
On Realizing Planning Programs in Domains with Dead-end States

Federico Falcone and Alfonso E. Gerevini and Alessandro Saetti
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy

name.surname@unibs.it

Abstract

Agent planning programs are finite-state programs, possi-
bly containing loops, whose atomic instructions consist of a
guard, a maintenance goal, and an achievement goal, which
act as precondition-invariance-postcondition assertions in
program specification. The execution of such programs re-
quires generating plans that meet the goals specified in the
atomic instructions, while respecting the program control
flow. Recently, De Giacomo et al. (2016) presented a tech-
nique, based on iteratively solving classical planning prob-
lems with action costs, for realizing planning programs in de-
terministic domains. Such a technique works generally well
for domains with no or very few dead-end states. In this pa-
per, we propose an enhancement of this technique to han-
dle deterministic domains that have potentially many dead-
end states, and we study the effectiveness of our technique
through an experimental analysis.

Introduction
Agent planning programs are finite-state programs, possi-
bly containing loops, whose atomic instructions consist of a
guard, a maintenance goal, and an achievement goal, which
act as classical Computer Science precondition-invariance-
postcondition assertions (De Giacomo et al. 2016). The
execution of an agent planning program requires generating
plans that meet the goals specified in the atomic instructions,
while respecting the program control flow. In particular, the
generated plans should not block further plans needed to ex-
ecute future instructions.

In a planning program, the dynamics of the world is de-
scribed with a planning domain and an initial state, as usu-
ally done in planning. On top of such a domain, an agent
planning program is modeled as a transition system, typi-
cally including loops, in which states represent choice points
and transitions specify possible courses of actions that the
agent may decide to follow. Such transitions constitute the
high-level actions available to the agent, and are character-
ized by: a guard, which poses executability conditions in
terms of the state of the domain; a maintenance goal, which
specifies invariants that are guaranteed to hold for the course
of actions to execute; and an achievement goal, which spec-
ifies the postcondition that the transition will achieve.

Intuitively, agent planning programs are meant to work
as follows: at any point in time, the domain and the pro-
gram are in some state, and the agent decides, autonomously,
which program transition, among those whose guards are

satisfied in the current state, to request. A synthesized plan
for the transition goals is then executed, thus moving the do-
main and the program to their next states, from which a new
request can be issued, a new plan executed again, and so
on. Once a plan is associated to each request, at each point
in time, we say that the agent planning program is “real-
ized”. Importantly, in synthesizing the plan for a transition,
we need to take into account that the resulting state of the do-
main, not only must satisfy the achievement goal, but must
also allow for the existence of plans for each possible next
transition, and this must hold again after such plans, and so
on ad infinitum.

As discussed by De Giacomo et al. (2016), the work on
agent planning programs is related to generalized planning,
in the sense that the result of the planning program realiza-
tion can be seen as a form of generalized plan (e.g., (Bonet,
Palacios, & Geffner 2009; De Giacomo et al. 2010; Sri-
vastava, Immerman, & Zilberstein 2011)). Planning pro-
grams can also be considered as a form of complex rou-
tines, modelling desired domain evolutions and typically in-
cluding conditions and cycles, that an agent executes in the
domain. In planning, similar routines can be specified by
temporally extended goals (e.g., (Bacchus & Kabanza 2000;
Baier, Bacchus, & McIlraith 2009; De Giacomo & Vardi
1999; Gerevini et al. 2009; Kabanza & Thiébaux 2005)).

De Giacomo et al. (2016) propose an effective approach
for realizing a planning program in deterministic domains.
This approach is based on exploiting classical planning, and
the specific algorithm that is developed and experimented
works generally well for domains with few or no dead-end
states. A dead end is a state from which the goal cannot be
reached. When the domain includes no dead-end states, the
computation of a realization of the planning program can be
decomposed into the computation of a realization for every
individual program transition. Such a decomposed compu-
tation is viable because, in domains with no dead-end state,
the realization of a program transition incoming to a pro-
gram state v does not compromise the realizability of the
program transitions outgoing from v. On the contrary, when
a domain contains dead-end states, the way by which a pro-
gram transition is realized can affect the realizability of the
successive transitions.

In this paper, we propose an enhancement of the real-
ization techniques described in (Gerevini, Patrizi, & Saetti
2011; De Giacomo et al. 2016) to effectively deal with
dead-end states. The proposed techniques are still based on

the usage of classical planning. Specifically, first we define
a multiple planning problem with preferred and forbidden
end-states as a sequence of planning problems such that the
solution plan of each of these problems realizes a program
transition, does not end into a forbidden state, and possi-
bly ends into a preferred state. Then, we extend the algo-
rithm proposed in (De Giacomo et al. 2016) to solve mul-
tiple planning problems with preferred and forbidden end-
states. This algorithm uses a scheme for translating this spe-
cial class of planning problems into classical planning prob-
lems with action costs. Finally, we evaluate the effectiveness
of the proposed enhanced technique.

Agent Planning Programs
Agent Planning Programs (planning programs, or p-
programs for short) are high-level representations of the be-
havior of agents acting in a domain (De Giacomo et al.
2016). Essentially, they are transition systems, with states
representing decision points, and transitions, labelled by
triples consisting of a guard, a maintenance goal and an
achievement goal over the domain, representing atomic in-
structions of programs. For instance, a very simple planning
program for a traveller routine is depicted in Figure 1, under
which the agent (i.e., the traveller) continuously travels back
and forth between New York and London.

Informally, in order for a planning program to be exe-
cutable, each transition goal requires a plan to bring it about.
Moreover, those plans ought to be “synchronized” so that
the final world state generated by each plan is a suitable ini-
tial state for the subsequent plans associated with the next
goals. When this is the case, the planning program is real-
ized. In general, however, computing a realization does not
simply amount to matching program transitions with appro-
priate plans. In fact, as plans are executed, both the state
of the planning program and that of the underlying domain
evolve and, in general, the planning program may reach the
same state in different domain states, so that there is no guar-
antee that a single plan would work in all such domain states.
Thus, a more sophisticated solution concept is required.

