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Abstract

Bounded-Cost Search involves solving a planning problem
subject to the constraint that the cost of the solution must
be within a specified cost bound. We investigate the use of
heuristics to guide a greedy search which solves these kinds
of cost bounded planning problems. We devise a formulation
which combines heuristic approximations for both solution
cost and solution length. This heuristic adapts previous work
in estimating a search node’s potential; the probability that it
will lead to a solution within the cost bound. We also intro-
duce Pareto Front Pattern Databases, which evaluate a num-
ber of pareto optimal solutions in an abstract space to produce
a heuristic which is suited to guiding Bounded-Cost Search.

1 Introduction
It is well known that classical planning problems can be
solved optimally using heuristic-guided search algorithms
such as A* (Hart, Nilsson, and Raphael 1968). However,
optimal solutions may prove to be too hard to find within
the practical constraints of time and memory. Conversely,
sub-optimal solutions can be found relatively quickly using
greedy best-first search. Historically, work in this area has
focused on producing sub-optimal solutions that are within
some factor, w, of the optimum (Pohl 1970). It is only re-
cently (Stern, Puzis, and Felner 2011; Thayer et al. 2012;
Haslum 2013) that work has been done to consider the alter-
native scenario where we are required to produce any sub-
optimal solution as long as its cost is less than or equal to
some maximum cost bound, C. We refer to this as Bounded-
Cost Search.

Typically, heuristics for optimal search aim to predict the
cost of the optimal solution (eg. PDB heuristics (Culberson
and Schaeffer 1996; Felner, Korf, and Hanan 2004; Haslum
et al. 2007; Helmert et al. 2007)). These are cheapest-
cost heuristics, and they naturally guide the search toward
cheaper solutions. If we weren’t concerned with solution
cost at all, then the fastest way to find a solution would be
to ignore operator costs completely and greedily prioritise
those nodes which are estimated to be closest to the goal
in terms of the number of actions, i.e. our search should
follow a shortest-length heuristic. However, with Bounded-
Cost search, there are different considerations to be made
when designing a heuristic. We are equally satisfied with any
solution within the cost bound, and this gives us some lee-

way to sacrifice cost-optimality and greedily follow shortest-
length in order to reduce search time. But it is clear that we
must also take solution cost into account; greedily following
the shortest-length heuristic may actually waste more time if
it chases solutions which exceed the cost bounds.

Our work attempts to strike a balance between these two
ideas, incorporating estimations for both solution length and
cost into a single guiding heuristic which can be used to
inform a best-first Bounded-Cost search. We explore the
concepts employed in the development of Potential Search
(PTS) (Stern, Puzis, and Felner 2011), which is a best-first
search prioritising nodes that are more likely to lead to a
goal within the cost bound. We show that this can be used
to inform a rational tradeoff between the likelihood of find-
ing a solution within the cost bound, and the time taken to
find that solution. This formulation produces an approxima-
tion for the ’expected work’ in finding a solution under a
given search node. Specifically, we estimate the number of
nodes that would need to be expanded on average to find
the solution. We claim that by prioritising our open list by
those nodes with the minimum expected work, the search
will minimise the total number of nodes expanded.

Independently of the expected work estimation, we also
produce a modified version of the Pattern Database (PDB)
heuristic (Culberson and Schaeffer 1996), which we call the
Pareto Front Pattern Database (PFPDB). In the construction
of our PFPDB, a number of cost-length pareto optimal solu-
tions are explored in the abstract space, allowing our heuris-
tic to produce different values for the same state depend-
ing on how close the node is to the cost bound. We propose
a modified version of Dijkstra’s algorithm (Dijkstra 1959),
called Pareto Front Dijkstra Search (PFD), which can be
used to efficiently construct the PFPDB. We also show that
techniques for producing additive PDBs (Felner, Korf, and
Hanan 2004) can also be applied to PFPDBs, and that we
can add together the elements of pareto fronts to produce a
new pareto front of higher quality.

2 Background
Past research in the area of bounded-cost search has often
involved either a cost-oriented heuristic (Stern, Puzis, and
Felner 2011), a distance-oriented heuristic (Haslum 2013),
or some mechanism of alternating between the two (Thayer
et al. 2012). This research has typically shown the purely



distance-oriented heuristics to be the fastest.
We begin by noting that not all nodes may be extended

into a solution within the cost bound. Expanding such nodes
is obviously a waste of time, and so it would be useful to be
able to detect and prune these nodes during our search. Note
the distinction between a state and a search node: a node
represents a path to a state in the search space. With that in
mind, suppose that n is a search node. We define h∗(n) to
be the cost of the cheapest path from the state represented
by n to the goal, and we define g(n) to be the (potentially
suboptimal) cost of the path that is represented by n. Then
f∗(n) = g(n)+h∗(n) is the cost of the cheapest path which
extends n in order to reach the goal. Clearly, we can extend
n’s path to a solution within the cost bounds if and only if
f∗(n) ≤ C. Nodes that don’t satisfy this condition should
not be expanded by our search, but detecting this would re-
quire knowledge of h∗(n).

