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Abstract

We present the Equi-Reward Utility Maximizing Design (ER-
UMD) problem for redesigning stochastic environments to
maximize agent performance. ER-UMD fits well contempo-
rary applications that require offline design of environments
where robots and humans act and cooperate. To find an op-
timal modification sequence we present two novel solution
techniques: a compilation that embeds design into a planning
problem, allowing use of off-the-shelf solvers to find a so-
lution, and a heuristic search in the modifications space, for
which we present an admissible heuristic. Evaluation shows
the feasibility of the approach using standard benchmarks
from the probabilistic planning competition and a benchmark
we created for a vacuum cleaning robot setting.

Introduction
We are surrounded by physical and virtual environments
with a controllable design. Hospitals are designed to mini-
mize the daily distance covered by staff, computer networks
are structured to maximize message throughput, human-
robot assembly lines are designed to maximize productivity,
etc. Common to all these environments is that they are de-
signed with the intention of maximizing some user benefit
while accounting for different forms of uncertainty.

Typically, design is performed manually, often leading to
far from optimal solutions. We therefore suggest to automate
the design process and formulate the Equi-Reward Utility
Maximizing Design (ER-UMD) problem where a system
controls the environment by applying a sequence of modi-
fications in order to maximize agent utility.

We assume a fully observable stochastic setting and use
Markov decision processes (Bellman 1957) to model the
agent environment. We exploit the alignment of system and
agent utility to show a compilation of the design problem
into a planning problem and piggyback on the search for an
optimal policy to find an optimal sequence of modifications.
In addition, we exploit the structure of the offline design pro-
cess and offer a heuristic search in the modifications space to
yield optimal design strategies. We formulate the conditions
for heuristic admissibility and propose an admissible heuris-
tic based on environment simplification. Finally, for settings
where practicality is prioritized over optimality, we present
a way to efficiently acquire sub-optimal solutions.

The contributions of this work are threefold. First, we
formulate the ER-UMD problem as a special case of en-

vironment design (Zhang, Chen, and Parkes 2009). ER-
UMD supports arbitrary modification methods. Particularly,
for stochastic settings, we propose modifying probability
distributions, an approach which offers a wide range of sub-
tle modifications. Second, we present two new approaches
for solving ER-UMD problems, specify the conditions for
acquiring an optimal solution and present an admissible
heuristic to support the solution. Finally, we evaluate our
approaches given a design budget, using probabilistic bench-
marks from the International Planning Competitions, where
a variety of stochastic shortest path MDPs are introduced
(Bertsekas 1995) and on a domain we created for a vac-
uum cleaning robot. We show how redesign substantially
improves utility, expressed via reduced cost achieved with
a small modification budget. Moreover, the techniques we
develop outperform the exhaustive approach reducing cal-
culation effort by up to 30% .

The remaining of the paper is organized as follows. Sec-
tion describes the ER-UMD framework. In Section , we de-
scribe our novel techniques for solving the ER-UMD prob-
lem. Section describes an empirical evaluation followed by
related work (Section ) and concluding remarks (Section ).

Equi-Reward Utility Maximizing Design
The equi-reward utility maximizing design (ER-UMD) prob-
lem takes as input an environment with stochastic action
outcomes, a set of allowed modifications, and a set of con-
straints and finds an optimal sequence of modifications
(atomic changes such as additions and deletions of environ-
ment elements) to apply to the environment for maximizing
agent expected utility under the constraints. We refer to se-
quences rather then sets to support settings where different
application orders impact the model differently. Such a set-
ting may involve, for example, modifications that add pre-
conditions necessary for the application of other modifica-
tions (e.g. a docking station can only be added after adding
a power outlet).

We consider stochastic environments defined by the
quadruple ε = 〈Sε, Aε, fε, s0,ε〉 with a set of states Sε,
a set of actions Aε, a stochastic transition function fε :
Sε ×Aε × Sε → [0, 1] specifying the probability f(s, a, s′)
of reaching state s′ after applying action a in s ∈ S, and an
initial state s0,ε ∈ Sε. We let E , SE and AE denote the set of
all environments, states and actions, respectively.



Figure 1: An example of an ER-UMD problem

Adopting the notation of Zhang and Parkes (2008) for en-
vironment design, we define the ER-UMD model as follows.

