
Exploiting Variance Information in Monte-Carlo Tree Search

Robert Lieck Vien Ngo Marc Toussaint
Machine Learning and Robotics Lab

University of Stuttgart
prename.surname@ipvs.uni-stuttgart.de

Abstract

In bandit problems as well as in Monte-Carlo tree search
(MCTS), variance-based policies such as UCB-V are re-
ported to show better performance in practice than policies
that ignore variance information, such as UCB1. For bandits,
UCB-V was proved to exhibit somewhat better convergence
properties than UCB1. In contrast, for MCTS so far no con-
vergence guarantees have been established for UCB-V. Our
first contribution is to show that UCB-V provides the same
convergence guarantees in MCTS that are known for UCB1.
Another open problem with variance-based policies in MCTS
is that they can only be used in conjunction with Monte-Carlo
backups but not with the recently suggested and increasingly
popular dynamic programming (DP) backups. This is because
standard DP backups do not propagate variance information.
Our second contribution is to derive update equations for the
variance in DP backups, which significantly extends the ap-
plicability of variance-based policies in MCTS.
Finally, we provide an empirical analysis of UCB-V and
UCB1 in two prototypical environments showing that UCB-V
significantly outperforms UCB1 both with Monte-Carlo as
well as with dynamic programming backups.

Introduction
Monte-Carlo tree search (MCTS) has become a standard
planning method and has been successfully applied in var-
ious domains, ranging from computer Go to large-scale
POMDPs (Silver et al. 2016; Browne et al. 2012). Some of
the most appealing properties of MCTS are that it is easy
to implement, does not require a full probabilistic model of
the environment but only the ability to simulate state tran-
sitions, is suited for large-scale environments, and provides
theoretical convergence guarantees.

The core idea in MCTS is to treat a sequential decision
problem as a series of bandit problems (Berry and Frist-
edt 1985). The main difference, however, is that in bandit
problems the return distributions are assumed to be station-
ary whereas in MCTS they are not because the return dis-
tributions vary with the tree-policy. This means that con-
vergence properties do not necessarily carry over from the
bandit setting to MCTS.

The most popular MCTS algorithm is UCT (Kocsis and
Szepesvári 2006), which uses UCB1 (Auer, Cesa-Bianchi,
and Fischer 2002) as tree-policy. UCB1 has proven bounds

for the expected regret in the bandit setting as well as poly-
nomial convergence guarantees for the failure probability
in the MCTS setting. More recently, Audibert, Munos, and
Szepesvári (2009) suggested UCB-V, which takes the em-
pirical variance of the returns into account, and proved
bounds for the expected regret in the bandit setting. In the
case of MCTS, however, no convergence guarantees have
been proved so far. Our first contribution in this paper is
to show that UCB-V, just like UCB1, provides polynomial
convergence guarantees in the MCTS setting.

Apart from the tree-policy, an important aspect of an
MCTS algorithms is the employed backup method. The
most common variants are Monte-Carlo (MC) backups and
the more recently suggested dynamic programming (DP)
backups (Keller and Helmert 2013). DP backups have be-
come increasingly popular because they show good con-
vergence properties in practice (see Feldman and Domsh-
lak 2014a for a comparison). The use of variance-based poli-
cies, however, has so far been restricted to MC backups since
here the variance information is readily available. In con-
trast, DP backups do not generally propagate variance infor-
mation. Our second contribution is the derivation of update
equations for the variance that enable the use of variance-
based policies in conjunction with DP backups.

Finally, we evaluate UCB-V and UCB1 in different envi-
ronments showing that, depending on the problem charac-
teristics, UCB-V significantly outperforms UCB1 both with
MC as well as with DP backups.

In the remainder we will discuss related work on MCTS
and reinforcement learning, present the proof for the con-
vergence guarantees of UCB-V, derive the update equations
for the variance with DP backups, and present our empirical
results.

Background & Related Work
Monte-Carlo Tree Search
There exists a wide variety of MCTS algorithms that dif-
fer in a number of aspects. Most of them follow a generic
scheme that we reproduce in Alg. 1 for convenience. Note
that some recent suggestions deviate slightly from this
scheme (Keller and Helmert 2013; Feldman and Domsh-
lak 2014b). In Alg. 1 we highlighted open parameters that
need to be defined in order to produce a specific MCTS im-