Potential Search
Consider that it may be beneficial to repackage an admis-
sible cost-estimating heuristic, h, as a simple pruning func-
tion, pCh , such that

pCh (n) =

{
1, if h(n) ≤ C − g(n)

0, otherwise

Unfortunately, this discards some of the relevant information
given by h, but the formulation motivates a further improve-
ment. In the development of Potential Search (PTS) (Stern,
Puzis, and Felner 2011), this idea for a pruning function was
augmented to produce real values in the range [0, 1] where
pC(n) = Pr(h∗(n) ≤ C − g(n)). So pC represents the
probability that n can be extended to a solution within the
cost bound. PTS refers to pC as a node’s potential. Strictly
speaking, it is true that Pr(h∗(n) ≤ C − g(n)) ∈ {0, 1}
in a deterministic context, but for practical purposes we use
our heuristic to produce an aggregation of this probability
on a per h-value basis. Let Uh(v) give a uniform random
distribution over the set of all nodes n with h(n) = v. Then
we take pCh (q, v) = Pr(h∗(n) ≤ C − q | n ∼ Uh(v)),
such that pCh (g(n), h(n)) is the probability that a node n′
randomly chosen from the set of nodes with h(n′) = h(n)
has h∗(n′) ≤ C − g(n).

PTS guides the search by expanding nodes in ascending
order of 1

pCh (g(n),h(n))
(pruning on 1

0 = ∞), and thus di-
rects the search toward nodes which are more likely to lead
to a solution within the cost bound. PTS does not use pCh
directly as this function is generally unknown, but rather it
constructs a function φC that gives approximately the same
node ordering of nodes as pCh . Under the assumption that
the error h∗(n) − h(n) is linear in the size of h(n), it has
been shown (Stern, Puzis, and Felner 2011) that choosing
φC(g(n), h(n)) = 1 − h(n)

C+1−g(n) yields the same ordering
as pCh . Technically, this formulation is not explicitly stated
in their work. The standard PTS construction, as given in the
paper, takes PTSC(g(n), h(n)) = h(n)

C−g(n) . We have chosen
to replace C with C + 1 in our formulation. This is because
when h(n) = C − g(n), we still want the potential to be

greater than 0 in case we have h(n) = h∗(n). We have also
inverted the term so that φC more directly approximates pCh ,
and 1

φC(g(n),h(n))
gives the same ordering as PTS, but with

values in the range between [0,∞] rather than [0, 1].

BEEPS
Bounded-Cost Explicit Estimation Potential Search
(BEEPS) attempted to improve upon PTS by incorporating
distance-estimating heuristics to guide the search (Thayer et
al. 2012).

Assume that we are given an inadmissible cost heuristic,
ĥ, an admissible cost heuristic, h, and an inadmissible dis-
tance heuristic d̂. So it is safe to prune with h, but not with
ĥ. At any point during our search, we have a set of nodes,
open, which have been generated but are yet to be expanded.
BEEPS takes:

openC = {n ∈ open : g(n) + h(n) ≤ C}

ôpen
C

= {n ∈ openC : g(n) + ĥ(n) ≤ C}

The BEEPS search strategy then chooses the next node to be
expanded with the following rule:

BEEPSC(open) =


argmin
n∈ôpenC

d̂(n), if ôpenC 6= ∅

argmax
n∈openC

φC(g(n), ĥ(n)), otherwise

Essentially, BEEPS uses d̂ to guide the search whilst ĥ still
reports that a solution exists within the bounds. Then, when
the search runs out of nodes within the inadmissible bound-
ary, BEEPS reverts to running PTS (with ĥ) on those nodes
within the admissible boundary.

3 A Rational Approach to Combining Cost
and Distance Estimations

Rather than alternating between cost and distance heuristics
like BEEPS, our work attempts to merge them into a single
combined heuristic which rationally accounts for the inter-
action of these two sources of information.

Consider now that if we had knowledge of the perfect
heuristic, h∗, then pCh∗(g(n), h∗(n)) ∈ {0, 1} could be com-
puted exactly. But then, using this in the PTS formulation,
the search would assign every node either 0 or∞, resulting
in a blind search over all nodes with f∗(n) ≤ C. This is
obviously not an ideal search strategy, and it hints at the fact
that, beyond simply estimating the potential, PTS also relies
on its approximation prioritising nodes with lower h-values.

Expanding on the ideas of PTS, note that 1
pCh (g(n),h(n))

is the number of times we expect to have to draw n′ ∼
Uh(h(n)) before we find n′ with g(n) + h∗(n′) ≤ C. So
the expansion of n is predicated upon the fact that we expect
to expand 1

pCh (g(n),h(n))
other n-like nodes, along with all of

the nodes in their subtrees with f -levels less than C, before
we find a solution within the cost bound. Then let TC(n)
predict the size of the C-bounded subtree rooted at n, and



let HC(n) be the expected number of nodes that we will
explore before we find the goal under a node like n:

HC(n) =
TC(n)

pCh (g(n), h(n))

We will referHC as our expected work heuristic. At each de-
cision point, a rational agent seeking to minimise the amount
of work done in achieving its goal would choose the alter-
native which it predicts will minimise the amount of work
done in the future. So rationally speaking, our search strat-
egy should aim to expand the node which it predicts will re-
sult in the fewest number of future node expansions, which
is what the expected work heuristic aims to capture. Hence,
we claim that the search should ideally expand the node
which minimises HC(n). With perfect predictions for po-
tential, HC(n) would resort to prioritising nodes with the
smallest subtrees, which is ideal for minimising search run-
time.

In practice, we don’t know TC or pCh , but we can ap-
proximate pCh with φC , and TC can be estimated. Let b de-
note the average branching factor of the search tree, and let
dC(n) give an estimation for the length of the shortest so-
lution from n to the goal within the cost bound, such that
dC(n)b ≈ TC(n). Then we have:

HC(n) ≈ ωC(n) =
dC(n)b

φC(g(n), h(n))

Noting that φC can be a rather poor approximation, in our
Future Research section we outline a proposal for approxi-
mating pCh directly via online learning of heuristic errors.