We deal with a specialization of the planning program re-
alization problem (De Giacomo et al. 2016) by assuming
a deterministic underlying planning domain. Formally, a
planning program for a deterministic planning domain D
is a tuple P = 〈A,P, V, v0, δ〉, where:

• A is a finite set of actions of D;
• P is a finite set of propositions of D;
• V is the finite set of program states;
• v0 ∈ V is the program initial state of P; and
• δ ⊆ V ×Φ(P)×Φ(P)×Φ(P)× V is the transition re-

lation of P , where Φ(P) stands for the set of all boolean
formulas built from the set of propositions P . A transi-
tion 〈v, 〈γ, ψ, φ〉, v′〉 ∈ δ is used to denote that when-
ever the guard γ holds (in the domain), the agent planning
program P may legally move from state v to state v′ by
“achieving φ while maintaining ψ.”

A domain action is represented as a triple 〈Pre, Eff +,
Eff−〉 where Pre is a set of boolean formulas representing
the action preconditions, and Eff +/− is a set of propositions

v0start v1

at(T,NY)

at(T,Lo)

Figure 1: A very simple example of (the transition graph of)
a planning program. Each edge is annotated with its cor-
responding achievement goal. For simplicity, maintenance
goals and guards are omitted (they are “true” conditions).

representing the action positive/negative effects. Like in
classical planning, under the closed world assumption, a D-
state is specified by a set of propositions, an action a = 〈Pre,
Eff +, Eff−〉 is said to be executable in a domain state s if
s |=Pre, and the domain state s′ obtained by executing a in
state s is s\ Eff− ∪ Eff +.

Notation Last(π(s)) refers to the final D-state obtained
upon executing plan π from s (written π(s)). We say that
from s a plan π achieves a goal φ, i.e., a propositional for-
mula over the propositions of D, if Last(π(s)) |= φ, where
satisfaction is defined as usual in propositional logic. Sim-
ilarly, we say that from s a plan π maintains a goal ψ, if
s |= ψ and s′′ |= ψ, for every intermediate state s′′ gener-
ated by executing π from s.

Example 1 The traveller T wants to continuously travel
from New York (NY) to London (Lo) and from Lo to NY. The
traveller moves among these cities by airplane A, which has
to be periodically refueled. Assume that A can be refueled
only at the headquarter of its airline, say Paris (Pa); and A
has a fuel tank, which can be full (FL2), half full (FL1), or
empty (FL0). Moreover, assume that initially T and A are
at Pa, and the fuel level of A is FL2. The domain actions
are Board(x), Debark(x), Refill(x), and Fly(x,y,z,w), which re-
spectively represent that, at city x, the traveller can board
to and debark from A, the fuel level of A can be increased
from the current level x to FL2, and A can fly from city x to
city y while the fuel in its tank changes from level w to level
z. A graphical representation of the traveller’s behavior is
provided in Figure 1, where the transition system represents
a planning program for T.

When the planning program and the domain are in states
v and s (initially v0 and s0), respectively, the agent is al-
lowed to choose any enabled (i.e., whose guard holds true in
s) planning program transition 〈v, 〈γ, ψ, φ〉, v′〉 in P . Note
that for the simple planning program depicted in Figure 1, in
practice, the agent does not choose any transition, since for
both v0 and v1 the number of outgoing program transition is
1. If the planning program had an additional program state,
say v2, and an additional program transition from v0 to v2,
then a transition selection would take place every time the
program state is v0.

Being declarative assertions, the chosen transitions are not
directly executable and actual realizations are required for
them. A realization, then, must provide a concrete plan π
that brings about the achievement goal φ while guaranteeing
maintenance of ψ and, furthermore, be compatible with fur-
ther realizations for subsequent transitions of the planning
program. The latter requirement is central to the approach,
as the choice points in the planning program are resolved by
decisions made by the agent only at runtime.

The notion of planning program realization is based on
the following notion of simulation. A simulation relation is
a relation R ⊆ V × 2P such that 〈v, s〉 ∈ R implies that,
for every transition 〈v, 〈γ, ψ, φ〉, v′〉 in P such that s |= γ,
there exists a plan π such that: π achieves φ and maintains ψ
from s (in which case, plan π is said to realize the transition),
and 〈v′,Last(π(s))〉 ∈ R. Note that an adequate plan for a
transition, i.e., one that realizes the transition while preserv-
ing a simulation relation for the p-program, might not be the
shortest one that reaches the achievement goal while main-
taining the maintenance goal of the transition. Indeed, such
a plan may actually prevent future agent requests (p-program
transition choices) from being fulfillable.

Let 2π be the set of plans in the planning domain. A
realization of an agent planning program P in planning do-
main D from an initial D-state s0 ∈ 2P is a partial func-
tion Ω : 2P × δ 7→ 2π such that, for some simulation re-
lation R, it is the case that: 〈v0, s0〉 ∈ R; and for all pairs
〈v, s〉 ∈ R and all transitions d = 〈v, 〈γ, ψ, φ〉, v′〉 in P
such that s |= γ, a plan Ω(s, d) is defined, realizes transition
d, and preserves R from 〈v, s〉 for d. Essentially, a realiza-
tion Ω is a function that, given a D-state s and a transition
request 〈v, 〈γ, ψ, φ〉, v′〉 whose guard is satisfied in s, out-
puts a plan π that achieves φ while maintaining ψ from s
and guarantees that all potential future requests from v′ af-
ter π’s execution can also be fulfilled by plans prescribed by
the realization function Ω.
Example 2 (Example 1 cont.) Consider the p-program of
Figure 1. Can the traveller carry it out? If so, how? As
an example of positive answers, consider Table 1, which de-
scribes a possible realization for this p-program. The first
column represents the current state of the domain; the sec-
ond one contains the requested program transition; and the
third one represents the plan to be executed from the current
domain state in order to realize the requested transition. For
simplicity, the second column includes only the source and
target state of a program transition, while the corresponding
achievement goals are specified in Figure 1. (For the sake
of simplicity, maintenance goals and guards are assumed to
be true.) Lastly, the third column reports the correspond-
ing plan. Note that, with the realization function in Table
1, transition 〈v0, v1〉 is pursued by the traveller from two
different domain states s0 and s2, and hence the realization
function provides, for this transition, two different plans (π1
and π3).

