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Abstract
Star-topology decoupling is a recent search reduction method
for forward state space search. The idea basically is to
automatically identify a star factoring, then search only
over the center component in the star, avoiding interleavings
across leaf components. The framework can handle complex
star topologies, yet prior work on decoupled search consid-
ered only factoring strategies identifying fork and inverted-
fork topologies. Here, we introduce factoring strategies
able to detect general star topologies, thereby extending the
reach of decoupled search to new factorings and to new do-
mains, sometimes resulting in significant performance im-
provements. Furthermore, we introduce a predictive portfolio
method that reliably selects the most suitable factoring for a
given planning task, leading to superior overall performance.

Introduction
In classical planning, the task is to find a sequence of ac-
tions leading from a given initial state to a state that satis-
fies a given goal condition. The states, goal condition, and
actions are described relative to a vector of state variables,
and the size of the resulting state space is exponential in
the number of state variables. Numerous techniques have
been proposed to tackle this state space explosion problem.
Star-topology decoupled search, short decoupled search, is
a recent addition to this arsenal (Gnad and Hoffmann 2015;
Gnad et al. 2015).

Decoupled search is a form of factored planning (e. g.
Amir and Engelhardt (2003), Kelareva et al. (2007), Fabre et
al. (2010), Brafman and Domshlak (2013)), where the state
variables are automatically partitioned into factors (compo-
nents), and the planning process distinguishes between lo-
cal per-factor planning vs. global across-factors planning.
In contrast to previous approaches, star-topology decoupled
search assumes that the interactions across factors take a par-
ticular shape, namely that of a star topology. Such a topol-
ogy has a single center factor that can arbitrarily interact
with possibly many leaf factors, but any interaction across
leaf factors must be via the center. The decoupled search
then branches only over those actions that affect the center,
handling the possible moves for each leaf factor separately.

Intuitively, one can think of this as exploiting a form of
“conditional independence” between the leaf factors: given
a fixed transition path πC for the center, the possible (center-
compliant) transition paths for each leaf are independent

across leaves. We can therefore avoid the multiplication of
leaf states across leaves. Instead, decoupled search accumu-
lates all possible leaf states given πC into a so-called decou-
pled state, which compactly represents the set of all states
that can be reached using πC . The number of decoupled
states can be, and is often in practice, exponentially smaller
than the number of states in the standard state space.

While decoupled search is able to handle star topologies
in general, existing factoring strategies so far only iden-
tified fork and inverted-fork topologies. Such structures
are well known in planning (Katz and Domshlak 2008;
Katz and Keyder 2012; Aghighi et al. 2015) and can be
easily detected by analyzing the causal graph of a planning
task (e. g. Knoblock (1994), Jonsson and Bäckström (1995),
Brafman and Domshlak (2003), Helmert (2003)). Yet fork
and inverted-fork topologies are quite limited. In particular,
they cannot identify any factorization within strongly con-
nected components of the causal graph.

Here we extensively widen the scope of star factorings,
introducing two new strategies that, in particular, do not suf-
fer from this limitation. We aim at maximizing the number
of leaf components, as the potential reductions are exponen-
tial in that number. Our first strategy is based on maximum
independent sets of the causal graph, which yield the max-
imum possible number of leaves. The leaves are then post-
processed, as larger leaves are more beneficial: we design
a greedy strategy maximizing leaf flexibility, derived from
the number of actions that affect only a leaf (and which the
search hence doesn’t need to branch over). Our second strat-
egy is simpler. It employs greedy variable selection using
a measure of connectivity in the causal graph, essentially
moving the most densely connected variables into the cen-
ter.

Both strategies extend the reach of decoupled search to
new factorings and to new domains, and sometimes result in
significant performance improvements. On the other hand, it
turns out that the two new factoring strategies, as well as the
previous ones, are often complementary (lead to good results
in different cases). So how to automatically select the best
factoring? We devise a predictive portfolio – a per-instance
self-configuration method – to answer that question.

Sequential portfolios, running a set of component plan-
ners for a fixed allotted time each, have been used widely
in planning (e. g. Howe et al. (1999), Gerevini et al. (2009),



Helmert et al. (2011), Seipp et al. (2015)). Yet, to our aware-
ness, the only known predictive planning portfolio is IBA-
COP (Cenamor et al. 2016), which predicts the performance
of a set of component planners based on a wide range of
input-syntax features. Such features are also more gener-
ally used for performance prediction in planning (Roberts
and Howe 2009; Hoffmann 2011; Fawcett et al. 2014). We
go beyond this here by a ranking method based on sample
searches, running the factoring candidates with a short time
limit, extracting features from the searches. This is differ-
ent from IBACOP, whose key to success is the component
selection, not the per-instance ranking. Our approach works
well. It reliably selects the best factoring, leading to superior
overall performance.