Definition 1 An equi-reward utility maximizing (ER-UMD)
model ω is a tuple 〈ε0ω,Rω, γω,∆ω,Fω,Φω〉 where
• ε0ω ∈ E is an initial environment.
• Rω : SE ×AE × SE → R is a Markovian and stationary

reward function, specifying the reward r(s, a, s′) an agent
gains from transitioning from state s to s′ by the execution
of a.

• γω is a discount factor in (0, 1], representing the depreca-
tion of agent rewards over time.

• ∆ω is a finite set of atomic modifications a system can
apply. A modification sequence is an ordered set of modi-
fications ~∆ = 〈∆1, . . . ,∆n〉 s.t. ∆i ∈ ∆ω . We denote by
~∆ω the set of all such sequences.

• Fω : ∆ω × E → E is a deterministic modification tran-
sition function, specifying the result of applying a modifi-
cation to an environment.

• Φω : ~∆ω × E → {0, 1} is an indicator that specifies the
allowed modification sequences in an environment.

Whenever ω is clear from the context we use ε0,R, γ, ∆,F ,
and Φ. Note that a reward becomes a cost when negative.

The reward function R and discount factor γ form, to-
gether with an environment ε ∈ E an infinite horizon dis-
counted reward Markov decision process (MDP) (Bertsekas
1995) 〈S,A, f, s0,R, γ〉. The solution of an MDP is a con-
trol policy π : S → A describing the appropriate action to
perform at each state. We let Πε represent the set of all pos-
sible policies in ε. Optimal policies Π∗ε ⊆ Πε yield an ex-
pected accumulated reward for every state s ∈ S (Bellman
1957). We assume agents are optimal and let V∗(ω) repre-
sent the discounted expected agent reward of following an
optimal policy from the initial state s0 in a model ω.

Modifications ∆ ∈ ∆ can be defined arbitrarily, support-
ing all the changes applicable to a deterministic environment
(Herzig et al. 2014). For example, we can allow adding a
transition between previously disconnected states. Particu-
lar to a stochastic environment is the option of modifying the
transition function by increasing and decreasing the proba-
bility of specific outcomes. Each modification may be as-
sociated with a system cost C : ∆ → R+ and a sequence
cost C(~∆) =

∑
∆i∈~∆ C(∆i). Given a sequence ~∆ such that

Φ(~∆, ε) = 1 (i.e., ~∆ can be applied to ε ∈ E ) we let ε~∆ rep-

resent the environment that is the result of applying ~∆ to ε
and ω~∆ is the same model with ε~∆ as its initial environment.

The solution to an ER-UMD problem is a modification se-
quence ~∆ ∈ ~∆∗ to apply to ε0ω that maximizes agent utility
V∗(ω~∆) under the constraints, formulated as follows.

Problem 1 Given a model ω = 〈ε0ω,Rω, γω,∆ω,Fω,Φω〉,
the ER-UMD problem finds a modification sequence ~∆ ∈ ~∆

argmax
~∆∈~∆|Φ(~∆)=1

V∗(ω~∆)

We let ~∆∗ω represent the set of solutions to Problem 1 and
Vmax(ω) = max

~∆∈~∆|Φ(~∆)=1
V∗(ω~∆) represent the maximal

agent utility achievable via design in ω. In particular, we
seek solutions ~∆∗ ∈ ~∆∗ω that minimize design cost C(~∆∗).

Example 1 As an example of a controllable environment
where humans and robots co-exist consider Figure 1(left),
where a vacuum cleaning robot is placed in a living room.
The set E of possible environments specifies possible room
configurations. The robot’s utility, expressed via the reward
R and discount factor γ, may be defined in various ways;
it may try to clean an entire room as quickly as possible
or cover as much space as possible before its battery runs
out. (Re)moving a piece of furniture from or within the room
(Figure 1(center)) may impact the robot’s utility. For exam-
ple, removing a chair from the room may create a shortcut to
a specific location but may also create access to a corner the
robot may get stuck in. Accounting for uncertainty, there may
be locations in which the robot tends to slip, ending up in a
different location than intended. Increasing friction, e.g., by
introducing a high friction tile (Figure 1(right)), may reduce
the probability of undesired outcomes. All types of modifica-
tions, expressed by ∆ and F , are applied offline (since such
robots typically perform their task unsupervised) and should
be applied economically in order to maintain usability of
the environment. These type of constraints are reflected by
Φ that can restrict the design process by a predefined budget
or by disallowing specific room configurations.