Planning-based Algorithm
We address the problem of effectively constructing p-
program realizations for deterministic domains by exploit-
ing plan generation techniques for multiple planning prob-
lems with preferred end-states (shortly, PESs) and tabu end-
states (TESs). Informally, a multiple planning problem is a
sequence of planning problems such that the solution plan
of each of these problems realizes a program transition. In
accordance with the terminology used in (De Giacomo et
al. 2016), a PES is a desired end state for a plan realizing
a planning program transition, while a TES is a forbidden
plan end state.
Definition 1 A multiple planning problem with PESs and
TESs over a planning horizon of n p-program transitions

State Transition Plan
s0 = { at(A,Pa), π1 = 〈 Board(Pa),

at(T,Pa), 〈v0, v1〉 Fly(Pa,NY,FL2,FL1),
lev(FL2) } Debark(NY) 〉

π2 = 〈 Board(NY),
s1 = { at(A,NY), Fly(NY,Pa,FL1,FL0),

at(T,NY), 〈v1, v0〉 Refill(FL0)
lev(FL1) } Fly(Pa,Lo,FL2,FL1),

Debark(Lo) 〉
π3 = 〈 Board(Lo),

s2 = { at(A,Lo), 〈v0, v1〉 Fly(Lo,Pa,FL1,FL0),
at(T,Lo), Refill(FL0)
lev(FL1) } Fly(Pa,NY,FL2,FL1),

Debark(NY) 〉

Table 1: An example of realization function for the trav-
eller’s planning program.

is a tuple 〈A,P, s0, {ψi}, {φi}, {SiP }, {SiT }〉 such that 1 ≤
i ≤ n, where A is a set of actions, P is a set of propositions,
s0 is the initial state, ψi ∈ Φ(P) is a maintenance goal,
φi ∈ Φ(P) is an achievement goal, SiP ⊆ 2P is a set of
PESs, and, finally, SiT ⊆ 2P is a set of TESs.

A multiple plan of length k, π = 〈π1, . . . , πk〉, is a se-
quence of k plans π1, . . . , πk. A solution of a multiple plan-
ning problem with PESs and TESs is defined as follows.
Definition 2 Given a multiple planning problem with PESs
and TESs over a planning horizon of n transitions, Π =
〈A,P, s0, {ψi}, {φi}, {SiP }, {SiT }〉 with 1 ≤ i ≤ n , we
say that a multiple plan π = 〈π1, . . . , πk〉 for some k ≤ n
is a solution of Π iff the following conditions hold for j =
1 . . . k.

1. Last(πj(sj−1)) = sj |= φj;

2. sj 6∈SjT ;
3. πj maintains ψj;
4. k = n or sk is a preferred state in SkP .
Condition (4) means that the execution of multiplan π
achieves all the n achievement goals {φi | 1 ≤ i ≤ n},
or it achieves the k achievement goals {φi | 1 ≤ i ≤ k} and
ends into a preferred end-state.

Figure 2 shows the pseudo-code of RealizePlanProg+,
our algorithm for building p-program realizations, which en-
hances the basic one presented in (De Giacomo et al. 2016).
Starting from an open configuration (called open pair in the
algorithm) 〈s, v〉, where s is a domain state and v is a p-
program state (initially s = s0 and v = v0), for each tran-
sition d outgoing from v such that the guard of d holds in s,
RealizePlanProg+ non-deterministically selects a program
transition path 〈d1, . . . , dk〉 formed by at most n transitions
(k ≤ n) such that d = d1, constructs a multiple planning
problem with PESs and TESs from such a path, and invokes
procedure Plan to compute, for some j ≤ k, a solution mul-
tiplan 〈π1, . . . , πj〉 of the constructed problem such that ev-
ery plan πj realizes transition dj . For each generated pair
〈s, v〉 and transition d = 〈v, 〈γ, ψ, φ〉, v′〉 such that s |= γ,
function Ω(s, d) associates with s plan π1. Then, the algo-
rithm progresses the states of D and P (according to π1(s)
and d, respectively), possibly generating a new open pair
〈s′, v′〉 to process similarly.

Algorithm: RealizePlanProg+(P, s0, n)

Input: a p-program P = 〈A,P, V, v0, δ〉, an initial state
s0, a planning horizon n;

Output: a realization of P from s0 (Function Ω), or
failure.

1. ∀s, d · Ω(s, d)← noPlan;
2. States(v0)← {s0}; ∀v 6= v0 · States(v)← ∅;
3. ∀v · Tabu(v)← ∅;
4. Open ← {〈s0, v0〉};
5. while Open is not empty do
6. extract an open pair 〈s, v〉 ∈ Open;
7. foreach P transition d = 〈v, 〈γ, ψ, φ〉, v′〉 ∈ δ do
8. if Ω(s, d) = noPlan and s |= γ then
9. w ← v′;
10. k ← 1;
11. while k < n do
12. add ψ to Ψ
13. add φ to Φ
14. add States(w) to SP
15. add Tabu(w) to ST
16. if there exists a P transition outgoing from w
17. then select d = 〈w, 〈γ, ψ, φ〉, w′〉;
18. else break;
19. w ← w′;
20. k ← k + 1;
21. 〈π1, . . . , πj〉|j≤k ← Plan(A,P, s,Ψ,Φ, SP , ST);
22. if Plan fails then break;
23. else
24. Ω(s, d)← π1;
25. if Last(π1(s)) 6∈States(v′) then
26. add 〈Last(π1(s)), v′〉 to Open;
27. add Last(π1(s)) to States(v′);
28. add 〈s, d〉 to Source(Last(π1(s)), v′);
29. if Plan fails then
30. if 〈s, v〉 = 〈s0, v0〉 then return failure;
31. else
32. add s to Tabu(v);
33. remove s from States(v);
34. foreach 〈s′′, d′′〉 ∈ Source(s, v) do
35. Ω(s′′, d′′)← noPlan;
36. Open = Frontier(Ω, τ, s0, v0);
37. return Ω.

Figure 2: Algorithm for realizing a planning program P
from state s0 over a horizon of n p-program transitions.

If the algorithm generates an open pair 〈s, v〉 such that
for some transition outgoing from v no realizing plan can
be computed from s, backtracking is required, i.e., the plans
generating 〈s, v〉 need to be removed from Ω. The algorithm
terminates when no more open pairs are left, or it is the case
that no realization can be found, i.e., for at least a transition
d = 〈v0, 〈γ, ψ, φ〉, v〉 outgoing from the initial P-state v0,
and such that γ holds in the initial domain state s0, there
exists no plan π constructed from s0 such that π maintainsψ,
Last(π(s0)) |= φ and Last(π(s0)) is in the set of D-states
from which a transition outgoing from v can be realized.

