and use this as the
correct model for comparison. The noisy training data sets
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Figure 12: The transition matrix for the English Peg Solitaire
domain with 5% noise. The ‘O’ entries represent the errors
in the matrix.

are each derived from these plans, which means that we can
determine how well our approach to correcting the errors
performs. A collection of standard benchmark planning do-
mains is used for the evaluation.

All of our experiments are run on Mac OSX version
10.11.6 using an Intel 2 GHz i7 CPU with 8 GB system
memory. LC M is implemented in Java (version 1.8.65) us-
ing the Choco constraint library (Prud’homme, Fages, and
Lorca 2014) version 3.3.1.

We have simulated noisy data by first generating a set of
action sequences for each domain and then adding noise. In
each of the domains, except Grid, we have used the first 10
problems from the standard benchmark sets and generated
5 action sequences for each problem. In Grid the 5 prob-
lems were used and 10 action sequences were generated per
problem. In most domains the action sequences are random
walks of a length randomly selected between 1 and 100.
However, for Grid and Peg-solitaire, where random walks
provide poor coverage of the transitions, a goal-directed plan
is used as one of the action sequences for each problem.

Each plan is passed through a channel that simulates the
introduction of certain types of noise. The generated noise is
governed by the probability for recording an incorrect value
and can function with or without action symbol replacement.
Replacement objects are drawn from the set of objects ob-
served in the plan and the replacement action symbols are
randomly selected from the observed actions.

We first evaluate our system on action sequences with in-
creasing numbers of missing information. We then test the
system on noisy plans.

Missing Information

We first test how robust the system is at filling in plans that
contain only missing information. This forms an important
subsystem of our complete approach and therefore provides
an indication of how robust our system will be to noise in
each of the tested domains. As detailed above, the plans
are split around actions that contain missing information, re-
sulting in a smaller set of plans with no noise. These plans
are then used as input to LOCM, which induces a transi-
tion matrix and set of state parameters. A CP model is then
constructed using the original plans with variables for each
missing value. This model enforces the transition and state

Error rate 0.005 0.01 0.05 0.1

#Errors #Estart #Eend #Estart #Eend #Estart #Eend #Estart #Eend

Grid 29 2 68 5 337 51 711 240
Gripper 47 0 105 0 524 5 1076 13
Logistics 36 1 86 0 408 22 715 74
Parking 46 0 113 0 499 42 1098 218
Pegsol 21 3 36 10 207 67 408 136
Storage 39 0 69 3 366 17 717 121
Tyreworld 33 7 70 32 303 122 653 446

Table 4: The number of errors before (#Estart) and after
(#Eend) parameter filling for several domains and error rates.

parameter constraints. If the split plans provide sufficient in-
formation to construct a correct model then solutions for the
CP should be valid action sequences.

There are several ways that the CP model can have differ-
ent output from the original plan sequences. The planning
model will quite often allow alternative values for the same
missing value. For example, consider a truck with 2 pack-
ages in it. If a put down action is missing the package and
no further references are made to these packages then there
is no information to distinguish them. As symbols are re-
moved from the plan more symbols will appear equivalently
appropriate for filling a specific action name or object. This
is particularly relevant as we are only considering the dy-
namics of the model. As there are typically more than one
argument for an action it is less likely, although possible that
action symbols can be substituted in a similar manner.

As well as making equivalent replacements, the CP can
also fail to produce a solution. This happens when the miss-
ing information in the context of a specific object results in
either the type of the object becoming undetectable (only ap-
pears where the action symbol is missing), or the object be-
comes completely unobserved. In the former case, the orig-
inal plans are used to guess its type as the most commonly
observed type (this approach is helpful in the case of noise).
Therefore the CP may fail because the correctly typed object
may not be available.

Table 4 presents the number of errors in the plans (here
a missing symbol is counted as an error) before and after
our system has been used to fill the parameters. The results
show that the system is often able to complete the majority
of the missing information. It should be noted that we are
reporting symbol errors as opposed to the number of actions
with errors in them. For example, in the Parking domain at
the 0.1 error rate, 36% of actions had at least one error.

As the error rate increases the performance degrades. This
is expected because as the number of missing values in-
creases, the number of alternative plans increases. Also, the
increased missing information will increase the number of
objects that become obscured, resulting in fewer of the CP
models being solvable. In Gripper, Logistics, Parking, Peg-
solitaire and Storage the number of failed models at each
rate was 10 or fewer, leaving at least 40 completed plans
that can be used to learn a model. In Tyreworld and Grid
there were 21 and 14 failed models at the 0.1 rate.

Another factor is that as the amount of missing informa-
tion is increased and the plans are broken up into smaller
pieces the number of observations of each transition pair re-
duces. This can lead to erroneous state parameters being in-
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duced, or, in the case of no observations, missed transition
pairs. As a result, in Tyreworld and Grid, LOCM induced
tighter models than the original domain models at the 0.1
and 0.05 rates and also for Grid at the 0.01 rate. These extra
constraints can prevent the correct objects from being filled
back into the plans.