Finding ~∆∗

A baseline method for finding an optimal modification se-
quence involves applying an exhaustive best first search
(BFS) in the space of allowed sequences and selecting one
that maximizes system utility. This approach was used for



finding the optimal set of modifications in a goal recognition
design setting (Keren, Gal, and Karpas 2014; Wayllace et al.
2016). The state space pruning applied there assumes that
disallowing actions is the only allowed modification, mak-
ing it non-applicable for ER-UMD, which supports arbitrary
modification methods. We therefore present next two novel
techniques to find the optimal design strategy for ER-UMD.

ER-UMD compilation to planning
As a first approach, we embed design into a planning prob-
lem description. The DesignComp compilation (Definition
2) extends the agent’s underlying MDP by adding pre-
process operators that modify the environment off-line. Af-
ter initialization, the agent acts in the new optimized envi-
ronment.

The compilation uses the PPDDL notation (Younes and
Littman 2004) which uses a factored MDP representation.
Accordingly, an environment ε ∈ E is represented as a
tuple 〈Xε, s0,ε, Aε〉 with states specified as a combina-
tion of state variables Xε and a transition function embed-
ded in the description of actions. Action a ∈ Aε is rep-
resented by 〈prec, 〈p1, add1, del1〉, . . . , 〈pm, addm, delm〉〉
where prec is the set of literals that need to be true as
a precondition for applying a. The probabilistic effects
〈p1, add1, del1〉, . . . , 〈pm, addm, delm〉 are represented by
pi, the probability of the i-th effect. When outcome i oc-
curs, addi and deli are literals, added and removed from the
state description, respectively (Mausam 2012).

The policy of the compiled planning problem has two
stages: design - in which the system is modified and ex-
ecution - describing the policy agents follow to maximize
utility. Accordingly, the compiled domain has two action
types: Ades, corresponding to modifications applied by the
design system and Aexe, executed by the agent. To separate
between the stages we use a fluent execution, initially false
to allow the application of Ades, and a no-cost action astart
that sets execution to true rending Aexe applicable.

The compilation process supports two modifications
types. Modifications ∆X change the initial state by modi-
fying the value of state variables X∆ ⊆ X . Modifications
∆A change the action set by enabling actions A∆ ⊆ A.
Accordingly, the definition includes a set of design action
Ades = Ades-s0 ∪ Ades-A, where Ades-s0 are actions that
change the initial value of variables and Ades-A includes ac-
tions A∆ that are originally disabled but can be enabled in
the modified environment. In particular, we include in A∆

actions that share the same structure as actions in the original
environment except for a modified probability distribution.

The following definition of DesignComp supports a de-
sign budget B implemented using a timer mechanism as in
(Keren, Gal, and Karpas 2015). The timer advances with up
to B design actions that can be applied before performing
astart. This constraint is represented by ΦB that returns 0
for any modification sequence that exceeds the budget.

Definition 2 For an ER-UMD problem ω =
〈ε0ω,Rω, γω,∆ω,Fω,ΦBω 〉 where ∆ω = ∆X ∪ ∆A

we create a planning problem P ′ = 〈X ′, s′0, A′,R′, γ′〉
where:

• X ′ = {Xε0ω} ∪ {execution} ∪ {timet | t ∈ 0, . . . , B} ∪
{enableda | a ∈ A∆}

• s′0 = {s0,ε0ω
} ∪ {time0}

• A′ = Aexe ∪Ades-s0 ∪Ades-A ∪ astart where
– Aexe = Aε0 ∪A∆ s.t.
∗ {〈prec(a) ∪ execution, eff(a)〉 | a ∈ Aε0}
∗ {〈prec(a) ∪ execution ∪ enableda, eff(a)〉 | a ∈ A∆}