The main difference with the algorithm presented in (De
Giacomo et al. 2016) is that such an algorithm realizes each

single program transition d = 〈v, 〈γ, ψ, φ〉, v′〉 indepen-
dently from other program transitions, while the algorithm
in Figure 2 realizes d considering a transition path start-
ing with transition d. Note that, although the pseudocode
in Figure 2 computes from some D-state s a multiplan π
realizing a transition path, in this version of the algorithm
only the first part π1 of π, which realizes the first transition
d = 〈v, 〈γ, ψ, φ〉, v′〉 of the path, is used to define Ω. The
reason why the rest of the plan is discarded is that, while π1
is generated by guaranteeing that the next k−1 transitions on
the considered path can be realized from 〈Last(π1(s)), v′〉,
the successive sub-plans in π are guaranteed to be part of
a valid realization of the p-program with a shorter horizon
of program transitions, and hence it is more likely that they
compromise the existence of a simulation relation w.r.t. π1.

Example 3 (Example 2 cont.) Consider the planning pro-
gram in Figure 1, and assume n = 2. Then, in the
first iteration of loop 7–28, the path selected by the al-
gorithm is formed by the p-program transition d1 from
v0 to v1 and the transition d2 from v1 to v0. The mul-
tiplan computed by Plan to solve the multiple planning
problem constructed from such a path is 〈π1, π2〉 with
π1 = 〈Board(Pa), Fly(Pa,NY,FL2,FL1),Debark(NY)〉 and
π2 = 〈Board(NY), Fly(NY,Lo,FL1,FL0),Debark(Lo)〉. If the
algorithm progressed the states of D and P according to π1
and d1 and to π2 and d2, then the new open pair 〈s′, v0〉
would be 〈{at(A,Lo), at(T,Lo), lev(FL0)}, v0〉. Then, in the
next iteration of loop 7–33, backtracking would be required
for the open pair 〈s′, v0〉, since from s′ the airplane cannot
be used to move the traveller anymore, as its fuel is over,
the airplane is at Lo, and the fuel can be recharged only at
Pa. On the contrary, the first part π1 of the computed plan
can be part of a valid p-program realization, as indicated in
Table 1.

The specification of the function Ω under construction
implicitly defines the set of open pairs, also called the
realization frontier, which in the algorithm is denoted as
Open . This set is obtained by considering all possible plan-
ning program executions, starting from 〈s0, v0〉, using Ω to
realize the transitions, and putting in the set all those pairs
〈s, v〉 such that for some transition d from v, the guard of
d holds in s and Ω(s, d) is currently undefined. Essentially,
this corresponds to a straightforward visit of the p-program
graph from v0 and s0 using the current (partially defined)
Ω. The frontier of this visit is the set of pairs 〈s, v〉, of
domain and p-program state, such that there is a transition
d outgoing from v whose guard holds in s, but for which
there is no plan achieving and mainteining the correspond-
ing goal, i.e., Ω(s, d) is undefined. Such a frontier is denoted
by Frontier(Ω, τ, s0, v0) and defines the open pairs for the
current Ω stored in Open .

Algorithm RealizePlanProg+ maintains three auxiliary
functions States : V → 2S , Tabu : V → 2S and Source :
S × V → 2S×δ . Intuitively, States(v) records all domain
states reached when P is in v, for some P execution, ac-
cording to the current Ω; Tabu(v) indicates the states of D
that are forbidden when v is reached; and Source associates
each open pair 〈s′, v′〉 with those pairs 〈s, d〉 such that d
is a program transition from v to v′ and, for π = Ω(s, d),
Last(π(s)) = s′. Essentially, function Source says how an

open pair was generated by the current definition of Ω.
Initially (lines 1–4), Function Ω is completely undefined

(through the special value noPlan), States(v) = ∅ for every
v 6= v0, States(v0) = {s0}, Tabu(v) = ∅ for every v,
and Open = 〈s0, v0〉. At each iteration of the external loop
(lines 5–36), an arbitrary open pair 〈s, v〉 is extracted from
Open and processed by:

(i) computing, for each transition d = 〈v, 〈γ, ψ, φ〉, v′〉 such
that s |= γ and Ω(s, d) = noPlan (i.e., d has not been
processed for s yet), a plan π that maintains ψ, achieves
φ from s with an acceptable end state, i.e., Last(π(s)) 6∈
Tabu(v′), and guarantees that the next k − 1 transitions
can be realized from 〈Last(π(s)), v′〉 (lines 7–21);

(ii) appropriately updating Ω, Open , and the auxiliary func-
tions (lines 22–36).

When Open becomes empty, the external loop terminates
and the algorithm returns Ω (line 37).

Task (i) is accomplished by non-deterministically select-
ing a transition path (lines 16-17), constructing from such
a path a set Ψ of maintenance goals, a set Φ of achieving
goals, a set SP of sets of preferred states, and a set ST of sets
of tabu states (lines 11–15), and executing function Plan,
which computes a multiplan for the multiple planning prob-
lem with PESs and TESs 〈A,P, s,Ψ,Φ, SP , ST 〉.

Intuitively, multiple planning problems are used to im-
prove the chance that there exists a simulation relation from
the pair obtained by progressing the states of D and P
according to first part of the computed multiplan, domain
states in States(v′) are used as preferred end states to mini-
mize the number of generated open pairs, while the domain
states in Tabu(v′) are used as tabu end states to prevent next
iterations from generating unrealizable open pairs. Details
about how to achieve this behavior in Plan are given in the
next section.