Algorithm 1 MCTS: Generic algorithm with open param-
eters for finit-horizon non-discounted environments. Nota-
tion: () is a tuple; 〈 〉 is a list, + appends an element to the
list, | l | is the length of list l, and li is its ith element.
Input: v0 → root node

s0 → current state
M → environment model

Output: a∗→ optimal action from root node / current state

1: function MCTS(v0, s0,M)
2: while time permits do
3: (ρ, s)← FOLLOWTREEPOLICY(v0, s0)
4: R←FOLLOWDEFAULTPOLICY(s)
5: UPDATE(ρ,R)
6: end while
7: return BESTACTION(v0) → open parameter
8: end function

9: function FOLLOWTREEPOLICY(v, s)
10: ρ← 〈〉
11: do
12: a← TREEPOLICY(v) → open parameter
13: (s′, r)←M(a, s)
14: ρ← ρ+ 〈(v, s, a, s′, r)〉
15: v ← FINDNODE(v, a, s′) → open parameter
16: s← s′

17: while v is not a leaf node
18: return (ρ, s)
19: end function

20: function FOLLOWDEFAULTPOLICY(s)
21: R← 0
22: repeat
23: a← DEFAULTPOLICY(s) → open parameter
24: (s′, r)←M(a, s)
25: R← R+ r
26: s← s′

27: until s is terminal state
28: return R
29: end function

30: function UPDATE(ρ,R)
31: for i in |ρ|, . . . , 1 do
32: (v, s, a, s′, r)← ρi
33: BACKUP(v, s, a, s′, r, R) → open parameter
34: R← r +R
35: end for
36: end function

plementation. Two of these parameters, the TREEPOLICY
and the BACKUP method, will be discussed in more detail
below.

BESTACTION(v0) selects the action that is eventually rec-
ommended – usually the action with maximum empirical
mean return (see e.g. Browne et al. 2012 for alternatives).

FINDNODE(v, s, a, s′) selects a child node or creates a
new leaf node if the child does not exist. This procedure
usually builds a tree but it can also construct directed acyclic
graphs (see e.g. Saffidine, Cazenave, and Méhat 2012).

DEFAULTPOLICY(s) is a heuristic policy for initializing
the return for new leaf nodes – usually the uniform policy.

TREEPOLICY(v) The tree-policy selects actions in inter-
nal nodes and has to deal with the exploration-exploitation
dilemma: It has to focus on high-return branches (exploita-
tion) but it also has to sample sub-optimal branches to some
extend (exploration) to make sure the estimated returns con-
verge to the true ones. A common choice for the tree-policy
is UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), which
chooses actions as1

a∗ = argmaxaB(s,a) with (1)

B(s,a) = R̂(s,a) + 2Cp

√
2 log ns
n(s,a)

(2)

where R̂(s,a) is the mean return of action a in state s, ns is
the number of visits to state s, n(s,a) is the number of times
action a was taken in state s, the returns are assumed to be
in [0, 1], and the constant Cp > 0 controls exploration. For
UCB1 Kocsis and Szepesvári (2006) proved that the proba-
bility of choosing a sub-optimal action at the root node con-
verges to zero at a polynomial rate as the number of trials
grows to infinity.

More recently, Audibert, Munos, and Szepesvári (2009)
suggested UCB-V that selects actions as

a∗ = argmaxaB(s,a) with (3)

B(s,a) = R̂(s,a)+

√
2 R̃(s,a)ζ log ns

n(s,a)
+3cb

ζ log ns
n(s,a)

(4)

where R̂(s,a), ns, n(s,a) as above, R̃(s,a) is the empir-
ical variance of the return, rewards are assumed to be
in [0, b], and the constants c, ζ > 0 control the algo-
rithm’s behavior. For the bandit setting Audibert, Munos,
and Szepesvári (2009) proved regret bounds but for the
MCTS setting we are not aware of any proof similar to the
one for UCB1. In Section Bounds and Convergence Guaran-
tees we will adapt the proof of Kocsis and Szepesvári (2006)
to show that UCB-V provides the same convergence guaran-
tees as UCB1 in the MCTS setting.

BACKUP(v, s, a, s′, r, R) The BACKUP procedure is re-
sponsible for updating node v given the transition (s, a) →
(s′, r) and the return R of the corresponding trial. It has to
maintain the data needed for evaluating the tree-policy. In
the simplest case of MC backups the BACKUP procedure
maintains visit counts ns, action counts n(s,a), and an esti-
mate of the expected return R̂(s,a) by accumulating the aver-
age ofR. In the more recently suggested DP backups (Keller

1We use states and actions as subscripts to remain consistent
with the MCTS setting.

and Helmert 2013) the BACKUP procedure also maintains a
transition model and an estimate of the expected immediate
reward that are then used to calculate R̂(s,a) while the return
samples R are ignored. MC and DP backups have signif-
icantly different characteristics that are subject of ongoing
research (Feldman and Domshlak 2014a). Recently, tem-
poral difference learning and function approximation have
also been proposed as backup methods (Silver, Sutton, and
Müller 2012; Guez et al. 2014). It has also been suggested
to use different backup methods depending on the empirical
variance of returns (Bnaya et al. 2015).