Preliminaries

We consider a classical planning framework with finite-
domain state variables (Bäckström and Nebel 1995; Helmert
2006), often referred to as FDR (finite-domain representa-
tion) planning. A planning task in this framework is a tuple
Π = 〈V,A, I,G〉. Here, V is a finite set of state variables,
short variables, where each v ∈ V is associated with a finite
domainD(v). A is a finite set of actions, each a ∈ A being a
triple 〈pre(a), eff(a), c(a)〉 of precondition, effect, and cost,
where pre(a) and eff(a) are partial assignments to V , and
the cost is a non-negative real number c(a) ∈ R0+. A state
is a complete assignment to V . I is the initial state. The
goal G is a partial assignment. For a partial assignment p,
we denote by V(p) ⊆ V the subset of variables on which p is
defined. For V ′ ⊆ V(p), by p[V ′] we denote the restriction
of p onto V ′, i. e., the assignment to V ′ made by p. We iden-
tify (partial) variable assignments with sets of variable/value
pairs.

We say that action a is applicable in state s if pre(a) ⊆ s.
Applying a in s changes the value of all v ∈ V(eff(a)) to
eff(a)[v], and leaves s unchanged elsewhere. The outcome
state is denoted sJaK. A plan for Π is an action sequence π
iteratively applicable in I , and resulting in a state sG where
G ⊆ sG. The plan π is optimal if the summed-up cost of its
actions, denoted c(π), is minimal among all plans for Π.

The factoring strategies we will consider heavily employ
the task’s causal graph, a well known concept in planning
capturing some of a task’s structure, in terms of pairwise
state-variable dependencies (e. g. Knoblock (1994), Jons-
son and Bäckström (1995), Brafman and Domshlak (2003),
Helmert (2006)). Specifically, the causal graph CGΠ of a
planning task Π is a directed graph whose vertices are the
variables V . The graph contains an arc v → v′ if v 6= v′,
and there exists an action a ∈ A such that v ∈ V(pre(a)) ∪
V(eff(a)) and v′ ∈ V(eff(a)). Intuitively, an arc from v to v′
indicates that, either, in order to move v′ (v′ ∈ V(eff(a))) we
may have to move v first (v ∈ V(pre(a))); or, when we move
v′, we may have to move v as a side effect (v ∈ V(eff(a))).

We assume that CGΠ is weakly connected, which makes
some factoring topologies more convenient to define. If that
is not so, then each weakly connected component can be cast
as a separate sub-task, and can be solved independently.

Decoupled Search Background
To understand our contribution, a recap of the previous work
by Gnad and Hoffmann (2015) and Gnad et al. (2015) is re-
quired. We define what star factorings are, give a brief sum-
mary of decoupled search, and discuss previous methods for
finding star factorings automatically.

Star Factorings
A factoring F is a partitioning of V into non-empty sub-
sets F ⊆ V . These sets are called factors. We say that a
factoring F is trivial if it contains only a single factor, i. e.,
|F| = 1. A non-trivial factoring F is called a star factor-
ing if there exists a factor FC ∈ F where, denoting the
remaining factors by FL := F \ {FC}, for every action
a ∈ A where V(eff(a)) ∩ FC = ∅ there exists FL ∈ FL

with V(eff(a)) ⊆ FL and V(pre(a)) ⊆ FL ∪ FC . In other
words, every action either affects (has an effect on) FC , or
it affects only a single FL ∈ FL and has preconditions only
on that same FL and/or on FC . In this situation, we refer to
FC as the center, and to the factors in FL as the leaves, in
F .

Intuitively, in a star factoring, the center dominates the
task structure, as fixing a transition path for the center also
fixes what any one of the leaves can or cannot do. Decou-
pled search exploits this by searching only over the actions
affecting the center.

Decoupled Search
We need a few basic notations. Given a factoringF , variable
assignments to FC are called center states, and assignments
to an FL ∈ FL are called leaf states. We refer to actions
affecting FC as center actions, denoted AC , and to actions
affecting a leaf FL as leaf actions, denoted AL[FL]. The
set of all leaf actions is denoted AL. Observe that AC and
AL[FL] may overlap: this happens if there is a center ac-
tion that affects both, FC and FL. We call leaf actions in
AL \ AC leaf-only actions. In a star factoring, center ac-
tions can have arbitrary preconditions and effects on all fac-
tors. On the other hand, as pointed out above already, leaf-
only actions affect only FL, and have preconditions only on
FL ∪ FC .