In our implementation of step 17 of RealizePlanProg+,
we select the transition d according to a longest transition
path fromw that starts with d among the transitions outgoing
from w that are not in the transition path constructed so far
by loop 11–20. The rationale of this criterion is the follow-
ing. If two longest transition paths starting from w, p1 and
p2, are such that p1 is longer than p2, then we heuristically
estimate that realizing p1 makes the (sub)plan constructed
for realizing the first transition in p1 more “robust” (dead-
lock wise) than the (sub)plan for the first transition in p2.
The construction of a longest transition path starting from w
and formed by (at most) n transitions is not trivial because
the underlying graph may contain cycles. Our algorithm for
deriving such a path constrains the computed path to iterate
at most once in a cycle (this is the reason why among the
transitions outgoing from w we exclude those that are al-
ready present in the path under construction). Moreover, in
order to deal with cycles, we identify the strongly connected
components (SCC) and force the computed path to cross
only once every edge connecting vertices in the same SCC.
Formally, we select the transition according to the highest
value of function h : V 7→ N defined as follows.

h(v) =

{
h′(v) if v is a vertex of G
h′(SCC (v)) otherwise

where G is the directed graph obtained by contracting the

strongly connected components of the p-program transition
graph into meta-vertices, SCC (v) is the strongly connected
component including v in G, and h′ : V 7→ N is defined as:

h′(v) =

{
c(v) if there is no outgoing edge from v in G
c(v)+ max

w∈out(v)
h′(w) otherwise

where out(v) = {w | (v, w) is an edge of G}; c : V 7→ N is
a function such that c(v) = n(v) if v has no outgoing edge
in G, and c(v) = n(v) + 1 otherwise; finally, n : V 7→ N is
a function such that n(v) = 0 if v is a simple vertex of G,
and n(v) is equal to the number of edges of the p-program
transition graph contracted in v if v is a meta-vertex of G.

For task (ii), assume that 〈s, v〉 is an open pair, and d is
a program transition from program state v to program state
v′, whose guard holds in s. If a multiplan π = 〈π1, . . . , πj〉
from some j ≤ k realizing d from s is found, then the al-
gorithm updates Ω(s, d), States(v′) and Source(s′, v′) as
follows: function Ω is updated by setting Ω(s, d) to π1;
if s′ = Last(π1(s)) is not already in States(v′), the set
of open pairs is extended with 〈s′, v′〉; state s′ is added
to States(v′); and 〈s, d〉 is added to Source(s′, v′) (lines
24–28). If, for some program transition d outgoing from
v such that its guard holds in s, procedure Plan is unable
to find a plan achieving/maintaining the goals of d from s
and guaranteeing that the next possible k− 1 transitions can
be realized, then open pair 〈s, v〉 cannot be realized. In the
special case s = s0 and v = v0, no realization of P can
be built, and hence RealizePlanProg+ terminates returning
failure (lines 29–30). Otherwise (s6=s0 or v 6=v0), backtrack-
ing is performed on Ω (lines 31–36): s is added to Tabu(v);
s is removed from States(v), as clearly no longer preferred;
for all pairs 〈s′′, v′′〉 ∈ Source(s, v), Ω(s′′, d′′) is set un-
defined (Ω(s′′, d′′) becomes noPlan), as the corresponding
plans need to be recomputed in order to avoid generating
the configuration 〈s, v〉; and, finally, Frontier(Ω, τ, s0, v0)
defines the new set of open pairs (Open).

Compilation Scheme to Classical Planning
In this section, we propose a scheme to transform a multiple
planning problem Π with PESs and TESs into a problem Π′

with action costs. With such a scheme, if a planner finds a
solution plan of Π′ with the lowest cost, such a plan can be
easily transformed into a solution multiplan of Π ending in
one of the PESs of Π.

Definition 3 A planning problem with action costs is a tuple
〈A,P, s0, φ, c〉, where s0 is the initial state, φ ∈ Φ(P) is an
achievement goal; and c : A 7→ R is an action cost function.

A multiple planning problem with PESs and TESs
over a planning horizon of n transitions, Π =
〈A,P, s0, {ψi}, {φi}, {SiP }, {SiT }〉 such that 1 ≤ i ≤ n,
can be translated into a planning problem with action costs
Π′ = 〈A′, P ′, s0, φ′, c〉 such that:

• P ′ = P ∪ PC ∪ PT ;
• A′ = {Ai | 1 ≤ i ≤ n} ∪AC ∪AP ∪AT ;
• φ′ = completed(n) ∧ check-pref

• c(o) =

{
1 if o = Ignore-pref,
0 otherwise;

where

• PC = {started(i), completed(i), check-mode(i) |
1 ≤ i ≤ n} ∪ {check-pref};

• PT = {not-tabu(s, i) | s ∈ SiT , 1 ≤ i ≤ n};
• Ai = {〈Pre ∪{started(i)} ∪ ψi, Eff+, Eff−〉 | 〈Pre,

Eff +, Eff−〉 ∈ A} with 1 ≤ i ≤ n;
• AC = {start(i), end(i) | 1 ≤ i ≤ n} where
start(1) = 〈{¬started(1), ψ1}, {started(1)}, ∅〉;
start(i) = 〈{¬started(i), completed(i − 1), ψi} ∪
{not-tabu(s, i − 1) | s ∈ Si−1T }, {started(i)},
{check-mode(i− 1)}〉 with 1 < i ≤ n;
end(i) = 〈{started(i),¬completed(i), φi},
{completed(i), check-mode(i)}, {started(i)}〉
with 1 ≤ i ≤ n;

• AP = Ignore-pref ∪ {Sat-pref(s, j) | 1 ≤ j ≤
n, s ∈ SjP }, where Ignore-pref is the action
〈{check-mode(n), completed(n)} ∪ {not-tabu(s, n) |
s ∈ SnT }, {check-pref}, ∅ 〉, and Sat-pref(s, i) is
〈{check-mode(i), completed(i)} ∪ {p | p ∈ SiP } ∪
{¬p | p 6∈ SiP } ∪ {not-tabu(s, i) | s ∈ SiT },
{check-pref, completed(n)}, ∅〉 with 1 ≤ i ≤ n;

• AT = {a | a ∈ Act-tabu(s, i) ∧ s ∈ SiT ∧ 1 ≤
i ≤ n}, where Act-tabu(s, i) is the set of actions de-
fined as follows: Act-tabu(s, i) = { 〈 {completed(i),
check-mode(i), ¬p}, {not-tabu(s, i)}, ∅〉 | p ∈ P ∧
p ∈ s } ∪ { 〈 {completed(i), check-mode(i), p},
{not-tabu(s, i)}, ∅〉 | p ∈ P ∧ p 6∈ s}.