When attempting to use variance information in MCTS a
major problem arises because the variance of the return is
usually not maintained by the BACKUP procedure. As we
discuss in Section Variance Backups, for MC backups the
extension is straightforward whereas for DP backups this
is not the case. The combination of variance-based tree-
policies with DP backups has therefore not been possible
so far. In this paper we close this gap by deriving general
update equations for the variance with DP backups.

In conclusion, while the UCB-V policy has been estab-
lished for bandits, no convergence proof for its use in MCTS
exists to date. Furthermore, DP backups have to date not
been extended to include variance updates thus limiting the
applicability of UCB-V and other variance-based methods
in MCTS.

Reinforcement Learning

The exploration-exploitation dilemma exists not only for
bandits and MCTS but generally in reinforcement learning.
Bayesian reinforcement learning (Vlassis et al. 2012) offers
a general solution that, however, is intractable for most prac-
tical problems. Various approaches, such as R-MAX (Braf-
man and Tennenholtz 2003) and the Bayesian Exploration
Bonus (Kolter and Ng 2009) offer near-optimal approxima-
tions most of which follow the optimism in the face of uncer-
tainty principle. In this context, the variance of the expected
return can be used as a measure of uncertainty, which is for
instance done in Bayesian Q-learning (Dearden, Friedman,
and Russell 1998) where both the expected return as well
as its variance are estimated by performing online updates
under the assumption of normally distributed returns. The
variance information is then used to guide exploration either
by sampling values from the corresponding distribution or
based on the value of information of an action.

Many general ideas, such as optimism in the face of un-
certainty or variance-based exploration, carry over from re-
inforcement learning to the MCTS setting. However, as op-
posed to reinforcement learning, in MCTS we can explore
“for free” during the planning phase. It is thus important to
(a) enable the use of these concepts in MCTS, which we do
by deriving update equations for the variance and (b) estab-
lish convergence guarantees, which we do for the case of
UCB-V.

UCB-V for Monte-Carlo Tree Search
Bounds and Convergence Guarantees
We will now extend the guarantees for UCB-V as proved
by Audibert, Munos, and Szepesvári (2009) from the ban-
dit setting to MCTS. In doing so we will closely follow the
proof by Kocsis and Szepesvári (2006) for the UCB1 pol-
icy showing that both policies exhibit the same convergence
guarantees in the MCTS setting.

Let there beK arms with returnRk,i in the ith play whose
estimated expected return and estimated variance of the re-
turn after n plays are

R̂k,n= 1
n

∑n
i=1Rk,i , R̃k,n= 1

n

∑n
i=1

(
Rk,i − R̂k,n

)2
.

We assume that Rk,i are independently and identically dis-
tributed and the expected values of R̂k,n and R̃k,n converge

µk,n= E[[R̂k,n]] , σ2
k,n= E[[(µk,n − R̂k,n)2]] ,

µk = limn→∞ µk,n , σ
2
k = limn→∞ σ2

k,n ,

δk,n = µk,n − µk .
We denote quantities associated with the optimal arm with
an asterisk and define ∆k = µ∗ − µk. The action selection
rule of UCB-V is2

In = argmax
k∈{1,...,K}

Bk,nk,n with

Bk,nk,n = R̂k,nk +

√
2R̃k,nkζ log(n)

nk
+ 3bc

ζ log(n)

nk

where n is the total number of plays, nk is the number of
plays for the kth arm, b = Rmax, and c, ζ are exploration
parameters. Similar to Kocsis and Szepesvári (2006) we will
assume that the error of the expected values of R̂k,n and
R̃k,n can be bounded and use this assumption for all results
in the paper without explicitly repeating it:
Assumption 1. For any ε > 0, and τ ≥ 1, there exists
N0(ε, τ) such that for all n ≥ N0(ε, τ): |δk,n| ≤ ε∆k/2,
|δ∗n| ≤ ε∆k/2, and σ2

k,n ≤ τ σ2
k.