4 Pareto Front Pattern Databases
Pattern databases (PDBs) (Culberson and Schaeffer 1996)
are a commonly used type of heuristic which solve an ab-
stract version of the problem in order to provide admissible
estimates of the difficulty of solving the actual problem. Es-
sentially, we construct a ’pattern’ abstraction, which is really
just a subset of the variables which make up a state descrip-
tion. We apply this abstraction to a state by simply remov-
ing the variables which aren’t in the pattern. Likewise, the
problem operators are abstracted so that the ignored vari-
ables are stripped from the action preconditions and effects.
This leaves us with a simpler abstract problem, for which
the cost of the cheapest abstract solution gives an admissible
estimate for the cost of the cheapest soluton in the concrete
space. We can perform a backward Dijkstra search from the
goal to find the cheapest path to the goal from all of the states
in the abstract state space. These costs are stored in the pat-
tern database, to be recalled at a later time during our actual
search. For a given abstraction a, and search node n, we map
ha(n) = h∗(a(n)), which is the cost of the cheapest abstract
solution found for a(n).

We now adapt the PDB methodology to produce a new
heuristic for bounded-cost search. We’ll refer to this heuris-
tic as a Pareto Front Pattern Database (PFPDB). Our idea is
simple; for every abstract state in the PFPDB, we explore all
paths from that state to the goal in the abstract space which

are pareto optimal in their length and cost. I.e. those solu-
tions for which the length cannot be improved without in-
creasing the cost, and the cost cannot be improved without
increasing the length. Let � denote the cost-length pareto
domination relation such that for two paths π and π′, we
have:

π � π′ ⇐⇒ length(π) ≤ length(π′)∧
cost(π) ≤ cost(π′)∧
(length(π) < length(π′)∨
cost(π) < cost(π′))

(Note that π � π′ means π dominates, i.e., is strictly better
than, π′.) Supposing that Π(s) gives the set of all paths from
a state s to the goal, we define a state s’s pareto front as the
subset of paths in Π(s) which are pareto optimal:

Π∗(s) = {π ∈ Π(s) : ¬∃π′ ∈ Π(s), π′ � π}

For a given abstraction a, our PFPDB heuristic finds Π∗(sa)
for each abstract state, sa, reachable from the abstracted
goal. Then with every pareto optimal abstract solution
π ∈ Π∗(sa), we store the corresponding pareto pair,
(cost(π), length(π)), in our database. Then we can easily
implement a function Πa(n) = Π∗(a(n)) mapping concrete
search nodes to their pre-computed abstract pareto fronts.

These pareto fronts may be used in various ways to com-
pute the heuristic value. E.g. we could return the length of
the shortest abstract solution within the cost bounds:

ΠC
a (n) = {π ∈ Πa(n) : g(n) + cost(π) ≤ C}

dCa (n) =

{
min

π∈ΠC
a (n)

length(π), if ΠC
a (n) 6= ∅

∞, otherwise

(pruning on dCa (n) = ∞). We could also substitute the
lengths and costs into formula for ωC(n) as the values for
d(n) and h(n) respectively:

ωCa (n) =

 min
π∈ΠC

a (n)

length(π)b

φC(g(n),cost(π))
, if ΠC

a (n) 6= ∅

∞, otherwise

In general, this could be posed as the minimisation of some
objective function, O(n, π), over all π ∈ ΠC

a (n).

Computing the Pareto Fronts Efficiently
We now briefly describe an algorithm which will find the
pareto fronts for every node reachable via a regression from
the goal. Extending the standard PDB approach, we use
a modified version of Dijkstra’s (1959) algorithm. Pareto
Front Dijkstra’s Search (PFD) is different from the ordinary
Dijkstra’s algorithm in two respects. Firstly, PFD expands
nodes in lexicographical order of cost and then length. And
secondly, when considering a node n for expansion, which
represents a path from some state s to the goal, we only ex-
pand n if that path is nondominated in terms of cost and
length by any of the previously expanded paths to s. If n is
expanded, then (h(n), d(n)) is recorded in the pareto front
for s.



We claim that PFD has the following property: PFD ter-
minates after having explored precisely those nodes which
represent pareto optimal paths to the goal.
Proof: Note that our search proceeds backward from the
goal, so for a search node n which represents a path from
n’s state to the goal, we let h(n) and d(n) represent the re-
spective cost and length of that path. Now observe that all
of the subpaths of any pareto optimal path must they them-
selves be pareto optimal. Otherwise, we could swap that sub-
optimal subpath out for one that dominates it and produce a
new solution which dominates the original one, contradict-
ing our premise that that path was pareto optimal. Assume
now that we had expanded precisely those pareto optimal
nodes with h(n) ≤ i. Then the pareto optimal nodes with
h(n) = i + 1 could be found in the open list as children of
their pareto optimal parents. If n and n′ represent different
paths to the same state, then n′ � n iff h(n) ≥ h(n′) and
d(n) ≥ d(n′) and at least one of those inequalities is strict.
But by our lexicographical ordering and by our assumption,
when we consider n for expansion, all pareto optimal nodes
which could dominate n must have been found already. And
so it is sufficient to determine n’s pareto optimality by only
checking that it is not dominated by any of the previously ex-
plored pareto optimal nodes for that state. So, of the nodes
with h(n) = i + 1, PFD will expand exactly those nodes
which are pareto optimal. By induction from a base case
of the goal node G having h(G) = d(G) = 0, which is
obviously pareto optimal, PFD expands precisely the set of
pareto optimal nodes. QED