Theorem 1 Let Π = 〈A,P, s0, {ψi}, {φi}, {SiP }, {SiT }〉,
with 1 ≤ i ≤ n, be a solvable multiple planning problem
with PESs and TESs over a planning horizon of n transi-
tion, and Π′ a planning problem with action costs derived
from Π by the translating scheme defined above. Then, (1)
there exists a valid plan π′ for Π′; and (2) for every plan
π′ solving Π′, the plan obtained by removing the actions in
AC ∪AT ∪AP from π′ and preconditions started(i) and
ψi from every action in π′ is a valid multiplan for Π.

Proof. (1) Let π = 〈π1, . . . , πk〉 be a valid multiplan for
Π, and sk the finale state of π. If k ≤ n and sk ∈ SkP , we
show that a valid plan π′ for Π′ is formed by the following
sequence of actions. For i = 1 to k,
1. start(i),
2. a sequence of actions π′i obtained by replacing each action

in πi with its corresponding action in Ai,
3. end(i),
4. a sequence of actions formed by one action in

Act-tabu(s, i) for each TES s ∈ SiT ,
plus
5. Sat-pref(sk, k).

If k = n and sk 6∈SkP , a valid plan π′ is formed by actions
(1–4) plus action Ignore-pref.

As for the executability of π′, consider that actions inAC ,
AP and AT do not add or delete any proposition in P , and
that the difference between the actions in πi and π′i does not
concern additive or delete effects of P .

For 1 ≤ j ≤ k, start(j) is executable because all its
preconditions are satisfied. Specifically, let sj−1 be the state
when action start(j) is executed. Then,

• precondition ¬started(j) ∈ sj−1 because start(j) is
executed at most once;

• ψj holds in sj−1 because plan πj maintains ψj from the
beginning;

• {not-tabu(s, j − 1) | s ∈ Sj−1T } ⊆ sj−1 with 1 <

j ≤ k, because for each TES s ∈ Sj−1T an action in
Act-tabu(s, j − 1) is executed before start(j).

Similarly, end(j) is executable because it is in π′ at most
once, and in π′ start(j) is executed before end(j). Ev-
ery action a in π′j is executable because its corresponding
action in πj is executable, πj maintains ψj , and precondi-
tion started(j) of a holds as action start(j) is executed
before a.

For 1 ≤ j ≤ k and s ∈ SjT , at least one action in
Act-tabu(s, j) is executable because it is after end(j), and
γ(s0, 〈π1, . . . , πj〉) 6∈SjT since π is a valid multiplan.
Sat-pref(sk, k) is executable because it is after action

end(k), sk ∈ SkP , and for each TES s ∈ SkT it is after ac-
tion Act-tabu(s, k). Similarly, if π′ contains Ignore-pref,
such an action is executable because it is after action end(n)
and actions {Act-tabu(s, k) | s ∈ SkT }.

Thereby, all the actions in π′ are executable. More-
over, π′ achives φ′ because it contains either end(k) and
Sat-pref(sk, k) or end(n) and Ignore-pref.

(2) Since π′ is a valid plan for Π′, then it contains ei-
ther (2.1) end(k) and Sat-pref(sk, k) for some k ≤ n
or (2.2) end(n) and Ignore-pref. Consider case (2.1).
Then, π′ is formed as indicated before by items (1–5). We
show that there exists a solution multiplan π = 〈π1, . . . , πk〉
obtained by substituting the actions in {π′j}j=1..k with the
corresponding actions in A . All the actions in π are ex-
ecutable because plan π′ is executable, and, for each ac-
tion in π, all its preconditions are also preconditions of the
corresponding action in π′. By construction of set of ac-
tions {end(j) | 1 ≤ j ≤ k}, and since the difference be-
tween the action in π and π′ does not concern additive or
delete effects of P , plan π satisfies all the achievement goals
{φ(j) | 1 ≤ j ≤ k}. For 1 ≤ j ≤ k, plan πj maintains ψj
because ψj is a precondition of action start(j) and any
action in π′j has ψj as its precondition. Moreover, since
π′ is valid, by construction of set of actions {start(j) |
1 ≤ j ≤ k}, for each TES s ∈ SjT and 1 ≤ j ≤ k, plan
π′ contains at least one action a ∈ Act-tabu(s) achieving
conjunct not-tabu(s, j − 1). By construction of AT and
Act-tabu(s, j − 1), since all actions in π′ are executable
and the actions in AC , AP and AT do not add/delete propo-
sitions of P , γ(s0, 〈π1, . . . , πj〉) 6∈SjT . Finally, since the last
action of π′ is Sat-pref(sk, k), the end state of π is in SkP .
Hence, all the conditions (1–4) in Definition 2 hold, and π is
a solution multiplan.

Similarly, in case (2.2), if the last two actions of π′ are
end(n) and Ignore-pref, then there exists a solution mul-
tiplan π = 〈π1, . . . , πk〉 with k = n. In this case, conditions
(1–3) of Definition 2 hold for the same arguments as in the

previous case. Condition (4) holds because, even if the last
state of π is not preferred, k is equal to n. �

Theorem 2 Let Π be a multiple planning problem with
PESs and TESs that has a solution plan ending in a PES,
and Π′ a planning problem with action costs obtained from
Π by the translating scheme presented above. Then, (1) there
exists a plan π′ solving Π′ such that c(π′) = 0, and (2) for
every plan π′ solving Π′ such that c(π′) = 0, the plan ob-
tained by removing the actions inAC∪AT ∪AP from π′ and
substituting the actions in π′ with the corresponding actions
in A is a valid multiplan solving Π and ending in a PES.

Proof. (1) Let π be a valid multiplan for Π ending in a PES
of Π. By Theorem 1, there exists a valid plan π′ which is
formed by the actions (1–5) listed at the beginning of the
proof of Theorem 1. Since the cost of every action of π′ is
zero, c(π′) = 0.