We begin by repeating Theorem 1 in (Audibert, Munos, and
Szepesvári 2009), which we use in what follows.
Theorem 1. For any t ∈ N and x > 0

P

(
|R̂k,t − µ| ≥

√
2R̃k,tx

t
+ 3b

x

t

)
≤ 3e−x . (5)

On the other hand,

P

(
|R̂k,s − µ| ≥

√
2R̃k,sx

s
+ 3b

x

s

)
≤ β(x, t) (6)

holds for all s ∈ {1, . . . , t} with

β(x, t) = 3 inf
1<α≤3

(
log t

logα
∧ t
)
e−x/α ,

where u ∧ v denotes the minimum of u and v.
2We switch back from the notation used in Eq. (4) to a notation

that ignores the state s and instead includes the number of samples.

The following first result extends Lemma 1 in (Audibert,
Munos, and Szepesvári 2009).
Lemma 1. Let

u =
⌈
8(c ∨ 1)

(σ2
k

τ∆2
k

+
2b

τ∆k

)
ζn

⌉
,

where u ∨ v denotes the maximum of u and v. Then, for
u ≤ nk ≤ t ≤ n,

P (Bk,nk,t > µ∗t) ≤ 2e
− nkτ∆2

k
8σ2
k

+4b∆k/3 .

Proof. In Appendix II.

We define A(n, ε, τ) = N0(ε, τ) ∨ u and bound the number
of plays of an arm k for non-stationary multi-armed bandits:
Theorem 2. Applying UCB-V for non-stationary multi-
armed bandits, we can bound the expected number of plays
of arm k as

E[Tk(n)] ≤ A(n, ε, τ) + ne−(c∨1)ζn
(24σ2

k

τ∆2
k

+
4b

τ∆k

)
+ . . .

. . .+

n∑
t=u+1

β
(
(c ∧ 1)ζt, t

)
(7)

Proof. In Appendix II.

The following theorem is the counter-part of Theorem 2 in
UCT (Kocsis and Szepesvári 2006). This bound is different
in that it takes the variance of the return into account.
Theorem 3. The expected regret is bounded by∣∣E[R̂n]− µ∗

∣∣ ≤ |δ∗n|+O

(
N0(ε, τ)

n
+ . . .

. . .+

∑
k

[
τσ2
k

(1−2ε)∆k
+

σ2
k

b2∆k
+ 2b+ 2

]
log(n)

n

) (8)

Proof. The proof follows the same simple derivation of The-
orem 2 in UCT (Kocsis and Szepesvári 2006), then fol-
lows the same trick to bound the sum appearing in Theo-
rem 2.

Theorem 4. Under the assumptions of Lemma 1 and Theo-
rems 2 and 3, the failure probability converges to zero

lim
n→∞

P (In 6= k∗) = 0

Proof. The proof follows exactly the proof of Theorem 5 in
(Kocsis and Szepesvári 2006).

We are now in the position to prove the most important the-
oretical result of UCB-V applied to MCTS. Although the
result in Theorem 3 takes into account the variance of the
reward distribution, we prefer to upper-bound the expected
regret by a different term for simplicity. As the sum contains
only constants and runs over k ∈ {1, . . . ,K} we can upper-
bound it as∣∣E[R̂n]− µ∗

∣∣ ≤ |δ∗n|+O

(
K log(n) +N0(ε, τ)

n

)
, (9)

which leads to the final result.

Theorem 5. Applying UCB-V as tree-policy in a search tree
of depthD, with branching factorK, and returns in [0, b] the
expected regret at the root node is bounded by

O

(
KD log(n) +KD

n

)
.

At the same time, the probability of choosing a sub-optimal
action at root node converges to zero in polynomial time.

Proof. Using the simplified bound in Eq. (9), the proof fol-
lows similarly to the proof of Theorem 6 in (Kocsis and
Szepesvári 2006).

Variance Backups

The BACKUP(v, s, a, s′, r, R)-routine has to update node v’s
data based on the transition information (s, a) → (s′, r)
and the return R of the corresponding trial. In order to use
variance-based tree-policies we need to use this information
to not only maintain an estimate of the expected return but
also of its variance.