As a minor improvement to PFD, we can use a slightly
stricter pre-requisite for node expansion which requires that
the node is not only pareto optimal, but it also has a unique
cost and length when compared with the pareto optimal so-
lutions already in the PFPDB. This essentially removes du-
plicate entries from our list of pareto pairs. We also note
that the most recent pareto optimal pair added to the list for
a state is both the most expensive and shortest pareto op-
timal solution found so far for that state. Then the expan-
sion check can be made for a node n in O(1) by simply
taking the last entry in the list of pareto pairs for n’s state,
(hmax, dmin), and checking that d(n) < dmin. As another
simple way of speeding up PFD, if we know that none of the
pareto pairs exceeding cost(π) > C will be used to produce
the final heuristic value, then we can prune those nodes with
h(n) > C from our abstract search.

Additive Pareto Front Pattern Databases
Some techniques for improving PDB heurstics involve the
generation of a set of abstractions over which the PDB val-
ues can be summed together in order to produce an admissi-
ble heuristic value (Felner, Korf, and Hanan 2004). We say
that such a set of patterns is additive. We can take advantage
of this kind of additivity in our work by adding together the
pareto fronts. Pareto pairs are added together by summing
their costs and lengths:

cost(π1 + π2) = cost(π1) + cost(π2)

length(π1 + π2) = length(π1) + length(π2)

Lists of pareto pairs are added together by taking the pair-
wise sums of every combination of pareto pairs:

Π1 + Π2 =
⋃

(π1,π2)∈Π1×Π2

π1 + π2

Note that not all members of Π1 + Π2 are guaranteed to be
pareto optimal. Taking the subset of pareto optimal pairs, we
obtain:

Π1 +∗ Π2 = {π ∈ Π1 + Π2 : ¬∃π′ ∈ Π1 + Π2,

π′ � π}

Careful consideration must be made as to the implementa-
tion of this operation; this could be a bottleneck in the time
taken to compute the final heuristic value. With that in mind,
we have devised the following two alternative approaches:

1. We can use the same technique applied in PFD to find
Π1 +∗ Π2 via a single pass over the lexicographically
sorted Π1 + Π2. If n = |Π1|,m = |Π2|, then sorting
takes O(nm · log(nm)), for the nm pairs in Π1 + Π2.
Checking for pareto optimality and appending to the new
pareto front takes O(1) per pair, so sorting dominates the
complexity.

2. Our second approach will compute the minimum cost-
value associated with every length-value. Let

lengthmin = min
π∈Π1+Π2

length(π)

lengthmax = max
π∈Π1+Π2

length(π)

δ = lengthmax − lengthmin
We note that with a single iteration over Π1 + Π2, we can
easily construct an array of size δ that maps

costmin[d] = min
π∈Π1+Π2

cost(π)

s.t. length(π) = d+ lengthmin

(with costmin[d] = ∞ if no such π exists). Then we
can iterate over this map in ascending order of possible
length-values, d = 0, . . . , δ, inserting

(costmin[d], d+ lengthmin)

into the pareto front if we have costmin[d] 6= ∞ ∧
costmin[d] < min

d′<d
costmin[d′]. Every inserted pair is

pareto optimal because there is no π ∈ Π1 +Π2 for which
length(π) < d + lengthmin and cost(π) ≤ costmin[d].
Tracking the value of min

d′<d
costmin[d′] as we go yields

a complexity of O(δ) for this iteration. Then we have a
combined complexity of O(nm + δ) for both stages of
the computation.

Observe that in bounded cost search, the cost bound can be
used to limit the size of the pareto fronts by pruning those
pairs with cost(π) > C. No two pairs in a front may have
the same cost (assuming PFD removes duplicates), and so
n,m ≤ C. We can do this same pruning when construct-
ing the summed pareto front; our implementation cuts the
enumeration of Π1 + Π2 short so as to exclude all pairs



with cost(π) > C. In domains with large actions costs, it
will likely be the case that nm << C2, particularly because
path cost and length are positively correlated in the presence
of positive action costs. Under the assumption that δ would
be relatively small for most of the evaluated pareto fronts
(i.e. δ < C), we went with the second approach in our final
implementation.

For multiple additive abstractions, we can simply apply
the +∗ operation repeatedly to sum them all together. If Ξ =
{Π1,Π2, . . .} is a set of additive PFPDBs, and n is a search
node, then (with some abuse of notation) we take:

Ξ(n) =
∑∗

Πi∈Ξ

Πi(n)

= Π1(n) +∗ (Π2(n) +∗ (. . .))

ΞC(n) = {π ∈ Ξ(n) : g(n) + cost(π) ≤ C}

In our implementation, we compute ΞC(n) directly by
bounding each +∗ operation by the relative cost bound
C − g(n).