(2) By Theorem 1, the multiplan π obtained from π′ by
removing the actions in AC , AP and AT and substituting
the actions in π′ with the corresponding actions in A is valid
for Π. Since c(π′) = 0 and π′ is valid, π′ contains an action
Sat-pref(sk, k) achieving the goal conjunct check-pref
of φ′, for some PES sk ∈ SkP and k ≤ n. By construction of
action set A′ and action Sat-pref(sk, k), Sat-pref(sk, k)
can be executed only as the last action of π′. Moreover,
by construction of Sat-pref(sk, k) and since π′ is valid,
multiplan π must end in a PES of Π. �

Experimental Results
In our experiments, planning programs are constructed
over 3 benchmark domains and with 4 different pro-
gram structures defined by the p-program transition rela-
tion δ. We modified domains Blocksworld, Storage,
and ZenoTravel to admit dead-end states (Bacchus 2001;
Gerevini et al. 2009; Long & Fox 2003). Specifically, the
actions of Blocksworld have been constrained so that, ev-
ery two moves of any block, the block has to be on the table;
if this does not happen the block cannot be moved anymore.
For the modified Storage and ZenoTravel domains, hoists
and airplanes consume energy, and can recharge only at cer-
tain locations. The considered p-program structures are: a
single cycle (shortly, 1C), multiple binary cycles in sequence
(MC), a random sparse directed graph (RS), and a sequence
of vertices plus a vertex linked from any vertex of the se-
quence (S+1). More formally, these structures are defined
as follows.

• 1C[n]: δ = {〈vi, Gi, v((i mod n)+1)〉 | vi ∈ V, 1 ≤ i ≤
n};

• MC[n]: δ = {〈vi, Gi, vi+1〉, 〈vi+1, Gi+n−1, vi〉 | vi ∈
V, 1 ≤ i < n};

• RS[n]: δ = {〈vi, Gi, wi〉 | (vi, wi) ∈ ERand, 1 ≤ i ≤
|ERand| = dn · log2ne};

• S+1[n]: δ = {〈vi, Gi, vi+1)〉, 〈vj , Gj+x−2, vx〉 | vi, vj ∈
V, 1 ≤ i < x− 1, 1 ≤ j ≤ x− 1, x =

⌈
n+3
2

⌉
};

where V is the set of program states, n = |V |, ERand is
a set of dn · log2 ne randomly selected pairs of program
states, and Gx denotes the x-th set of (randomly generated)
achievement goals. Unless differently specified, the sets of

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19

RS[14] in BlocksworldCPU seconds

LPG,n=5
LPG,n=1

LAMA,n=5
LAMA,n=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 3 5 7 9 11 13 15 17 19

RS[14] in Blocksworld% tabu states

LPG,n=5
LPG,n=1

LAMA,n=5
LAMA,n=1

Figure 3: CPU time and percentage of generated tabu states of
RealizePlanProg+ using LPG and LAMA with a planning horizon
equal to 1 and 5 for planning programs with structure RS[14] (s.t.
|δ| ≈ 50) over domain Blocksworld. The x-axis refers to the
number of planning program.

achievement goals were obtained by using the existing prob-
lem generators. For simplicity, we set all the maintenance
goals, and transition guards to true (i.e., we assume there are
none of them).

Overall, we constructed 77 planning programs with a
randomly generated initial state and |δ| problem goal sets.
Specifically, our benchmark consists of: 20 Blocksworld
planning programs with a number of blocks ranging from
3 to 12 and program transition relation yielding structure
RS[14] (|δ| ≈ 50); for each considered domain, 77 planning
programs with the same small domain size (the number of
domain objects ranges from 8 to 11) and program transition
relation yielding structures 1C[5-100], MC[4-51], RS[3-23],
and S+1[5-43] (|δ| ranges from about 5 to 100).

Algorithm RealizePlanProg+ has been tested using
two alternative well-known incorporated planners: LAMA
(Richter & Westphal 2010), and LPG (Gerevini, Saetti,
& Serina 2003). The tests were conducted on an In-
tel Xeon(tm) 2 GHz machine, with 2 Gbytes of RAM.
Unless otherwise indicated, the CPU-time limit used by
RealizePlanProg+ to realize planning programs was 20
minutes. The termination of the incorporated planner was
forced after 10 minutes or when two different solution plans
(with increasing quality) were computed. Note that in this
latter case, the second plan necessarily achieves a PES.
Moreover, the second plan computed by either LAMA or
LPG is an optimal solution (in terms of satisfied PESs). This
is because LAMA and LPG minimize the total cost of the
plan solving the problem obtained by compiling PESs and
TESs away, and, by construction of the compiled problems,
at most one action with positive cost can be executed in a
valid plan (the cost of every other action is equal to zero).

RealizePlanProg+[X](n) denotes RealizePlanProg+ in-
corporating planner X and using a planning horizon of n
p-program transitions. Figure 3 shows the performance
of RealizePlanProg+[LAMA] and RealizePlanProg+[LPG]
with n equal to 1 and 5 for Blocksworld planning pro-
grams. Using n = 1, the algorithm is the same as the
version proposed by De Giacomo et al. (2016). The re-
sults show that, using n = 1, RealizePlanProg+ solves few
planning programs because, for most of the Blocksworld
planning programs, almost every D-state generated by
RealizePlanProg+ is a dead-end. Using n = 5, the per-
centage of the generated states that are dead-ends is almost

Domain and RealizePlanProg+[LPG] RealizePlanProg+[LAMA]
structure of 1 2 5 10 25 1 2 5 10 25
p-program Score #P Score #P Score #P Score #P Score #P Score #P Score #P Score#Prob Score #P Score #P
Blocksworld
1C[5-100] 0.0 0 0.0 0 3.3 4 19.5 20 13.3 19 0.0 0 0.0 0 2.0 2 17.4 18 6.9 10
MC[4-51] 0.0 0 1.5 2 13.9 14 15.7 17 6.0 8 0.0 0 0.0 0 8.0 8 11.8 16 0.0 0
RS[3-23] 0.0 0 4.6 5 12.1 13 9.6 11 4.7 6 0.0 0 1.4 2 18.9 19 11.7 17 0.7 1
Storage
1C[5-100] 2.9 5 13.7 15 17.1 20 4.3 7 2.7 5 0.4 1 3.7 5 16.5 18 17.3 20 17.3 20
MC[4-51] 0.0 0 2.4 3 8.2 9 6.3 7 1.7 3 0.0 0 7.0 9 16.5 17 14.6 17 13.1 17
RS[3-23] 1.0 1 2.9 3 1.4 2 4.1 5 2.6 3 0.0 0 4.0 5 11.7 13 15.9 17 10.1 13
ZenoTravel
1C[5-100] 1.4 2 0.8 1 4.5 7 14.9 17 17.0 20 0.9 1 1.0 1 1.9 2 7.6 8 18.0 20
MC[4-51] 2.2 3 1.6 2 11.6 12 14.0 16 12.5 15 1.0 2 1.3 2 4.0 4 11.1 12 14.1 17
RS[3-23] 1.9 3 3.7 4 7.7 9 6.6 8 5.2 7 0.8 2 4.2 5 15.5 16 17.9 19 12.3 17
Total 9.5 14 31.1 35 80.0 90 95.0 108 65.8 86 3.1 6 22.6 29 95.0 99 125.4 144 92.3 115