Given a path πC of center actions (a center path, appli-
cable to I[FC ] in the task’s projection onto FC), decou-
pled search maintains – for each leaf separately – what is
referred to as the compliant-path graph. The compliant-path
graph compactly captures the set of leaf paths (sequences of
AL[FL] actions) that comply with the current center path.
Here, a leaf path πL of leaf FL complies with a center path
πC if their AC ∩ AL[FL] subsequences agree, and the leaf-
only actions in πL can be embedded into πC such that the
resulting action sequence is applicable to I[FC ∪FL] when
ignoring preconditions on the remaining leaves FL \ {FL}.

A decoupled state sF then consists of a center path πC ,
along with the compliant-path graph for each leaf FL ∈ FL.
For each leaf state sL, the price of sL in sF is the cost of a
cheapest compliant leaf path ending in sL, or∞ if no such
path exists. The search stops when reaching a goal decou-
pled state: a state whose center assignment satisfies the cen-



ter goal G[FC ], and where for each leaf FL ∈ FL there ex-
ists a finite-price leaf state that satisfies the leaf goal G[FL].

Existing Factoring Strategies
Gnad et al. (2015) introduced the theoretical concept of star
factorings, yet explored only a tiny fragment of that rich
factoring space. They considered only extremely simple
sub-classes arising from well-known structures called forks
and inverted-forks, as well as a combination thereof, called
Xshape. These structures can be derived from simple causal
graph analyses, viewing the factoring as an equivalence re-
lation over the variables, i. e., over the causal graph vertices.

The interaction graph IGΠ(F) given a factoring F is the
directed graph whose vertices are the factors, with an arc
F → F ′ if F 6= F ′ and there exist v ∈ F and v′ ∈ F ′

such that v → v′ is an arc in CGΠ. A factoring F is a
fork factoring if there exists FC ∈ F such that the arcs in
IGΠ(F) are exactly {FC → FL | FL ∈ FL}. F is an
inverted-fork factoring if there exists FC ∈ F such that the
arcs in IGΠ(F) are exactly {FL → FC | FL ∈ FL}. F
is an Xshape factoring if there exists FC ∈ F such that, for
every FL ∈ FL, exactly one of FC → FL and FL → FC

is an arc in IGΠ(F).
Every fork/inverted-fork/Xshape factoring is, in particu-

lar, a star factoring. The advantage of these simple special
cases is that they are very easy to identify. Observe that,
in any one of these factoring types, as the dependency be-
tween each pair of factors can only be in one direction, (*)
every strongly connected component (SCC) of the causal
graph must be fully contained in a single factor. One can
hence identify such factorings from the DAG over causal-
graph SCCs, which in practice tends to be very small. Gnad
et al. (2015) devise simple greedy strategies attempting to
(though not guaranteeing to) maximize the number of leaf
factors.1

However, (*) is of course a stark limitation. For example,
if the causal graph is strongly connected, then no factoring
can be identified – this despite the fact that every planning
task has exponentially many star factorings, namely for ex-
ample all those partitioning V into two subsets (where the
role of “center” vs. “leaf” can be attributed arbitrarily).

Finding Star Topologies
We design factoring strategies making more comprehensive
use of the possibilities at hand. The strategies identify strict-
star factorings. A factoring F is a strict-star factoring if
there exists FC ∈ F s.t. all arcs in IGΠ(F) are contained in
{FC → FL, FL → FC | FL ∈ FL}. In other words, we
now allow arbitrary (including bidirectional) causal-graph

1We remark that, in fact, one can easily guarantee to find fork
(respectively inverted-fork) factorings with the maximal number
of leaves. Namely, that holds when simply setting FL to the leaf
(root) causal-graph SCCs. This is because adding a non-leaf (non-
root) component as a new leaf factor necessarily introduces a de-
pendency across leaf factors. Adding a component to an existing
leaf can only increase its size, but can never lead to more leaf fac-
tors. We will use these enhanced fork/inverted-fork strategies in
our experiments.

dependencies between the center and the leaves. This defi-
nition has been stated by Gnad et al. (2015) before, but its
power has never been explored.2

We introduce two factoring strategies. Both aim at maxi-
mizing the number of leaf factors in a strict-star factoring.
The latter is NP-complete (Gnad et al. 2015), due to a
simple reduction from finding a maximum independent set
(MIS): leaf factors are independent in the causal graph, and
vice versa independent causal graph variables can be made
leaves. Since maximizing the number of leaves is already
hard, we focus on optimizing only this measure. In the
end, the potential gain of decoupled search is exponential in
that number. Many other features could also be considered,
though. We leave the conclusive exploration of such features
for future work, instead concentrating on how to detect star
topologies.

Our first strategy uses a causal-graph MIS as a seed fac-
toring, which is then post-processed. Our second strategy
is simpler, using a greedy variable selection that moves the
most densely connected variables into the center.