Canonical Pareto Front Pattern Databases
Some techniques for finding sets of additive PDBs will pro-
duce a Canonical PDB, which is a set of sets of additive
PDBs (Haslum et al. 2007). For a given state, within each
additive set of PDBs, the h-values for that state are summed.
Then the final heuristic value is given by maxing over those
summed totals. Each summed total is admissible, and so the
max is admissible. Note that, other than for pruning out-of-
bounds nodes, admissibility is not an important requirement
for guiding our bounded-cost search. As long as our CPDB
returns∞ when any of the additively summed h-values ex-
ceeds C−g(n), we are free to return an inadmissible heuris-
tic value. Suppose, then, that our PDB records both the cost
and length of the cheapest-cost path as a pareto pair. For each
set of additive PDBs, our CPDB would compute an admis-
sibly summed pair by adding the additive costs and lengths
together, pruning if any summed cost exceeds C− g(n). We
propose that the CPDB be parameterised with an objective
function of the form O(n, π) which measures the objective
value of a summed pareto pair π with respect to the search
node n. We also parameterise our CPDB with an aggregator
function that replaces the max aggregation (e.g. we might
sum the objective values rather than max over them). Then
our heuristic returns the aggregation of each summed pair’s
objective value.

Now we extend these ideas to PFPDBs, in which we are
given not only the cheapest-cost pair, but the entire pareto
front of pairs. This gives rise to the notion of a Canoni-
cal Pareto Front Pattern Database (CPFPDB). For each set
of additive PFPDBs in the CPFPDB, we find the additively
summed pareto front given by the

∑∗ operation (bounded
byC−g(n)). If that additively summed pareto front is empty
(because the additive sum of the cheapest solutions still ex-
ceeded the cost bound), then we prune the node. Otherwise,
with that summed pareto front, we first minimise the objec-
tive function over each of the pareto pairs, producing a sin-
gle minimum objective value for each set of additive PDBs.

Then we apply the aggregator to these minimum objective
values (just like with CPDBs), giving us our heuristic value.

For a cost bound C, an aggregator A, and an objec-
tive function O, we notate these parameterisations with
CPDBC [A O] and CPFPDBC [A O]. If we are given a CPF-
PDB Ψ, and a node n, then for each set of additive PFPDBs
Ξi ∈ Ψ, we compute:

Ξi(n) =
∑∗

Πj∈Ξi

Πj(n)

ΞCi (n) = {π ∈ Ξi(n) : g(n) + cost(π) ≤ C)}

vCi =

{
min

π∈ΞC
i (n)

O(n, π), if ΞCi (n) 6= ∅

∞, otherwise

And finally, our heuristic returns:

ΨC [A O](n) = A(vC1 , v
C
2 , . . .)

With A returning ∞ if any vCi = ∞ (meaning that the n
gets pruned).

If Ψ were a CPDB instead, then the only difference is that
Πj(n) would be a singleton set containing the cheapest-cost
pareto pair.

5 Experiments
We tested the effectiveness of the PFPDB heuristic in a
bounded-cost greedy search on the problems from the satis-
ficing track of the IPC6, 2008 International Planning Com-
petition. The results of the competition were used to set
cost bounds for our experiment. For each problem, two cost
bounds were tested:
• The cost of the second best plan for that problem found

by any of the planners that participated in IPC6, minus 1.
• The cost of the best plan from IPC6.
Each problem is run with a 1GB memory limit and a time
limit of 10 minutes. Upon the termination of each planner
instance, we recorded whether the problem was solved, if
the planner ran out of memory, or if it ran out of time.

We use the iPDB hill climbing method (Haslum et al.
2007) to generate our set of patterns. Our heuristic was im-
plemented by modifying the Fast Downward planner im-
plementation for iPDBs. Firstly, we altered the Dijkstra
searches so that they were constrained to not expand any ab-
stract nodes with h∗(na) > C, and for each node expanded
we store the length as well as cost. Secondly, we generalised
the iPDB heuristic computation to allow for user-specified
aggregator and objective functions. And finally, we added an
optional extra step to the iPDB construction which runs PFD
search (also bounded by C) on each of the pattern abstrac-
tions in order to generate the set of PFPDBs. The heuristics
without the PFD search will be labeled as iPDBC , whereas
those that did do the PFD search are labeled as iPFPDBC .
All instances of the hill-climbing were run with a max hill-
climbing time of 120 seconds, a cost bound, and with all
other parameters set to the default iPDB settings for Fast
Downward. The aggregator functions that we tested were
max and

∑
. We tested the following objective functions:



• h(n, π) = cost(π)

• d(n, π) = length(π)

• 1
φC (n, π) = 1

φC(g(n),cost(π))
= 1/(1− cost(π)

C+1−g(n) )

• ωC(n, π) = length(π)b

φC(g(n),cost(π))

Where b is the average branching factor for the search tree
at the time of n’s evaluation. If u is the depth of the deep-
est node evaluated by the heuristic, and Tu−1 is the num-
ber of nodes evaluated up to depth u− 1, we take

b =

{
u−1
√
Tu−1, if Tu−1 >= 10000

1, otherwise

Note that, because we constrain the summed pareto front
by C, none of the evaluated pareto pairs will have g(n) +
cost(π) > C. This means that the d objective finds length
of the shortest pareto optimal abstract solution within the
cost bound, and φC won’t return a negative value.

The combinations of cost bound, i(PF)PDB, aggregator,
and objective that we tested are shown in Tables 1 and
2. FFC [d] is our label for the unit-cost FF heuristic which
has been shown to perform extremely well in bounded cost
search (Haslum 2013). With FF guiding the greedy search,
we used iPDBC [maxh] to admissibly prune nodes exceed-
ing the cost bound. We also tested A* with the ordinary
iPDB (labeled g+ iPDBC [maxh]). The only iPFPDB ob-
jectives that we tested were d and ωC because both 1

φC and
h are always minimised by the cheapest pareto pair (so iPDB
and iPFPDB would return the same value).