For MC backups this extension is trivial since it suffices
to maintain quadratic statistics of the return and estimate the
variance as

R̃(s,a) = E[[R2
(s,a)]]− E[[R(s,a)]] . (10)

For DP backups on the other hand we need to propagate the
variance up the tree just as we do for the expected value. The
value of action a in state s is defined as the expected return

Q(s,a) = E[[R(s,a)]] , (11)

so that when we estimate Q from the available samples it is
itself a random variable whose expected value and variance
we denote by Q̂ and Q̃, respectively. The DP updates for the
value are defined as

Q(s,a) =
∑
s′

p(s′|s,a)

(
r(s,a,s′) + γ Vs′

)
(12)

and Vs =
∑
a

π(a|s)Q(s,a) (13)

where Vs is the state value; π(a|s) is the probability of
choosing action a in state s; p(s′|s,a) is the probability of
transitioning from state s to state s′ upon taking action a;
r(s,a,s′) is the expected reward for such a transition; and
0 ≤ γ ≤ 1 is the discount factor. p and r are random vari-
ables whose mean and variance can be estimated from data
while π is chosen by the algorithm. Eqs. (12) and (13) carry
over to the expected values by simply replacing all variables
with their estimated values, which gives the standard DP
backups used in MCTS. The implicit assumption here is
that variables associated to different states are independent,
which we will also assume from now on. In order to
estimate the variance we have to use Eqs. (12) and (13) and
explicitly write out the expectations

Q̃(s,a) = E[[Q2
(s,a)]]− E[[Q(s,a)]]

2 (14)

=
∑
s′

[
p̂ 2

(s′|s,a) + p̃(s′|s,a)

][
r̃(s,a,s′) + γ2 Ṽs′

]
+ . . .

. . .+
∑
s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ V̂s′

][
r̂(s,a,s′′) + γ V̂s′′

]
(15)

Ṽs =
∑
a

π2
(a|s) Q̃(s,a) (16)

where p̃ and r̃ are the (co)variances of p and r. We defer the
full derivation to the Appendix I. For the immediate reward,
r, we maintain linear and quadratic statistics to compute its
mean and variance. For the transition probabilities, p, we
maintain transition counts, from which the expected value p̂
and variance p̃ can be computed, assuming p to be Dirichlet
distributed.

Experiments
We performed experiments in various domains combining
UCB-V and UCB1 with MC and DP backups. Our evalua-
tions revealed that, depending on the problem characteris-
tics, each of the four possibilities may significantly outper-
form the others. While an exhaustive presentation and dis-
cussion of all results is beyond the scope of this paper, we
present two exemplary cases where UCB-V with MC and
DP backups, respectively, outperforms the alternatives and
discuss possible explanations. Fig. 1 shows for both cases
the probability of choosing the optimal action at the root
node as a function of the number of rollouts. The optimal
action a∗ is known for each problem and its probability is
computed as relative frequency of a∗ actually being recom-
mended by the planner (i.e. having the maximum empiri-
cal mean return) after each given run. In all experiments we
used c = 1 and ζ = 1.2 for UCB-V and Cp = 1/

√
2 for

UCB1, for which regret bounds were proved in (Audibert,
Munos, and Szepesvári 2009) and (Auer, Cesa-Bianchi, and
Fischer 2002), respectively.

Stochastic1D In this environment the agent moves along a
line and receives a terminal reward after a fixed time T . Each
action moves the agent {−k, . . . , k} steps along the line, so
there are 2 k+1 actions to choose from and after T steps the
agent may be at any position x ∈ {−k T, . . . , k T}. When
performing an action, with probability α the agent actually
performs the chosen action and with probability 1−α it per-
forms a random action. After T time steps, with probability
β the agent receives a terminal reward and with probabil-
ity 1 − β it receives a reward of zero instead. The terminal
rewards lie in [0, 1] and scale linearly with the terminal po-
sition x

r =
x+ k T

2T k
. (17)

The optimal policy thus is to always choose action k. Results
in Fig. 1(a) are averaged over 10000 runs for parameters k =
3, T = 10, α = 0.6, β = 0.5.

Two properties of Stochastic1D make UCB-V in conjunc-
tion with MC backups favorable. First, in this environment

MC backups with a uniform rollout policy will in expecta-
tion yield the optimal policy. This allows to take advantage
of the more robust convergence properties of MC backups as
compared to DP backups. Second, the optimal reward also
has the highest variance. Since UCB-V is biased towards
high-variance branches this favors UCB-V over UCB1.3

NastyStochastic1D This environment is identical to the
Stochastic1D environment except for the magnitude of the
terminal rewards, which are “misleading” in this case. The
maximum reward of 1 is still received when the agent ends
at position k T , however, the second-best reward is received
at position −k T and then decreases linearly until reaching
the minimum of 0 when the agent misses the optimal reward
by one step and ends at position k T − 1

r =

{
1 if x = k T
k T−x−1

2T k else .
(18)

The optimal policy is the same as in the Stochastic1D en-
vironment. Results in Fig. 1(b) are averaged over 4000 runs
for parameters k = 1, T = 3, α = 0.9, β = 1.