– Ades-s0 = {〈〈¬execution, timei〉, 〈1, 〈x, timei+1〉,
〈timei〉〉〉 | x ∈ X∆}

– Ades-A = {〈〈¬execution, timei〉, 〈1, 〈enableda,
timei+1〉, timei〉〉 | a ∈ A∆}}

– astart = 〈∅, 〈1,¬execution, ∅}〉〉

• R′ =

{
R(a), if a ∈ Aexe
0, if a ∈ Ades, ainit

• γ′ = γ

Optimally solving the compiled problem P ′ yields an op-
timal policy π∗P ′ with two components, separated by the ex-
ecution of astart. The initialization component consists of
a possibly empty sequence of deterministic design actions
denoted by ~∆P ′ , while the execution component represents
the optimal policy in the modified environment.

The next two propositions establish the correctness of the
compilation. Proofs are omitted due to space constraints. We
first argue that V ∗(P ′), the expected reward from the initial
state in the compiled planning problem, is equal to the ex-
pected reward in the optimal modified environment.

Lemma 1 Given an ER-UMD problem ω and an optimal
modification sequence ~∆ ∈ ~∆∗ω

V ∗(P ′) = V ∗(ω~∆).

An immediate corollary is that the compilation outcome is
indeed an optimal sequence of modifications.

Corollary 1 Given an ER-UMD problem ω and the com-
piled model P ′, ~∆P ′ ∈ ~∆∗ω

The reward function R′ assigns zero cost to all design ac-
tions Ades. To ensure the compilation not only respects the
budget B, but also minimizes design cost, we can assign a
small cost (negative reward) cd to design actions Ades. If
cd is too high, it might lead the solver to omit design ac-
tions that improve utility by less than cd. However, the loss
of utility will be at most cdB. Thus, by bounding the min-
imum improvement in utility from a modification, we can
still ensure optimality.

Design as informed search
The key benefit of compiling ER-UMD to planning is the
ability to use any off-the-shelf solver to find a design strat-
egy. However, this approach does not fully exploit the spe-
cial characteristics of the off-line design setting we address.
We therefore observe that embedding design into the defini-
tion of a planning problem results in an MDP with a special
structure, depicted in Figure 2. The search of an optimal re-
design policy is illustrated as a tree comprising of two com-
ponent. The design component, at the top of the figure, de-
scribes the deterministic offline design process with nodes



representing the different possibilities of modifying the en-
vironment. The execution component, at the bottom of the
figure, represents the stochastic modified environments in
which agents act.

ᵂ∅
Original 

environment

ᵂ2ᵂ1

ᵂ1,2

Execution - agent policy

Design - system policy

ᵂ3

ᵂ1,3 ᵂ2,3 ᵂ3,1 ᵂ3,2ᵂ2,1

Figure 2: State space of a ER-UMD problem

Each design node represents a different ER-UMD model,
characterized by the sequence ~∆ of modifications that has
been applied to the environment and a constraints set Φ,
specifying the allowed modifications in the subtree rooted
at a node. With the original ER-UMD problem ω at the root,
each successor design node represents a sub-problem ω~∆ of
the ancestor ER-UMD problem, accounting for all modifi-
cation sequences that have ~∆ as their prefix. The set of con-
straints of the successors is updated with relation to the par-
ent node. For example, when a design budget is specified,
it is reduced when moving down the tree from a node to its
successor.

When a design node is associated with a valid modifi-
cation, it is connected to a leaf node representing a ER-
UMD model with the environment ε~∆ that results from ap-
plying the modification. To illustrate, invalid modification
sequences are crossed out in Figure 2.

Algorithm 1 Best First Design (BFD)
BFD(ω, h)
1: create OPEN list for unexpanded nodes
2: ncur = 〈design, ~∆∅〉 (initial model)
3: while ncur do
4: if IsExecution(ncur) then
5: return ncur.~∆ (best modification found - exit)
6: end if
7: for each nsuc ∈ GetSuccessors(ncur, ω) do
8: put 〈〈design, nsuc.~∆〉, h(nsuc)〉 in OPEN
9: end for

10: if Φσ(ncur.~∆) = 1 then
11: put 〈〈execution, ~∆new〉, V∗(ω~∆new

)〉 in OPEN
12: end if
13: ncur = ExtractMax(OPEN)
14: end while
15: return error

Using this search tree we propose an informed search in

the space of allowed modifications, using heuristic estima-
tions to guide the search more effectively by focusing atten-
tion on more promising redesign options. The Best First De-
sign (BFD) algorithm (detailed in Algorithm 1) accepts as
input an ER-UMD model ω, and a heuristic function h. The
algorithm starts by creating an OPEN priority queue (line
1) holding the front of unexpanded nodes. In line 2, ncur is
assigned the original model, which is represented by a flag
design and the empty modification sequence ~∆∅.