6 Results
Results for the experiment are shown in Table 1 (cheap-
est) and Table 2 (2nd cheapest - 1). Prior to exploring these
results, we will note that in the ’Woodworking’ domain,
the majority of the problems caused the iPDB and iPFPDB
heuristics to run out of memory during the iPDB hill climb-
ing. So those results are not particularly interesting beyond
the observation that the iPDB heuristic is not suited to some
specific domains.

It appears that the differences between iPDB and iPFPDB
were negligible in terms of the number of problems solved.
iPFPDB performs slightly better with loose bounds, but un-
der the tight bounds the iPFPDBC [

∑
ωC ] heuristic actually

did a little bit worse than iPDB (in the Elevators domain).
This is perhaps a result of the fact that, under tight cost-
bounds, the search will end up needing to find cheaper so-
lutions. So assigning nodes a heuristic value derived from
cost-suboptimal paths may end up being overly optimistic.
However, even with tight bounds, the d objective did show
some improvement when using the PFPDB implementation.
We must also consider the fact that pareto front summation
introduces a slow-down to the heuristic evaluation that is
otherwise not present in the ordinary iPDB computation. In
testing this, we compared the time per node evaluation, and
the total number of nodes evaluated, for iPDBC [

∑
ωC ] and

iPFPDBC [
∑
ωC ], when using the tighter bounds. These re-

sults are shown in Figure 1. They showed that both heuris-
tics perform nearly identically in terms of per-node evalu-

ation time and number of nodes evaluated. These observa-
tions would be explained if the pareto fronts being gener-
ated by the PFD searches were mostly just a singleton set,
with the cheapest and shortest path being identical. Perhaps
the domains that we tested were not ’solution-rich’ in their
abstracted spaces, or perhaps the correlation between path
length and cost was so significant that, even if there were
multiple paths to the abstract states, very few of them were
pareto optimal. Either way, this would need to be tested with
a more in-depth experiment.

In terms of the best objective function, the results sug-
gest that iPDB/iPFPDB with the d and ωC objectives pro-
duce the best results, with d performing slightly better un-
der the tight cost bound, and ωC performing better under
the loose cost bound. The d objective far outperformed the
h objective, which confirms that distance-oriented heuris-
tics perform better than cost-oriented ones in bounded-cost
search. The fact that ωC did worse than d under the tight cost
bounds is evidence against our conjecture that ωC is always
the rational choice when it comes to bounded-cost search. It
does, however, show that the idea has some merit. It should
be noted that, in cases where the cheapest solution found by
any IPC6 planner was also the optimal solution, our search
can only find that solution by expanding a node right on the
cost-boundary. ωC penalises these nodes quite heavily, but it
would make more sense to prioritise the exploration of nodes
on the boundary, given that we know that a solution exists
there. We may also excuse some of this poor performance as
a result of the low quality potential approximations given by
φC and our estimate for the branching factor b. This has mo-
tivated us to devise better methods for predicting potential,
which we describe in the Future Research section at the end
of this paper. Likewise, better approximations for the subtree
size may also improve the expected work estimates.

Of the iPDB settings that we tested, iPDBC [max 1
φC ] per-

formed the worst, which is in line with previous results test-
ing the quality of the PTS heuristic (Haslum 2013). That
work conjectures that this is due to the failure of the linear-
error assumption, but we offer an alternative explanation.
We claim that the poor performance of PTS comes from the
fact that it is not the correct measure if we seek to find a
bounded solution quickly. PTS follows those nodes which
are most likely to lead to a bounded solution, but it makes no
considerations as to how long that solution will take to find.
The PTS strategy may work best in minimising the number
of out-of-bounds nodes which are generated, but it ignores
nodes which may be simultaneously close to the bound (high
risk) and close to the goal (high reward). This is somewhat
supported by the fact that the ωC and d heuristics outperform
1
φC by a wide margin, as these heuristics prioritise nodes for
which reaching the goal will take the least amount of work.

iPDBC [
∑

1
φC ] solved more problems than the

iPDBC [max 1
φC ] version. This may be because the

∑
version introduces a larger distinction in node priorities by
incorporating more PDB values and extending the integer
range over which the final heuristic values are produced.
Hence our eager search can prioritise nodes for which all
of the PDBs yielded consistently low 1

φC values, rather



Table 1: No. of Problems Solved / Ran out of memory / Ran out of time, with C = the cost of the CHEAPEST IPC6 plan.
FFC [d] g+ iPDBC [maxh] iPDBC [

∑
h] iPDBC [max 1

φC ] iPDBC [
∑

1
φC ]

Elevators 13 / 0 / 17 2 / 12 / 16 2 / 15 / 13 2 / 12 / 16 4 / 10 / 16
Openstacks 24 / 0 / 6 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0
Parcprinter 21 / 0 / 9 15 / 3 / 12 26 / 1 / 3 16 / 2 / 12 20 / 3 / 7
Pegsol 24 / 0 / 6 20 / 0 / 10 22 / 0 / 8 22 / 0 / 8 22 / 0 / 8
Scanalyzer 18 / 5 / 7 11 / 19 / 0 21 / 9 / 0 12 / 18 / 0 12 / 18 / 0
Sokoban 28 / 0 / 2 24 / 6 / 0 27 / 3 / 0 25 / 5 / 0 25 / 5 / 0
Transport 8 / 0 / 22 6 / 17 / 7 28 / 1 / 1 6 / 19 / 5 7 / 18 / 5
Woodworking 6 / 18 / 6 6 / 18 / 6 8 / 18 / 4 6 / 18 / 6 6 / 18 / 6
total 142 / 23 / 75 96 / 93 / 51 146/65/29 101/92/47 108 / 90 / 42

iPDBC [
∑
d] iPDBC [

∑
ωC ] iPFPDBC [

∑
d] iPFPDBC [

∑
ωC ]