Maximizing the Number of Leaves
Given the correspondence between causal-graph maximum
independent sets and strict-star factorings with maximum
number of leaves, a natural approach to find the latter is by
starting from a causal graph MIS VMIS ⊂ V . In our im-
plementation, we use standard methods to find such a MIS
(Fomin et al. 2009); precisely, we consider all cardinality-
maximal independent sets produced up to a time-out of 10
seconds. Each MIS then spawns a separate instance of our
factoring strategy. The strategy starts with a factoring FMIS
where every leaf contains exactly one variable v ∈ VMIS. It
applies a post-process designed to maximize leaf flexibility.
It may also abstain (see below) depending on the outcome.

The flexibility of a leaf FL is the ratio of leaf-only actions
over all actions affecting FL: |AL[FL]\AC |/|AL[FL]|. We
say that a leaf is frozen if its flexibility is 0. A leaf that is
not frozen is called mobile, and a factoring F is mobile if
all its leaves are mobile. Flexibility measures the “amount
of work” a leaf can do on its own. In particular, it is 1 for
fork or inverted-fork leaves. A frozen leaf cannot lead to a
reduction of the search space, in the sense that all its leaf
actions also affect the center, so must be branched over. We
hence remove frozen leaves, using only mobile factorings in
the search.

The MIS post-process is detailed in Figure 1. Starting
with a MIS-factoring FMIS, we (1) move variables from the
center into the leaves, (2) remove the frozen leaves, and (3)
maximize the number of variables in each leaf. For (1) and
(3), we use a hill-climbing approach to select the variables
(maximizeFlexibility). We do so by computing a set of can-
didate variables that are connected to exactly one leaf factor,

2We shun the complexity of general star factorings because (a)
they are defined based on individual actions and cannot be captured
by a compact structural representation like the causal graph; and
(b) their usefulness over strict-star factorings is unclear as the only
additional possibility are center actions affecting several leaves, an
implicit form of dependency across leaves.



IndependentSetFactoring(Π = 〈V,A, I,G〉):
FL := {{v} | v ∈ MIS(CGΠ)}
FL := maximizeFlexibility(FL) (1)
FL := {FL ∈ FL | FL is mobile} (2)
FL := maximizeFlexibility(FL) (3)
if |{FL ∈ FL | FL is mobile}| < 2 then

return abstain
return
F := {FC := {v ∈ V | ∀FL ∈ FL : v 6∈ FL}} ∪ FL

Function maximizeFlexibility (FL
0 ):

FC := {v ∈ V | ∀FL ∈ FL
0 : v 6∈ FL}

V ′ := {v ∈ FC | |neighbourLeaves(v,FL
0 )| = 1}

FL
max := FL

0

i := 1
while V ′ 6= ∅ do

for v ∈ V ′ do
{FL

v } := neighbourLeaves(v,FL
max)

FL
i := FL

max ∪ {FL
v ∪ {v′}} \ {FL

v }
i := i + 1

end
FL

max := argmax(|FL
j |), for j ∈ [i− |V ′|, i− 1]

FC := {v ∈ V | ∀FL ∈ FL
max : v 6∈ FL}

V ′ := {v ∈ FC | |neighbourLeaves(v,FL
max)| = 1}

end
return FL

j with max # of mobile leaves, j ∈ [0, i− 1]

Function neighbourLeaves (v,FL):
N := {FL ∈ FL | ∃v′ ∈ FL : v → v′ ∈ CGΠ∨

v′ → v ∈ CGΠ}
return N

Figure 1: Factoring strategy based on a maximum indepen-
dent set (MIS) of the causal graph.

and that can hence be moved into that leaf factor without in-
troducing leaf-leaf dependencies. For each candidate c, a
candidate factoring is generated, where c has been moved
into the respective leaf. Out of the candidate factorings re-
sulting from the last for-loop execution, we pick the one with
the highest number of mobile leaves (in the argmax), then
we iterate.

Frozen leaves are removed in step (2), because any leaf
that is still frozen at this point cannot become mobile later
on. Step (3) aims at further increasing flexibility. Note that
additional iterations cannot improve the flexibility, since the
set of candidates would be empty. The factoring with the
highest number of mobile leaves is returned.

Although increasing flexibility – by moving variables into
the leaves – is desirable, having very large leaf state spaces
can lead to a prohibitive computational overhead when up-
dating the compliant-path graphs. To prevent this, like Gnad
and Hoffmann (2015), we use 232 as an upper bound on
the domain-size product of the variables in a leaf. We re-
mark that there might be more suitable choices for the upper
bound. Experimenting with this is out of the scope of this
work, though.