The iterative exploration of the currently most promising
node in the OPEN queue is given in lines 3-14. If the current
node represents an execution model (indicated by the execu-
tion flag) the search ends successfully in line 5, returning the
modification sequence associated with the node. Otherwise,
the successor design nodes of the current node are generated
by GetSuccessors in line 7. Each successor sub-problem
nsuc is placed in the OPEN list with its associated heuristic
value h(nsuc) (line 8), to be discussed in detail next. In ad-
dition, if the modification sequence ncur.~∆ associated with
the current node is valid according to Φ, an execution node is
generated and assigned a value that corresponds to the actual
value V∗(ω~∆new

) in the resulting environment (lines 10-12).
The next node to explore is extracted from OPEN in line 13.

Both termination and completeness of the algorithm de-
pend on the implementation of GetSuccessors, which
controls the graph search strategy by generating the
sub-problem design nodes related to the current node.
For example, when a modification budget is specified,
GetSuccessors generates a sub-problem for every modifi-
cation that is appended to the sequence ~∆ of the parent node,
discarding sequences that violate the budget and updating it
for the valid successors.

For optimality, we require the heuristic function h to be
admissible. An admissible estimation of a design node n is
one that never underestimates Vmax

ω , the maximal system’s
utility in the ER-UMD problem ω represented by ncur.1

Running BFD with an admissible heuristic is guaranteed
to yield an optimal modification sequence.

Theorem 1 Given an ER-UMD model ω and an admissible
heuristic h, BFD(ω, h) returns ~∆∗ω ∈ ~∆∗ω .

The proof of Theorem 1 bares similarity to the proof ofA∗
(Nllsson 1980) and is omitted here for the sake of brevity.

The simplified-environment heuristic To produce ef-
ficient over-estimations of the maximal system utility
Vmax(ω), we suggest a heuristic that requires a single pre-
processing simplification of the original environment used
to produce estimates for the design nodes of the search.

Definition 3 Given an ER-UMD model ω, a function f :
E → E is an environment simplification in ω if ∀ε, ε′ ∈
Eω s.t. ε′ = f(ε), V∗(ω) ≤ V∗(ωf ), where ωf is the ER-
UMD model with f(ε) as its initial environment.

The simplified-environment heuristic, denoted by hsim es-
timates the value of applying a modification sequence ~∆ to

1When utility is cost, it needs not to overestimate the real cost.



ω by the value of applying it to ωf .

hsim(ω~∆)
def
= Vmax(ωf~∆) (1)

The search applies modifications on the simplified model
and uses its optimal solution as an estimate of the value of
applying the modifications in the original setting. In partic-
ular, the simplified model can be solved using the Design-
Comp compilation presented in the previous section.

The literature is rich with simplification approaches, in-
cluding adding macro actions that do more with the same
cost, removing some action preconditions, eliminating neg-
ative effects of actions (delete relaxation) or eliminating un-
desired outcomes (Holte et al. 1995). Particular to stochas-
tic settings is the commonly used all outcome determiniza-
tion (Yoon, Fern, and Givan 2007), which creates a deter-
ministic action for each probabilistic outcome of every ac-
tion.

Lemma 2 Given an ER-UMD model ω, applying the
simplified-environment heuristic with f implemented as an
all outcome determinization function is admissible.

The proof of Lemma 2, omitted for brevity, uses the obser-
vation that f only adds solutions with higher reward (lower
cost) to a given problem (either before or after redesign).
A similar reasoning can be applied to the commonly used
delete relaxation or any other approaches discussed above.