Elevators 15 / 9 / 6 19 / 8 / 3 18 / 8 / 4 17 / 8 / 5
Openstacks 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0
Parcprinter 24 / 1 / 5 18 / 2 / 10 24 / 1 / 5 18 / 2 / 10
Pegsol 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6
Scanalyzer 23 / 7 / 0 23 / 7 / 0 23 / 7 / 0 23 / 7 / 0
Sokoban 27 / 3 / 0 27 / 3 / 0 27 / 3 / 0 27 / 3 / 0
Transport 27 / 2 / 1 27 / 1 / 2 28 / 1 / 1 27 / 1 / 2
Woodworking 6 / 18 / 6 7 / 18 / 5 6 / 18 / 6 7 / 18 / 5
total 170 / 46 / 24 169 / 45 / 26 174 / 44 / 22 167 / 45 / 28

Table 2: No. of Problems Solved / Ran out of memory / Ran out of time, with C = the cost of the 2nd CHEAPEST IPC6 plan
- 1.

FFC [d] g+ iPDBC [maxh] iPDBC [
∑
h] iPDBC [max 1

φC ] iPDBC [
∑

1
φC ]

Elevators 23 / 0 / 7 2 / 12 / 16 2 / 14 / 14 2 / 12 / 16 4 / 10 / 16
Openstacks 24 / 0 / 6 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0 12 / 18 / 0
Parcprinter 20 / 0 / 10 15 / 3 / 12 26 / 1 / 3 20 / 1 / 9 24 / 1 / 5
Pegsol 25 / 0 / 5 20 / 0 / 10 22 / 0 / 8 22 / 0 / 8 22 / 0 / 8
Scanalyzer 19 / 5 / 6 11 / 19 / 0 21 / 9 / 0 12 / 18 / 0 12 / 18 / 0
Sokoban 28 / 0 / 2 24 / 6 / 0 27 / 3 / 0 22 / 8 / 0 22 / 8 / 0
Transport 8 / 0 / 22 6 / 17 / 7 29 / 0 / 1 6 / 19 / 5 6 / 19 / 5
Woodworking 6 / 18 / 6 6 / 18 / 6 9 / 18 / 3 6 / 18 / 6 7 / 18 / 5
total 153 / 23 / 64 96 / 93 / 51 148 / 63 / 29 102 / 94 / 44 109 / 92 / 39

iPDBC [
∑
d] iPDBC [

∑
ωC ] iPFPDBC [

∑
d] iPFPDBC [

∑
ωC ]

Elevators 22 / 7 / 1 25 / 5 / 0 23 / 6 / 1 26 / 3 / 1
Openstacks 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0 24 / 6 / 0
Parcprinter 24 / 1 / 5 25 / 1 / 4 24 / 1 / 5 25 / 1 / 4
Pegsol 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6 24 / 0 / 6
Scanalyzer 22 / 8 / 0 23 / 7 / 0 22 / 8 / 0 23 / 7 / 0
Sokoban 27 / 2 / 1 27 / 2 / 1 27 / 2 / 1 27 / 2 / 1
Transport 29 / 0 / 1 29 / 0 / 1 29 / 0 / 1 29 / 0 / 1
Woodworking 6 / 18 / 6 9 / 18 / 3 7 / 18 / 5 9 / 18 / 3
Total 178 / 42 / 20 186 / 39 / 15 180 / 41 / 19 187 / 37 / 16



Figure 1: iPDBC [
∑
ωC ] vs. iPFPDBC [

∑
ωC ] node evaluation statistics for the CHEAPEST cost bounds

than just a low maximum. This also justifies our decision
to use the

∑
aggregator on all of the other greedy PDB

heuristics. As an aside, note that
∑

gives the same ordering
as taking a floating point arithmetic mean of the objective
values, because the same number of objective values are
aggregated every time. Fast Downward does not support
floating point node priorities, so

∑
made more sense in our

implementation.

Unsurprisingly, it seems that tighter cost bounds gener-
ally reduce the number of problems solved by our heuristics,
to varying degrees. A* and h weren’t affected much, which
was to be expected because if a node’s f -level is within the
cost bound, then these objectives produce the same heuristic
value regardless of what that cost bound actually is. Like-
wise, the two versions of PTS don’t seem to be particularly
influenced by the tighter cost bound. This may have been
caused by there being too little difference in the two cost
bounds tested, but the fact that ωC (and to a lesser extent, d)
showed significant differences in performance suggests oth-
erwise. It may be the case that ωC and d are better at taking
advantage of the loose cost bounds to find solutions quickly.
These objectives essentially behave like a greedy search on
shortest-path when the cost bounds are loose.

In considering why iPDBC [
∑
d] performed better than

FFC [d], note that FFC [d] approximates the shortest delete-
relaxed solution without regard for whether or not that spe-
cific solution is within the cost bound. This solution is in-
dependent of the cost bound, and unrelated to the cost the
cheapest iPDB solution, which was used as the bounded-cost
pruning heuristic. So with tighter cost bounds, we get the
same ordering of nodes, but we just consider a smaller sub-
set of them for expansion. Moreover, our FFC [d] implemen-
tation suffered from both the pre-computation slowdown of
the iPDB, as well as FF’s naturally slow per-node heuristic
evaluation. This is reaffirmed by the fact that FFC [d] mostly
ran out of time rather than running out of memory, suggest-
ing that it suffered from poor precomputation and evaluation

time rather than heuristic quality. It would be interesting to
test a simple g-level bounds check with FF, rather than tak-
ing the time to compute an admissible f -level.