The algorithm may fail to find a non-trivial factoring. In
that case, our factoring strategy abstains, i. e., does not sug-
gest a factoring for this input task. Indeed, as done in pre-
vious work on decoupled search, we abstain – here as well

IncidentArcsFactoring(Π = 〈V,A, I,G〉):
FC := ∅
i := 1
for v ∈ V do

// sorted by decreasing # of incident arcs in CGΠ

FC := FC ∪ {v}
FL

i := connectedComponents(V \ FC )
i := i + 1

end
FL := select FL

i with max # of mobile leaves, i ∈ [1, |V |]
if |{FL ∈ FL | FL is mobile}| < 2 then

return abstain
return
F := {FC := {v ∈ V | ∀FL ∈ FL : v 6∈ FL}} ∪ FL

Figure 2: A greedy factoring strategy based on the number
of incident arcs of a variable in the causal graph.

as in the factoring strategy described in the next subsection
– whenever the algorithm returns a factoring with at most
one mobile leaf. This makes sense because the main ad-
vantage of decoupled search is to avoid interleaving across
several leaf factors. If the factoring strategy abstains, one
can in principle use any arbitrary other planner; the deci-
sion to abstain is typically taken very quickly (details in the
experiments).

A Greedy Approximation
Although the causal graph is usually small, it turns out that
there exist planning instances for which computing a max-
imum independent set is infeasible. Therefore, we propose
an alternative to the independent-set factoring, based on the
connectivity of the variables in the causal graph. We count
the number of incident arcs, the number of CG-arcs a vari-
able participates in, and move highly connected variables to
the center. This method computes a factoring (or fails to do
so) very quickly. Details are given in Figure 2.

The algorithm starts with the trivial factoring F = FL =
{V }, where all variables are in a single leaf factor. We
sort the variables by decreasing number of incident arcs and
move variables from the leaf to the center FC according to
this ordering. This generates a sequence of center factors
where in each step the size of the center is increased by
one. For each such FC , we set the leaves FL to be the
weakly connected components in CG projected on the non-
center part V \ FC that fit the leaf size bound. Picking the
weakly connected components in the leaf part ensures that
there are no cross-leaf dependencies, and we get a strict-star
factoring. Again, we choose the factoring that maximizes
the number of mobile leaves, abstaining if there are less than
2 of them.

The idea behind this strategy is to have the highly con-
nected variables in the center, because we assume those to
otherwise introduce dependencies between the leaves.

Predictive Per-Instance Self Configuration
Now that we have an arsenal of factoring strategies at hand,
the question arises if there exists a method that dominates