In NastyStochastic1D, again, the maximum reward also
has the maximum variance, favoring UCB-V over UCB1.
This time, however, MC backups with a uniform rollout pol-
icy will in expectation result in a sub-optimal policy that
guides the agent away from the optimal path – note the neg-
ative slope in the initial planning phase in Fig. 1(b). In this
situation, the ability of DP backups to quickly “switch” to a
different path gives them a clear advantage over MC back-
ups.

The presented results are examples showing that the best
choice (in this case UCB-V versus UCB1 and MC versus
DP) strongly depends on the characteristics of the problem
at hand. It is therefore important to be able to freely choose
the method that suits the problem best and to be assured of
convergence guarantees. In this respect, our paper makes an
important contribution for the case of variance-based tree-
policy in general, and UCB-V in particular.

Conclusion
We showed that the variance-based policy UCB-V (Audib-
ert, Munos, and Szepesvári 2009) provides the same theo-
retical guarantees for Monte-Carlo tree search as the widely
used UCB1 policy, namely, a bounded expected regret and
polynomial convergence of the failure probability. We ad-
ditionally derived update equations for the variance allow-
ing to combine variance-based tree-policies with dynamic
programming backups, which was not possible so far. In
our experimental evaluations we demonstrate that, depend-
ing on the problem characteristics, UCB-V significantly out-
performs UCB1.

3Giving high rewards a low variance and vice versa will in gen-
eral deteriorate the performance of UCB-V as compared to UCB1.

Number of Rollouts

P
ro

ba
bi

li
ty

 o
f

O
pt

im
al

 A
ct

io
n

/ DPUCB-V

/ DPUCB1

/ MCUCB1

/ MCUCB-V

(a) Stochastic1D (10000 runs)
Number of Rollouts

P
ro

ba
bi

li
ty

 o
f

O
pt

im
al

 A
ct

io
n

/ DPUCB-V

/ DPUCB1

/ MCUCB1

/ MCUCB-V

(b) NastyStochastic1D (4000 runs)

Figure 1: Experiments. The plots show the probability of choosing the optimal action at the root node as a function of the number
of rollouts. Solid lines correspond to UCB-V policy, dashed lines to UCB1. Filled circles correspond to dynamic programming
backups, open circles to Monte-Carlo backups. Note that due to the large number of runs the error bands are barely visible.

Appendix I: Derivation of Variance Updates

We use the following notation

x̂ = E
[[
x
]]
x

expected value of x

x̃ = E
[[
x2
]]
x
− x̂ 2 variance of x

cov(x, y) = E
[[
xy
]]
x,y
− x̂ŷ covariance of x and y .

We assume π and γ to be scalar variables (π may still
represent a non-deterministic policy). V , Q, p, and r are
random variables that are assumed independent so that all
covariance terms vanish (i.e. only the diagonal variance
terms remain). The only exception to this are the transition
probabilities for the same state-action pair but with a

different target state, where we use

cov(p(s′|s,a), p(s′′|s,a)) = p̃(s′/s′′|s,a) (19)

as a more compact notation. For the variance of the state
value V we get

Ṽs = E
[[[∑

a

π(a|s)Q(s,a)

]2]]
r,p

− V̂ 2
s (20)

=
∑
a,a′

π(a|s) π(a′|s) E
[[
Q(s,a)Q(s,a′)

]]
r,p
− V̂ 2

s (21)

=
∑
a

π2
(a|s) Q̃(s,a) . (16)

The variance of the state-action value is

Q̃(s,a) = (22)

= E
[[[∑

s′

p(s′|s,a)

(
r(s,a,s′) + γ Vs′

)]2]]
r,p

− Q̂ 2
(s,a) (23)

=
∑
s′,s′′

E
[[
p(s′|s,a) p(s′′|s,a)

]]
r,p

E
[[
γ2 Vs′ Vs′′ + r(s,a,s′) r(s,a,s′′) + γ r(s,a,s′) Vs′′ + γ r(s,a,s′′) Vs′

]]
r,p
− Q̂ 2

(s,a) (24)

=
∑
s′,s′′

[
p̂(s′|s,a) p̂(s′′|s,a) + cov(p(s′|s,a), p(s′′|s,a))

] [
γ2
[
V̂s′ V̂s′′ + cov(Vs′ , Vs′′)

]
+ . . . (25a)

. . .+
[
r̂(s,a,s′) r̂(s,a,s′′) + cov(r(s,a,s′), r(s,a,s′′))

]
+ γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
− Q̂ 2

(s,a) (25b)