7 Conclusions
Our work in designing Bounded-Cost heuristics has borne
some useful results, but there is much room for improve-
ment. The i(PF)PDB length and expected work heuristics
outperformed A*, PTS and FF in our trials. The PFPDB
heuristic adapts the standard PDB approach to account for
the variety of cost-length tradeoffs available in the abstract
space. We have shown that the usual PDB techniques for ad-
ditivity can be applied to PFPDBs. This did not introduce
any significant slow down to heuristic computation, but it
also didn’t produce much of an improvement in terms of
the number of nodes evaluated by the search. We conjec-
tured (but did not test) that this was due to the fact that the
pareto fronts rarely contained abstract paths other than the
cheapest one, in which case the iPDB and iPFPDB heuris-
tics would behave almost identically. The ’expected work’
heuristic which we proposed seems like a good idea, as it ex-
plicitly aims to minimise search time by incorporating both
a node’s potential to lead to a solution, and its distance from
the goal. It performed quite well with looser cost bounds, but
under tight cost bounds it failed to perform significantly bet-
ter than the simpler approach of returning the length of the
shortest solution within the cost bound. We conjectured that
this was due to poor approximations for the node’s potential.

8 Future Research
We now propose a few ideas for future research: Ob-
serve that exploring multiple solutions in the abstract space
does not necessarily require the use of a PDB type pre-
computation of every possible pareto optimal abstract so-
lution in the abstract space. Any cheapest-cost abstract so-
lution heuristic can be made to take in to account a tradeoff
between cost and length by simply weighting the operators



between unit-cost and full-cost. This is very similar to the
idea of Lagrangian Relaxation which has had some success
in solving the Weight-Constrained Shortest Path Problem
(Carlyle, Royset, and Wood 2008). We also note that Merge
and Shrink heuristics (Helmert et al. 2007) also produce an
abstract space and PDB-like database of abstract solutions
which could easily be adapted to the PFPDB construction.

Estimating Potential via Online Learning
We’ll briefly describe an alternative method for estimating
node potential. Recall that our reason for why the ωC heuris-
tic didn’t improve upon the d heuristic was partly based
on the conjecture that the estimations for subtree size and
potential were poor. Adapting some previous work related
to the online learning of heuristic errors (Thayer, Ruml,
and Bitton 2008), we can construct and continually improve
an approximation for pCh during our search. Let eh(n) =
h∗(n)−h(n) give the signed error of h(n), and letEh(h(n))
give the discrete probability distribution of these errors for
n′ ∼ Uh(h(n)), such that Eh(h(n))[ε] = Pr(eh(n′) =
ε | n′ ∼ Uh(h(n))). But h∗(n′) = h(n′) + eh(n′) and
h(n′) = h(n), therefore:

pCh (g(n), h(n))

= Pr(h∗(n′) ≤ C − g(n) | n′ ∼ Uh(h(n)))

= Pr(eh(n′) ≤ C − g(n)− h(n) | n′ ∼ Uh(h(n)))

=
∑

ε≤C−g(n)−h(n)

Eh(h(n))[ε]

Let Fh(v) give the error histogram for all n with h(n) = v
such that Fh(v)[ε] is equal to the frequency of those nodes
with h(n) = v that have eh(n) = ε. We can evaluate Eh in
terms of Fh:

Eh(h(n))[ε] =
Fh(h(n))[ε]∑
i Fh(h(n))[i]

Then an approximation for Fh suffices to yield predictions
for Eh and thus pCh .

If d(n) predicts the length of the shortest path within the
cost bound starting from n, then we can multiply d(n) by the
step-wise error going from n’s predecessor to n. This yields
an approximation for eh(n) which assumes that this step-
wise error is constant along the path represented by d(n).
Upon the expansion of any node n, we estimate:

eh(n) ≈ êh(n) = d(n)(f(n)− f(n′))

Where n′ is n’s predecessor. Generally speaking, we ex-
pect êh to be a poor approximation for eh. Not only is the
step-wise error unlikely to be constant along the path to the
goal, but also the estimate d(n) may be innacurate. How-
ever, we do not use êh directly. Instead we aggregate these
values in our construction of F̂h. For all 0 ≤ i ≤ C,
we initialise F̂h(i)[0] := 1 and for all j 6= 0, initialise
F̂h(i)[j] := 0. This essentially seeds our F̂h with the as-
sumption that our heuristic is perfect, which guarantees that
f(n) ≤ C ⇒ p̂Ch (g(n), h(n)) > 0. Then after every node
n that is expanded by the search (excluding the initial state),

we increment F̂h(h(n))[êh(n)] := F̂h(h(n))[êh(n)] + 1. At
any point during our search, F̂h can be used to produce an
estimate for n’s potential:

pCh (g(n), h(n)) ≈ p̂Ch (g(n), h(n))

=
∑

ε≤C−g(n)−h(n)

F̂h(h(n))[ε]∑
i F̂h(h(n))[i]

As a minor improvement, we can speed up the computation
of the denominator by seperately keeping track of the total
number of data points recorded for each h-value.

Substituting in p̂Ch for pCh , we obtain ĤC ≈ HC . If this
approximation turns out to be good enough, then we expect
it to outperform ωC (where we substituted φC for pCh ).
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