Note that admissibility of a heuristic function depends on
specific characteristics of the ER-UMD setting. In particu-
lar, the simplified-environment heuristic is not guaranteed to
produce admissible estimates for policy teaching (Zhang and
Parkes 2008) or goal recognition design (Keren, Gal, and
Karpas 2014; Wayllace et al. 2016), where design is per-
formed to incentivize agents to follow specific policies. This
is because the relaxation itself may change the set of opti-
mal agent policies and therefore under estimate the value of
a modification.

Empirical Evaluation
We evaluated the ability to maximize agent utility given a
design budget in various ER-UMD problems, as well as the
performance of both optimal and approximate techniques.

We used five PPDDL domains from the probabilis-
tic tracks of the sixth and eighth International Planning
Competition2 (IPPC06 and IPPC08) representing stochas-
tic shortest path MDPs with uniform action cost: Box World
(IPPC08/ BOX), Blocks World (IPPC08/ BLOCK), Explod-
ing Blocks World (IPPC08/ EX-BLOCK), Triangle Tire
(IPPC08/ TIRE) and Elevators (IPPC06/ ELEVATOR). In
addition, we implemented the vacuum cleaning robot set-
ting from Example 1 (VACUUM) as an adaptation of the
Taxi domain (Dietterich 2000). The robot moves in a grid
and collects pieces of dirt. It cannot move through furniture,
represented by occupied cells, and may fail to move, remain-
ing in its current position.

In all domains, agent utility is expressed as expected cost
and constraints as a design budget. For each IPPC domain

2http://icaps-conference.org/index.php/main/competitions

change init probability change

BOX relocate a truck reduce probability of driving to a wrong destination
BLOCK — reduce probability of dropping a block or tower

EX-BLOCK — as for Blocks World
TIRE add a spare tire at a location reduce probability of having a flat tire

ELEVATOR add elevator shaft reduce probability of falling to the initial state
VACUUM (re)move furniture add high friction tile

Table 1: Allowed modifications for each domain
B=1 B=2 B=3

solved reduc solved reduc solved reduc
BOX 8 28 8 42 7 44

BLOCK 6 21 3 24 3 24
EX-BLOCK 10 42 9 42 9 42

TIRE 9 44 8 51 6 54
ELEVATOR 9 22 7 24 1 18
VACUUM 8 15 6 17 0 —

Table 2: Utility improvement for optimal solvers

we examined at least two possible modifications, including
at least one that modifies the probability distribution. Mod-
ifications by domain are specified in Table 1 with modifi-
cations marked by change init modify the initial state and
probability change marks modifications to the probability
function.

Optimal solutions
Setup For each domain, we created 10 smaller instances op-
timally solvable within a time bound of five minutes. Each
instance was optimally solved using:
• EX- Exhaustive exploration of possible modifications.
• DC- Solution of the DesignComp compilation.
• BFD- Algorithm 1 with simplified-environment heuristic

using delete relaxation and DesignComp to simplify and
optimally solve the model.

We used a portfolio of 3 admissible heuristics:
• h0 assigns 0 to all states and serves as a baseline for the

assessing the value of more informative heuristics.
• h0+ assigns 1 to all non-goal states and 0 otherwise.
• hMinMin solves all outcome determinization using the

zero heuristic (Bonet and Geffner 2005).
Each problem was tested on a Intel(R) Xeon(R) CPU

X5690 machine with a budget of 1, 2 and 3. Design actions
were assigned a cost of 10−4, and convergence error bound
of LAO* set to 10−6. Each run had a 30 minutes time limit.
Results Separated by domain and budget, Table 2 summa-
rizes the number of solved instances (solved) and average
percentage of expected cost reduction over instances solved
(reduc). In all domains, complexity brought by increased
budget reduces the number of solved instances, while the
actual reduction varies among domains. As for solution im-
provement, all domains show an improvement of 15% to
54%.

Table 3 compares solution performance. Each row repre-
sents a solver and heuristic pair. Results are separated by
domain and budget, depicting the average running time for
problems solved by all approaches for a given budget and the
number of instances solved in parenthesis. The dominating
approach for each row (indicating a domain and budget) is
emphasized in bold. In all cases, the use of informed search
outperformed the exhaustive approach.