=
∑
s′,s′′

cov(p(s′|s,a), p(s′′|s,a))
[
γ2 V̂s′ V̂s′′ + r̂(s,a,s′) r̂(s,a,s′′) + γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
+ . . . (26a)

. . .+
∑
s′,s′′

[
p̂(s′|s,a) p̂(s′′|s,a) + cov(p(s′|s,a), p(s′′|s,a))

] [
γ2 cov(Vs′ , Vs′′) + cov(r(s,a,s′), r(s,a,s′′))

]
+ . . . (26b)

. . .+
∑
s′,s′′

p̂(s′|s,a) p̂(s′′|s,a)

[
γ2 V̂s′ V̂s′′ + r̂(s,a,s′) r̂(s,a,s′′) + γ r̂(s,a,s′) V̂s′′ + γ r̂(s,a,s′′) V̂s′

]
− Q̂ 2

(s,a)︸ ︷︷ ︸
=0

(26c)

=
∑
s′

[
p̂ 2

(s′|s,a) + p̃(s′|s,a)

][
r̃(s,a,s′) + γ2 Ṽs′

]
+
∑
s′,s′′

p̃(s′/s′′|s,a)

[
r̂(s,a,s′) + γ V̂s′

][
r̂(s,a,s′′) + γ V̂s′′

]
(15)

where in lines 26a–26c we arrange terms such that in 26b
the terms with s 6= s′ vanish because the covariances of r
and V then vanish by assumption, and in 26c the first part

exactly reproduces Q̂ 2
(s,a) so that the complete line cancels

out. Using the simplified notation given in Eq. (19) for the
covariance of p in 26a we finally reproduce Eq. (15).

Appendix II: Proofs for Lemma 1 and Theorem 2
Proof. (Lemma 1) We define ζn = ζ log(n). From the definition of Bk,nk,t, we have

P (Bk,nk,t > µ∗t)

= P
(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µ∗ + δ∗t

)
= P

(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µk + ∆k + δ∗t

)
= P

(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µk,t + δk,t + ∆k + δ∗t

)
≤ P

(
R̂k,nk +

√
2R̃k,nkζt

nk
+ 3bc

ζt
nk

> µk,t + ∆k − ε∆k

)
(

using the fact that |δk,t| ≤ ε∆k/2 and |δ∗t | ≤ ε∆k/2 for l ≥ N0(ε, τ)
)

≤ P
(
R̂k,nk +

√
2[σ2

k,t + bτ∆k/2]ζt

nk
+ 3bc

ζt
nk

> µk,t + (1− ε)∆k

)
+ P (R̃k,nk,t ≥ σ2

k,t + bτ∆k/2) .

For the second term,

R̃k,nk,n =
1

nk

nk∑
j=1

(Rk,j − µk,t)2 − (µk,t − R̂k,nk,t)2

≤ 1

nk

nk∑
j=1

(Rk,j − µk,t)2 ,

hence,

P (R̃k,nk,t ≥ σ2
k,t + bτ∆k/2) ≤ P

(∑nk
j=1(Rk,j − µk,t)2

nk
− σ2

k,t ≥
bτ∆k

2

)
.

For the first term, we use the fact that u ≤ nk ≤ t ≤ n, σ2
k,t ≤ τσ2

k, and the definition of u to derive√
2[σ2

k,t + bτ∆k/2]ζt

nk
+ 3bc

ζt
nk
≤
√

[2τσ2
k + bτ∆k]ζn

u
+ 3bc

ζn
u

≤

√
[2τσ2

k + bτ∆k]τ∆2
k

8(σ2
k + 2b∆k)

+ 3b
τ∆2

k

8(σ2
k + 2b∆k)

=
τ∆k

2

(√
[2σ2

k + b∆k]

(2σ2
k + 4b∆k)

+ 3b
∆k

(4σ2
k + 8b∆k)

)

=
τ∆k

2

(
1− 1

2

[
1−

√
[2σ2

k + b∆k]

(2σ2
k + 4b∆k)

]2)

≤ τ∆k

2
.

Hence,

P
(
R̂k,nk +

√
2[σ2

k,t + bτ∆k/2]ζt

nk
+ 3bc

ζt
nk

> µk,t + (1− ε)∆k

)
≤ P

(
Bk,nk,t − µk,t >

(τ − 2ε)∆k

2

)
.