A∗ using LM-cut GBFS using hFF GBFS using hFF and preferred operator pruning
Dom # B F IF X MIS IA SC % # B F IF X MIS IA SC % # B F IF X MIS IA SC %
Air 17 13 - - - 13 - 13 17 17 - - - 16 - 16 17 17 - - - 17 - 17
Csnac 20 0 - 0 0 - 0 0 20 0 - 0 0 - 0 0 20 3 - 6 6 - 6 6
Depot 22 7 - 7 7 5 (11) 7 7 22 14 - 19 19 9 (11) 19 19 22 18 - 20 20 10 (11) 19 20
Driv 20 13 13 - 13 13 13 13 100 20 18 20 - 20 20 20 20 86 20 20 20 - 20 20 20 20 100
Elev 50 40 - 41 41 9 (41) 40 41 83 50 48 - 50 50 - 10 (40) 50 50 50 - 50 50 - 10 (40) 50
Floor 40 13 - 13 13 8 8 13 100 40 8 - 6 6 8 4 7 57 40 8 - 8 8 8 4 8 50
Free 42 2 - - - - 1 1 42 41 - - - - 42 42 42 42 - - - - 42 42
Log 63 26 34 27 34 35 35 35 100 63 54 63 63 63 63 63 63 93 63 63 63 63 63 63 63 63 98
Mico 145 136 135 - 135 135 135 135 145 145 145 - 145 145 145 145 145 145 145 - 145 145 145 145
Mpri 6 6 - - - - 4 4 6 6 - - - - 6 6 6 6 - - - - 6 6
Myst 5 1 - 0 (1) 0 (1) - 1 (4) 1 5 1 - 1 (1) 1 (1) - 1 (4) 2 5 2 - 1 (1) 1 (1) - 1 (4) 2
NoMy 20 14 20 - 20 20 20 20 20 9 19 - 19 19 19 19 20 10 19 - 19 19 19 19
Open 70 40 - - - 38 35 38 84 70 69 - - - 69 (1) 70 70 46 70 70 - - - 69 (1) 70 69 71
Parc 23 7 - - - - 13 13 25 24 - - - - 23 23 25 24 - - - - 24 24
Pathw 30 5 4 (1) - 4 5 5 5 100 30 11 12 (1) - 13 15 13 18 100 30 20 19 (1) - 20 23 20 24 100
Rover 40 7 9 5 (2) 9 9 9 9 88 40 23 22 38 (2) 22 21 21 32 90 40 40 40 38 (2) 40 40 40 40 87
Sat 36 7 7 10 (2) 7 8 9 12 90 36 30 33 34 (2) 33 33 28 33 87 36 36 36 34 (2) 36 36 31 35 84
Tetr 13 4 - - - - 5 5 17 5 - - - - 6 6 17 13 - - - - 14 14
Thoug 0 13 5 - - - 0 (10) 5 5 100 13 10 - - - 1 (10) 10 10 100
Tidy 40 22 - - - 8 (18) 23 24 20 14 - - - 14 14 14 20 15 - - - 13 (1) 13 13
TPP 29 5 18 (2) 2 (3) 18 3 (26) 5 18 100 29 21 23 (2) 25 (3) 25 3 (26) 26 25 96 29 29 27 (2) 26 (3) 29 3 (26) 24 27 96
Trans 70 23 - 23 23 3 (67) 18 (34) 23 100 70 16 - 70 70 3 (67) 9 (61) 70 100 70 45 - 70 70 3 (67) 9 (61) 70 100
Truck 27 9 - - - 6 (13) 10 10 100 27 16 - - - 7 (13) 16 16 100 27 18 - - - 7 (13) 16 16 100
Wood 46 25 14 (28) 28 (7) 28 (7) - 26 (3) 33 49 48 43 (6) 48 (1) 48 (1) 1 (48) 46 (3) 49 74 49 49 43 (6) 48 (1) 48 (1) 1 (48) 46 (3) 49 44
Zeno 20 13 13 11 (2) 13 12 12 13 61 20 20 20 18 (2) 20 20 20 20 100 20 20 20 18 (2) 20 20 20 20 100
Other 87 72 3 (84) 0 (87) 3 (84) 72 72 72 76 90 87 3 (87) 0 (90) 3 (87) 87 (2) 87 87 94 90 88 3 (87) 0 (90) 3 (87) 88 (50) 88 80 94
All 981 510 270 167 368 402 506 558 986 750 403 372 557 553 713 857 986 861 435 382 598 586 760 897

(560) (557) (330) (331) (58) (540) (553) (326) (343) (125) (540) (553) (326) (344) (125)
MIS 620 390 241 83 271 402 643 525 341 172 360 553 642 577 369 176 392 586

(271) (434) (207) (263) (435) (208) (262) (434) (207)
IA 923 490 270 160 361 506 861 685 403 267 452 713 861 764 435 277 493 760

(502) (540) (313) (415) (536) (309) (415) (536) (309)

Table 1: Coverage data (number of solved instances) for the standard search baseline (B), the revised F/IF/X factorings, our
new MIS and IA-based factorings, and self-configuration (SC). Best results highlighted in bold. # is the number of instances
where at least one factoring strategy did not abstain. Numbers in parentheses show the number of abstained tasks per domain.
The three rows at the bottom show overall coverage (and overall abstained) on the subset of instances where any (All), the MIS-
based (MIS), or the IA-based (IA) strategy does not abstain. “-” marks domains in which a strategy abstains on all instances.
We summarize domains with identical coverage for B, MIS, IA, and SC in “Other”. “%” indicates SC’s accuracy (see text).

the others. As we shall see in the experiments, this is
not the case, and the factoring methods are typically com-
plementary. A simple way to exploit such complementar-
ity is to combine several planners in a sequential portfolio
(e. g. Howe et al. (1999), Gerevini et al. (2009), Helmert
et al. (2011), Seipp et al. (2015)), where each component
planner gets a fixed allotted time slot based on a benchmark
training phase.

Cenamor et al. (2016) devised a more flexible predictive
portfolio, IBACOP, that assigns the times based on a per-
instance analysis over syntactic features of the planning task
input. Here, we select one of our factorings on a per-instance
basis. In contrast to Cenamor et al., we do not rely on syn-
tactic features, but run a short sample search with each fac-
toring.

Specifically, we generate the set of factorings using all
factoring strategies: fork, inverted-fork, Xshape, MIS-based
for every MIS found, incident arc based. For each factor-
ing, we run a sample search with a time limit of 1s. We

additionally allow up to 10s per factoring to precompute the
leaf state spaces, which is important for the efficiency of
decoupled search. In case a sample search already solves
the task, we return the solution. In domains where just a
single method finds a factoring, we simply select that fac-
toring. Given multiple factorings, we select one based on
sample search features, namely heuristic improvement – the
ratio between initial state heuristic value vs. the best heuris-
tic value observed in the search – as well as the number of
expanded states.