BOX BLOCKS EX. BLOCKS TRIANGLE TIRE ELEVATORS VACCUM
B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3 B=1 B=2 B=3

Ex-h0 158.4(8) 264.7(7) 238.5(4) 50.5(6) 28.0(4) 348.9(2) 69.4(9) 161.7 (9) 250.7 (9) 32.9(9) 55.2(7) 270.3(6) 300.4 (8) 361.8 (5) na 0.15(9) 3.6(9) na
Ex-h0+ 159.0(8) 264.9(7) 236.5(4) 50.5(6) 28.2(4) 347.3(2) 70.2(9) 170.9(9) 265.9(9) 32.9(9) 55.4(7) 136.5(6) 299.6(8) 360.9(5) na 0.16(9) 3.27(9) na

Ex-hMinMin 158.9(8) 267.8(7) 235.6 (4) 50.8(6) 28.0(4) 348.2(2) 69.9 (9) 168.1(9) 292.2(9) 33.1(9) 55(7) 258.4(6) 301.6(8) 366.2 (5) na 0.152(9) 3.44(9) na
DC-h0 163.9(8) 270.6(7) 241.5(4) 50.7(6) 28.2(4) 354.5(2) 68.4(9) 153.1(9) 252.5(9) 33.3(9) 55.5(7) 269.7(6) 301.9(8) 363.4(5) na 0.17(9) 3.25(9) na

DC-h0+ 70.7(8) 92.1(8) 73.5(4) 41.7(6) 17.4(4) 194.6(3) 38.7(9) 88.2(9) 134.9(9) 30.2(9) 51.1(8) 136.5(6) 236.2(9) 261(5) 1504.6(1) 0.099(9) 2.13(9) na
DC-hMinMin 221.4 (8) 332.7(7) 271.7(4) 77.1(6) 36.4(3) 363.5(2) 6.7(10) 30.2(10) 88.8(8) 36.8(9) 88.8(8) 258.4(6) 192.6(9) 243.89(5) 1117.4(1) 0.15(9) 2.49(9) na

BFD-h0 157.4(8) 260.8(7) 234.3(4) 50.3(6) 28(4) 352.2(2) 69.5(9) 153.9(9) 285.9(9) 33(9) 55(7) 267.6(6) 302.6(8) 360.8(5) na 0.15(9) 3.39(9) na
BFD-h0+ 68.2(8) 88(8) 70.2 (7) 41.6 (6) 17.2(4) 118.2(3) 40.3(9) 85.6(9) 160.9(9) 29.5(9) 50.9(8) 188.3(6) 238.3(9) 258.6(5) 1465.8(1) 0.096(9) 2.021(9) na

BFD-hMinMin 216.4(8) 325.3(7) 265.94(4) 74.4(6) 35.4(3) 354.8(2) 60.3(9) 135(9) 237.4(9) 36.9(9) 89(8) 256.2(6) 176.6(9) 231.2(5) 1042.5(1) 0.13(9) 2.61(9) na

Table 3: Running time and number of instances solved for optimal solvers

Approximate solutions
Setup For approximate solutions we used a solver based on
an MDP reduction approach that creates simplified MDPs
that account for the full set of probabilistic outcomes a
bounded number of times (for each execution history), and
treat the problem as deterministic afterwards (Pineda and
Zilberstein 2014). The deterministic problems were solved
using the FF classical planner (Hoffmann and Nebel 2001).
Because this is a replanning approach, we used Monte-Carlo
simulations to evaluate the policies’ probability of reaching
a goal state and its expected cost. In particular, we gave the
planner 20 minutes to solve each problem 50 times. We used
the first 10 instances of each competition domain mentioned
above, excluding Box World, due to limitations of the plan-
ner. For the VACUUM domain we generated ten configura-
tions of up to 5× 7 grid size rooms, based on Figure 1.
Results Table 4 reports three measures (per budget):
the number of problems completed within allocated time
(solved), improved probability of reaching a goal of the re-
sulting policies with respect to the policies obtained with-
out design (δPs), and the average percentage of reduction
in expected cost after redesign (reduc) (δPs and reduc are
averaged only over problems solved 50 times when using
both the original and modified model). In general, we ob-
served that redesign enables either improvement in expected
cost or in probability of successes (and sometimes both),
across all budgets. For BLOCK and EX-BLOCK, a budget
of 2 yielded best results, while for ELEVATOR, TIRE, and
VACUUM a budget of 3 was better. However, the increased
difficulty of the compiled problem resulted sometimes in a
lower number of solved problems (e.g., solving only 3 prob-
lems on TIRE with budget of 3). Nevertheless, these results
demonstrate the feasibility of obtaining good solutions when
compromising optimality.