Table 2: IPC time score, and number of solved problems of RealizePlanProg+[LPG] and RealizePlanProg+[LAMA] with a planning
horizon ranging from 1 to 25 p-program transitions for planning programs with structures 1C[5-100], MC[4-51] and RS[3-23] over domains
Blocksworld, Storage and ZenoTravel. Bold numbers indicate the best results.

always equal to zero and RealizePlanProg+ is almost always
much faster, and solves many more problems than using
n = 1. This indicates that for domains with dead-end states,
realizing more than one p-program transitions together can
be very effective.

The results in Figure 3 raises the question of how many
p-program transitions should be realized “together”. Ta-
ble 2 addresses this question by comparing the IPC time
score (Helmert, Do, & Refanidis 2010) and the number
of solved problems of RealizePlanProg+[LAMA](n) and
RealizePlanProg+[LPG](n) with n ranging from 1 to 25.
The results show that there is a tradeoff between the plan-
ning horizon and the hardness of the multiple planning prob-
lems derived by RealizePlanProg+. The higher the plan-
ning horizon, the harder the derived multiple planning prob-
lems are. Therefore, with a higher planning horizon, it is
more likely that LAMA and LPG fail to solve the com-
piled planning problems. On the other hand, the higher
the planning horizon, the more “advised” the computation
of a p-program realization is, and hence it is less likely
that RealizePlanProg+ generates dead-end states. Over-
all, according to our experimental results, the best trade-
off is obtained using a planning horizon n equal to 10.
For Storage and two p-program structures over three,
RealizePlanProg+[LPG] performs best when used with n =
5, because solving the compiled planning problems derived
from these p-program is hard for LPG. On the contrary, for
ZenoTravel and two p-program structures over three, solv-
ing the compiled planning problems derived from these p-
program is relatively easy for LAMA, and the best perfor-
mance is obtained by using n = 25.

Another interesting question is how the sequence of p-
program transitions should be selected to be realized to-
gether. To investigate this question, we compare the heuris-
tic based on the longest path, previously presented, with a
strategy that randomly selects a p-program transition path of
length n. The results of this comparison are in Table 3. This
experiment uses planning programs with structure S+1[5-
43] where, for almost every P-state v of these planning pro-
grams, there are 2 p-program transition paths starting from
v of different sizes. Overall, RealizePlanProg+[LAMA] and

Domain Using LPG Using LAMA
Random Longest Random Longest

Blocksworld 3.5 (4) 17.0 (17) 1.4 (2) 12.0 (12)
Storage 16.6 (18) 18.6 (20) 18.2 (19) 18.7 (20)
ZenoTravel 4.4 (6) 17.0 (17) 1.7 (2) 14.0 (14)
Total 24.5 (28) 52.6 (54) 21.2 (23) 44.7 (46)

Table 3: IPC time score, and number of solved problems (in
parenthesis) of RealizePlanProg+[LPG/LAMA] with the best per-
forming horizon (see Table 2) for planning programs with structure
S+1[5-43] in domains Blocksworld, Storage and ZenoTravel.

RealizePlanProg+[LPG] using the longest path heuristic are
faster than using a randomly selection of the transitions, and
solve many more problems. This means that an accurate se-
lection of the p-program transitions realized together can be
very useful.

Conclusions
In this paper, we addressed the problem of effectively con-
structing planning program realizations over domains with
dead-end states. We proposed a significant enhancement of
the approach described in (De Giacomo et al. 2016), which
realizes a program transition while verifying the existance of
a solution plan for successive program transitions. Substan-
tially, while the previous basic approach constructs a realiza-
tion of the planning program by iteratively realizing single
program transitions, the enhanced proposed approach con-
structs the realization by realizing a set of heuristically cho-
sen p-program transitions together.

We provided experimental evidence of the effectiveness
of the new technique, and gave (preliminary) experimental
results studying a heuristic criterion for selecting the set of
program transitions to realize together, and the tradeoff be-
tween the size of the set of program transitions realized to-
gether and the hardness of the multiple planning problems
derived from this set of transitions. An interesting direction
for future work is investigating more informative heuristics
for selecting the sets of program transitions that it is more
useful to realize together.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning. Artificial
Intelligence 116(1-2):123–191.
Bacchus, F. 2001. The AIPS’00 planning competition. AI
Magazine 22:47–56.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 190–197.
De Giacomo, G., and Vardi, M. Y. 1999. Automata-theoretic
approach to planning for temporally extended goals. In Pro-
ceedings of the European Conference on Planning (ECP),
volume 1809 of Lecture Notes in Computer Science, 226–
238. Springer.
De Giacomo, G.; Patrizi, F.; Felli, P.; and Sardina, S. 2010.
Two-player game structures for generalized planning and
agent composition. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI), 297–302.
De Giacomo, G.; Gerevini, A. E.; Patrizi, F.; Saetti, A.; and
Sardina, S. 2016. Agent planning programs. Artificial Intel-
ligence 231(1):64–106.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Gerevini, A.; Patrizi, F.; and Saetti, A. 2011. An effective
approach to realizing planning programs. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS), 323–326.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239–
290.
Helmert, M.; Do, M.; and Refanidis, I. 2010. Determin-
istic part of the 6th International Planning Competition. In
http://icaps-conference.org/ipc2008/deterministic.
Kabanza, F., and Thiébaux, S. 2005. Search control in
planning for temporally extended goals. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 130–139.
Long, D., and Fox, M. 2003. The 3rd international planning
competition: Results and analysi s. Journal of Artificial In-
telligence Research (JAIR) 20:1–59.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artificial Intelligence 175(2):615–647.