It turns out that, to reliably select the best-performing fac-
toring, it suffices to rank the factorings based on just one
of these features depending on the objective: heuristic im-
provement (higher is better) for satisficing planning (where
better heuristic values lead to faster search); and expanded
states (higher is better) for optimal planning. For the latter,
we expect the search space to be rather large, independent
of the factoring, so a fast expansion rate is important (the
expansion time highly depends on the factoring).



X vs. IA, hLM-cut X vs. MIS, hLM-cut X vs. IA, hFF X vs. MIS, hFF

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

Figure 3: Scatter plots, with a data point per instance, showing the search space size (top), and runtime in seconds (bottom) of
X vs. IA/MIS, with X on the x-axis and IA/MIS on the y-axis. Black points indicate instances where both strategies did non
abstain. Blue circles (red triangles) highlight instances for which X (IA/MIS) has abstained; we show data for B in this case.

Experiments
We implemented the factoring strategies – the two new ones,
as well as the refined fork (F), inverted-fork (IF), and Xshape
(X) strategies as mentioned above – for Gnad et al.’s (2015)
decoupled search planner built on top of the Fast Downward
system (FD) (Helmert 2006). The experiments were con-
ducted on a cluster of Intel E5-2660 machines running at
2.20 GHz, with time (memory) limits of 30 minutes (4 GB).
We run experiments on the sequential optimal and satisficing
tracks of all international planning competitions (IPC).

To evaluate our MIS factoring strategy (on its own, with-
out per-instance self-configuration), in case several factor-
ings with the same number of mobile leaves are found, we
select an arbitrary one among those.

For all factoring strategies, the factoring process is fast.
The factoring time is below 1s on 90% of the instances; the
maximum is 30s. In instances with high factoring time, it
is typically (though not always) still faster than FD’s pre-
process. Expectedly, the incident arcs based factoring (IA)
tends to be significantly faster than the MIS-based strategy.

Our new strategies produce fork / inverted-fork / Xshape
/ strict-star factorings in 18% / 16% / 1% / 65% of the cases
for IA, and in 32% / 6% / 0% / 62% for MIS. So IA and MIS
are indeed able to detect many strict-star factorings.

In Table 1, we show coverage results of A∗ search with
LM-cut (Helmert and Domshlak 2009), and greedy best-first
search (GBFS) with hFF (Hoffmann and Nebel 2001) with
and without using preferred operators. Quite obviously, the
factoring strategies differ a lot, and no strategy dominates
all others. Comparing our MIS and IA strategies, it turns
out that IA abstains significantly less. The reason for this
are “ill-structured” maximum independent sets that, while
having many independent variables, cannot be repaired to a
mobile factoring by our post-process. Furthermore, a bit un-
expectedly, the IA factoring often results in a larger number
of leaf factors, on instances were both strategies are success-

ful.
In newly tackled domains, i. e., ones where only MIS

and/or IA do not abstain, we see that optimal decoupled
search with LM-cut usually solves about as many instances
(±2) as standard search. An outlier to the positive side is
ParcPrinter (+6), to the negative side Openstacks (−3), both
with IA. When using GBFS with hFF, there is little cover-
age difference in the newly tackled domains. Most config-
urations solve most of the instances, so in this sense these
benchmarks are just not sufficiently challenging to exhibit
coverage differences. In the other domains though, where
previous strategies find factorings, too, we often see big cov-
erage differences, most notably in Rovers and Satellite.

Predictive self-configuration (SC) turns out to be very
useful. Its accuracy (fraction of instances with at least 2
different factorings in which the best-performing – accord-
ing to FD’s search time – factoring is selected) is shown
in the % columns. Clearly, accuracy is very good almost
across the board, especially in optimal planning. In the
optimal benchmark suite, SC chooses the F/IF/X/IA/MIS
strategy 368/267/1/279/66 times, in the satisficing suite it
is 350/246/2/335/53. Note that the high number of forks
always includes 145 instances of Miconic. In terms of cov-
erage, this leads to superior performance overall. This is
either (1) due to combining methods that abstain on differ-
ent instances, or (2) picking the right factoring on instances
that can be solved when using one, but not using another
factoring method.