Using Bernstein’s inequality twice, we obtain

P (Bk,nk,t > µ∗t) ≤ e
− nk(τ−2ε)2∆2

k
8σ2
k,t

+4b(τ−2ε)∆k/3 + e
− nkb

2τ2∆2
k

8σ2
k,t

+4b2τ∆k/3

≤ e
− nk(τ−2ε)2∆2

k
8τσ2

k
+4b(τ−2ε)∆k/3 + e

− nkb
2τ∆2

k
8σ2
k

+4b2∆k/3 (the fact: σ2
k,t ≤ τσ2

k)

≤ 2e
− nkτ∆2

k
8σ2
k

+4b∆k/3 .

Proof. (Theorem 2) Similar to the proofs of Theorems 2 and 3 in (Audibert, Munos, and Szepesvári 2009), Theorem 1 in (Auer,
Cesa-Bianchi, and Fischer 2002), and Theorem 1 in (Kocsis and Szepesvári 2006), the number of plays of a suboptimal arm k
until time n for arbitrary u is

E[Tk(n)] = E
[n∑
t=1

I{It = k}
]

≤ u+

n∑
t=u+1

t−1∑
nk=u

P (Bk,nk,t > µ∗t) +

n∑
t=u

t−1∑
nk=1

P (Bk∗,nk,t ≤ µ∗t) .

The last term is bounded using Theorem 1. The second term is bounded as in Lemma 1. Using the same simplifying trick as in
the proof of Lemma 1 in (Audibert, Munos, and Szepesvári 2009), we obtain the final result as

E[Tk(n)] ≤ u+

n∑
t=u+1

t−1∑
nk=u

2e
− nkτ∆2

k
8σ2
k

+4b∆k/3 +

n∑
t=u+1

β
(
(c ∧ 1)ζt, t

)

≤ u+

n∑
t=u+1

2
e
− uτ∆2

k
8σ2
k

+4b∆k/3

1− e
−

τ∆2
k

8σ2
k

+4b∆k/3

+

n∑
t=u+1

β
(
(c ∧ 1)ζt, t

)

≤ u+

n∑
t=u+1

(24σ2
k

τ∆2
k

+
4b

τ∆k

)
e
− uτ∆2

k
8σ2
k

+4b∆k/3 +

n∑
t=u+1

β
(
(c ∧ 1)ζt, t

)
(because 1− e−x ≥ 2x/3)

≤ A(n, ε, τ) + ne−(c∨1)ζn
(24σ2

k

τ∆2
k

+
4b

τ∆k

)
+

n∑
t=u+1

β
(
(c ∧ 1)ζt, t

)

where u satisfies the condition in Lemma 1.

References
Audibert, J.-Y.; Munos, R.; and Szepesvári, C. 2009.
Exploration–exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science
410(19):1876–1902.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47:235–256.
Berry, D. A., and Fristedt, B. 1985. Bandit problems: se-
quential allocation of experiments (Monographs on statis-
tics and applied probability). Springer.
Bnaya, Z.; Palombo, A.; Puzis, R.; and Felner, A. 2015.
Confidence backup updates for aggregating mdp state values
in monte-carlo tree search. In Eighth Annual Symposium on
Combinatorial Search.
Brafman, R. I., and Tennenholtz, M. 2003. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. The Journal of Machine Learning Research 3:213–
231.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
q-learning. In AAAI/IAAI, 761–768.
Feldman, Z., and Domshlak, C. 2014a. Monte-carlo tree
search: To mc or to dp? Models and Paradigms for Planning
under Uncertainty: a Broad Perspective 11.
Feldman, Z., and Domshlak, C. 2014b. On mabs and
separation of concerns in monte-carlo planning for mdps.
In Twenty-Fourth International Conference on Automated
Planning and Scheduling.
Guez, A.; Heess, N.; Silver, D.; and Dayan, P. 2014. Bayes-
adaptive simulation-based search with value function ap-
proximation. In Advances in Neural Information Processing
Systems, 451–459.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon mdps. In ICAPS.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kolter, J. Z., and Ng, A. Y. 2009. Near-bayesian exploration
in polynomial time. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, 513–520. ACM.
Saffidine, A.; Cazenave, T.; and Méhat, J. 2012. Ucd:
Upper confidence bound for rooted directed acyclic graphs.
Knowledge-Based Systems 34:26–33.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of go with deep neural networks and tree search. Na-
ture 529(7587):484–489.
Silver, D.; Sutton, R. S.; and Müller, M. 2012. Temporal-
difference search in computer go. Machine learning
87(2):183–219.

Vlassis, N.; Ghavamzadeh, M.; Mannor, S.; and Poupart, P.
2012. Bayesian reinforcement learning. In Reinforcement
Learning. Springer. 359–386.