Noisy Data

In this section we evaluate the complete system on plans
with noisy data. The results for missing information indi-
cate that the underlying missing information filling system
is fairly robust in most of the tested domains. In this part of
the evaluation the system first identifies weakly supported
structural elements and then attempts to modify the input
plans so that the structure is no longer supported by the data.
In this section we therefore examine whether LC M is able
to isolate the erroneous structural elements without break-
ing those parts of the structure that were not effected by the
errors.

We have used the same baseline training data and simu-
lated noise using symbol replacement rates of: 0.001, 0.005,
0.01, 0.05 and 0.1. In this evaluation we have considered
noise in the arguments of the actions and not in the action
name. The system starts by using the noisy plans to generate
the transition pairs and state parameter structures. The set of
hypotheses for weakly supported structure elements are cre-
ated from the set of all transition pairs and partial state pa-
rameters. These are ordered using a notion of how well they
are supported in the data. For state parameters this uses the
number of matched parameters against not matching param-
eters; and for transitions pairs this uses the number of occur-
rences of the transition pair against other pairs. A threshold
value of 0.5 was used to prune the weakest of these hypothe-
ses. E.g., a partial state parameter hypothesis is pruned if it
is supported by less than half of the occurrences in the data.
We test each hypothesis by first of all identifying the actions
and the specific arguments in each plan that are inconsis-
tent with the hypothesis. These arguments are replaced by
the missing information symbol. The missing information
filling system is then used to determine if there exist com-
pletions of the plans that support the hypothesis. If there are
then the hypothesis is accepted, otherwise the hypothesis is
rejected. The next hypothesis is then tested.

Table 3 presents the number of transition matrix and par-
tial state parameter differences, as well as the underlying
symbol differences. It shows that for low levels of noise,
LC M typically corrects the majority of structural errors in-
troduced. As the noise level increases to 10%, fewer struc-
tural errors are corrected. However, their number is still typ-
ically reduced by half. State parameters are less well sup-
ported than transition matrix errors, in some cases introduc-
ing errors, even. However, several domains do see reductions
in state parameter errors. Note that it is the transition matrix
that determines the state machines in LOCM and so it is in
some ways more important to reduce the errors in the tran-
sition matrix.

It may be informative to consider the effect of 5% noise,
in order to understand why it becomes so hard to correct
errors at this level. Figure 12 shows the transition matrix

from Figure 5 overlayed with the transitions induced by this
level of noise. As can be seen, there are only three transition
pairs that are correctly identified as missing. Despite this,
22 of these erroneous transition pairs were detected and re-
moved by LC M. Clearly the fact that nine invalid transi-
tion pairs remain is problematic, and future work will deter-
mine whether this number can be reduced still further. The
interaction between different hypotheses provides one of the
most problematic difficulties: the decisions made in support-
ing an early hypothesis can make it impossible to support a
later one, for example. One solution to this issue could be to
consider the entire current hypothesis set simultaneously.

Related Work

In addition to the LOCM family of algorithms, there is a
great amount of work in planning domain model acquisi-
tion without noise and missing information, from the TRAIL
system (Benson 1996) to Opmaker (McCluskey et al. 2009;
Richardson 2008), ARMS (Wu, Yang, and Jiang 2007),
LAMP (Zhuo et al. 2010) and ASCOL (Jilani et al. 2015).
To our knowledge, there is no other domain model acquisi-
tion system targeting noisy and incomplete input, except for
(Mourao et al. 2012), which depends on intermediate state
information. In addition to the planning community, there is
wide and active interest in automatic model acquisition in
many of the sub-fields of combinatorial search and beyond,
for example in constraint satisfaction (O’Sullivan 2010;
Bessiere et al. 2014), general game playing (Björnsson
2012; Gregory, Björnsson, and Schiffel 2015), and software
engineering (Reger, Barringer, and Rydeheard 2015).

Conclusions

Modelling planning domains is a difficult and time consum-
ing activity in general. Tools that can assist a domain expert
in formulating a representation of their planning problem
can save time and widen the usage of planning technologies.
Domain model acquisition systems allow models to be learnt
from existing plans. However, the process that observes the
input plans may be prone to errors itself, making the input
plans an unreliable source due to noise and missing infor-
mation. In this work, we have presented a technique for per-
forming domain model acquisition in the presence of noise
and missing information.

LC M returns the most likely underlying deterministic do-
main based on the frequency of support for various domain
structures, such as the occurrence matrix cells and LOCM
state parameters provided in the input data. The result of this
is a system that learns planning domain models in a larger
number of real-world situations. Although the performance
of LC M is already promising, structural flaws will remain
for input data generated using a high-noise process, though
reduced. An important future line of research will focus on
the limits of such an endeavour: whether more errors can
be removed based on better hypothesis schemes, or whether
there is a technical limit beyond which errors cannot be dis-
tinguished from valid structure.
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