Discussion
For all examined domains, results indicate the benefit of us-
ing heuristic search over an exhaustive search in the modi-
fication space. However, the dominating heuristic approach
varied between domains, and for TIRE also between bud-

B = 1 B = 2 B = 3

solved δPs reduc solved δPs reduc solved δPs reduc
BLOCK 8 0 19.1 8 0 21.2 8 0 18.6

EX-BLOCK 10 0.42 0 10 0.50 0 10 0.41 0
TIRE 7 0 6.98 7 0 17.9 3 0 33

ELEVATOR 10 -0.33 25 10 0.1 30 10 0.1 38.3
VACUUM 10 0.2 8.12 10 0.2 4.72 10 0.3 9.72

Table 4: Utility improvement for sub-optimal solver

get allocation. Investigating the reasons for this variance,
we note a key difference between BFD and DC. While DC
applies modifications to the original model, BFD uses the
simplified-environment heuristic that applies them to a sim-
plified model. Poor performance of BFD can be due to either
the minor effect applied simplifications have on the com-
putational complexity or to an exaggerated effect that may
limit the informative value of heuristic estimations. In par-
ticular, this could happen due to the overlap between the de-
sign process and the simplification. To illustrate, by applying
the all outcome determinization to the Vacuum domain de-
picted in Example 1, we ignore the undesired outcome of
slipping. Consequently, the heuristic completely overlooks
the value of adding high-friction tiles, while providing in-
formative estimations to the value of (re)moving furniture.
This observations may be used to account for the poor per-
formance of BFD with EX-BLOCKS, where simplification
via the delete relaxation ignores the possibility of blocks ex-
ploding and overlooks the value of the proposed modifica-
tions. Therefore, estimations of BFD may be improved by
developing a heuristic that uses the aggregation of several
estimations. Also, when the order of application is immate-
rial, a closed list may be used for examined sets in the BFD
approach but not with DC. Finally, a combination of relax-
ation approaches may enhance performance of sub-optimal
solvers.

Related Work
Environment design (Zhang, Chen, and Parkes 2009) pro-
vides a framework for an interested party (system) to seek
an optimal way to modify an environment to maximize
some utility. Among the many ways to instantiate the gen-
eral model, policy teaching (Zhang and Parkes 2008; Zhang,
Chen, and Parkes 2009) enables a system to modify the re-
ward function of a stochastic agent to entice it to follow spe-
cific policies. We focus on a different special case where the
system is altruistic and redesigns the environment in order to
maximize agent utility. The techniques used for solving the
policy teaching do not apply to our setting, which supports
arbitrary modifications.

The DesignComp compilation is inspired by the tech-
nique of Göbelbecker et al. (2010) of coming up with good
excuses for why there is no solution to a planning prob-
lem. Our compilation extends the original approach in four
directions. First, we move from a deterministic environ-
ment to a stochastic one. Second, we maximize agent util-
ity rather than only moving from unsolvable to solvable.
Third, we embed support of a design budget. Finally, we
support arbitrary modification alternatives including modi-



fications specific to stochastic settings as well as all those
suggested for deterministic settings (Herzig et al. 2014;
Menezes, de Barros, and do Lago Pereira 2012).

Conclusions
We presented the ER-UMD framework for maximizing
agent utility by the off-line design of stochastic en-
vironments. We presented two solution approaches; a
compilation-based method that embeds design into the def-
inition of a planning problem and an informed heuristic
search in the modification space, for which we provided an
admissible heuristic. Our empirical evaluation supports the
feasibility of the approaches and shows substantial utility
gain on all evaluated domains.

In future work, we will explore creating tailored heuris-
tics to improve planner performance. Also, we will extend
the model to deal with partial observability using POMDPs,
as well as automatically finding possible modifications, sim-
ilarly to (Göbelbecker et al. 2010). In addition, we plan to
extend the offline design paradigm, by accounting for online
design that can be dynamically applied to a model.
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