Runtime and search space size scatter plots, shown in Fig-
ure 3, allow a more fine-grained view on the performance of
different factorings. We show data for MIS and IA, compar-
ing to X as a baseline. The first row of plots shows the per-
instance comparison of the search space size (# expanded
nodes until last f -layer for hLM-cut, # evaluated states for
hFF), the second row shows runtime. If both factoring strate-
gies succeed (black points), we see that they often result in
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Figure 4: Scatter plots, with a data point per instance, showing the search space size (top), and runtime in seconds (bottom) of
B vs. IA/MIS, with B on the x-axis and IA/MIS on the y-axis.

the same factoring – there are many black points on the di-
agonal. When running hLM-cut, it turns out that some of the
instances solved by X, cannot be solved by IA. This risk
is less pronounced for MIS, so the MIS-based factorings
indeed seem to be better, although abstaining more often.
On commonly solved instances with different factorings X
is mostly faster than IA/MIS, favoring the simpler strategy if
it succeeds. A positive outlier is, e. g., the Satellite domain,
where MIS with hLM-cut achieves an average speed-up factor
over B of around 27, compared to no speed-up with the X
strategy. Other good cases are, e. g., Logistics and Pathways
with hFF, where IA gets a speed-up of 55 (32 for X), resp.
107 (13 for X) over B. In case X abstains (blue dots) we
see that our new strategies very consistently outperform the
baseline B, as we have already seen in the coverage table. If
IA/MIS abstain (red dots) we see the same picture for X vs.
B.

Figure 4 sheds further light on the comparison between
standard search (B) and the new IA/MIS factoring strate-
gies. The plots show search space size (top) and runtime
(bottom) on instances where IA/MIS do not abstain. Over-
all, the new strategies perform very well, mostly resulting
in a tremendously smaller search space and faster runtime.
Again, apparently the MIS factorings seem to work slightly
better than IA factorings – there are less points above the
diagonal, both for optimal planning with hLM-cut, and satis-
ficing with hFF. In summary, although mostly invisible in
the coverage table, there are cases where the new strategies
perform significantly better than standard search, and some-
times even better than Xshape factorings.

We also conducted experiments in proving planning tasks
unsolvable. Table 2 shows “coverage” data – the number of
instances proved unsolvable by the respective planners. All
configurations use the hmax heuristic for dead-end detection
(Bonet and Geffner 2001). We use the benchmarks from the
Unsolvability IPC’16, and an extended set of benchmarks
of Hoffmann et al. (2014), where we added instances with

higher constrainedness level for NoMystery, and Rovers.

Domain # B F IF X MIS IA SC
Unsolvability IPC’16

BagBarman 16 8 - - - - 4 4
BagTransport 29 6 - 10 10 - - 10
Cavediving 23 5 - - - 5 (10) 4 (2) 7
Diagnosis 11 5 - - - 5 8 8
DocTransfer 20 7 - - - 13 13 13
NoMystery 24 2 12 - 12 12 12 12
Rovers 20 7 8 - 8 10 10 10
TPP 30 16 - - - 5 (16) 14 15
PegSol-R5 12 2 - - - 0 (10) 2 2
PegSol 24 24 - - - - 24 24
Tiles 10 0 - - - - 0 0
Tetris 20 5 - - - - 5 5
IPC Mystery, Others Extended from (Hoffmann et al. 2014)

3-Unsat 1 1 - - - - 1 1
Mystery 3 0 - 0 0 - - 0
NoMystery 40 12 39 - 39 39 39 39
PegSol 24 24 - - - - 24 24
Rovers 40 9 10 - 10 12 10 10
Tiles 10 0 - - - - 0 0
TPP 25 5 - - - - 0 0∑

382 138 69 10 79 101 170 184
(258) (350) (226) (198) (34)

Table 2: Number of instances proved unsolvable. Abbrevi-
ations and general setup are as in Table 1. All configurations
use the hmax heuristic for dead-end detection.

The table reveals that the new factoring strategies exten-
sively widen the applicability of decoupled search on this set
of benchmarks. Where before the fork and inverted-fork fac-
torings abstained on most domains, IA and MIS tackle a lot
more instances. In terms of the number of tasks proved un-
solvable, decoupled search using the new factorings clearly
outperforms the standard search baseline. The accuracy of



the self-configuration (SC) is again quite good. Yet, the un-
derlying strategies result in the same factorings in all but 4
domains. In Diagnosis and UIPC TPP, SC always selects
the best factoring. In Rovers (both versions), the accuracy
is still good for the UIPC version (67%), but very low in the
variant of Hoffmann et al. (16%).

Conclusion
Decoupled search can tackle a large set of star factorings,
yet has previously been applied to fork and inverted-fork
structures only. Our work begins to close this gap, with
more general strict-star factorings found through maximum
independent sets and greedy optimizations/approximations.
The empirical results, especially with per-instance self-
configuration, are reasonably good. Major improvements
are rare though. The question remains whether better factor-
ing strategies yet exist, or whether the observed limitations
are simply due to the inherent structure (“we can only ex-
ploit star topologies where they are present”) of these bench-
marks.
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